1
|
Xu X, Niu M, Lamberty BG, Emanuel K, Apostol MJF, Fox HS. Transformation of brain myeloid cell populations by SIV in rhesus macaques revealed by multiomics. Commun Biol 2025; 8:100. [PMID: 39838075 PMCID: PMC11751027 DOI: 10.1038/s42003-024-07443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
The primary immune constituents in the brain, microglia and macrophages, are the target for HIV in people and simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological dysfunction, known as HIV-associated neurocognitive disorder (HAND). Given the gaps in our knowledge on how these cells respond in vivo to CNS infection, we perform single-cell multiomic sequencing, including gene expression and ATAC-seq, on myeloid cells from the brains of rhesus macaques with SIV-induced encephalitis (SIVE) as well as uninfected controls. We find that SIVE significantly changes the myeloid cell populations. In SIVE, microglia-like cells express high levels of chemoattractants capable of recruiting highly activated CAM-like cells to the site of infection/inflammation. A unique population of microglia-like cells is found in which the chromatin accessibility of genes diverges from their RNA expression. Additionally, we observe a dramatic shift of upstream gene regulators and their targets in brain myeloid cells during SIVE. This study further uncovers the transcriptome, gene regulatory events, and potential roles of different brain myeloid phenotypes in SIVE. This might deepen the understanding of SIVE/HIVE and enlighten the therapeutic development.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin G Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Xu X, Niu M, Lamberty BG, Emanuel K, Apostol MJF, Fox HS. Transformation of brain myeloid cell populations by SIV in rhesus macaques revealed by multiomics. RESEARCH SQUARE 2024:rs.3.rs-4916594. [PMID: 39372920 PMCID: PMC11451639 DOI: 10.21203/rs.3.rs-4916594/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The primary immune constituents in the brain, microglia and macrophages, are the target for HIV in people and simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological dysfunction, known as HIV-associated neurocognitive disorder (HAND). Given the gaps in our knowledge on how these cells respond in vivo to CNS infection, we performed single-cell multiomic sequencing, including gene expression and ATAC-seq, on myeloid cells from the brains of rhesus macaques with SIV-induced encephalitis (SIVE) as well as uninfected controls. We found that the myeloid cell populations were significantly changed by SIVE. In SIVE microglia-like cells express high levels of chemoattractants capable of recruiting highly activated CAM-like cells to the site of infection/inflammation. A unique population of microglia-like cells was found in which the chromatin accessibility of genes diverged from their RNA expression. Additionally, we observed a dramatic shift of upstream gene regulators and their targets in brain myeloid cells during SIVE. In summary, this study further uncovers the transcriptome, gene regulatory events and potential roles of different brain myeloid phenotypes in SIVE.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin G. Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Moses Jedd Facun Apostol
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Shaham SH, Joshi P, Shabeer Ali H, Yadav K, Sharma A, Mugale MN, Tripathi R. Role of angiotensin pathway and its target therapy to rescue from experimental cerebral malaria. Microbes Infect 2024; 26:105333. [PMID: 38570086 DOI: 10.1016/j.micinf.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of β-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of β-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/β-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/β-arteether alone treatment.
Collapse
Affiliation(s)
- Salique Hassan Shaham
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prince Joshi
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - H Shabeer Ali
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Kanchan Yadav
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Anamika Sharma
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Madhav Nilakanth Mugale
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Renu Tripathi
- Department of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow-226031, India.
| |
Collapse
|
5
|
Izquierdo-Pujol J, Puertas MC, Martinez-Picado J, Morón-López S. Targeting Viral Transcription for HIV Cure Strategies. Microorganisms 2024; 12:752. [PMID: 38674696 PMCID: PMC11052381 DOI: 10.3390/microorganisms12040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral therapy (ART) suppresses viral replication to undetectable levels, reduces mortality and morbidity, and improves the quality of life of people living with HIV (PWH). However, ART cannot cure HIV infection because it is unable to eliminate latently infected cells. HIV latency may be regulated by different HIV transcription mechanisms, such as blocks to initiation, elongation, and post-transcriptional processes. Several latency-reversing (LRA) and -promoting agents (LPA) have been investigated in clinical trials aiming to eliminate or reduce the HIV reservoir. However, none of these trials has shown a conclusive impact on the HIV reservoir. Here, we review the cellular and viral factors that regulate HIV-1 transcription, the potential pharmacological targets and genetic and epigenetic editing techniques that have been or might be evaluated to disrupt HIV-1 latency, the role of miRNA in post-transcriptional regulation of HIV-1, and the differences between the mechanisms regulating HIV-1 and HIV-2 expression.
Collapse
Affiliation(s)
- Jon Izquierdo-Pujol
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Maria C. Puertas
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
- Department of Infectious Diseases and Immunity, School of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Sara Morón-López
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
| |
Collapse
|
6
|
Phan AT, Zhu Y. PTEN Mediates the Silencing of Unintegrated HIV-1 DNA. Viruses 2024; 16:291. [PMID: 38400066 PMCID: PMC10892664 DOI: 10.3390/v16020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The integration of viral DNA into a host genome is an important step in HIV-1 replication. However, due to the high failure rate of integration, the majority of viral DNA exists in an unintegrated state during HIV-1 infection. In contrast to the robust expression from integrated viral DNA, unintegrated HIV-1 DNA is very poorly transcribed in infected cells, but the molecular machinery responsible for the silencing of unintegrated HIV-1 DNA remains poorly characterized. In this study, we sought to characterize new host factors for the inhibition of expression from unintegrated HIV-1 DNA. A genome-wide CRISPR-Cas9 knockout screening revealed the essential role of phosphatase and tensin homolog (PTEN) in the silencing of unintegrated HIV-1 DNA. PTEN's phosphatase activity negatively regulates the PI3K-Akt pathway to inhibit the transcription from unintegrated HIV-1 DNA. The knockout (KO) of PTEN or inhibition of PTEN's phosphatase activity by point mutagenesis activates Akt by phosphorylation and enhances the transcription from unintegrated HIV-1 DNA. Inhibition of the PI3K-Akt pathway by Akt inhibitor in PTEN-KO cells restores the silencing of unintegrated HIV-1 DNA. Transcriptional factors (NF-κB, Sp1, and AP-1) are important for the activation of unintegrated HIV-1 DNA in PTEN-KO cells. Finally, the knockout of PTEN increases the levels of active epigenetic marks (H3ac and H3K4me3) and the recruitment of PolII on unintegrated HIV-1 DNA chromatin. Our experiments reveal that PTEN targets transcription factors (NF-κB, Sp1, and AP-1) by negatively regulating the PI3K-Akt pathway to promote the silencing of unintegrated HIV-1 DNA.
Collapse
Affiliation(s)
| | - Yiping Zhu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
7
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Chinnapaiyan S, Santiago MJ, Panda K, Rahman MS, Alluin J, Rossi J, Unwalla HJ. A conditional RNA Pol II mono-promoter drives HIV-inducible, CRISPR-mediated cyclin T1 suppression and HIV inhibition. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:553-565. [PMID: 37215150 PMCID: PMC10192333 DOI: 10.1016/j.omtn.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) targeted to HIV proviral DNA has shown excision of HIV from infected cells. However, CRISPR-based HIV excision is vulnerable to viral escape. Targeting cellular co-factors provides an attractive yet risky alternative to render viral escape irrelevant. Cyclin T1 is a critical modulator of HIV transcription and mediates recruitment of positive transcription elongation factor-b (P-TEFb) kinase for transcriptional elongation. Hence, a CRISPR-mediated cyclin T1 inactivation will silence HIV transcription, locking it in an inactive form in the cell and thereby serving as an effective antiviral and possibly effecting a functional cure. However, cellular genes play important roles, and their uncontrolled inhibition can promote undesirable effects. Here, we demonstrate a conditional inducible RNA polymerase II (RNA Pol II) mono-promoter-based co-expression of a CRISPR system targeting cyclin T1 from a single transcription unit. Co-expression of guide RNA (gRNA) and CRISPR-associated protein (Cas9) is observed only in HIV-infected cells and leads to sustained HIV suppression in stringent chronically infected cell lines as well as in T cell lines. We further show that incorporation of cis-acting ribozymes immediately upstream of the gRNA further enhances HIV silencing.
Collapse
Affiliation(s)
- Srinivasan Chinnapaiyan
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Maria-Jose Santiago
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Md. Sohanur Rahman
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Jessica Alluin
- Beckman Research Institute of the City of Hope National Medical Center, Monrovia Biomedical Research Center MBRC, 1218 S. Fifth Av., Monrovia, CA 91008, USA
| | - John Rossi
- Beckman Research Institute of the City of Hope National Medical Center, Monrovia Biomedical Research Center MBRC, 1218 S. Fifth Av., Monrovia, CA 91008, USA
| | - Hoshang J. Unwalla
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Lin X, Ahmad A, Ivanov AI, Simhadri J, Wang S, Kumari N, Ammosova T, Nekhai S. HIV-1 Transcription Inhibitor 1E7-03 Decreases Nucleophosmin Phosphorylation. Mol Cell Proteomics 2023; 22:100488. [PMID: 36563749 PMCID: PMC9975258 DOI: 10.1016/j.mcpro.2022.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Transcription activation of latent human immunodeficiency virus-1 (HIV-1) occurs due to HIV-1 rebound, the interruption of combination antiretroviral therapy, or development of drug resistance. Thus, novel HIV-1 inhibitors, targeting HIV-1 transcription are needed. We previously developed an HIV-1 transcription inhibitor, 1E7-03, that binds to the noncatalytic RVxF-accommodating site of protein phosphatase 1 and inhibits HIV-1 replication in cultured cells and HIV-1-infected humanized mice by impeding protein phosphatase 1 interaction with HIV-1 Tat protein. However, host proteins and regulatory pathways targeted by 1E7-03 that contribute to its overall HIV-1 inhibitory activity remain to be identified. To address this issue, we performed label-free quantitative proteome and phosphoproteome analyses of noninfected and HIV-1-infected CEM T cells that were untreated or treated with 1E7-03. 1E7-03 significantly reprogramed the phosphorylation profile of proteins including PPARα/RXRα, TGF-β, and PKR pathways. Phosphorylation of nucleophosmin (NPM1) at Ser-125 residue in PPARα/RXRα pathway was significantly reduced (>20-fold, p = 1.37 × 10-9), followed by the reduced phosphorylation of transforming growth factor-beta 2 at Ser-46 (TGF-β2, >12-fold, p = 1.37 × 10-3). Downregulation of NPM1's Ser-125 phosphorylation was further confirmed using Western blot. Phosphorylation mimicking NPM1 S125D mutant activated Tat-induced HIV-1 transcription and exhibited enhanced NPM1-Tat interaction compared to NPM1 S125A mutant. Inhibition of Aurora A or Aurora B kinases that phosphorylate NPM1 on Ser-125 residue inhibited HIV-1, further supporting the role of NPM1 in HIV-1 infection. Taken together, 1E7-03 reprogrammed PPARα/RXRα and TGF-β pathways that contribute to the inhibition of HIV-1 transcription. Our findings suggest that NPM1 phosphorylation is a plausible target for HIV-1 transcription inhibition.
Collapse
Key Words
- actn4, alpha-actinin-1
- asl, argininosuccinate lyase
- aspm, abnormal spindle-like microcephaly-associated protein
- cart, combination antiretroviral therapy
- cdk2, cell cycle-dependent kinase 2
- ck2, casein kinase 2
- dmso, dimethyl sulfoxide
- egln1, egl-9 family hypoxia inducible factor 1
- erk/p38, extracellular signal-regulated kinase p38
- fa, formic acid
- gadd34, growth arrest and dna damage-inducible protein
- hif-1α, hypoxia-inducible factor 1α
- hiv-1 vif protein, viral infectivity factor, an hiv-1 accessory protein
- hiv-1, human immunodeficiency virus-1
- hsp90, heat shock protein 90
- ipa, ingenuity pathway analysis
- lc-ft/ms, tandem liquid chromatography-fourier transform mass spectrometry
- mapk, mitogen-activated protein kinase
- map3k4, mitogen-activated protein kinase kinase kinase 4
- mita, mediator of interferon response factor 3 activation
- nfat, nuclear factor of activated t cells
- nf-κb, nuclear factor kappa-light-chain-enhancer of activated b cell
- npm1, nucleophosmin
- oa, okadaic acid
- pi3k/akt, phosphoinositide 3-kinase/ ak strain transforming or protein kinase b
- pp, protein phosphatase
- pparα/rxrα, peroxisome proliferator-activated receptor α/ retinoid x receptor α
- ptm, posttranslational modification
- rnr2, ribonucleotide reductase 2
- rt, reverse transcription
- samhd1, sam domain and hd domain-containing protein 1
- smad7, mothers against decapentaplegic homolog 7
- stat5, signal transducer and activator of transcription 5 taf4
- taf4, transcription factor tfiid subunit tata-box-binding protein (tbp)-associated factor 4
- tgf-β2, transforming growth factor-beta
- tp53, tumor protein p53
Collapse
Affiliation(s)
- Xionghao Lin
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA; College of Dentistry, Howard University, Washington, District of Columbia, USA
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Andrey I Ivanov
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Jyothirmai Simhadri
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Songping Wang
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Microbiology, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Medicine, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Microbiology, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Medicine, College of Medicine, Howard University, Washington, District of Columbia, USA.
| |
Collapse
|
10
|
Lim AL, Moos P, Pond CD, Larson EC, Martins LJ, Szaniawski MA, Planelles V, Barrows LR. HIV-1 provirus transcription and translation in macrophages differs from pre-integrated cDNA complexes and requires E2F transcriptional programs. Virulence 2022; 13:386-413. [PMID: 35166645 PMCID: PMC8855869 DOI: 10.1080/21505594.2022.2031583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
HIV-1 cDNA pre-integration complexes persist for weeks in macrophages and remain transcriptionally active. While previous work has focused on the transcription of HIV-1 genes; our understanding of the cellular milieu that accompanies viral production is incomplete. We have used an in vitro system to model HIV-1 infection of macrophages, and single-cell RNA sequencing (scRNA-seq) to compare the transcriptomes of uninfected cells, cells harboring pre-integration complexes (PIC), and those containing integrated provirus and making late HIV proteins. scRNA-seq can distinguish between provirus and PIC cells because their background transcriptomes vary dramatically. PIC cell transcriptomes are characterized by NFkB and AP-1 promoted transcription, while transcriptomes of cells transcribing from provirus are characterized by E2F family transcription products. We also find that the transcriptomes of PIC cells and Bystander cells (defined as cells not producing any HIV transcript and thus presumably not infected) are indistinguishable except for the presence of HIV-1 transcripts. Furthermore, the presence of pathogen alters the transcriptome of the uninfected Bystander cells, so that they are distinguishable from true control cells (cells not exposed to any pathogen). Therefore, a single cell comparison of transcriptomes from provirus and PIC cells provides a new understanding of the transcriptional changes that accompany HIV-1 integration.
Collapse
Affiliation(s)
- Albebson L. Lim
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Philip Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Christopher D. Pond
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Erica C. Larson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura J. Martins
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Cruz-Lorenzo E, Ramirez NGP, Lee J, Pandhe S, Wang L, Hernandez-Doria J, Spivak AM, Planelles V, Petersen T, Jain MK, Martinez ED, D’Orso I. Host Cell Redox Alterations Promote Latent HIV-1 Reactivation through Atypical Transcription Factor Cooperativity. Viruses 2022; 14:v14102288. [PMID: 36298843 PMCID: PMC9612055 DOI: 10.3390/v14102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Immune cell state alterations rewire HIV-1 gene expression, thereby influencing viral latency and reactivation, but the mechanisms are still unfolding. Here, using a screen approach on CD4+ T cell models of HIV-1 latency, we revealed Small Molecule Reactivators (SMOREs) with unique chemistries altering the CD4+ T cell state and consequently promoting latent HIV-1 transcription and reactivation through an unprecedented mechanism of action. SMOREs triggered rapid oxidative stress and activated a redox-responsive program composed of cell-signaling kinases (MEK-ERK axis) and atypical transcription factor (AP-1 and HIF-1α) cooperativity. SMOREs induced an unusual AP-1 phosphorylation signature to promote AP-1/HIF-1α binding to the latent HIV-1 proviral genome for its activation. Consistently, latent HIV-1 reactivation was compromised with pharmacologic inhibition of oxidative stress sensing or of cell-signaling kinases, and transcription factor’s loss of expression, thus functionally linking the host redox-responsive program to viral transcriptional rewiring. Notably, SMOREs induced the redox program in primary CD4+ T cells and reactivated latent HIV-1 in aviremic patient samples alone and in combination with known latency-reversing agents, thus providing physiological relevance. Our findings suggest that manipulation of redox-sensitive pathways could be exploited to alter the course of HIV-1 latency, thus rendering host cells responsive to help achieve a sterilizing cure.
Collapse
Affiliation(s)
- Emily Cruz-Lorenzo
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nora-Guadalupe P. Ramirez
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonali Pandhe
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Wang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Hernandez-Doria
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam M. Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tianna Petersen
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mamta K. Jain
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Parkland Health & Hospital System, 5200 Harry Hines Blvd, Dallas, TX 75235, USA
| | - Elisabeth D. Martinez
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
12
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
13
|
Gaebler C, Nogueira L, Stoffel E, Oliveira TY, Breton G, Millard KG, Turroja M, Butler A, Ramos V, Seaman MS, Reeves JD, Petroupoulos CJ, Shimeliovich I, Gazumyan A, Jiang CS, Jilg N, Scheid JF, Gandhi R, Walker BD, Sneller MC, Fauci A, Chun TW, Caskey M, Nussenzweig MC. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 2022; 606:368-374. [PMID: 35418681 PMCID: PMC9177424 DOI: 10.1038/s41586-022-04597-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/28/2022] [Indexed: 01/26/2023]
Abstract
HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.
Collapse
Affiliation(s)
- Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Elina Stoffel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Columbia University Irving Medical Center, New York, NY, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Katrina G Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Allison Butler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Caroline S Jiang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY, USA
| | - Nikolaus Jilg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Johannes F Scheid
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Rajesh Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anthony Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Ma L, Chen S, Wang Z, Guo S, Zhao J, Yi D, Li Q, Liu Z, Guo F, Li X, Jia P, Ding J, Liang C, Cen S. The CREB Regulated Transcription Coactivator 2 Suppresses HIV-1 Transcription by Preventing RNA Pol II from Binding to HIV-1 LTR. Virol Sin 2021; 36:796-809. [PMID: 33723808 DOI: 10.1007/s12250-021-00363-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 10/21/2022] Open
Abstract
The CREB-regulated transcriptional co-activators (CRTCs), including CRTC1, CRTC2 and CRTC3, enhance transcription of CREB-targeted genes. In addition to regulating host gene expression in response to cAMP, CRTCs also increase the infection of several viruses. While human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter harbors a cAMP response element and activation of the cAMP pathway promotes HIV-1 transcription, it remains unknown whether CRTCs have any effect on HIV-1 transcription and HIV-1 infection. Here, we reported that CRTC2 expression was induced by HIV-1 infection, but CRTC2 suppressed HIV-1 infection and diminished viral RNA expression. Mechanistic studies revealed that CRTC2 inhibited transcription from HIV-1 LTR and diminished RNA Pol II occupancy at the LTR independent of its association with CREB. Importantly, CRTC2 inhibits the activation of latent HIV-1. Together, these data suggest that in response to HIV-1 infection, cells increase the expression of CRTC2 which inhibits HIV-1 gene expression and may play a role in driving HIV-1 into latency.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Shumin Chen
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100176, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Pingping Jia
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China. .,Beijing Friendship Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
15
|
Extensive proteomic and transcriptomic changes quench the TCR/CD3 activation signal of latently HIV-1 infected T cells. PLoS Pathog 2021; 17:e1008748. [PMID: 33465149 PMCID: PMC7846126 DOI: 10.1371/journal.ppat.1008748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/29/2021] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
The biomolecular mechanisms controlling latent HIV-1 infection, despite their importance for the development of a cure for HIV-1 infection, are only partially understood. For example, ex vivo studies have recently shown that T cell activation only triggered HIV-1 reactivation in a fraction of the latently infected CD4+ T cell reservoir, but the molecular biology of this phenomenon is unclear. We demonstrate that HIV-1 infection of primary T cells and T cell lines indeed generates a substantial amount of T cell receptor (TCR)/CD3 activation-inert latently infected T cells. RNA-level analysis identified extensive transcriptomic differences between uninfected, TCR/CD3 activation-responsive and -inert T cells, but did not reveal a gene expression signature that could functionally explain TCR/CD3 signaling inertness. Network analysis suggested a largely stochastic nature of these gene expression changes (transcriptomic noise), raising the possibility that widespread gene dysregulation could provide a reactivation threshold by impairing overall signal transduction efficacy. Indeed, compounds that are known to induce genetic noise, such as HDAC inhibitors impeded the ability of TCR/CD3 activation to trigger HIV-1 reactivation. Unlike for transcriptomic data, pathway enrichment analysis based on phospho-proteomic data directly identified an altered TCR signaling motif. Network analysis of this data set identified drug targets that would promote TCR/CD3-mediated HIV-1 reactivation in the fraction of otherwise TCR/CD3-reactivation inert latently HIV-1 infected T cells, regardless of whether the latency models were based on T cell lines or primary T cells. The data emphasize that latent HIV-1 infection is largely the result of extensive, stable biomolecular changes to the signaling network of the host T cells harboring latent HIV-1 infection events. In extension, the data imply that therapeutic restoration of host cell responsiveness prior to the use of any activating stimulus will likely have to be an element of future HIV-1 cure therapies. A curative therapy for HIV-1 infection will at least require the eradication of a small pool of CD4+ helper T cells in which the virus can persist in an inactive, latent state, even after years of successful antiretroviral therapy. It has been assumed that activation of these viral reservoir T cells will also reactivate the latent virus, which is a prerequisite for the destruction of these cells. Remarkably, this is not always the case and following application of even the most potent stimuli that activate normal T cells through their T cell receptor, a large portion of the latent virus pool remains in a dormant state. Herein we demonstrate that a large part of latent HIV-1 infection events reside in T cells that have been rendered activation inert. We provide a systemwide, biomolecular description of the changes that render latently HIV-1 infected T cells activation inert and using this description, devise pharmacologic interference strategies that render initially activation inert T cells responsive to stimulation. This in turn allows for efficient triggering of HIV-1 reactivation in a large part of the otherwise unresponsive latently HIV-1 infected T cell reservoir.
Collapse
|
16
|
Balance between Retroviral Latency and Transcription: Based on HIV Model. Pathogens 2020; 10:pathogens10010016. [PMID: 33383617 PMCID: PMC7824405 DOI: 10.3390/pathogens10010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The representative of the Lentivirus genus is the human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). To date, there is no cure for AIDS because of the existence of the HIV-1 reservoir. HIV-1 infection can persist for decades despite effective antiretroviral therapy (ART), due to the persistence of infectious latent viruses in long-lived resting memory CD4+ T cells, macrophages, monocytes, microglial cells, and other cell types. However, the biology of HIV-1 latency remains incompletely understood. Retroviral long terminal repeat region (LTR) plays an indispensable role in controlling viral gene expression. Regulation of the transcription initiation plays a crucial role in establishing and maintaining a retrovirus latency. Whether and how retroviruses establish latency and reactivate remains unclear. In this article, we describe what is known about the regulation of LTR-driven transcription in HIV-1, that is, the cis-elements present in the LTR, the role of LTR transcription factor binding sites in LTR-driven transcription, the role of HIV-1-encoded transactivator protein, hormonal effects on virus transcription, impact of LTR variability on transcription, and epigenetic control of retrovirus LTR. Finally, we focus on a novel clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/dCas9)-based strategy for HIV-1 reservoir purging.
Collapse
|
17
|
ZBTB gene expression in HIV patients: a possible new molecular mechanism of viral control. Arch Virol 2020; 166:167-178. [PMID: 33130911 DOI: 10.1007/s00705-020-04854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
HIV infects its target cell and integrates into its genome as an essential step in its replication cycle. Proviral DNA is also subjected to the same transcriptional regulation as the host cell genome by its own transcriptional factors, with activating or repressive activity. There is a clear interaction between the presence of transcriptional repressors and a decrease in the rate of HIV replication, promoting gene silencing in infected cells, which serve as viral reservoirs. This represents a major obstacle for HIV eradication. The ZBTB gene family comprises 49 genes that encode transcription factors that have a repressor function in differentiation and development of cells of the lymphopoietic lineage, including the main target cells of HIV, CD4+ T cells. In this cross-sectional study, we evaluated the expression profile of ZBTB genes in CD4+ T cells of HIV-positive individuals with different levels of infection control. We found upregulation of gene expression of ZBTB4 (p < 0.01), ZBTB7B (p < 0.001), and ZBTB38 (p < 0.05) and downregulation of ZBTB16 (p < 0.01) in HIV-positive patients compared to HIV-negative individuals. Interestingly, in a deeper analysis, we observed that elite controllers had the highest levels of expression of the ZBTB38, ZBTB2, HIC1, ZBTB7A, ZBTB7B (ThPOK) and ZBTB4 genes, showing 2.56- to 7.60-fold upregulation compare to the ART-naïve group. These results suggest a possible contribution of these ZBTB transcriptional repressors in HIV-positive patients and a possible new molecular mechanism of viral control.
Collapse
|
18
|
Cary DC, Peterlin BM. Proteasomal Inhibition Potentiates Latent HIV Reactivation. AIDS Res Hum Retroviruses 2020; 36:800-807. [PMID: 32683901 DOI: 10.1089/aid.2020.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), ART fails to eradicate the virus and HIV cure has remained beyond the reach of current treatments. ART targets replicating virally infected but not latently infected cells, which have limited expression of factors important for proliferation and cellular activity, including positive transcription elongation factor b (P-TEFb) and nuclear factor κB (NF-κB). Levels of the cyclin T1 (CycT1) subunit of P-TEFb are low to absent in resting T cells, and treatment with proteasome inhibitors (PIs) increases CycT1 protein levels to those of proliferating T cells. In this study, the clinically approved PI bortezomib reactivated latent HIV in latently infected primary CD4+ T cells. Bortezomib not only increased levels of CycT1 but also activated NF-κB. Strikingly, as opposed to most currently researched latency reversing agents (LRAs), bortezomib did not require a second LRA to potently reactivate latent HIV. Effects of bortezomib on resting T cells and reactivation of HIV suggest a possible direction for future attempts to diminish the viral reservoir in HIV+ individuals.
Collapse
Affiliation(s)
- Daniele C. Cary
- Department of Medicine, University of California at San Francisco, San Francisco, California, USA
| | - B. Matija Peterlin
- Department of Medicine, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Regulation of Expression and Latency in BLV and HTLV. Viruses 2020; 12:v12101079. [PMID: 32992917 PMCID: PMC7601775 DOI: 10.3390/v12101079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotrophic virus type 1 (HTLV-1) and Bovine leukemia virus (BLV) belong to the Deltaretrovirus genus. HTLV-1 is the etiologic agent of the highly aggressive and currently incurable cancer adult T-cell leukemia (ATL) and a neurological disease HTLV-1-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). BLV causes neoplastic proliferation of B cells in cattle: enzootic bovine leucosis (EBL). Despite the severity of these conditions, infection by HTLV-1 and BLV appear in most cases clinically asymptomatic. These viruses can undergo latency in their hosts. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infection, as well as for pathogenesis in vivo. In this review, we will present the mechanisms that control proviral activation and retroviral latency in deltaretroviruses, in comparison with other exogenous retroviruses. The 5′ long terminal repeats (5′-LTRs) play a main role in controlling viral gene expression. While the regulation of transcription initiation is a major mechanism of silencing, we discuss topics that include (i) the epigenetic control of the provirus, (ii) the cis-elements present in the LTR, (iii) enhancers with cell-type specific regulatory functions, (iv) the role of virally-encoded transactivator proteins, (v) the role of repressors in transcription and silencing, (vi) the effect of hormonal signaling, (vii) implications of LTR variability on transcription and latency, and (viii) the regulatory role of non-coding RNAs. Finally, we discuss how a better understanding of these mechanisms may allow for the development of more effective treatments against Deltaretroviruses.
Collapse
|
20
|
Abstract
A widely used third-generation lentiviral packaging system produces virus with enhanced biosafety by eliminating HIV accessory genes and separating packaging elements into three different plasmids. However, for certain vectors such as pLKO.1, third-generation safety features reduce lentiviral titers due to the lack of the accessory gene tat. Here we present a way to improve virus production and target gene knockdown with a modified pLKO.1 CMV pLKO.1C) vector and optimized packaging construct ratios. Replacing the pLKO.1 RSV promoter with the Cytomegalovirus promoter yielded an average of threefold higher titer than standard pLKO.1 packaged using the third-generation system, while optimizing the packaging vector ratios further increased titer and yielded an average of tenfold higher titer than pLKO.1 packaged with the second-generation system. Substituting the Rous Sarcoma Virus promoter of pLKO.1 with the Cytomegalovirus promoter dramatically enhanced virus production with the third-generation packaging system. Higher titers and improved target gene knockdown were achieved by optimizing the ratio of viral packaging constructs. This study suggests an approach to generate and deliver lentiviruses with maximized efficacy while maintaining biosafety.
Collapse
|
21
|
Qu D, Sun WW, Li L, Ma L, Sun L, Jin X, Li T, Hou W, Wang JH. Long noncoding RNA MALAT1 releases epigenetic silencing of HIV-1 replication by displacing the polycomb repressive complex 2 from binding to the LTR promoter. Nucleic Acids Res 2019; 47:3013-3027. [PMID: 30788509 PMCID: PMC6451131 DOI: 10.1093/nar/gkz117] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) may either repress or activate HIV-1 replication and latency; however, specific mechanisms for their action are not always clear. In HIV-1 infected CD4+ T cells, we performed RNA-Sequencing (RNA-Seq) analysis and discovered an up-regulation of MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), an lncRNA previously described in cancer cells that associate with cancer pathogenesis. Moreover, we found that MALAT1 promoted HIV-1 transcription and infection, as its knockdown by CRISPR/Cas9 markedly reduced the HIV-1 long terminal repeat (LTR)-driven gene transcription and viral replication. Mechanistically, through an association with chromatin modulator polycomb repressive complex 2 (PRC2), MALAT1 detached the core component enhancer of zeste homolog 2 (EZH2) from binding with HIV-1 LTR promoter, and thus removed PRC2 complex-mediated methylation of histone H3 on lysine 27 (H3K27me3) and relieved epigenetic silencing of HIV-1 transcription. Moreover, the reactivation of HIV-1 stimulated with latency reversal agents (LRAs) induced MALAT1 expression in latently infected cells. Successful combination antiretroviral therapy (cART) was accompanied by significantly diminished MALAT1 expression in patients, suggesting a positive correlation of MALAT1 expression with HIV-1 replication. Our data have identified MALAT1 as a promoter of HIV-1 transcription, and suggested that MALAT1 may be targeted for the development of new therapeutics.
Collapse
Affiliation(s)
- Di Qu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei-Wei Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Li Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430070, China.,State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430070, China
| | - Li Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430070, China.,State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430070, China
| | - Jian-Hua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
22
|
Olson A, Basukala B, Wong WW, Henderson AJ. Targeting HIV-1 proviral transcription. Curr Opin Virol 2019; 38:89-96. [PMID: 31473372 PMCID: PMC6854310 DOI: 10.1016/j.coviro.2019.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Despite the success of antiretroviral therapies, there is no cure for HIV-1 infection due to the establishment of a long-lived latent reservoir that fuels viral rebound upon treatment interruption. 'Shock-and-kill' strategies to diminish the latent reservoir have had modest impact on the reservoir leading to considerations of alternative approaches to target HIV-1 proviruses. This review explores approaches to target HIV-1 transcription as a way to block the provirus expression.
Collapse
Affiliation(s)
- Alex Olson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, United States
| | - Binita Basukala
- Cell & Molecular Biology, Biology, Boston University, United States
| | - Wilson W Wong
- Biomedical Engineering, Boston University, United States
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, United States.
| |
Collapse
|
23
|
Wang J, Yang Z, Cheng L, Lu L, Pan K, Yang J, Wu N. Retinoblastoma binding protein 4 represses HIV-1 long terminal repeat-mediated transcription by recruiting NR2F1 and histone deacetylase. Acta Biochim Biophys Sin (Shanghai) 2019; 51:934-944. [PMID: 31435636 DOI: 10.1093/abbs/gmz082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus (HIV) transcription is closely associated with chromatin remodeling. Retinoblastoma binding protein 4 (RBBP4) is a histone chaperone implicated in chromatin remodeling. However, the role of RBBP4 in HIV-1 infection and the underlying mechanism remain elusive. In the present study, we showed that RBBP4 plays a negative regulatory role during HIV-1 infection. RBBP4 expression was significantly increased in HIV-1-infected T cells. RBBP4 binds to the HIV-1 long terminal repeat (LTR), represses HIV-1 LTR-mediated transcription through recruiting nuclear receptor subfamily 2 group F member 1(NR2F1) and histone deacetylase 1 and 2 (HDAC1/2) to HIV-1 LTR, and further controls local histone 3 (H3) deacetylation and chromatin compaction. Furthermore, the occupancy of RBBP4, HDAC1/2, and NR2F1 on LTR in HIV-latent J-lat cells was significantly higher than that in HIV-1-activated cells. In conclusion, our results establish RBBP4 as a new potent antiretroviral factor, which may provide theoretical basis for the treatment of HIV in the future.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zongxing Yang
- The Second Department of Infectious Disease, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingna Lu
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Kenv Pan
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Jin Yang
- Center for Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Nodder SB, Gummuluru S. Illuminating the Role of Vpr in HIV Infection of Myeloid Cells. Front Immunol 2019; 10:1606. [PMID: 31396206 PMCID: PMC6664105 DOI: 10.3389/fimmu.2019.01606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Vpr is a 14 kDa accessory protein conserved amongst extant primate lentiviruses that is required for virus replication in vivo. Although many functions have been attributed to Vpr, its primary role, and the function under selective pressure in vivo, remains elusive. The minimal importance of Vpr in infection of activated CD4+ T cells in vitro suggests that its major importance lies in overcoming restriction to virus replication in non-cycling myeloid cell populations, such as macrophages and dendritic cells. HIV-1 replication is attenuated in the absence of Vpr in myeloid cells such as monocyte-derived dendritic cells (MDDCs) and macrophages, and is correlated with the ability of Vpr to overcome a post-integration transcriptional defect in these cells. Intriguingly, recent identification of the human hub silencing (HUSH) complex as a target for DCAFCRL4-mediated degradation by numerous ancestral SIV Vpr alleles, and the Vpr paralog Vpx, signifies the potential function of HIV-1 Vpr to alter yet-to-be identified chromatin remodeling complexes and prevent host-mediated transcriptional repression of both invading viral genomes and pro-inflammatory responses. Myeloid cells constitute an important bridge between innate and adaptive immune responses to invading pathogens. Here, we seek to illustrate the numerous means by which Vpr manipulates the myeloid cellular environment and facilitates virus replication, myeloid cell-dependent HIV transmission, and systemic virus dissemination.
Collapse
Affiliation(s)
- Sarah Beth Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
25
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
26
|
Desantis J, Massari S, Sosic A, Manfroni G, Cannalire R, Felicetti T, Pannecouque C, Gatto B, Tabarrini O. Design and Synthesis of WM5 Analogues as HIV-1 TAR RNA Binders. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2019. [DOI: 10.2174/1874104501913010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The 6-aminoquinolone WM5, previously identified by us, is among the most selective small molecules known as TAR RNA binders to show anti-HIV activity.
Methods:
Starting from WM5, a series of analogues modified at N-1, C-6 or C-7 position was prepared by inserting guanidine or amidine groups as well as other protonable moieties intended to electrostatically bind the phosphate backbone of TAR. All the compounds were tested for their ability to inhibit HIV-1 replication in MT-4 cells and in parallel for their cytotoxicity. The active compounds were also evaluated for their ability to interfere with the formation of the Tat-TAR complex using a Fluorescence Quenching Assay (FQA).
Results:
Some of the synthesized compounds showed an anti-HIV-1 activity in the sub-micromolar range with the naphthyridone derivatives being the most potent. Three of the synthesized derivatives were able to interact with the Tat-TAR complex formation presenting Ki values improved as compared to the values obtained with WM5.
Conclusion:
The addition of a pyridine-based protonable side chain at the N-1 position of the quinolone/naphthyridone core imparted to the compounds the ability to interfere with Tat-TAR complex formation and HIV-1 replication.
Collapse
|
27
|
Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complex. Proc Natl Acad Sci U S A 2018; 115:12973-12978. [PMID: 30514815 DOI: 10.1073/pnas.1806438115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Promoter-proximal pausing by RNA polymerase II (Pol II) is a key regulatory step in human immunodeficiency virus-1 (HIV-1) transcription and thus in the reversal of HIV latency. By binding to the nascent transactivating response region (TAR) RNA, HIV-1 Tat recruits the human super elongation complex (SEC) to the promoter and releases paused Pol II. Structural studies of TAR interactions have been largely focused on interactions between the TAR bulge and the arginine-rich motif (ARM) of Tat. Here, the crystal structure of the TAR loop in complex with Tat and the SEC core was determined at a 3.5-Å resolution. The bound TAR loop is stabilized by cross-loop hydrogen bonds. It makes structure-specific contacts with the side chains of the Cyclin T1 Tat-TAR recognition motif (TRM) and the zinc-coordinating loop of Tat. The TAR loop phosphate backbone forms electrostatic and VDW interactions with positively charged side chains of the CycT1 TRM. Mutational analysis showed that these interactions contribute importantly to binding affinity. The Tat ARM was present in the crystallized construct; however, it was not visualized in the electron density, and the TAR bulge was not formed in the RNA construct used in crystallization. Binding assays showed that TAR bulge-Tat ARM interactions contribute less to TAR binding affinity than TAR loop interactions with the CycT1 TRM and Tat core. Thus, the TAR loop evolved to make high-affinity interactions with the TRM while Tat has three roles: scaffolding and stabilizing the TRM, making specific interactions through its zinc-coordinating loop, and making electrostatic interactions through its ARM.
Collapse
|
28
|
Cary DC, Peterlin BM. Procyanidin trimer C1 reactivates latent HIV as a triple combination therapy with kansui and JQ1. PLoS One 2018; 13:e0208055. [PMID: 30475902 PMCID: PMC6258234 DOI: 10.1371/journal.pone.0208055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023] Open
Abstract
Although anti-retroviral therapies have greatly extended the lives of HIV infected individuals, current treatments are unable to completely eliminate virally infected cells. A number of latency reversing agents have been proposed for use in a "shock and kill" strategy to reactivate latent HIV, thus making it vulnerable to killing mechanisms. Procyanidin trimer C1 (PC1) is a flavonoid found in multiple plant sources including grape, apple, and cacao, which has antioxidant and anti-inflammatory properties. We determined that PC1 reactivates latent HIV in cell line and primary cell models of HIV, through activation of the MAPK pathway. Notably, PC1 reactivates latent HIV without increasing surface markers of T cell activation. Combining several therapeutics, which activate HIV transcription through different mechanisms, is the most efficient approach to clinically reactivate latent reservoirs. We utilized PC1 (MAPK agonist), kansui (PKC agonist), and JQ1 (BET bromodomain inhibitor) in a triple combination approach to reactivate latent HIV in cell line and primary cell models of HIV latency. When used in combination, low concentrations which fail to reactivate HIV as single treatments, are effective. Thus, several mechanisms, using distinct activation pathways, act together to reactivate latent HIV.
Collapse
Affiliation(s)
- Daniele C. Cary
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - B. Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| |
Collapse
|
29
|
Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry. J Virol 2018; 92:JVI.00731-18. [PMID: 30111566 DOI: 10.1128/jvi.00731-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.
Collapse
|
30
|
SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin. mBio 2018; 9:mBio.02408-17. [PMID: 29717016 PMCID: PMC5930302 DOI: 10.1128/mbio.02408-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host’s modulation of HIV-1 transcription and latency. Here we revealed that “Sad1 and UNC84 domain containing 2” (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5′-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5′-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new therapeutic strategies. It has been known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription and maintains viral latency, but how the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. In this study, we performed in-depth virological and cell biological studies and discovered that an inner nuclear membrane protein, SUN2, is a novel chromatin reassembly factor that maintains repressive chromatin and thus modulates HIV-1 transcription and latency: therefore, targeting SUN2 may lead to new strategies for HIV cure.
Collapse
|
31
|
Mioduser O, Goz E, Tuller T. Significant differences in terms of codon usage bias between bacteriophage early and late genes: a comparative genomics analysis. BMC Genomics 2017; 18:866. [PMID: 29132309 PMCID: PMC5683454 DOI: 10.1186/s12864-017-4248-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Background Viruses undergo extensive evolutionary selection for efficient replication which effects, among others, their codon distribution. In the current study, we aimed at understanding the way evolution shapes the codon distribution in early vs. late viral genes in terms of their expression during different stages in the viral replication cycle. To this end we analyzed 14 bacteriophages and 11 human viruses with available information about the expression phases of their genes. Results We demonstrated evidence of selection for distinct composition of synonymous codons in early and late viral genes in 50% of the analyzed bacteriophages. Among others, this phenomenon may be related to the time specific adaptation of the viral genes to the translation efficiency factors involved at different bacteriophage developmental stages. Specifically, we showed that the differences in codon composition in different temporal gene groups cannot be explained only by phylogenetic proximities between the analyzed bacteriophages, and can be partially explained by differences in the adaptation to the host tRNA pool, nucleotide bias, GC content and more. In contrast, no difference in temporal regulation of synonymous codon usage was observed in human viruses, possibly because of a stronger selection pressure due to a larger effective population size in bacteriophages and their bacterial hosts. Conclusions The codon distribution in large fractions of bacteriophage genomes tend to be different in early and late genes. This phenomenon seems to be related to various aspects of the viral life cycle, and to various intracellular processes. We believe that the reported results should contribute towards better understanding of viral evolution and may promote the development of relevant procedures in synthetic virology. Electronic supplementary material The online version of this article (10.1186/s12864-017-4248-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oriah Mioduser
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, Israel
| | - Eli Goz
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, Israel.,SynVaccineLtd. Ramat Hachayal, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, Israel. .,SynVaccineLtd. Ramat Hachayal, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
32
|
Oteiza A, Mechti N. FoxO4 negatively controls Tat-mediated HIV-1 transcription through the post-transcriptional suppression of Tat encoding mRNA. J Gen Virol 2017; 98:1864-1878. [PMID: 28699853 DOI: 10.1099/jgv.0.000837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The connection between the repression of human immunodeficiency virus type 1(HIV-1) transcription and the resting CD4+ T cell state suggests that the host transcription factors involved in the active maintenance of lymphocyte quiescence are likely to repress the viral transactivator, Tat, thereby restricting HIV-1 transcription. In this study, we analysed the interplay between Tat and the forkhead box transcription factors, FoxO1 and FoxO4. We show that FoxO1 and FoxO4 antagonize Tat-mediated transactivation of HIV-1 promoter through the repression of Tat protein expression. No effect was observed on the expression of two HIV-1 accessory proteins, Vif and Vpr. Unexpectedly, we found that FoxO1 and FoxO4 expression causes a strong dose-dependent post-transcriptional suppression of Tat mRNA, indicating that FoxO should effectively inhibit HIV-1 replication by destabilizing Tat mRNA and suppressing Tat-mediated HIV-1 transcription. In accordance with this, we observed that the Tat mRNA half-life is reduced by FoxO4 expression. The physiological relevance of our findings was validated using the J-Lat 10.6 model of latently infected cells. We demonstrated that the overexpression of a constitutively active FoxO4-TM mutant antagonized HIV-1 transcription reactivation in response to T cell activators, such as TNF-α or PMA. Altogether, our findings demonstrate that FoxO factors can control HIV-1 transcription and provide new insights into their potential role during the establishment of HIV-1 latency.
Collapse
Affiliation(s)
- Alexandra Oteiza
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Nadir Mechti
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
33
|
Graci JD, Michaels D, Chen G, Schiralli Lester GM, Nodder S, Weetall M, Karp GM, Gu Z, Colacino JM, Henderson AJ. Identification of benzazole compounds that induce HIV-1 transcription. PLoS One 2017; 12:e0179100. [PMID: 28658263 PMCID: PMC5489165 DOI: 10.1371/journal.pone.0179100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
Despite advances in antiretroviral therapy, HIV-1 infection remains incurable in patients and continues to present a significant public health burden worldwide. While a number of factors contribute to persistent HIV-1 infection in patients, the presence of a stable, long-lived reservoir of latent provirus represents a significant hurdle in realizing an effective cure. One potential strategy to eliminate HIV-1 reservoirs in patients is reactivation of latent provirus with latency reversing agents in combination with antiretroviral therapy, a strategy termed "shock and kill". This strategy has shown limited clinical effectiveness thus far, potentially due to limitations of the few therapeutics currently available. We have identified a novel class of benzazole compounds effective at inducing HIV-1 expression in several cellular models. These compounds do not act via histone deacetylase inhibition or T cell activation, and show specificity in activating HIV-1 in vitro. Initial exploration of structure-activity relationships and pharmaceutical properties indicates that these compounds represent a potential scaffold for development of more potent HIV-1 latency reversing agents.
Collapse
Affiliation(s)
- Jason D. Graci
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Daniel Michaels
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guangming Chen
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Gillian M. Schiralli Lester
- Department of Pediatrics, Neonatology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sarah Nodder
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Gary M. Karp
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Zhengxian Gu
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Joseph M. Colacino
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Andrew J. Henderson
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Naf1 Regulates HIV-1 Latency by Suppressing Viral Promoter-Driven Gene Expression in Primary CD4+ T Cells. J Virol 2016; 91:JVI.01830-16. [PMID: 27795436 DOI: 10.1128/jvi.01830-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
HIV-1 latency is characterized by reversible silencing of viral transcription driven by the long terminal repeat (LTR) promoter of HIV-1. Cellular and viral factors regulating LTR activity contribute to HIV-1 latency, and certain repressive cellular factors modulate viral transcription silencing. Nef-associated factor 1 (Naf1) is a host nucleocytoplasmic shuttling protein that regulates multiple cellular signaling pathways and HIV-1 production. We recently reported that nuclear Naf1 promoted nuclear export of unspliced HIV-1 gag mRNA, leading to increased Gag production. Here we demonstrate new functions of Naf1 in regulating HIV-1 persistence. We found that Naf1 contributes to the maintenance of HIV-1 latency by inhibiting LTR-driven HIV-1 gene transcription in a nuclear factor kappa B-dependent manner. Interestingly, Naf1 knockdown significantly enhanced viral reactivation in both latently HIV-1-infected Jurkat T cells and primary central memory CD4+ T cells. Furthermore, Naf1 knockdown in resting CD4+ T cells from HIV-1-infected individuals treated with antiretroviral therapy significantly increased viral reactivation upon T-cell activation, suggesting an important role of Naf1 in modulating HIV-1 latency in vivo Our findings provide new insights for a better understanding of HIV-1 latency and suggest that inhibition of Naf1 activity to activate latently HIV-1-infected cells may be a potential therapeutic strategy. IMPORTANCE HIV-1 latency is characterized mainly by a reversible silencing of LTR promoter-driven transcription of an integrated provirus. Cellular and viral proteins regulating LTR activity contribute to the modulation of HIV-1 latency. In this study, we found that the host protein Naf1 inhibited HIV-1 LTR-driven transcription of HIV genes and contributed to the maintenance of HIV-1 latency. Our findings provide new insights into the effects of host modulation on HIV-1 latency, which may lead to a potential therapeutic strategy for HIV persistence by targeting the Naf1 protein.
Collapse
|
35
|
Ao Z, Zhu R, Tan X, Liu L, Chen L, Liu S, Yao X. Activation of HIV-1 expression in latently infected CD4+ T cells by the small molecule PKC412. Virol J 2016; 13:177. [PMID: 27769267 PMCID: PMC5073835 DOI: 10.1186/s12985-016-0637-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Background HIV-1 latency is a major obstacle for HIV-1 eradication. Extensive efforts are being directed toward the reactivation of latent HIV reservoirs with the aim of eliminating latently infected cells via the host immune system and/or virus-mediated cell lysis. Results We screened over 1,500 small molecules and kinase inhibitors and found that a small molecule, PKC412 (midostaurin, a broad-spectrum kinase inhibitor), can stimulate viral transcription and expression from the HIV-1 latently infected ACH2 cell line and primary resting CD4+ T cells. PKC412 reactivated HIV-1 expression in ACH2 cells in a dose- and time-dependent manner. Our results also suggest that the nuclear factor κB (NF-κB) signaling could be one of cellular pathways activated during PKC412-mediated activation of latent HIV-1 expression. Additionally, combining PKC412 with the HDAC inhibitor vorinostat (VOR) had an additive effect on HIV-1 reactivation in both ACH2 cells and infected resting CD4+ T cells. Conclusions These studies provide evidence that PKC412 is a new compound with the potential for optimization as a latency-reactivator to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Zhujun Ao
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Rady Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Rong Zhu
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Rady Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaoli Tan
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Lisa Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Shuiping Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - XiaoJian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Rady Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
36
|
Qu D, Li C, Sang F, Li Q, Jiang ZQ, Xu LR, Guo HJ, Zhang C, Wang JH. The variances of Sp1 and NF-κB elements correlate with the greater capacity of Chinese HIV-1 B'-LTR for driving gene expression. Sci Rep 2016; 6:34532. [PMID: 27698388 PMCID: PMC5048295 DOI: 10.1038/srep34532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/15/2016] [Indexed: 12/28/2022] Open
Abstract
The 5' end of HIV-1 long terminal repeat (LTR) serves as a promoter that plays an essential role in driving viral gene transcription. Manipulation of HIV-1 LTR provides a potential therapeutic strategy for suppressing viral gene expression or excising integrated provirus. Subtype-specific genetic diversity in the LTR region has been observed. The minor variance of LTR, particularly in the transcription factor binding sites, can have a profound impact on its activity. However, the LTR profiles from major endemic Chinese subtypes are not well characterized. Here, by characterizing the sequences and functions of LTRs from endemic Chinese HIV-1 subtypes, we showed that nucleotide variances of Sp1 core promoter and NF-κB element are associated with varied LTR capacity for driving viral gene transcription. The greater responsiveness of Chinese HIV-1 B'-LTR for driving viral gene transcription upon stimulation is associated with an increased level of viral reactivation. Moreover, we demonstrated that the introduction of CRISPR/dead Cas9 targeting Sp1 or NF-κB element suppressed viral gene expression. Taken together, our study characterized LTRs from endemic HIV-1 subtypes in China and suggests a potential target for the suppression of viral gene expression and a novel strategy that facilitates the accomplishment of a functional cure.
Collapse
Affiliation(s)
- Di Qu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Feng Sang
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Qiang Li
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhi-Qiang Jiang
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Li-Ran Xu
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Hui-Jun Guo
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chiyu Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Toll-interacting protein inhibits HIV-1 infection and regulates viral latency. Biochem Biophys Res Commun 2016; 475:161-8. [PMID: 27181351 DOI: 10.1016/j.bbrc.2016.05.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
HIV-1 latency is mainly characterized by a reversible silencing of long-terminal repeat (LTR)-driven transcription of provirus. The existing of repressive factors has been described to contribute to transcription silencing of HIV-1. Toll-interacting protein (Tollip) has been identified as a repressor of Toll like receptors (TLR)-mediated signaling. Our previous study has found that Tollip inhibited NF-κB-dependent HIV-1 promoter LTR-driven transcription, indicating the potential role of Tollip in governing viral latency. In this study, by using HIV-1 latently infected Jurkat T-cell and central memory CD4(+) T-cells, we demonstrate the role of Tollip in regulating HIV-1 latency, as the knock-down of Tollip promoted HIV-1 reactivation from both HIV-1 latently infected Jurkat CD4(+) T cells and primary central memory T cells (TCM). Moreover, we found that the activities of LTRs derived from multiple HIV-1 subtypes could be repressed by Tollip; Knock-down of Tollip promoted HIV-1 transcription and infection in CD4(+) T cells. Our data indicate a key role of Tollip in suppressing HIV-1 infection and regulating viral latency, which provides a potential host target for combating HIV-1 infection and latency.
Collapse
|
38
|
Liang Z, Liu R, Zhang H, Zhang S, Hu X, Tan J, Liang C, Qiao W. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription. Virology 2016; 493:1-11. [PMID: 26994425 DOI: 10.1016/j.virol.2016.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/16/2022]
Abstract
GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency.
Collapse
Affiliation(s)
- Zhibin Liang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruikang Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Hui Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Suzhen Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xiaomei Hu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Que., Canada H3T 1E2; Department of Medicine, McGill University, Montreal, Que., Canada; Department of Microbiology and Immunology, McGill University, Montreal, Que., Canada.
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
39
|
Impact of Chromatin on HIV Replication. Genes (Basel) 2015; 6:957-76. [PMID: 26437430 PMCID: PMC4690024 DOI: 10.3390/genes6040957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.
Collapse
|
40
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
41
|
HIV-1 RNAs: sense and antisense, large mRNAs and small siRNAs and miRNAs. Curr Opin HIV AIDS 2015; 10:103-9. [PMID: 25565176 DOI: 10.1097/coh.0000000000000135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings concerning the ever-growing HIV-1 RNA population. RECENT FINDINGS The retrovirus HIV-1 has an RNA genome that is converted into DNA and is integrated into the genome of the infected host cell. Transcription from the long terminal repeat-encoded promoter results in the production of a full-length genomic RNA and multiple spliced mRNAs. Recent experiments, mainly based on next-generation sequencing, provided evidence for several additional HIV-encoded RNAs, including antisense RNAs and virus-encoded microRNAs. SUMMARY We will survey recent findings related to HIV-1 RNA biosynthesis, especially regulatory mechanisms that control initiation of transcription, capping and polyadenylation. We zoom in on the diversity of HIV-1 derived RNA transcripts, their mode of synthesis and proposed functions in the infected cell. Special attention is paid to the viral transacting responsive RNA hairpin motif that has been suggested to encode microRNAs.
Collapse
|
42
|
Huang H, Santoso N, Power D, Simpson S, Dieringer M, Miao H, Gurova K, Giam CZ, Elledge SJ, Zhu J. FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency. J Biol Chem 2015; 290:27297-27310. [PMID: 26378236 DOI: 10.1074/jbc.m115.652339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Our functional genomic RNAi screens have identified the protein components of the FACT (facilitates chromatin transcription) complex, SUPT16H and SSRP1, as top host factors that negatively regulate HIV-1 replication. FACT interacts specifically with histones H2A/H2B to affect assembly and disassembly of nucleosomes, as well as transcription elongation. We further investigated the suppressive role of FACT proteins in HIV-1 transcription. First, depletion of SUPT16H or SSRP1 protein enhances Tat-mediated HIV-1 LTR (long terminal repeat) promoter activity. Second, HIV-1 Tat interacts with SUPT16H but not SSRP1 protein. However, both SUPT16H and SSRP1 are recruited to LTR promoter. Third, the presence of SUPT16H interferes with the association of Cyclin T1 (CCNT1), a subunit of P-TEFb, with the Tat-LTR axis. Removing inhibitory mechanisms to permit HIV-1 transcription is an initial and key regulatory step to reverse post-integrated latent HIV-1 proviruses for purging of reservoir cells. We therefore evaluated the role of FACT proteins in HIV-1 latency and reactivation. Depletion of SUPT16H or SSRP1 protein affects both HIV-1 transcriptional initiation and elongation and spontaneously reverses latent HIV-1 in U1/HIV and J-LAT cells. Similar effects were observed with a primary CD4+ T cell model of HIV-1 latency. FACT proteins also interfere with HTLV-1 Tax-LTR-mediated transcription and viral latency, indicating that they may act as general transcriptional suppressors for retroviruses. We conclude that FACT proteins SUPT16H and SSRP1 play a key role in suppressing HIV-1 transcription and promoting viral latency, which may serve as promising gene targets for developing novel HIV-1 latency-reversing agents.
Collapse
Affiliation(s)
- Huachao Huang
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Netty Santoso
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Derek Power
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sydney Simpson
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Michael Dieringer
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Hongyu Miao
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen J Elledge
- the Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, Massachusetts 02115; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Jian Zhu
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642; Departments of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642.
| |
Collapse
|
43
|
Kaczmarek Michaels K, Wolschendorf F, Schiralli Lester GM, Natarajan M, Kutsch O, Henderson AJ. RNAP II processivity is a limiting step for HIV-1 transcription independent of orientation to and activity of endogenous neighboring promoters. Virology 2015; 486:7-14. [PMID: 26379089 DOI: 10.1016/j.virol.2015.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/09/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022]
Abstract
Since HIV-1 has a propensity to integrate into actively expressed genes, transcriptional interference from neighboring host promoters has been proposed to contribute to the establishment and maintenance HIV-1 latency. To gain insights into how endogenous promoters influence HIV-1 transcription we utilized a set of inducible T cell lines and characterized whether there were correlations between expression of endogenous genes, provirus and long terminal repeat architecture. We show that neighboring promoters are active but have minimal impact on HIV-1 transcription, in particular, expression of the endogenous gene did not prevent expression of HIV-1 following induction of latent provirus. We also demonstrate that releasing paused RNAP II by diminishing negative elongation factor (NELF) is sufficient to reactivate transcriptionally repressed HIV-1 provirus regardless of the integration site and orientation of the provirus suggesting that NELF-mediated RNAP II pausing is a common mechanism of maintaining HIV-1 latency.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Frank Wolschendorf
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gillian M Schiralli Lester
- University of Rochester Medical Center, Department of Pediatrics, Division of Neonatology, Rochester, NY 14642, USA
| | - Malini Natarajan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Olaf Kutsch
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrew J Henderson
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
44
|
Pilakka-Kanthikeel S, Raymond A, Atluri VSR, Sagar V, Saxena SK, Diaz P, Chevelon S, Concepcion M, Nair M. Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1)-facilitated HIV restriction in astrocytes is regulated by miRNA-181a. J Neuroinflammation 2015; 12:66. [PMID: 25890101 PMCID: PMC4410490 DOI: 10.1186/s12974-015-0285-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/18/2015] [Indexed: 11/16/2022] Open
Abstract
Background Although highly active antiretroviral therapy (HAART) has significantly reduced the morbidity and mortality in HIV patients, virus continues to reside in the central nervous system (CNS) reservoir. Hence, a complete eradication of virus remains a challenge. HIV productively infects microglia/macrophages, but astrocytes are generally restricted to HIV infection. The relative importance of the possible replication blocks in astrocytes, however, is yet to be delineated. A recently identified restriction factor, sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), restricts HIV infection in resting CD4+T cells and in monocyte-derived dendritic cells. However, SAMHD1 expression and HIV-1 restriction activity regulation in the CNS cells are unknown. Though, certain miRNAs have been implicated in HIV restriction in resting CD4+T cells, their role in the CNS HIV restriction and their mode of action are not established. We hypothesized that varying SAMHD1 expression would lead to restricted HIV infection and host miRNAs would regulate SAMHD1 expression in astrocytes. Results We found increased SAMHD1 expression and decreased miRNA expression (miR-181a and miR-155) in the astrocytes compared to microglia. We report for the first time that miR-155 and miR-181a regulated the SAMHD1 expression. Overexpression of these cellular miRNAs increased viral replication in the astrocytes, through SAMHD1 modulation. Reactivation of HIV replication was accompanied by decrease in SAMHD1 expression. Conclusions Here, we provide a proof of concept that increased SAMHD1 in human astrocytes is in part responsible for the HIV restriction, silencing of which relieves this restriction. At this time, this concept is of theoretical nature. Further experiments are needed to confirm if HIV replication can be reactivated in the CNS reservoir.
Collapse
Affiliation(s)
- Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Andrea Raymond
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Venkata Subba Rao Atluri
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Vidya Sagar
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Shailendra K Saxena
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - Patricia Diaz
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Semithe Chevelon
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Michael Concepcion
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - Madhavan Nair
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA. .,Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, AHC-1, 418A, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
45
|
Promoter Targeting RNAs: Unexpected Contributors to the Control of HIV-1 Transcription. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e222. [PMID: 25625613 PMCID: PMC4345301 DOI: 10.1038/mtna.2014.67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/01/2014] [Indexed: 11/22/2022]
Abstract
In spite of prolonged and intensive treatment with combined antiretroviral therapy (cART), which efficiently suppresses plasma viremia, the integrated provirus of HIV-1 persists in resting memory CD4+ T cells as latent infection. Treatment with cART does not substantially reduce the burden of latent infection. Once cART is ceased, HIV-1 replication recrudesces from these reservoirs in the overwhelming majority of patients. There is increasing evidence supporting a role for noncoding RNAs (ncRNA), including microRNAs (miRNAs), antisense (as)RNAs, and short interfering (si)RNA in the regulation of HIV-1 transcription. This appears to be mediated by interaction with the HIV-1 promoter region. Viral miRNAs have the potential to act as positive or negative regulators of HIV transcription. Moreover, inhibition of virally encoded long-asRNA can induce positive transcriptional regulation, while antisense strands of siRNA targeting the NF-κB region suppress viral transcription. An in-depth understanding of the interaction between ncRNAs and the HIV-1 U3 promoter region may lead to new approaches for the control of HIV reservoirs. This review focuses on promoter associated ncRNAs, with particular emphasis on their role in determining whether HIV-1 establishes active or latent infection.
Collapse
|
46
|
Kaczmarek K, Morales A, Henderson AJ. T Cell Transcription Factors and Their Impact on HIV Expression. Virology (Auckl) 2013; 2013:41-47. [PMID: 24436634 PMCID: PMC3891646 DOI: 10.4137/vrt.s12147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
By targeting CD4+ effector T cells, HIV has a dramatic impact on the depletion, expansion and function of the different polarized T cell subsets. The maturation of T cell lineages is in part driven by intrinsic transcription factors that potentially influence how efficiently HIV replicates. In this review, we explore whether transcription factors that are required for polarizing T cells influence HIV replication. In particular, we examine provirus transcription as well as the establishment and maintenance of HIV latency. Furthermore, it is suggested these factors may provide novel cell-specific therapeutic strategies for targeting the HIV latent reservoir.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA
| | - Ayana Morales
- Section of Infectious Diseases and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Andrew J Henderson
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA. ; Section of Infectious Diseases and Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
47
|
Konkoli Z, Jesorka A. Fluctuations in Tat copy number when it counts the most: a possible mechanism to battle the HIV latency. Theor Biol Med Model 2013; 10:16. [PMID: 23497153 PMCID: PMC3686706 DOI: 10.1186/1742-4682-10-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/12/2013] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 virus can enter a dormant state and become inactive, which reduces accessibility by antiviral drugs. We approach this latency problem from an unconventional point of view, with the focus on understanding how intrinsic chemical noise (copy number fluctuations of the Tat protein) can be used to assist the activation process of the latent virus. Several phase diagrams have been constructed in order to visualize in which regions of the parameter space noise can drive the activation process. Essential to the study is the use of a hyperbolic coordinate system, which greatly facilitates quantification of how the various reaction rate combinations shape the noise behavior of the Tat protein feedback system. We have designed a mathematical manual of how to approach the problem of activation quantitatively, and introduce the notion of an “operating point” of the virus. For both noise-free and noise-based strategies we show how operating point off-sets induce changes in the number of Tat molecules. The major result of the analysis is that for every noise-free strategy there is a noise-based strategy that requires lower dosage, but achieves the same anti-latency effect. It appears that the noise-based activation is advantageous for every operating point.
Collapse
Affiliation(s)
- Zoran Konkoli
- Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, Gothenburg, Sweden.
| | | |
Collapse
|