1
|
Cao X, Yao F, Zhang B, Sun X. Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng. Front Pharmacol 2023; 14:1218803. [PMID: 37547332 PMCID: PMC10399631 DOI: 10.3389/fphar.2023.1218803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.
Collapse
Affiliation(s)
- Xinxin Cao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Impellizzeri D, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Genovese T, Crupi R, Interdonato L, Evangelista M, Di Paola R, Cuzzocrea S, D'Amico R. Molecular targets for anti-oxidative protection of açaí berry against diabetes myocardial ischemia/reperfusion injury. Free Radic Res 2023; 57:339-352. [PMID: 37609799 DOI: 10.1080/10715762.2023.2243032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the principal cause of death and occurs after prolonged blockage of the coronary arteries. Diabetes represents one of the main factors aggravating myocardial injury. Restoring blood flow is the first intervention against a heart attack, although reperfusion process could cause additional damage, such as the overproduction of reacting oxygen species (ROS). In recent years, açaí berry has gained international attention as a functional food due to its antioxidant and anti-inflammatory properties; not only that but this fruit has shown glucose-lowering effects. Therefore, this study was designed to evaluate the cardioprotective effects of açaí berry on the inflammatory and oxidative responses associated with diabetic MIRI. Diabetes was induced in rats by a single intravenous inoculation of streptozotocin (60 mg/kg) and allowed to develop for 60 days. MIRI was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. Açaí (200 mg/kg) was administered 5 min before the end of ischemia and 1 h after reperfusion. In this study, we clearly demonstrated that açaí treatment was able to reduce biomarkers of myocardial damage, infarct size, and apoptotic process. Moreover, açaí administrations reduced inflammatory and oxidative response, modulating Nf-kB and Nrf2 pathways. These results suggest that açai berry supplementation could represent a useful strategy for pathological events associated to MIRI.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Ouyang Y, Tang L, Hu S, Tian G, Dong C, Lai H, Wang H, Zhao J, Wu H, Zhang F, Yang H. Shengmai san-derived compound prescriptions: A review on chemical constituents, pharmacokinetic studies, quality control, and pharmacological properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154433. [PMID: 36191550 DOI: 10.1016/j.phymed.2022.154433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Shengmai San Formula (SMS), composed of Ginseng Radix et Rhizoma, Ophiopogon Radix and Schisandra chinensis Fructus, was a famous formula in Tradition Chinese Medicine (TCM). With the expansion of clinical applications, SMS was developed to different dosage forms, including Shengmai Yin Oral liquid (SMY), Shengmai Capsule (SMC), Shengmai Granule (SMG), Shengmai Injection (SMI) and Dengzhan Shengmai Capsule (DZSMC). These above SMS-derived compound prescriptions (SSCPs) play an important role in the clinical treatment. This review is aimed to providing a comprehensive perspective of SSCP. METHODS The relevant literatures were collected from classical TCM books and a variety of databases, including PubMed, Google Scholar, Science Direct, Springer Link, Web of Science, China National Knowledge Infrastructure, and Wanfang Data. RESULTS The chemical constituents of SSCPs, arrived from the individual medicinal materials including Ginseng Radix et Rhizoma, Ophiopogon Radix, Schisandra chinensis Fructus, Erigerontis Herba, were firstly summarized respectively. Then the pharmacokinetics studies, quality control, and pharmacological properties of SSCPs were all reviewed. The active compounds, pharmacokinetics characterizes, quality control markers, the effects and mechanisms of pharmacology of the different dosage forms of SSCPs were summarized. Furthermore, the research deficiencies of SSCPs and an innovative research paradigm for Chinese materia medica (CMM) formula were proposed. CONCLUSIONS SMS, as a famous CMM formula, has great values in drug research and in clinical treatment especially for cardiocerebrovascular diseases. This article firstly make a comprehensive and systematic review on SMS.
Collapse
Affiliation(s)
- Yi Ouyang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghuan Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Zunyi Medical University, Zunyi, China
| | - Caihong Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Huaqing Lai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Zunyi Medical University, Zunyi, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhang J, Ou C, Chen M. Curcumin attenuates cadmium-induced atherosclerosis by regulating trimethylamine-N-oxide synthesis and macrophage polarization through remodeling the gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114057. [PMID: 36084504 DOI: 10.1016/j.ecoenv.2022.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Studies have shown that cadmium (Cd) exposure primarily occurs through diet, and Cd ingestion is a risk factor for atherosclerosis (AS). However, the underlying mechanism remains unclear. As a target organ, the gastrointestinal tract may play a key role in Cd-induced AS. Additionally, as curcumin is insoluble in water but stable in the stomach of acidic pH, it may play regulative roles in the gut. OBJECTIVES We assess the effect of Cd exposure on gut flora, trimethylamine-N-oxide (TMAO) metabolism and macrophage polarization, further investigate whether curcumin protects against Cd-induced AS by remodeling gut microbiota. METHODS AND RESULTS The results of 16 S rRNA sequencing show that Cd exposure causes diversity reduction and compositional alteration of the microbial community, resulting in the increasing TMAO synthesis, the imbalance of lipid metabolism, and the M1-type macrophage polarization in the mouse model (ApoE-/-) of AS. As a result, the plaque area is increased with Cd exposure, shown by oil red O staining. TMAO synthesis is positively correlated with the concentration of blood Cd, and the dynamics of specific bacteria in this process were revealed at the phylum to genus levels. Moreover, the effects of intestinal flora and TMAO on Cd-induced AS are further confirmed via microbial transplantation from a mouse model not exposed to Cd, as the transplantation decreases plaque area. Finally, the gavage with curcumin reverses the Cd-induced pathological progression via gut flora restoration. CONCLUSIONS We first demonstrate that Cd exposure worsens the progression of AS via intestinal flora imbalance and increased TMAO synthesis. Curcumin was verified as a potential novel intervention for preventing Cd-induced AS via remodeling gut microbiota. This study elucidates a new approach for treating AS in regions with significant Cd exposure.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou 510280, China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou 510280, China.
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou 510280, China.
| |
Collapse
|
5
|
Jeddi S, Gheibi S, Afzali H, Carlström M, Kashfi K, Ghasemi A. Hydrogen sulfide potentiates the protective effects of nitrite against myocardial ischemia-reperfusion injury in type 2 diabetic rats. Nitric Oxide 2022; 124:15-23. [PMID: 35504499 DOI: 10.1016/j.niox.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
6
|
Ramli FF, Ali A, Ibrahim N'I. Molecular-Signaling Pathways of Ginsenosides Rb in Myocardial Ischemia-Reperfusion Injury: A Mini Review. Int J Med Sci 2022; 19:65-73. [PMID: 34975299 PMCID: PMC8692112 DOI: 10.7150/ijms.64984] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Reperfusion injury following myocardial ischemia remained a challenge for optimal treatment of myocardial infarction. Ginsenosides Rb (G-Rb), the primary components of ginsenoside, have been reported to exert cardioprotective effects via numerous mechanisms. G-Rb1 mediate cardioprotective effects via various signaling pathways, including mitochondrial apoptotic pathway, PI3K/Akt/mTOR, HIF-1α and GRF91, RhoA, p38α MAPK, and eNOS. G-Rb2 activates the SIRT-1 pathway, while G-Rb3 promotes both JNK-mediated NF-κB and PERK/Nrf2/HMOX1. Generally, ginsenosides Rb1, 2, and 3 modulates oxidative stress, inflammation, and apoptosis, contributing to the improvement of structural, functional and biochemical parameters. In conclusion, G-Rb, particularly G-Rb1, have vast potential as a supplement in attenuating reperfusion injury. Translation into a clinical trial is warranted to confirm the beneficial effects of G-Rb.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Cardiovascular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Infection and Immunology Health and Advanced Medicine Cluster, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Cardiovascular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Lin CH, Lin YA, Chen SL, Hsu MC, Hsu CC. American Ginseng Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients 2021; 14:nu14010078. [PMID: 35010953 PMCID: PMC8746757 DOI: 10.3390/nu14010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is characterized by a reduction in functional performance, disruption of muscle structure, production of reactive oxygen species, and inflammatory reactions. Ginseng, along with its major bioactive component ginsenosides, has been widely employed in traditional Chinese medicine. The protective potential of American ginseng (AG) for eccentric EIMD remains unclear. Twelve physically active males (age: 22.4 ± 1.7 years; height: 175.1 ± 5.7 cm; weight: 70.8 ± 8.0 kg; peak oxygen consumption [V˙O2peak] 54.1 ± 4.3 mL/kg/min) were administrated by AG extract (1.6 g/day) or placebo (P) for 28 days and subsequently challenged by downhill (DH) running (−10% gradient and 60% V˙O2peak). The levels of circulating 8-iso-prostaglandin F 2α (PGF2α), creatine kinase (CK), interleukin (IL)-1β, IL-4, IL-10, and TNF-α, and the graphic pain rating scale (GPRS) were measured before and after supplementation and DH running. The results showed that the increases in plasma CK activity induced by DH running were eliminated by AG supplementation at 48 and 72 h after DH running. The level of plasma 8-iso-PGF2α was attenuated by AG supplementation immediately (p = 0.01 and r = 0.53), 2 h (p = 0.01 and r = 0.53) and 24 h (p = 0.028 and r = 0.45) after DH running compared with that by P supplementation. Moreover, our results showed an attenuation in the plasma IL-4 levels between AG and P supplementation before (p = 0.011 and r = 0.52) and 72 h (p = 0.028 and r = 0.45) following DH running. Our findings suggest that short-term supplementation with AG alleviates eccentric EIMD by decreasing lipid peroxidation and promoting inflammatory adaptation.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Physical Education Office, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Yi-An Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Shu-Li Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan;
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| | - Cheng-Chen Hsu
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| |
Collapse
|
8
|
Liu Y, Zhang H, Dai X, Zhu R, Chen B, Xia B, Ye Z, Zhao D, Gao S, Orekhov AN, Zhang D, Wang L, Guo S. A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of Ginseng. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153717. [PMID: 34583224 DOI: 10.1016/j.phymed.2021.153717] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Radix Ginseng, one of the well-known medicinal herbs, has been used in the management of diabetes and its complications for more than 1000 years. PURPOSE The aim of this review is devoted to summarize the phytochemistry and pharmacokinetics of Ginseng, and provide evidence for the antidiabetic effects of Ginseng and its ingredients as well as the underlying mechanisms involved. METHODS For the purpose of this review, the following databases were consulted: the PubMed Database (https://pubmed.ncbi.nlm.nih.gov), Chinese National Knowledge Infrastructure (http://www.cnki.net), National Science and Technology Library (http://www.nstl.gov.cn/), Wanfang Data (http://www.wanfangdata.com.cn/) and the Web of Science Database (http://apps.webofknowledge.com/). RESULTS Ginseng exhibits glucose-lowering effects in different diabetic animal models. In addition, Ginseng may prevent the development of diabetic complications, including liver, pancreas, adipose tissue, skeletal muscle, nephropathy, cardiomyopathy, retinopathy, atherosclerosis and others. The main ingredients of Ginseng include ginsenosides and polysaccharides. The underlying mechanisms whereby this herb exerts antidiabetic activities may be attributed to the regulation of multiple signaling pathways, including IRS1/PI3K/AKT, LKB1/AMPK/FoxO1, AGEs/RAGE, MAPK/ERK, NF-κB, PPARδ/STAT3, cAMP/PKA/CERB and HIF-1α/VEGF, etc. The pharmacokinetic profiles of ginsenosides provide valuable information on therapeutic efficacy of Ginseng in diabetes. Although Ginseng is well-tolerated, dietary consumption of this herb should follow the doctors' advice. CONCLUSION Ginseng may offer an alternative strategy in protection against diabetes and its complications through the regulations of the multi-targets via various signaling pathways. Efforts to understand the underlying mechanisms with strictly-controlled animal models, combined with well-designed clinical trials and pharmacokinetic evaluation, will be important subjects of the further investigations and weigh in translational value of this herb in diabetes management.
Collapse
Affiliation(s)
- Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bingke Xia
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zimengwei Ye
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Shuzhen Guo
- Department of Scientific Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Zhang X, Wang L, Guo R, Xiao J, Liu X, Dong M, Luan X, Ji X, Lu H. Ginsenoside Rb1 Ameliorates Diabetic Arterial Stiffening via AMPK Pathway. Front Pharmacol 2021; 12:753881. [PMID: 34712140 PMCID: PMC8546248 DOI: 10.3389/fphar.2021.753881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Macrovascular complication of diabetes mellitus, characterized by increased aortic stiffness, is a major cause leading to many adverse clinical outcomes. It has been reported that ginsenoside Rb1 (Rb1) can improve glucose tolerance, enhance insulin activity, and restore the impaired endothelial functions in animal models. The aim of this study was to explore whether Rb1 could alleviate the pathophysiological process of arterial stiffening in diabetes and its potential mechanisms. Experimental Approach: Diabetes was induced in male C57BL/6 mice by administration of streptozotocin. These mice were randomly selected for treatment with Rb1 (10-60 mg/kg, i. p.) once daily for 8 weeks. Aortic stiffness was assessed using ultrasound and measurement of blood pressure and relaxant responses in the aortic rings. Mechanisms of Rb1 treatment were studied in MOVAS-1 VSMCs cultured in a high-glucose medium. Key Results: Rb1 improved DM-induced arterial stiffening and the impaired aortic compliance and endothelium-dependent vasodilation. Rb1 ameliorated DM-induced aortic remodeling characterized by collagen deposition and elastic fibers disorder. MMP2, MMP9, and TGFβ1/Smad2/3 pathways were involved in this process. In addition, Rb1-mediated improvement of arterial stiffness was partly achieved via inhibiting oxidative stress in DM mice, involving regulating NADPH oxidase. Finally, Rb1 could blunt the inhibition effects of DM on AMPK phosphorylation. Conclusion and Implications: Rb1 may represent a novel prevention strategy to alleviate collagen deposition and degradation to prevent diabetic macroangiopathy and diabetes-related complications.
Collapse
Affiliation(s)
- Xinyu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rong Guo
- Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, China
| | - Jie Xiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaorong Luan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Dr. Gilbert Hung Ginseng Laboratory, Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR China
| |
Collapse
|
10
|
Wang Q, Wang Y, Xie Y, Adu-Frimpong M, Wei C, Yang X, Cao X, Deng W, Toreniyazov E, Ji H, Xu X, Yu J. Nonionic surfactant vesicles as a novel drug delivery system for increasing the oral bioavailability of Ginsenoside Rb1. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Xie W, Wang X, Xiao T, Cao Y, Wu Y, Yang D, Zhang S. Protective Effects and Network Analysis of Ginsenoside Rb1 Against Cerebral Ischemia Injury: A Pharmacological Review. Front Pharmacol 2021; 12:604811. [PMID: 34276353 PMCID: PMC8283782 DOI: 10.3389/fphar.2021.604811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Currently, only a limited number of drugs are available for treating ischemic stroke. Hence, studies aiming to explore and develop other potential strategies and agents for preventing and treating ischemic stroke are urgently needed. Ginseng Rb1 (GRb1), a saponin from natural active ingredients derived from traditional Chinese medicine (TCM), exerts neuroprotective effects on the central nervous system (CNS). We conducted this review to explore and summarize the protective effects and mechanisms of GRb1 on cerebral ischemic injury, providing a valuable reference and insights for developing new agents to treat ischemic stroke. Our summarized results indicate that GRb1 exerts significant neuroprotective effects on cerebral ischemic injury both in vivo and in vitro, and these network actions and underlying mechanisms are mediated by antioxidant, anti-inflammatory, and antiapoptotic activities and involve the inhibition of excitotoxicity and Ca2+ influx, preservation of blood–brain barrier (BBB) integrity, and maintenance of energy metabolism. These findings indicate the potential of GRb1 as a candidate drug for treating ischemic stroke. Further studies, in particular clinical trials, will be important to confirm its therapeutic value in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyue Wang
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianbao Xiao
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yibo Cao
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yumei Wu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongsheng Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G, Sun X. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis. Front Pharmacol 2021; 11:570867. [PMID: 33597866 PMCID: PMC7883640 DOI: 10.3389/fphar.2020.570867] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia is a high-risk disease among middle-aged and senior individuals. After thrombolytic therapy, heart tissue can potentially suffer further damage, which is called myocardial ischemia-reperfusion injury (MIRI). At present, the treatment methods and drugs for MIRI are scarce and cannot meet the current clinical needs. The mechanism of MIRI involves the interaction of multiple factors, and the current research hotspots mainly include oxidative stress, inflammation, calcium overload, energy metabolism disorders, pyroptosis, and ferroptosis. Traditional Chinese medicine (TCM) has multiple targets and few toxic side effects; clinical preparations containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., cardioprotection, and other Chinese herbal medicines have been used to treat patients with coronary heart disease, angina pectoris, and other cardiovascular diseases. Studies have shown that saponins are the main active substances in TCMs containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., and Radix astragali. In the present review, we sorted the saponin components with anti-MIRI effects and their regulatory mechanisms. Each saponin can play a cardioprotective role via multiple mechanisms, and the signaling pathways involved in different saponins are not the same. We found that more active saponins in Panax ginseng C. A. Mey. are mainly dammar-type structures and have a strong regulatory effect on energy metabolism. The highly active saponin components of Aralia chinensis L. are oleanolic acid structures, which have significant regulatory effects on calcium homeostasis. Therefore, saponins in Chinese herbal medicine provide a broad application prospect for the development of highly effective and low-toxicity anti-MIRI drugs.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahui Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Daoshun Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother 2020; 132:110915. [DOI: 10.1016/j.biopha.2020.110915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
|
14
|
Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res 2020; 35:223-245. [PMID: 32909364 DOI: 10.1002/ptr.6821] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a disease of serious concern faced by the health care industry today. Primary diabetes mellitus and its complications are still costly to manage with modern drugs. Extensive research on the screening of anti-diabetic agents in past decades established natural products as one of the major potential sources of drug discovery. However, only a few drugs of plant origin have been scientifically validated. Therefore, the development of new anti-diabetic drugs is of great demand. Hence, natural products could be explored as potential anti-diabetic drugs. Natural plants derived extracts and molecules like berberine, ginsenosides, curcumin, stevioside, gingerols, capsaicin, catechins, simple phenolic compounds, anthocyanins, resveratrol, genistein and hesperidin obtained from different species are used for curing diabetes and found to possess different action mechanisms. In this review, the importance of medicinal plants and their active constituents for anti-diabetic agents are described. The present study also emphasized the importance of diabetes control, reduction in its complications and use of the anti-diabetic agents. The detailed action mechanism of these extracts/compounds for their activities are also described. However, the anti-diabetic drugs from plant origin require scientific validation through animal and clinical studies to exploit in terms of modern commercial medicines.
Collapse
Affiliation(s)
- Arun K Jugran
- Garhwal Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Srinagar, Uttarakhand, India
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Gangtok, Sikkim, India
| | - Hari P Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| | - Ranbeer S Rawal
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| |
Collapse
|
15
|
Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Mol Cell Biochem 2020; 473:111-132. [PMID: 32602016 DOI: 10.1007/s11010-020-03812-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
We recently reported that non-preconditioned hearts from diet-induced obese rats showed, compared to controls, a significant reduction in infarct size after ischaemia/reperfusion, whilst ischaemic preconditioning was without effect. In view of the high circulating FFA concentration in diet rats, the aims of the present study were to: (i) compare the effect of palmitate on the preconditioning potential of hearts from age-matched controls and diet rats (ii) elucidate the effects of substrate manipulation on ischaemic preconditioning. Substrate manipulation was done with dichloroacetate (DCA), which enhances glucose oxidation and decreases fatty acid oxidation. Isolated hearts from diet rats, age-matched controls or young rats, were perfused in the working mode using the following substrates: glucose (10 mM); palmitate (1.2 mM)/3% albumin) + glucose (10 mM) (HiFA + G); palmitate (1.2 mM/3% albumin) (HiFA); palmitate (0.4 mM/3% albumin) + glucose(10 mM) (LoFA + G); palmitate (0.4 mM/3% albumin) (LoFA). Hearts were preconditioned with 3 × 5 min ischaemia/reperfusion, followed by 35 min coronary ligation and 60 min reperfusion for infarct size determination (tetrazolium method) or 20 min global ischaemia/10 or 30 min reperfusion for Western blotting (ERKp44/42, PKB/Akt). Preconditioning of glucose-perfused hearts from age-matched control (but not diet) rats reduced infarct size, activated ERKp44/42 and PKB/Akt and improved functional recovery during reperfusion (ii) perfusion with HiFA + G abolished preconditioning and activation of ERKp44/42 (iii) DCA pretreatment largely reversed the harmful effects of HiFA. Hearts from non-preconditioned diet rats exhibited smaller infarcts, but could not be preconditioned, regardless of the substrate. Similar results were obtained upon substrate manipulation of hearts from young rats. Abolishment of preconditioning in diet rats may be due to altered myocardial metabolic patterns resulting from changes in circulating FA. The harmful effects of HiFA were attenuated by stimulation of glycolysis and inhibition of FA oxidation.
Collapse
|
16
|
Wang J, Wang H, Mou X, Luan M, Zhang X, He X, Zhao F, Meng Q. The Advances on the Protective Effects of Ginsenosides on Myocardial Ischemia and Ischemia-Reperfusion Injury. Mini Rev Med Chem 2020; 20:1610-1618. [PMID: 32560603 DOI: 10.2174/1389557520666200619115444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 01/24/2023]
Abstract
Ginseng is a traditional medicine with a complex chemical composition, wide bioactivity and unique pharmacological action. Many studies have confirmed that ginsenosides are the active ingredients of ginseng, and ginsenosides have always been the focus of different researchers. With the development of modern separation and analysis technology, more than 150 kinds of ginsenosides have been isolated. The ginsenosides Rb1, Rb2, Rc, Rg1 and Re account for more than 80% of total ginsenosides, and other saponins, such as Rd, Rg3 and Rh2, which are minor constituents, accounting for only a small portion of the total amount. In recent years, ginsenosides have been found to possess strong pharmacological activities, such as antioxidation, clearing of oxygen free radicals, reducing calcium overload and anti-apoptosis. Ginsenosides play a protective role in ischemia-reperfusion injury. This paper reviews the protective effects of ginsenosides on myocardial ischemia and ischemiareperfusion injury.
Collapse
Affiliation(s)
- Jiazhen Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826, P.R. China
| | - Xiaodong Mou
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Mingzhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Xiaofan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Xiuting He
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| |
Collapse
|
17
|
Calabrese EJ. Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects. Molecules 2020; 25:E2719. [PMID: 32545419 PMCID: PMC7321326 DOI: 10.3390/molecules25112719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
This paper demonstrates that ginseng mixtures and individual ginseng chemical constituents commonly induce hormetic dose responses in numerous biological models for endpoints of biomedical and clinical relevance, typically providing a mechanistic framework. The principal focus of ginseng hormesis-related research has been directed toward enhancing neuroprotection against conditions such as Alzheimer's and Parkinson's Diseases, stroke damage, as well as enhancing spinal cord and peripheral neuronal damage repair and reducing pain. Ginseng was also shown to reduce symptoms of diabetes, prevent cardiovascular system damage, protect the kidney from toxicities due to immune suppressant drugs, and prevent corneal damage, amongst other examples. These findings complement similar hormetic-based chemoprotective reports for other widely used dietary-type supplements such as curcumin, ginkgo biloba, and green tea. These findings, which provide further support for the generality of the hormetic dose response in the biomedical literature, have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Dose-Dependent Effects of Long-Term Administration of Hydrogen Sulfide on Myocardial Ischemia-Reperfusion Injury in Male Wistar Rats: Modulation of RKIP, NF-κB, and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21041415. [PMID: 32093102 PMCID: PMC7073056 DOI: 10.3390/ijms21041415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/30/2022] Open
Abstract
Decreased circulating levels of hydrogen sulfide (H2S) are associated with higher mortality following myocardial ischemia. This study aimed at determining the long-term dose-dependent effects of sodium hydrosulfide (NaSH) administration on myocardial ischemia-reperfusion (IR) injury. Male rats were divided into control and NaSH groups that were treated for 9 weeks with daily intraperitoneal injections of normal saline or NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg), respectively. At the end of the study, hearts from all rats were isolated and hemodynamic parameters were recorded during baseline and following IR. In isolated hearts, infarct size, oxidative stress indices as well as mRNA expression of H2S-, nitric oxide (NO)-producing enzymes, and inflammatory markers were measured. In heart tissue following IR, low doses of NaSH (0.28 and 0.56 mg/kg) had no effect, whereas an intermediate dose (1.6 mg/kg), improved recovery of hemodynamic parameters, decreased infarct size, and decreased oxidative stress. It also increased expression of cystathionine γ-lyase (CSE), Raf kinase inhibitor protein (RKIP), endothelial NO synthase (eNOS), and neuronal NOS (nNOS), as well as decreased expression of inducible NOS (iNOS) and nuclear factor kappa-B (NF-κB). At the high dose of 5.6 mg/kg, NaSH administration was associated with worse recovery of hemodynamic parameters and increased infarct size as well as increased oxidative stress. This dose also decreased expression of CSE, RKIP, and eNOS and increased expression of iNOS and NF-κB. In conclusion, chronic treatment with NaSH has a U-shaped concentration effect on IR injury in heart tissue. An intermediate dose was associated with higher CSE-derived H2S, lower iNOS-derived NO, lower oxidative stress, and inflammation in heart tissue following IR.
Collapse
|
19
|
Wu GS, Li HK, Zhang WD. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin J Nat Med 2020; 17:321-330. [PMID: 31171266 DOI: 10.1016/s1875-5364(19)30037-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Traditional Chinese Medicine (TCM) is the treasure of Chinese Nation and gained the gradual acceptance of the international community. However, the methods and theories of TCM understanding of diseases are lack of appropriate modern scientific characterization systems. Moreover, traditional risk factors cannot promote to detection and prevent those patients with coronary artery disease (CAD) who have not developed acute myocardial infarction (MI) in time. To sum up, there is still no objective systematic evaluation system for the therapeutic mechanism of TCM in the prevention and cure of cardiovascular disease. Thus, new ideas and technologies are needed. The development of omics technology, especially metabolomics, can be used to predict the level of metabolites in vivo and diagnose the physiological state of the body in time to guide the corresponding intervention. In particular, metabolomics is also a very powerful tool to promote the modernization of TCM and the development of TCM in personalized medicine. This article summarized the application of metabolomics in the early diagnosis, the discovery of biomarkers and the treatment of TCM in CAD.
Collapse
Affiliation(s)
- Gao-Song Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hou-Kai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
20
|
Lim S, Park J, Um JY. Ginsenoside Rb1 Induces Beta 3 Adrenergic Receptor-Dependent Lipolysis and Thermogenesis in 3T3-L1 Adipocytes and db/db Mice. Front Pharmacol 2019; 10:1154. [PMID: 31680950 PMCID: PMC6803469 DOI: 10.3389/fphar.2019.01154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is constantly rising into a major health threat worldwide. Activation of brown-like transdifferentiation of white adipocytes (browning) has been proposed as a promising molecular target for obesity treatment. In this study, we investigated the effect of ginsenoside Rb1 (Rb1), a saponin derived from Panax ginseng Meyer, on browning. We used 3T3-L1 murine adipocytes and leptin receptor mutated db/db mice. The lipid accumulation, AMP-activated protein kinase alpha (AMPKα)-related pathways, lipolytic and thermogenic factors were measured after Rb treatment in 3T3-L1 adipocytes. Body weight change and lipolysis-thermogenesis factors were investigated in Rb1-treated db/db mice. Beta 3 adrenergic receptor activation (β3AR) changes were measured in Rb1-treated 3T3-L1 cells with or without β3AR inhibitor L748337 co-treatment. As a result, Rb1 treatment decreased lipid droplet size in 3T3-L1 adipocytes. Rb1 also induced phosphorylations of AMPKα pathway and sirtuins. Moreover, lipases and thermogenic factors such as uncoupling protein 1 were increased by Rb1 treatment. Through these results, we could expect that the non-shivering thermogenesis program can be induced by Rb1. In db/db mice, 6-week injection of Rb1 resulted in decreased inguinal white adipose tissue (iWAT) weight associated with shrunken lipid droplets and increased lipolysis and thermogenesis. The thermogenic effect of Rb1 was possibly due to β3AR, as L748337 pre-treatment abolished the effect of Rb1. In conclusion, we suggest Rb1 as a potential lipolytic and thermogenic therapeutic agent which can be used for obesity treatment.
Collapse
Affiliation(s)
- Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
21
|
Han JY, Li Q, Pan CS, Sun K, Fan JY. Effects and mechanisms of QiShenYiQi pills and major ingredients on myocardial microcirculatory disturbance, cardiac injury and fibrosis induced by ischemia-reperfusion. Pharmacol Res 2019; 147:104386. [DOI: 10.1016/j.phrs.2019.104386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
|
22
|
Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis. Cells 2019; 8:cells8030204. [PMID: 30823412 PMCID: PMC6468558 DOI: 10.3390/cells8030204] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Panax ginseng and Panax notoginseng, two well-known medical plants with economic value, have a long history of use for managing various diseases in Asian countries. Accumulating clinical and experimental evidence suggests that notoginsenosides and ginsenosides, which are the major bioactive components of the plants, have a variety of beneficial effects on several types of disease, including metabolic, vascular, and central nervous system disease. Considerable attention has been focused on ginsenoside Rb1 derived from their common ownership as an anti-diabetic agent that can attenuate insulin resistance and various complications. Particularly, in vitro and in vivo models have suggested that ginsenoside Rb1 exerts various pharmacological effects on metabolic disorders, including attenuation of glycemia, hypertension, and hyperlipidemia, which depend on the modulation of oxidative stress, inflammatory response, autophagy, and anti-apoptosis effects. Regulation of these pathophysiological mechanisms can improve blood glucose and insulin resistance and protect against macrovascular/microvascular related complications. This review summarizes the pharmacological effects and mechanisms of action of ginsenoside Rb1 in the management of diabetes or diabetic complications. Moreover, a multi-target effect and mechanism analysis of its antidiabetic actions were performed to provide a theoretical basis for further pharmacological studies and new drug development for clinical treatment of type 2 diabetes. In conclusion, ginsenoside Rb1 exerts significant anti-obesity, anti-hyperglycemic, and anti-diabetic effects by regulating the effects of glycolipid metabolism and improving insulin and leptin sensitivities. All of these findings suggest ginsenoside Rb1 exerts protective effects on diabetes and diabetic complications by the regulation of mitochondrial energy metabolism, improving insulin resistance and alleviating the occurrence complications, which should be further explored. Hence, ginsenoside Rb1 may be developed as a potential anti-obesity, anti-hyperglycemic, and anti-diabetic agent with multi-target effects.
Collapse
|
23
|
Gan XT, Karmazyn M. Cardioprotection by ginseng: experimental and clinical evidence and underlying mechanisms. Can J Physiol Pharmacol 2018; 96:859-868. [PMID: 29940129 DOI: 10.1139/cjpp-2018-0192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protection of the ischemic and reperfused myocardium represents a major therapeutic challenge. Translating results from animal studies to the clinical setting has been disappointing, yet the need for effective intervention, particularly to limit heart damage following infarction or surgical procedures such as coronary artery bypass grafting, is substantial. Among the many compounds touted as cardioprotective agents is ginseng, a medicinal herb belonging to the genus Panax, which has been used as a medicinal agent for thousands of years, particularly in Asian societies. The biological actions of ginseng are very complex and reflect composition of many bioactive components, although many of the biological and therapeutic effects of ginseng have been attributed to the presence of steroid-like saponins termed ginsenosides. Both ginseng and many ginsenosides have been shown to exert cardioprotective properties in experimental models. There is also clinical evidence that traditional Chinese medications containing ginseng exert cardioprotective properties, although such clinical evidence is less robust primarily owing to the paucity of large-scale clinical trials. Here, we discuss the experimental and clinical evidence for ginseng, ginsenosides, and ginseng-containing formulations as cardioprotective agents against ischemic and reperfusion injury. We further discuss potential mechanisms, particularly as these relate to antioxidant properties.
Collapse
Affiliation(s)
- Xiaohong Tracey Gan
- University of Western Ontario, London, ON N6G 2X6, Canada.,University of Western Ontario, London, ON N6G 2X6, Canada
| | | |
Collapse
|
24
|
Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2835-2847. [DOI: 10.1016/j.bbadis.2017.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
25
|
Wang M, Chen Y, Xiong Z, Yu S, Zhou B, Ling Y, Zheng Z, Shi G, Wu Y, Qian X. Ginsenoside Rb1 inhibits free fatty acids‑induced oxidative stress and inflammation in 3T3‑L1 adipocytes. Mol Med Rep 2017; 16:9165-9172. [PMID: 28990058 DOI: 10.3892/mmr.2017.7710] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/14/2017] [Indexed: 11/05/2022] Open
Abstract
Free fatty acids (FFAs) increase in visceral fat and are inferred to be one of the underlying inducers of adipose tissue inflammation. In our previous study, it was demonstrated that ginsenoside Rb1 stimulates endothelial nitric oxide synthase (eNOS) and Sirtuin 1 to protect against endothelial cell senescence. In the present study, 3T3‑L1 adipocytes were exposed to 0.5 mM FFAs with or without Rb1 (10‑40 µM). Monocyte chemotactic protein‑1 (MCP‑1) and interleukin‑6 (IL‑6) secretion was measured using ELISA. Tumor necrosis factor‑α (TNF‑α) expression and nuclear factor‑κB (NF‑κB) p65 phosphorylation were detected using western blot analysis. Oxidative stress was determined via measuring intracellular reactive oxygen species (ROS) and nitric oxide (NO) production. The results demonstrated that MCP‑1 and IL‑6 secretion, as well as TNF‑α expression, were significantly increased following FFA treatment, which was attenuated by Rb1 in a dose‑dependent manner. Furthermore, Rb1 attenuated FFA‑induced NF‑κB phosphorylation, suggesting that the inhibitory effect of Rb1 on inflammatory cytokines was partially mediated through blockade of NF‑κB phosphorylation. Further experiments demonstrated that Rb1 ameliorated FFA‑induced ROS generation and NO reduction through upregulation of superoxide dismutase 2 and eNOS expression. Taken together, these results demonstrate proinflammatory and pro‑oxidant effects of FFA on 3T3‑L1 adipocytes, which are effectively ameliorated by Rb1. Suppression of inflammatory responses and oxidative stress may be a novel mechanism for attenuating the effect of Rb1 on adipocyte dysfunction.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yanming Chen
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhaojun Xiong
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Shujie Yu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Zhou
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yesheng Ling
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhenda Zheng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guangyao Shi
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yongxiang Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
26
|
Extract of Sheng-Mai-San Ameliorates Myocardial Ischemia-Induced Heart Failure by Modulating Ca 2+-Calcineurin-Mediated Drp1 Signaling Pathways. Int J Mol Sci 2017; 18:ijms18091825. [PMID: 28841143 PMCID: PMC5618477 DOI: 10.3390/ijms18091825] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Sheng-Mai-San (SMS) is a well-known traditional Chinese medicine (TCM) complex prescription used to treat heart failure (HF) and angina in clinic. However, its potential therapeutic mechanisms remain unclear. The present study evaluated the cardioprotection of extract of SMS (ESMS) on myocardial ischemia (MI)-induced HF, and explored the underlying molecular mechanisms. The results demonstrated that ESMS (728.0 mg/kg) significantly attenuated MI injury-induced HF by improving cardiac function and pathological changes, decreasing lactate dehydrogenase (LDH), creatine kinase (CK) activities, and brain natriuretic peptide (BNP) levels; increasing ATPase activity; and reducing intracellular Ca2+ levels in MI-induced HF mice model. It also significantly decreased the apoptotic index. In vitro, ESMS (400 μg/mL) inhibited mitochondrial-dependent myocardial apoptosis by modulating the expression of caspase-3 and the Bcl-2/Bax ratio, and improved mitochondrial function through increasing mitochondrial membrane potential and cellular ATP content. ESMS restored intracellular Ca2+ and downregulated the expression of Calcineurin A (CnA), thus inhibiting phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 and increasing phosphorylation of Drp1 at Ser637 to prevent cardiomyocyte mitochondrial fission. Above-mentioned results demonstrated ESMS suppressed mitochondrial-mediated apoptosis in oxygen glucose deprivation (OGD) injured H9c2 cardiomyocytes. These findings suggested that ESMS attenuated MI-induced HF by regulating Ca2+ homeostasis and suppressing mitochondrial mediated apoptosis through the modulation of Ca2+-calcineurin-mediated Drp1 signaling pathways. Our results provide insight into the mechanism and clinical applications of SMS and suggest a potential therapeutic strategy for HF.
Collapse
|
27
|
Cui YC, Pan CS, Yan L, Li L, Hu BH, Chang X, Liu YY, Fan JY, Sun K, -Li Q, Han JY. Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway. Sci Rep 2017; 7:44579. [PMID: 28327605 PMCID: PMC5361119 DOI: 10.1038/srep44579] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 02/10/2017] [Indexed: 11/23/2022] Open
Abstract
Cardiac ischemia and reperfusion (I/R) injury remains a challenge for clinicians. Ginsenoside Rb1 (Rb1) has been reported to have the ability to attenuate I/R injury, but its effect on energy metabolism during cardiac I/R and the underlying mechanism remain unknown. In this study, we detected the effect of Rb1 on rat myocardial blood flow, myocardial infarct size, cardiac function, velocity of venule red blood cell, myocardial structure and apoptosis, energy metabolism and change in RhoA signaling pathway during cardiac I/R injury. In addition, the binding affinity of RhoA to Rb1 was detected using surface plasmon resonance (SPR). Results showed that Rb1 treatment at 5 mg/kg/h protected all the cardiac injuries induced by I/R, including damaged myocardial structure, decrease in myocardial blood flow, impaired heart function and microcirculation, cardiomyocyte apoptosis, myocardial infarction and release of myocardial cTnI. Rb1 also inhibited the activation of RhoA signaling pathway and restored the production of ATP during cardiac I/R. Moreover, SPR assay showed that Rb1 was able to bind to RhoA in a dose-dependent manner. These results indicate that Rb1 may prevent I/R-induced cardiac injury by regulation of RhoA signaling pathway, and may serve as a potential regime to improve percutaneous coronary intervention outcome.
Collapse
Affiliation(s)
- Yuan-Chen Cui
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Lin Li
- Department of Cardiology, Beijing China-Japan Friendship Hospital, Beijing 100029, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Quan -Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
| |
Collapse
|
28
|
Han JY, Li Q, Ma ZZ, Fan JY. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacol Ther 2017; 177:146-173. [PMID: 28322971 DOI: 10.1016/j.pharmthera.2017.03.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculation dysfunction and organ injury after ischemia and reperfusion (I/R) result from a complex pathologic process consisting of multiple links, with metabolism impairment in the ischemia phase and oxidative stress in the reperfusion phase as initiators, and any treatment targeting a single link is insufficient to cope with this. Compound Chinese medicine (CCM) has been applied in clinics in China and some Asian nations for >2000years. Studies over the past decades revealed the protective and therapeutic effect of CCMs and major ingredients on I/R-induced microcirculatory dysfunction and tissue injury in the heart, brain, liver, intestine, and so on. CCM contains diverse bioactive components with potential for energy metabolism regulation; antioxidant effect; inhibiting inflammatory cytokines release; adhesion molecule expression in leukocyte, platelet, and vascular endothelial cells; and the protection of thrombosis, albumin leakage, and mast cell degranulation. This review covers the major works with respect to the effects and underlying mechanisms of CCM and its ingredients on microcirculatory dysfunction and organ injury after I/R, providing novel ideas for dealing with this threat.
Collapse
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
29
|
Zhao B, Gao WW, Liu YJ, Jiang M, Liu L, Yuan Q, Hou JB, Xia ZY. The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus. Neural Regen Res 2017; 12:1632-1639. [PMID: 29171428 PMCID: PMC5696844 DOI: 10.4103/1673-5374.217337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wen-Wei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ya-Jing Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Meng Jiang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Quan Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jia-Bao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
30
|
Impact of extended ginsenoside Rb1 on early chronic kidney disease: a randomized, placebo-controlled study. Inflammopharmacology 2016; 25:33-40. [DOI: 10.1007/s10787-016-0296-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
|
31
|
Jiang M, Zhao X, Wang L, Xu L, Zhang Y, Li Z. Integrating candidate metabolites and biochemical factors to elucidate the action mechanism of Xue-sai-tong injection based on 1 H NMR metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:87-96. [DOI: 10.1016/j.jchromb.2016.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/17/2016] [Accepted: 01/22/2016] [Indexed: 12/22/2022]
|
32
|
Yu HT, Zhen J, Pang B, Gu JN, Wu SS. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. J Zhejiang Univ Sci B 2016; 16:344-54. [PMID: 25990051 DOI: 10.1631/jzus.b1400204] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We evaluated the cardioprotective effects of ginsenoside Rg1 in a diabetic rat model induced with high-fat diet and intraperitoneal injection of streptozotocin. Ginsenoside Rg1 was injected intraperitoneally for 12 weeks. Myocardial injury indices and oxidative stress markers were determined. Changes in cardiac ultrastructure were evaluated with transmission electron microscopy. Myocardial apoptosis was assessed via terminal deoxynucleotidyl transferase (TDT)-mediated DNA nick-end labeling (TUNEL) and immunohistochemistry. Ginsenoside Rg1 was associated with a significant dose-dependent reduction in serum levels of creatinine kinase MB and cardiac troponin I, and lessened ultrastructural disorders in diabetic myocardium, relative to the untreated diabetic model rats. Also, compared with the untreated diabetic rats, significant reductions in serum and myocardial levels of malondialdehyde were noted in the ginsenoside Rg1-treated groups, and increased levels of the antioxidants (superoxide dismutase, catalase, and glutathione peroxidase) were detected. TUNEL staining indicated reduced myocardial apoptosis in ginsenoside Rg1-treated rats, which may be associated with reduced levels of caspase-3 (CASP3) and increased levels of B-cell lymphoma-extra-large (Bcl-xL) in the diabetic myocardium. Ginsenoside Rg1 treatment of diabetic rats was associated with reduced oxidative stress and attenuated myocardial apoptosis, suggesting that ginsenoside Rg1 may be of potential preventative and therapeutic value for cardiovascular injury in diabetic patients.
Collapse
Affiliation(s)
- Hai-tao Yu
- Department of Cardiovascular Medicine, the First Hospital of Jilin University, Changchun 130021, China; Department of Cardiovascular Medicine, PLA No. 208 Hospital, Changchun 130062, China; Department of Cardiovascular Medicine, the Second Hospital of Jilin University, Changchun 130041, China
| | | | | | | | | |
Collapse
|
33
|
Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, Chakfe N, Geny B, Scholey JW. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol 2016; 91:11-22. [DOI: 10.1016/j.yjmcc.2015.12.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/15/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023]
|
34
|
Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene 2016; 580:169-176. [PMID: 26774797 DOI: 10.1016/j.gene.2016.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
Cardioprotection by ischemic postconditioning (IPost) is negated in hypothyroidism; the underlying mechanisms however are unknown. This study aimed at determining whether changes in Bax, Bcl-2, eNOS, and iNOS gene expressions are involved in the negating effects of IPost against ischemia-reperfusion (IR) injury in hypothyroidism. The hearts from control and hypothyroid rats were perfused in Langendorff apparatus and exposed to 30 min ischemia, followed by 120 min reperfusion and IPost. In a subgroup of hypothyroid rats, ischemia duration was extended to 40 min. Hemodynamic parameters, infarct size, and gene expressions were measured. Compared to controls, hypothyroid rats with 30 min ischemia had higher recovery of post-ischemic LVDP and ± dp/dt, confirmed by decreased CK and LDH levels (187 ± 16 vs. 485 ± 41 and 191 ± 9 vs. 702 ± 48 U/L, respectively; p<0.05), decreased infarct size (6.7 ± 1.1 vs. 46.1 ± 1.7%; p<0.05), and a reduced DNA laddering pattern. Recovery of post-ischemic LVDP and ± dp/dt decreased and infarct size increased following extension of ischemia period in hypothyroid rats. IPost increased eNOS and Bcl-2 expression by 3.2-fold and 3.7-fold and decreased Bax and iNOS expression by 79% and 38%, respectively; it also reduced IR-induced DNA laddering pattern in controls, whereas no change was observed in hypothyroid rats, regardless of the ischemia period. In conclusion, hearts from hypothyroid rats were resistant to IR injury, partly due to the lower expression of iNOS and subsequent reduction in apoptosis after IR. In hypothyroid rats, IPost was not associated with further reduction in iNOS expression and failed to provide additional cardioprotection against ischemia.
Collapse
|
35
|
Li G, Qian W, Zhao C. Analyzing the anti-ischemia–reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of p38α MAPK. Can J Physiol Pharmacol 2016; 94:97-103. [PMID: 26550918 DOI: 10.1139/cjpp-2014-0164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have demonstrated that ginsenoside Rb1 protects the myocardium from ischemia–reperfusion (I/R) injury. However, the precise mechanisms for this protection have not been determined. This study aimed to determine whether the attenuation of I/R-induced myocardial injury by ginsenoside Rb1 (GS Rb1) is due to inhibition of p38α mitogen-activated protein kinase (MAPK). Sprague–Dawley rats were distributed among 6 treatment groups: sham group; I/R group; p38 MAPK inhibitor SB203580 group (SB + I/R); GS Rb1 group (GS + I/R); p38 MAPK agonist anisomycin group (Ani + I/R); and the GS Rb1 + Ani group (GS + Ani + I/R). All of the anaesthetized rats, except those in the sham group, underwent an open-chest procedure that involved 30 min of myocardial ischemia followed by 2 h of reperfusion. Myocardial infarction size (MIS), caspase-3 activity, and levels of the cytokine tumor necrosis factor alpha (TNF-α) in the myocardium were monitored. The expressions of p38α MAPK, caspase-3, and TNF-α in the myocardium were assayed. GS Rb1 reduced MIS and attenuated caspase-3 activity and the levels of TNF-α in the myocardium. Protein expression of total p38α MAPK was not significantly altered. In the Ani + I/R and I/R groups, the levels of phospho-p38α MAPK were significantly increased compared with the sham group, and these increased levels were reduced with GS Rb1. Hemodynamic parameters were not significantly different between the GS + I/R and SB + I/R groups. GS Rb1 exerts an anti-apoptotic effect that protects against I/R injury by inhibiting p38α MAPK phosphorylation, suggesting that GS Rb1-mediated protection requires the inhibition of p38α MAPK.
Collapse
Affiliation(s)
- Gonghao Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenhao Qian
- Department of Cardiology, Research Institute of Cardiovascular Disease, the Affiliated Hospital of Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Changyun Zhao
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
36
|
Zaman J, Jeddi S, Daneshpour MS, Zarkesh M, Daneshian Z, Ghasemi A. Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia–reperfusion injury through iNOS inhibition in hyperthyroid rats. Gene 2015; 570:185-90. [DOI: 10.1016/j.gene.2015.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/17/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
|
37
|
Zeng X, Li J, Li Z. Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway. Int J Clin Exp Med 2015; 8:14497-14504. [PMID: 26550440 PMCID: PMC4613125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/21/2015] [Indexed: 06/05/2023]
Abstract
Ginsenoside Rd (GsRd) reportedly protects the heart against ischemia-reperfusion (I/R) injury. Nrf2/HO-1 signaling plays a key role in attenuating oxidative stress. However, it remains unclear whether GsRd protects against myocardial I/R injury via Nrf2/HO-1 signaling. This study aimed to investigate the role of Nrf2/HO-1 signaling in the cardioprotective effect of GsRd. Rats received 30 min ischemia followed by 2 h reperfusion. Cardiac function, infarct size and serum CK, LDH, cTnI levels were detected. The expression of Nrf2 and HO-1 was detected by western blot. The results suggested that GsRd attenuated myocardial I/R injury as evidenced by improved cardiac function, decreased infarct size and decreased levels of serum CK, LDH and cTnI. In addition, GsRd administration enhanced the expression of Nrf2 and HO-1. In conclusion, the present study shows that GsRd protects against myocardial I/R injury via Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical UniversityKunming, Yunnan, China
| | - Juan Li
- Center for Disease Control and Prevention of Yunnan ProvinceKunming, Yunnan, China
| | - Zhen Li
- School of Forensic Medicine, Kunming Medical UniversityKunming, Yunnan, China
| |
Collapse
|
38
|
Tark KC, Lee DW, Lew DH, Kang EH, Roh H, Lee MC. Effects of ginsenoside Rb1 on hypertrophic scar remodeling in rabbit model. Eur J Pharmacol 2015; 750:151-9. [DOI: 10.1016/j.ejphar.2015.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/01/2022]
|
39
|
Wang Y, Hu Z, Sun B, Xu J, Jiang J, Luo M. Ginsenoside Rg3 attenuates myocardial ischemia/reperfusion injury via Akt/endothelial nitric oxide synthase signaling and the B‑cell lymphoma/B‑cell lymphoma‑associated X protein pathway. Mol Med Rep 2015; 11:4518-24. [PMID: 25672441 DOI: 10.3892/mmr.2015.3336] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 01/07/2015] [Indexed: 11/05/2022] Open
Abstract
Previous studies have suggested that ginsenoside Rg3 (GSRg3) extract from the medicinal plant Panax ginseng, may increase nitric oxide production via increases in the phosphorylation and expression of endothelial nitric oxide synthase (eNOS). The present study used an in vitro neonatal rat cardiomyocyte (NRC) model of anoxia‑reoxygenation injury and an in vivo rat model of myocardial ischemia/reperfusion (MI/R) injury. Hemodynamic, histopathological and biochemical assessment of the myocardial injury was performed and the expression levels of lactate dehydrogenase (LDH), superoxide dismutase and creatine kinase (CK) were measured in serum from the animal model, which may reflect myocardial injury. NRC injury was determined using a Cell Counting kit‑8. The GSRg3 anti‑apoptotic effects were assessed using flow cytometry to investigate the number of early‑late apoptotic cells and western blot analysis was performed to analyze the protein expression levels of caspase‑3, caspase‑9, B‑cell lymphoma‑2 (Bcl‑2), phosphorylated (p‑)Akt and eNOS. The results suggested that pretreatment with GSRg3 (60 mg/kg) significantly improved rat cardiac function, as demonstrated by increased left ventricular systolic pressure, heart rate and first derivative of left ventricular pressure. GSRg3 also reduced the size of the myocardial infarct and LDH/CK levels in the blood following MI/R. In vitro investigations revealed that GSRg3 (10 mM) decreased NRC apoptosis through inhibiting the activation of caspase‑3 and caspase‑9, and increasing the expression levels of p‑Akt, eNOS and the ratio of Bcl‑2/Bcl‑2‑associated X protein (Bax). Overall, the present study revealed that GSRg3 mediated a cardioprotective effect against MI/R‑induced apoptosis via Akt/eNOS signaling and the Bcl‑2/Bax pathway.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Zhaohui Hu
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Bing Sun
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Jinfa Jiang
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Ming Luo
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
40
|
HUANG FEI, LI YANAN, YIN FEI, WU YUNTAO, ZHAO DONGXU, LI YE, ZHANG YUNFENG, ZHU QINGSAN. Ginsenoside Rb1 inhibits neuronal apoptosis and damage, enhances spinal aquaporin 4 expression and improves neurological deficits in rats with spinal cord ischemia-reperfusion injury. Mol Med Rep 2015; 11:3565-72. [DOI: 10.3892/mmr.2015.3162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
|
41
|
Xu D, Huang P, Yu Z, Xing DH, Ouyang S, Xing G. Efficacy and Safety of Panax notoginseng Saponin Therapy for Acute Intracerebral Hemorrhage, Meta-Analysis, and Mini Review of Potential Mechanisms of Action. Front Neurol 2015; 5:274. [PMID: 25620952 PMCID: PMC4288044 DOI: 10.3389/fneur.2014.00274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022] Open
Abstract
Intracranial/intracerebral hemorrhage (ICH) is a leading cause of death and disability in people with traumatic brain injury (TBI) and stroke. No proven drug is available for ICH. Panax notoginseng (total saponin extraction, PNS) is one of the most valuable herb medicines for stroke and cerebralvascular disorders in China. We searched for randomized controlled clinical trials (RCTs) involving PNS injection to treat cerebral hemorrhage for meta-analysis from various databases including the Chinese Stroke Trials Register, the trials register of the Cochrane Complementary Medicine Field, the Cochrane Central Register of Controlled Trials, MEDLINE, Chinese BioMedical disk, and China Doctorate/Master Dissertations Databases. The quality of the eligible trials was assessed by Jadad’s scale. Twenty (20) of the 24 identified randomized controlled trials matched the inclusive criteria including 984 ICH patients with PNS injection and 907 ICH patients with current treatment (CT). Compared to the CT groups, PNS-treated patients showed better outcomes in the effectiveness rate (ER), neurological deficit score, intracranial hematoma volume, intracerebral edema volume, Barthel index, the number of patients died, and incidence of adverse events. Conclusion: PNS injection is superior to CT for acute ICH. A review of the literature shows that PNS may exert multiple protective mechanisms against ICH-induced brain damage including hemostasis, anti-coagulation, anti-thromboembolism, cerebral vasodilation, invigorated blood dynamics, anti-inflammation, antioxidation, and anti-hyperglycemic effects. Since vitamin C and other brain cell activators (BCA) that are not considered common practice were also used as parts of the CT in several trials, potential PNS and BCA interactions could exist that may have made the effect of PNS therapy less or more impressive than by PNS therapy alone. Future PNS trials with and without the inclusion of such controversial BCAs as part of the CT could clarify the situation. As PNS has a long clinical track record in Asia, it could potentially become a therapy option to treat ICH in the US and Europe. Further clinical trials with better experimental design could determine the long-term effects of PNS treatment for TBI and stroke.
Collapse
Affiliation(s)
- Dongying Xu
- Faculty of Nursing, Guangxi University of Chinese Medicine , Nanning , China
| | - Ping Huang
- Faculty of Nursing, Guangxi University of Chinese Medicine , Nanning , China
| | - Zhaosheng Yu
- Department of Oncology, Huanggang Hospital of Traditional Chinese Medicine , Huanggang , China
| | | | - Shuai Ouyang
- School of Business, University of Alberta , Edmonton, AB , Canada
| | | |
Collapse
|
42
|
Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochem Biophys Res Commun 2015; 456:853-9. [DOI: 10.1016/j.bbrc.2014.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
|
43
|
Jiang M, Kang L, Wang Y, Zhao X, Liu X, Xu L, Li Z. A metabonomic study of cardioprotection of ginsenosides, schizandrin, and ophiopogonin D against acute myocardial infarction in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:350. [PMID: 25249156 PMCID: PMC4182767 DOI: 10.1186/1472-6882-14-350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/19/2014] [Indexed: 01/19/2023]
Abstract
Background Metabonomics is a useful tool for studying mechanisms of drug treatment using systematic metabolite profiles. Ginsenosides Rg1 and Rb1, ophiopogonin D, and schizandrin are the main bioactive components of a traditional Chinese formula (Sheng-Mai San) widely used for the treatment of coronary heart disease. It remains unknown the effect of individual bioactive component and how the multi-components in combination affect the treating acute myocardial infarction (AMI). Methods Rats were divided into 7 groups and dosed consecutively for 7 days with mono and combined-therapy administrations. Serum samples were analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. Partial least squares discriminate analysis (PLS-DA) was employed to distinguish the metabolic profile of rats in different groups and identify potential biomarkers. Results Score plots of PLS-DA exhibited that combined-therapy groups were significantly different from AMI group, whereas no differences were observed for mono-therapy groups. We found that AMI caused comprehensive metabolic changes involving stimulation of glycolysis, suppression of fatty acid oxidation, together with disturbed metabolism of arachidonic acid, linoleate, leukotriene, glycerophospholipid, phosphatidylinositol phosphate, and some amino acids. β-hydroxybutyrate, cholines and glucose were regulated by mono-therapy of schizandrin and ginsenosides respectively. Besides these metabolites, combined-therapy ameliorated more of the AMI-induced metabolic changes including glycerol, and O-acetyl glycoprotein. A remarkable reduction of lactate suggested the therapeutic effect of combined-therapy through improving myocardial energy metabolism. Conclusions This study provided novel metabonomic insights on the mechanism of synergistic cardioprotection of combined-therapy with ginsenosides, schizandrin, and ophiopogonin D, and demonstrated the potential of discovering new drugs by combining bioactive components from traditional Chinese formula. Electronic supplementary material The online version of this article (doi:10.1186/1472-6882-14-350) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Ginsenoside rb1 protects neonatal rat cardiomyocytes from hypoxia/ischemia induced apoptosis and inhibits activation of the mitochondrial apoptotic pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:149195. [PMID: 25120573 PMCID: PMC4120487 DOI: 10.1155/2014/149195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/02/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
Abstract
Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytes in vitro and the mitochondrial apoptotic pathway mediated mechanism. Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit. Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3. Conclusion. Administration of GS-Rb1 during H/I in vitro is involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.
Collapse
|
45
|
The ginsenoside Rg1 prevents transverse aortic constriction-induced left ventricular hypertrophy and cardiac dysfunction by inhibiting fibrosis and enhancing angiogenesis. J Cardiovasc Pharmacol 2013; 62:50-7. [PMID: 23846802 DOI: 10.1097/fjc.0b013e31828f8d45] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ginsenoside Rg1, an important and active ingredient of Panax ginseng, has been shown to exert cardioprotective effects in vivo. The present study aimed to test the hypothesis that ginsenoside Rg1 attenuates cardiac dysfunction in a transverse aortic constriction (TAC)-induced left ventricular hypertrophy in vivo via proangiogenic and antifibrotic effects. METHODS This study investigated the effects of ginsenoside Rg1 in a rat model of TAC-induced left ventricular hypertrophy. Cardiac function was assessed by echocardiography. The antifibrotic and proangiogenic effects were assessed by histopathology and mRNA expression of procollagen I, III, and vascular endothelial growth factor (VEGF) through quantitative real-time PCR. The expression of phosphorylation of Akt, p38 mitogen-activated protein kinase (MAPK), hypoxia inducible factor-1 (HIF-1), and VEGF proteins were examined by Western blotting. RESULTS Ginsenoside Rg1 treatment significantly decreased TAC-induced myocardial fibrosis and left ventricular hypertrophy, and preserved cardiac function. Ginsenoside Rg1 administration enhanced angiogenesis by increasing the expression of HIF-1 and VEGF. These cardioprotective effects of ginsenoside Rg1 are partially related to the activation of phospho-Akt and inhibition of p38 MAPK. CONCLUSIONS Ginsenoside Rg1 exhibited protective effect against TAC-induced left ventricular hypertrophy and cardiac dysfunction, which is potentially associated with phospho-Akt activation and p38 MAPK inhibition.
Collapse
|
46
|
Wang YQ, Liu CH, Zhang JQ, Zhu DN, Yu BY. Protective effects and active ingredients of yi-qi-fu-mai sterile powder against myocardial oxidative damage in mice. J Pharmacol Sci 2013; 122:17-27. [PMID: 23685804 DOI: 10.1254/jphs.12261fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This study aims to evaluate the protective effects of Yi-Qi-Fu-Mai sterile powder (YQFM) on myocardial oxidative damage and tries to identify the active components responsible for its pharmacological benefits. YQFM and the n-butanol extract of YQFM (YQFM-Bu) were administered to ISO-induced myocardial injury mice. Left ventricle weight index and histopathological analyses were conducted. Serum enzymatic activities of lactate dehydrogenase (LDH), creatine kinase (CK) and superoxide dismutase (SOD), myeloperoxidase (MPO), and the levels of malondialdehyde (MDA) were also measured. Our results demonstrated that both YQFM and YQFM-Bu significantly restored the abnormal activities of CK, LDH, MPO, SOD, and the levels of MDA in ISO-induced myocardial injury mice, and these biochemical results were further supported by histopathological data. Our in vitro findings also confirmed that both YQFM and YQFM-Bu exhibit significant radical scavenging activity. Furthermore, the major active fractions of YQFM were identified by UPLC-MS/MS. Twenty-five ginsenosides and three lignans were identified from YQFM-Bu. These findings suggested YQFM-Bu is the major active fraction of YQFM with the ginsenosides and lignans as potential active components responsible for its protective effect against myocardial injury, and YQFM exerted its beneficial effects on myocardial injury mainly through inhibiting oxidative damage and maintaining the functional integrity of myocardial tissue.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Department of Complex Prescription of TCM, China Pharmaceutical University, China
| | | | | | | | | |
Collapse
|
47
|
Sun Q, Meng QT, Jiang Y, Liu HM, Lei SQ, Su WT, Duan WN, Wu Y, Xia ZY, Xia ZY. Protective effect of ginsenoside Rb1 against intestinal ischemia-reperfusion induced acute renal injury in mice. PLoS One 2013; 8:e80859. [PMID: 24324637 PMCID: PMC3851764 DOI: 10.1371/journal.pone.0080859] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/15/2013] [Indexed: 01/27/2023] Open
Abstract
Ginsenoside Rb1 (RB1), the most clinically effective constituent of ginseng, possesses a variety of biological activities. The objectives of this study were to investigate the protective effects of RB1 and its underlying mechanism on renal injury induced by intestinal ischemia-reperfusion (IIR) in mice. RB1 was administered prior to inducing IIR achieved by occluding the superior mesenteric artery for 45 min followed by 120 min of reperfusion. All-trans-retinoic acid (ATRA) was used as an inhibitor of NF-E2-related factor-2 (Nrf2) signaling. Adult male C57BL/6J mice were randomly divided into six groups: (1) sham group, (2) IIR group, (3) RB1 group, (4) sham + ATRA group, (5) IIR + ATRA group, and (6) RB1 + ATRA group. Intestinal histology and pathological injury score were observed. Intestinal mucosal injury was also evaluated by measuring serum diamine oxidase (DAO). Renal injury induced by IIR was characterized by increased levels of histological severity score, blood urea nitrogen (BUN), serum creatinine (Scr) and neutrophil gelatinase-associated lipocalin (NGAL), which was accompanied with elevated renal TUNEL-positive cells and the Bcl-2/Bax expression ratio. RB1 significantly reduced renal injury and apoptosis as compared with IIR group, which was reversed by ATRA treatment. Immunohistochemistry and Western blot analysis demonstrated that RB1 significantly upregulated the protein expression of heme oxygenase-1 (HO-1) and Nrf2, which were attenuated by ATRA treatment. Taken together, these results suggest that the protective effects of RB1 pretreatment against renal injury induced by IIR are associated with activation of the Nrf2/ anti-oxidant response element (ARE) pathway.
Collapse
Affiliation(s)
- Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing-tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Jiang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hui-min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shao-qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wa-ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei-na Duan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zheng-yuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhong-yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
48
|
Wang YQ, Zhang JQ, Liu CH, Zhu DN, Yu BY. Screening and identifying the myocardial-injury protective ingredients from Sheng-Mai-San. PHARMACEUTICAL BIOLOGY 2013; 51:1219-1227. [PMID: 23767690 DOI: 10.3109/13880209.2013.784920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Sheng-Mai-San (SMS) has been used for the treatment of cardiovascular disease for many years in China. OBJECTIVES This study investigated the protective effects and active ingredients of SMS on myocardial injury (MI) in mice. MATERIALS AND METHODS SMS and n-butanol extraction of SMS (SMS-Bu) were prepared and administered to ISO-treated mice once a day for 7 consecutive days. The doses were equivalent to the raw medicinal herbs of SMS 5.72, 2.86 and 1.43 g/kg/d, respectively. Propranolol was used as positive control. Serum biomarkers, histopathological and electrocardiographic were evaluated. RESULTS Serum lactate dehydrogenase, creatine kinase and myeloperoxidase increased to 4473.6 ± 322.5, 950.0 ± 35.0 and 90.4 ± 12.2 U/L in the model group. SMS and SMS-Bu groups showed a decrease from 10 to 29% for lactate dehydrogenase and from 17 to 42% for creatine kinase, respectively. Both SMS and SMS-Bu significantly attenuated the myeloperoxidase activities (from 42 to 56%) and malondialdehyde levels (from 25 to 45%) compared with the model group. Decreased superoxide dismutase activities in ISO-treated mice were elevated from 19 to 59% when treated with SMS and SMS-Bu. These biochemical results were supported by electrocardiogram (ECG) and histopathological observations. Furthermore, 8 ginsenosides and 16 lignans were identified in SMS-Bu. CONCLUSION These findings suggested that SMS-Bu was the mainly active fraction of SMS which exerted its beneficial effects on MI mainly through protecting myocardial tissue and reducing oxidative damage, and the ginsenosides and lignans may serve as active ingredients of SMS for the treatment of MI.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing , P R China
| | | | | | | | | |
Collapse
|
49
|
Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway. PLoS One 2013; 8:e70956. [PMID: 23976968 PMCID: PMC3745454 DOI: 10.1371/journal.pone.0070956] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests Ginsenoside Rd (GSRd), a biologically active extract from the medical plant Panax Ginseng, exerts antioxidant effect, decreasing reactive oxygen species (ROS) formation. Current study determined the effect of GSRd on myocardial ischemia/reperfusion (MI/R) injury (a pathological condition where ROS production is significantly increased) and investigated the underlying mechanisms. The current study utilized an in vivo rat model of MI/R injury and an in vitro neonatal rat cardiomyocyte (NRC) model of simulated ischemia/reperfusion (SI/R) injury. Infarct size was measured by Evans blue/TTC double staining. NRC injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. ROS accumulation and apoptosis were assessed by flow cytometry. Mitochondrial membrane potential (MMP) was determined by 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetrathylbenzimidazol carbocyanine iodide (JC-1). Cytosolic translocation of mitochondrial cytochrome c and expression of caspase-9, caspase-3, Bcl-2 family proteins, and phosphorylated Akt and GSK-3β were determined by western blot. Pretreatment with GSRd (50 mg/kg) significantly augmented rat cardiac function, as evidenced by increased left ventricular ejection fraction (LVEF) and ±dP/dt. GSRd reduced myocardial infarct size, apoptotic cell death, and blood creatine kinase/lactate dehydrogenase levels after MI/R. In NRCs, GSRd (10 µM) inhibited SI/R-induced ROS generation (P<0.01), decreased cellular apoptosis, stabilized the mitochondrial membrane potential (MMP), and attenuated cytosolic translocation of mitochondrial cytochrome c. GSRd inhibited activation of caspase-9 and caspase-3, increased the phosphorylated Akt and GSK-3β, and increased the Bcl-2/Bax ratio. Together, these data demonstrate GSRd mediated cardioprotective effect against MI/R-induced apoptosis via a mitochondrial-dependent apoptotic pathway.
Collapse
|
50
|
Baynosa RC, Naig AL, Murphy PS, Fang XH, Stephenson LL, Khiabani KT, Wang WZ, Zamboni WA. The effect of hyperbaric oxygen on nitric oxide synthase activity and expression in ischemia-reperfusion injury. J Surg Res 2013; 183:355-61. [PMID: 23485074 DOI: 10.1016/j.jss.2013.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/20/2012] [Accepted: 01/03/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hyperbaric oxygen (HBO) mitigates ischemia-reperfusion (IR) injury via a nitric oxide mechanism that is nitric oxide synthase (NOS) dependent. The purpose of this study was to investigate this NOS-dependent mechanism by examining isoform-specific, tissue-specific, and time-specific upregulation of NOS mRNA, protein, and enzymatic activity. METHODS We raised a gracilis flap in Wistar rats that were separated into early and late phases. Treatment groups included nonischemic control, IR, HBO-treated ischemia-reperfusion (IR-HBO), and nonischemic HBO control. We harvested tissue-specific samples from gracilis, rectus femoris, aorta, and pulmonary tissues and processed them by reverse transcription polymerase chain reaction and Western blot to determine upregulation of isoform-specific NOS mRNA and protein. We also harvested tissue for NOS activity to investigate upregulation of enzymatic activity. Data are presented as mean ± standard error of the mean with statistics performed by analysis of variance. P ≤ 0.05 was considered significant. RESULTS There was no increase in NOS mRNA in the early phase. In the late phase, there was a significant increase in endothelial-derived NOS (eNOS) mRNA in IR-HBO compared with IR in gracilis muscle (79.4 ± 22.3 versus 36.1 ± 4.5; P < 0.05) and pulmonary tissues (91.0 ± 31.2 versus 30.2 ± 3.1; P < 0.01). There was a significant increase in the late-phase eNOS pulmonary protein IR-HBO group compared with IR (235.5 ± 46.8 versus 125.2 ± 14.7; P < 0.05). Early-phase NOS activity was significantly increased in IR-HBO compared with IR in pulmonary tissue only (0.049 ± 0.009 versus 0.023 ± 0.003; P < 0.05). CONCLUSIONS The NOS-dependent effects of HBO on IR injury may result from a systemic effect involving an early increase in eNOS enzymatic activity followed by a late-phase increase in eNOS protein expression within the pulmonary tissues.
Collapse
Affiliation(s)
- Richard C Baynosa
- Division of Plastic Surgery, Department of Surgery, University of Nevada School of Medicine, Las Vegas, Nevada 89102, USA.
| | | | | | | | | | | | | | | |
Collapse
|