1
|
Rawat H, Kornherr J, Zawada D, Bakhshiyeva S, Kupatt C, Laugwitz KL, Bähr A, Dorn T, Moretti A, Nowak-Imialek M. Recapitulating porcine cardiac development in vitro: from expanded potential stem cell to embryo culture models. Front Cell Dev Biol 2023; 11:1111684. [PMID: 37261075 PMCID: PMC10227949 DOI: 10.3389/fcell.2023.1111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Domestic pigs (Sus scrofa) share many genetic, anatomical, and physiological traits with humans and therefore constitute an excellent preclinical animal model. Fundamental understanding of the cellular and molecular processes governing early porcine cardiogenesis is critical for developing advanced porcine models used for the study of heart diseases and new regenerative therapies. Here, we provide a detailed characterization of porcine cardiogenesis based on fetal porcine hearts at various developmental stages and cardiac cells derived from porcine expanded pluripotent stem cells (pEPSCs), i.e., stem cells having the potential to give rise to both embryonic and extraembryonic tissue. We notably demonstrate for the first time that pEPSCs can differentiate into cardiovascular progenitor cells (CPCs), functional cardiomyocytes (CMs), epicardial cells and epicardial-derived cells (EPDCs) in vitro. Furthermore, we present an enhanced system for whole-embryo culture which allows continuous ex utero development of porcine post-implantation embryos from the cardiac crescent stage (ED14) up to the cardiac looping (ED17) stage. These new techniques provide a versatile platform for studying porcine cardiac development and disease modeling.
Collapse
Affiliation(s)
- Hilansi Rawat
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sara Bakhshiyeva
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Rodriguez-Polo I, Behr R. Non-human primate pluripotent stem cells for the preclinical testing of regenerative therapies. Neural Regen Res 2022; 17:1867-1874. [PMID: 35142660 PMCID: PMC8848615 DOI: 10.4103/1673-5374.335689] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-human primates play a key role in the preclinical validation of pluripotent stem cell-based cell replacement therapies. Pluripotent stem cells used as advanced therapy medical products boost the possibility to regenerate tissues and organs affected by degenerative diseases. Therefore, the methods to derive human induced pluripotent stem cell and embryonic stem cell lines following clinical standards have quickly developed in the last 15 years. For the preclinical validation of cell replacement therapies in non-human primates, it is necessary to generate non-human primate pluripotent stem cell with a homologous quality to their human counterparts. However, pluripotent stem cell technologies have developed at a slower pace in non-human primates in comparison with human cell systems. In recent years, however, relevant progress has also been made with non-human primate pluripotent stem cells. This review provides a systematic overview of the progress and remaining challenges for the generation of non-human primate induced pluripotent stem cells/embryonic stem cells for the preclinical testing and validation of cell replacement therapies. We focus on the critical domains of (1) reprogramming and embryonic stem cell line derivation, (2) cell line maintenance and characterization and, (3) application of non-human primate pluripotent stem cells in the context of selected preclinical studies to treat cardiovascular and neurodegenerative disorders performed in non-human primates.
Collapse
|
3
|
Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21155467. [PMID: 32751747 PMCID: PMC7432218 DOI: 10.3390/ijms21155467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells are laboratory-produced cells that combine the biological advantages of somatic adult and stem cells for cell-based therapy. The reprogramming of cells, such as fibroblasts, to an embryonic stem cell-like state is done by the ectopic expression of transcription factors responsible for generating embryonic stem cell properties. These primary factors are octamer-binding transcription factor 4 (Oct3/4), sex-determining region Y-box 2 (Sox2), Krüppel-like factor 4 (Klf4), and the proto-oncogene protein homolog of avian myelocytomatosis (c-Myc). The somatic cells can be easily obtained from the patient who will be subjected to cellular therapy and be reprogrammed to acquire the necessary high plasticity of embryonic stem cells. These cells have no ethical limitations involved, as in the case of embryonic stem cells, and display minimal immunological rejection risks after transplant. Currently, several clinical trials are in progress, most of them in phase I or II. Still, some inherent risks, such as chromosomal instability, insertional tumors, and teratoma formation, must be overcome to reach full clinical translation. However, with the clinical trials and extensive basic research studying the biology of these cells, a promising future for human cell-based therapies using iPS cells seems to be increasingly clear and close.
Collapse
|
4
|
Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells 2020; 9:cells9061349. [PMID: 32485910 PMCID: PMC7349583 DOI: 10.3390/cells9061349] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Non-human primates (NHP) are important surrogate models for late preclinical development of advanced therapy medicinal products (ATMPs), including induced pluripotent stem cell (iPSC)-based therapies, which are also under development for heart failure repair. For effective heart repair by remuscularization, large numbers of cardiomyocytes are required, which can be obtained by efficient differentiation of iPSCs. However, NHP-iPSC generation and long-term culture in an undifferentiated state under feeder cell-free conditions turned out to be problematic. Here we describe the reproducible development of rhesus macaque (Macaca mulatta) iPSC lines. Postnatal rhesus skin fibroblasts were reprogrammed under chemically defined conditions using non-integrating vectors. The robustness of the protocol was confirmed using another NHP species, the olive baboon (Papio anubis). Feeder-free maintenance of NHP-iPSCs was essentially dependent on concurrent Wnt-activation by GSK-inhibition (Gi) and Wnt-inhibition (Wi). Generated NHP-iPSCs were successfully differentiated into cardiomyocytes using a combined growth factor/GiWi protocol. The capacity of the iPSC-derived cardiomyocytes to self-organize into contractile engineered heart muscle (EHM) was demonstrated. Collectively, this study establishes a reproducible protocol for the robust generation and culture of NHP-iPSCs, which are useful for preclinical testing of strategies for cell replacement therapies in NHP.
Collapse
|
5
|
Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage. Int J Mol Sci 2018; 19:ijms19092788. [PMID: 30227600 PMCID: PMC6164693 DOI: 10.3390/ijms19092788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/09/2023] Open
Abstract
Humans and nonhuman primates (NHP) are similar in behavior and in physiology, specifically the structure, function, and complexity of the immune system. Thus, NHP models are desirable for pathophysiology and pharmacology/toxicology studies. Furthermore, NHP-derived induced pluripotent stem cells (iPSCs) may enable transformative developmental, translational, or evolutionary studies in a field of inquiry currently hampered by the limited availability of research specimens. NHP-iPSCs may address specific questions that can be studied back and forth between in vitro cellular assays and in vivo experimentations, an investigational process that in most cases cannot be performed on humans because of safety and ethical issues. The use of NHP model systems and cell specific in vitro models is evolving with iPSC-based three-dimensional (3D) cell culture systems and organoids, which may offer reliable in vitro models and reduce the number of animals used in experimental research. IPSCs have the potential to give rise to defined cell types of any organ of the body. However, standards for deriving defined and validated NHP iPSCs are missing. Standards for deriving high-quality iPSC cell lines promote rigorous and replicable scientific research and likewise, validated cell lines reduce variability and discrepancies in results between laboratories. We have derived and validated NHP iPSC lines by confirming their pluripotency and propensity to differentiate into all three germ layers (ectoderm, mesoderm, and endoderm) according to standards and measurable limits for a set of marker genes. The iPSC lines were characterized for their potential to generate neural stem cells and to differentiate into dopaminergic neurons. These iPSC lines are available to the scientific community. NHP-iPSCs fulfill a unique niche in comparative genomics to understand gene regulatory principles underlying emergence of human traits, in infectious disease pathogenesis, in vaccine development, and in immunological barriers in regenerative medicine.
Collapse
|
6
|
Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Sci Rep 2018; 8:5907. [PMID: 29651156 PMCID: PMC5897327 DOI: 10.1038/s41598-018-24074-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Nonhuman primate (NHP) models are more predictive than rodent models for developing induced pluripotent stem cell (iPSC)-based cell therapy, but robust and reproducible NHP iPSC-cardiomyocyte differentiation protocols are lacking for cardiomyopathies research. We developed a method to differentiate integration-free rhesus macaque iPSCs (RhiPSCs) into cardiomyocytes with >85% purity in 10 days, using fully chemically defined conditions. To enable visualization of intracellular calcium flux in beating cardiomyocytes, we used CRISPR/Cas9 to stably knock-in genetically encoded calcium indicators at the rhesus AAVS1 safe harbor locus. Rhesus cardiomyocytes derived by our stepwise differentiation method express signature cardiac markers and show normal electrochemical coupling. They are responsive to cardiorelevant drugs and can be successfully engrafted in a mouse myocardial infarction model. Our approach provides a powerful tool for generation of NHP iPSC-derived cardiomyocytes amenable to utilization in basic research and preclinical studies, including in vivo tissue regeneration models and drug screening.
Collapse
|
7
|
Ke M, He Q, Hong D, Li O, Zhu M, Ou WB, He Y, Wu Y. Leukemia inhibitory factor regulates marmoset induced pluripotent stem cell proliferation via a PI3K/Akt‑dependent Tbx‑3 activation pathway. Int J Mol Med 2018; 42:131-140. [PMID: 29620145 PMCID: PMC5979829 DOI: 10.3892/ijmm.2018.3610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/28/2018] [Indexed: 01/22/2023] Open
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic cytokine of the interleukin-6 family, and is widely used to establish and maintain pluripotent stem cells, particularly mouse pluripotent stem cells. However, no reports have fully elucidated the application of LIF in marmoset induced pluripotent stem cell (iPSC) culture, particularly the underlying mechanisms. To demonstrate the feasibility of the application of LIF to marmoset iPSCs, the present study assessed these cells in the presence of LIF. Cell proliferation was measured using MTT assay, cell apoptosis was determined by flow cytometric analysis of fluorescein isothiocyanate Annexin V staining and the differentially expressed genes were analysed using Digital Gene Expression (DGE) analysis. The altered expression of pluripotency-associated genes was confirmed by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Furthermore, following treatment with LY294002, cell proliferation was measured by MTT assay and protein levels were confirmed by western blot analysis. The results showed that LIF significantly promoted the number of proliferating cells, but had no effect on apoptosis. Digital Gene Expression analysis was used to examine the differentially expressed genes of marmoset iPSCs in the presence of LIF. The results showed that the pluripotency-associated transcription factor-encoding gene T-box 3 (Tbx-3) was activated by LIF. Notably, LIF increased the levels of phosphorylated (p-)AKT and Tbx-3 in the marmoset iPSCs. Furthermore, pretreatment with LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), significantly impaired the LIF-induced upregulation of p-AKT and Tbx-3 in the marmoset iPSCs, suggesting that the PI3K/Akt signaling pathway is involved in this regulation. Taken together, the results suggested that LIF is effective in maintaining marmoset iPSCs in cultures, which is associated with the activation of Tbx-3 through regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Minxia Ke
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Quan He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Danping Hong
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ouyang Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Mengyi Zhu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yulong He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
8
|
Optimization of culture conditions for the derivation and propagation of baboon (Papio anubis) induced pluripotent stem cells. PLoS One 2018; 13:e0193195. [PMID: 29494646 PMCID: PMC5832232 DOI: 10.1371/journal.pone.0193195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/06/2018] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer the possibility of cell replacement therapies using patient-matched cells to treat otherwise intractable diseases and debilitations. To successfully realize this potential, several factors must be optimized including i) selection of the appropriate cell type and numbers to transplant, ii) determination of the means of transplantation and the location into which the transplanted cells should be delivered, and iii) demonstration of the safety and efficacy of the cell replacement protocol to mitigate each targeted disease state. A majority of diseases or debilitations likely to be targeted by cell-based therapeutic approaches represent complex conditions or physiologies manifest predominantly in primates including humans. Nonhuman primates afford the most clinically relevant model system for biomedical studies and testing of cell-based therapies. Baboons have 92% genomic similarity with humans overall and especially significant similarities in their immunogenetic system, rendering this species a particularly valuable model for testing procedures involving cell transplants into living individuals. To maximize the utility of the baboon model, standardized protocols must be developed for the derivation of induced pluripotent stem cells from living adults and the long-term maintenance of these cells in culture. Here we tested four commercially available culture systems (ReproFF, mTeSR1, E8 and Pluristem) for competence to maintain baboon iPSCs in a pluripotent state over multiple passages, and to support the derivation of new lines of baboon iPSCs. Of these four media only Pluristem was able to maintain baboon pluripotency as assessed by morphological characteristics, immunocytochemistry and RT-qPCR. Pluristem also facilitated the derivation of new lines of iPSCs from adult baboon somatic cells, which had previously not been accomplished. We derived multiple iPS cell lines from adult baboon peripheral blood mononuclear cells cultured in Pluristem. These were validated by expression of the pluripotency markers OCT4, NANOG, SOX2, SSEA4 and TRA181, as well as the ability to differentiate into tissues from all three germ layers when injected into immunocompromised mice. These findings further advance the utility of the baboon as an ideal preclinical model system for optimizing iPS cell-based, patient-specific replacement therapies in humans.
Collapse
|
9
|
Wu Y, Li O, He C, Li Y, Li M, Liu XL, Wang Y, He Y. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Mol Med Rep 2017; 15:3690-3698. [PMID: 28393187 PMCID: PMC5436227 DOI: 10.3892/mmr.2017.6431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
Induced pluripotent stem cells (iPS) represent an important tool to develop disease-modeling assays, drug testing assays and cell-based replacement therapies. The application of iPS in these fields requires the development of suitable animal models. Of the suitable species, guinea pigs are particularly important and offer significant advantages. Successful iPS generation has been accomplished in a number of species; however, it has not been reported in the guinea pig. The present study successfully generated iPS from guinea pigs (giPS) using single polycistronic virus transduction with mouse octamer-binding transcription factor 4 (Oct4), sex determining region Y-box 2 (Sox2), Kruppel-like factor 4 and c-Myc. The giPS cell lines were cultured in media containing leukemia inhibitory factor and guinea pig fibroblast cells were used as feeder cells. These cultures were expanded under feeder-free culture conditions using ESGRO Complete Plus Clonal Grade medium containing 15% fetal bovine serum on gelatin-coated dishes. The resultant cells had a normal karyotype, exhibited alkaline phosphatase activity and expressed the pluripotency markers Oct4, Sox2 and Nanog. The cells differentiated in vivo to form teratomas that contained all three germ layers of the tissue cells. The generation of giPS may facilitate future studies investigating the mechanisms underlying innate immunity, particularly for tuberculosis. These experiments provide proof of principle that iPS technology may be adapted to use the guinea pig as a model of human diseases.
Collapse
Affiliation(s)
- Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ouyang Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Chengwen He
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Department of Biochemistry and Molecular Biology, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Yong Li
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Department of Biochemistry and Molecular Biology, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Min Li
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Department of Biochemistry and Molecular Biology, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Xiaoming Liu Liu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Department of Biochemistry and Molecular Biology, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Department of Biochemistry and Molecular Biology, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Yulong He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
10
|
Schrimpf C, Wrede C, Glage S, Hegermann J, Backhaus S, Blasczyk R, Heuft HG, Müller T. Differentiation of induced pluripotent stem cell-derived neutrophil granulocytes from common marmoset monkey (Callithrix jacchus). Transfusion 2016; 57:60-69. [PMID: 27888517 DOI: 10.1111/trf.13909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inherited and acquired marrow failure syndromes most commonly lead to defect in myeloid and/or neutrophil differentiation and/or function. Besides this, neutropenia induced by cancer-adjusted chemotherapy is a frequent clinical problem. In both cases, cell replacement therapy is a well-established, but due to necessity of donors limited and perilous procedure. Therefore, autologous cell replacement from patients' own marrow-derived cells lowers risk and bares new possibilities for therapy. Since the immune system of the marmoset monkey is known to show high similarity to humans, preclinical studies with these animals bare high hopes for immunologic research and cell replacement therapy. STUDY DESIGN AND METHODS Marmoset-induced pluripotent stem (iPS) cells (cj-iPSC) were first cultivated on mouse embryonic feeder cells in medium containing recombinant human vascular endothelial growth factor. After 13 days, CD34+/vascular endothelial growth factor receptor-2 (VEGFR2)- cells were sorted, treated with interleukin (IL-3), thrombopoietin, and stem cell factor for 20 days and further cultivated with granulocyte-colony-stimulating factor (G-CSF) and IL-3 for 10 days. RESULTS CD34+/VEGFR2- cells could be generated in high amounts (39.65 ± 6.01%; 2.31 × 105 cells). Afterward, these hematopoietic progenitors could be successfully differentiated into mature cj-iPSC-derived neutrophils showing similar morphology, specific surface antigens, and neutrophil-specific gene products and in vitro phagocytic activity. CONCLUSION cj-iPSC-derived neutrophils bare high hopes in hematologic cell replacement therapy. They exhibit high morphologic similarity to native neutrophils and present neutrophil-specific surface antigens, antimicrobial proteins, and gene products yielding an auspicious approach for continuative experiments including tests in living animals.
Collapse
Affiliation(s)
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Samantha Backhaus
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Hans-Gert Heuft
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Thomas Müller
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany.,Synlab Medical Care Centre Weiden Ltd, Weiden, Germany
| |
Collapse
|
11
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
12
|
Abstract
The rhesus macaque (Macaca mulatta) is one of the most extensively used nonhuman primate models for human diseases. This article presents a literature review focusing on major organ systems and age-associated conditions in humans and primates, combined with information from the Wisconsin National Primate Research Center Electronic Health Record database to highlight and contrast age-associated lesions in geriatric rhesus macaques with younger cohorts. Rhesus macaques are excellent models for age-associated conditions, including diabetes, osteoarthritis, endometriosis, visual accommodation, hypertension, osteoporosis, and amyloidosis. Adenocarcinoma of the large intestine (ileocecocolic junction, cecum, and colon) is the most common spontaneous neoplasm in the rhesus macaque. A combination of cross-sectional and longitudinal studies is required to truly define mechanisms of maturation, aging, and the pathology of age-associated conditions in macaques and thus humans. The rhesus macaque is and will continue to be an appropriate and valuable model for investigation of the mechanisms and treatment of age-associated diseases.
Collapse
Affiliation(s)
- H A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Mishra A, Qiu Z, Farnsworth SL, Hemmi JJ, Li M, Pickering AV, Hornsby PJ. Induced Pluripotent Stem Cells from Nonhuman Primates. Methods Mol Biol 2016; 1357:183-93. [PMID: 25540117 PMCID: PMC4483148 DOI: 10.1007/7651_2014_159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.
Collapse
Affiliation(s)
- Anuja Mishra
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhifang Qiu
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Steven L Farnsworth
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jacob J Hemmi
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Miao Li
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Alexander V Pickering
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter J Hornsby
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
14
|
Ramaswamy K, Yik WY, Wang XM, Oliphant EN, Lu W, Shibata D, Ryder OA, Hacia JG. Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. BMC Res Notes 2015; 8:577. [PMID: 26475477 PMCID: PMC4609060 DOI: 10.1186/s13104-015-1567-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023] Open
Abstract
Background Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. Along with the African great apes, orangutans are among the closest living relatives to humans. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved somatic cells obtained from captive orangutans. Results Primary skin fibroblasts from two Sumatran orangutans were transduced with retroviral vectors expressing the human OCT4, SOX2, KLF4, and c-MYC factors. Candidate orangutan iPSCs were characterized by global gene expression and DNA copy number analysis. All were consistent with pluripotency and provided no evidence of large genomic insertions or deletions. In addition, orangutan iPSCs were capable of producing cells derived from all three germ layers in vitro through embryoid body differentiation assays and in vivo through teratoma formation in immune-compromised mice. Conclusions We demonstrate that orangutan skin fibroblasts are capable of being reprogrammed into iPSCs with hallmark molecular signatures and differentiation potential. We suggest that reprogramming orangutan somatic cells in genome resource banks could provide new opportunities for advancing assisted reproductive technologies relevant for species conservation efforts. Furthermore, orangutan iPSCs could have applications for investigating the phenotypic relevance of genomic changes that occurred in the human, African great ape, and/or orangutan lineages. This provides opportunities for orangutan cell culture models that would otherwise be impossible to develop from living donors due to the invasive nature of the procedures required for obtaining primary cells. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1567-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krishna Ramaswamy
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Wing Yan Yik
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Xiao-Ming Wang
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Erin N Oliphant
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Wange Lu
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Darryl Shibata
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research , San Diego Zoo Global, San Diego, CA, USA.
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Pogozhykh O, Pogozhykh D, Neehus AL, Hoffmann A, Blasczyk R, Müller T. Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture. Stem Cell Res Ther 2015; 6:150. [PMID: 26297012 PMCID: PMC4546288 DOI: 10.1186/s13287-015-0146-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 02/24/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Multipotent stromal cells (MSCs) are among the key candidates in regenerative medicine. However variety of MSC sources and general heterogeneity lead to controversial data in functional characterization. Furthermore, despite intensive usage as preclinical animal model, little is known about MSCs of the common marmoset monkey. Methods MSCs derived from placental amnion and bone marrow samples from human and common marmoset were characterized in parallel over 12 passages to monitor similarities and significant differences (p ≤ 0.05, Student’s t-test) in MSC markers and major histocompatibility complex (MHC) class I expression by immunohistochemistry, flow cytometry, real-time PCR, metabolic activity test, with special focus on pluripotency associated genes. Results Human and non-human primate MSCs were characterized for expression of MSC markers and capability of differentiation into mesenchymal lineages. MSCs could be cultured more than 100 days (26 passages), but metabolic activity was significantly enhanced in amnion vs. bone marrow MSCs. Interestingly, MHC class I expression is significantly reduced in amnion MSCs until passage 6 in human and marmoset, but not in bone marrow cells. For MSC markers, CD73 and CD105 levels remain unchanged in amnion MSCs and slightly decline in bone marrow at late passages; CD166 is significantly higher expressed in human MSCs, CD106 significantly lower vs. marmoset. All cultured MSCs showed pluripotency marker expression like Oct-4A at passage 3 significantly decreasing over time (passages 6–12) while Nanog expression was highest in human bone marrow MSCs. Furthermore, human MSCs demonstrated the highest Sox2 levels vs. marmoset, whereas the marmoset exhibited significantly higher Lin28A values. Bisulfite sequencing of the Oct-4 promoter region displayed fewer methylations of CpG islands in the marmoset vs. human. Conclusions Little is known about MSC characteristics from the preclinical animal model common marmoset vs. human during long term culture. Studied human and common marmoset samples share many similar features such as most MSC markers and reduced MHC class I expression in amnion cells vs. bone marrow. Furthermore, pluripotency markers indicate in both species a subpopulation of MSCs with true ‘stemness’, which could explain their high proliferation capacity, though possessing differences between human and marmoset in Lin28A and Sox2 expression.
Collapse
Affiliation(s)
- Olena Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Denys Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Anna-Lena Neehus
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Andrea Hoffmann
- Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625, Hannover, Germany.
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Thomas Müller
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Gallego Romero I, Pavlovic BJ, Hernando-Herraez I, Zhou X, Ward MC, Banovich NE, Kagan CL, Burnett JE, Huang CH, Mitrano A, Chavarria CI, Friedrich Ben-Nun I, Li Y, Sabatini K, Leonardo TR, Parast M, Marques-Bonet T, Laurent LC, Loring JF, Gilad Y. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. eLife 2015; 4:e07103. [PMID: 26102527 PMCID: PMC4502404 DOI: 10.7554/elife.07103] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. DOI:http://dx.doi.org/10.7554/eLife.07103.001 Comparing the genomes of different species can reveal how they are related to one another. Such comparative studies can also reveal how genomes are modified in species-specific ways to regulate gene activity. The genomes of humans and chimpanzees are very similar in sequence. It is therefore likely that differing patterns of gene regulation underlie many of the differences observed between the two species. However, only a few kinds of chimpanzee cell that can be grown in the laboratory are available for research; this lack of samples has limited the ability of researchers to perform such comparative studies. One way around this problem is to use induced pluripotent stem cells (or iPSCs). IPSCs are created by exposing mature cells—for example, skin cells—to conditions and molecules that convert them into an embryonic-like state. This state—called ‘induced pluripotency’—allows the cells to be coaxed into becoming many different cell types that can be grown in the laboratory. But it is more difficult to establish high quality iPSCs from chimpanzees than it is from humans or mice. Gallego Romero, Pavlovic et al. have now addressed this problem by creating iPSCs from skin cells taken from seven healthy chimpanzees. These cell lines were then analysed and compared to each other and to seven iPSC lines created from human cells. The chimpanzee iPSC lines were found to be much more similar to each other than the mature cells that were used to make them. Similar results were also observed for the human iSPCs, which likely reflects the conserved changes that take place when the genomes of mature cells are reprogrammed to pluripotency. This high level of similarity between iPSCs from different individuals of the same species allowed Gallego Romero, Pavlovic et al. to discover many subtle differences in gene regulation between chimpanzees and humans. For example, over 4500 genes were found to be expressed differently in human and chimpanzee iPSCs, and over 3500 genomic regions had different patterns of certain DNA modifications that can help to regulate gene expression. These newly created chimpanzee iPSC lines represent a valuable resource for comparative studies of gene regulation. In the future, this resource could help researchers to identify further differences in gene regulation between closely related primate species. DOI:http://dx.doi.org/10.7554/eLife.07103.002
Collapse
Affiliation(s)
| | - Bryan J Pavlovic
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, United States
| | - Michelle C Ward
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Courtney L Kagan
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Jonathan E Burnett
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Constance H Huang
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Amy Mitrano
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Inbar Friedrich Ben-Nun
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Yingchun Li
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Karen Sabatini
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Trevor R Leonardo
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Mana Parast
- Department of Pathology, University of California San Diego, San Diego, United States
| | | | - Louise C Laurent
- Sanford Consortium for Regenerative Medicine, La Jolla, United States
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, United States
| |
Collapse
|
17
|
Qiu Z, Mishra A, Li M, Farnsworth SL, Guerra B, Lanford RE, Hornsby PJ. Marmoset induced pluripotent stem cells: Robust neural differentiation following pretreatment with dimethyl sulfoxide. Stem Cell Res 2015; 15:141-50. [PMID: 26070112 DOI: 10.1016/j.scr.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022] Open
Abstract
The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS) cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05-2% dimethyl sulfoxide (DMSO) for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy.
Collapse
Affiliation(s)
- Zhifang Qiu
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States
| | - Anuja Mishra
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States
| | - Miao Li
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States
| | - Steven L Farnsworth
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States
| | - Bernadette Guerra
- Southwest National Primate Research Center and Texas Biomedical Research Institute, United States
| | - Robert E Lanford
- Southwest National Primate Research Center and Texas Biomedical Research Institute, United States
| | - Peter J Hornsby
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States.
| |
Collapse
|
18
|
Sasaki E. Prospects for genetically modified non-human primate models, including the common marmoset. Neurosci Res 2015; 93:110-5. [PMID: 25683291 DOI: 10.1016/j.neures.2015.01.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Genetically modified mice have contributed much to studies in the life sciences. In some research fields, however, mouse models are insufficient for analyzing the molecular mechanisms of pathology or as disease models. Often, genetically modified non-human primate (NHP) models are desired, as they are more similar to human physiology, morphology, and anatomy. Recent progress in studies of the reproductive biology in NHPs has enabled the introduction of exogenous genes into NHP genomes or the alteration of endogenous NHP genes. This review summarizes recent progress in the production of genetically modified NHPs, including the common marmoset, and future perspectives for realizing genetically modified NHP models for use in life sciences research.
Collapse
Affiliation(s)
- Erika Sasaki
- Advanced Research Center, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Center of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|
19
|
Wright LS, Phillips MJ, Pinilla I, Hei D, Gamm DM. Induced pluripotent stem cells as custom therapeutics for retinal repair: progress and rationale. Exp Eye Res 2014; 123:161-72. [PMID: 24534198 PMCID: PMC4047146 DOI: 10.1016/j.exer.2013.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/25/2013] [Accepted: 12/02/2013] [Indexed: 12/17/2022]
Abstract
Human pluripotent stem cells have made a remarkable impact on science, technology and medicine by providing a potentially unlimited source of human cells for basic research and clinical applications. In recent years, knowledge gained from the study of human embryonic stem cells and mammalian somatic cell reprogramming has led to the routine production of human induced pluripotent stem cells (hiPSCs) in laboratories worldwide. hiPSCs show promise for use in transplantation, high throughput drug screening, "disease-in-a-dish" modeling, disease gene discovery, and gene therapy testing. This review will focus on the first application, beginning with a discussion of methods for producing retinal lineage cells that are lost in inherited and acquired forms of retinal degenerative disease. The selection of appropriate hiPSC-derived donor cell type(s) for transplantation will be discussed, as will the caveats and prerequisite steps to formulating a clinical Good Manufacturing Practice (cGMP) product for clinical trials.
Collapse
Affiliation(s)
- Lynda S Wright
- Waisman Center, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa Hospital and Aragones Health Sciences Institute, Zaragoza, Spain
| | - Derek Hei
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
20
|
Harding J, Mirochnitchenko O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J Biol Chem 2013; 289:4585-93. [PMID: 24362021 DOI: 10.1074/jbc.r113.463737] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions.
Collapse
Affiliation(s)
- John Harding
- From the Division of Comparative Medicine, Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
21
|
Dianat N, Steichen C, Vallier L, Weber A, Dubart-Kupperschmitt A. Human pluripotent stem cells for modelling human liver diseases and cell therapy. Curr Gene Ther 2013; 13:120-32. [PMID: 23444872 PMCID: PMC3882648 DOI: 10.2174/1566523211313020006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 12/24/2022]
Abstract
The liver is affected by many types of diseases, including metabolic disorders and acute liver failure. Orthotopic liver transplantation (OLT) is currently the only effective treatment for life-threatening liver diseases but transplantation of allogeneic hepatocytes has now become an alternative as it is less invasive than OLT and can be performed repeatedly. However, this approach is hampered by the shortage of organ donors, and the problems related to the isolation of high quality adult hepatocytes, their cryopreservation and their absence of proliferation in culture. Liver is also a key organ to assess the pharmacokinetics and toxicology of xenobiotics and for drug discovery, but appropriate cell culture systems are lacking. All these problems have highlighted the need to explore other sources of cells such as stem cells that could be isolated, expanded to yield sufficiently large populations and then induced to differentiate into functional hepatocytes. The presence of a niche of “facultative” progenitor and stem cells in the normal liver has recently been confirmed but they display no telomerase activity. The recent discovery that human induced pluripotent stem cells can be generated from somatic cells has renewed hopes for regenerative medicine and in vitro disease modelling, as these cells are easily accessible. We review here the present progresses, limits and challenges for the generation of functional hepatocytes from human pluripotent stem cells in view of their potential use in regenerative medicine and drug discovery.
Collapse
Affiliation(s)
- Noushin Dianat
- INSERM UMR-S972, Paul Brousse Hospital, Villejuif, F-94807, France
| | | | | | | | | |
Collapse
|
22
|
Qiu Z, Farnsworth SL, Mishra A, Hornsby PJ. Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models. Stem Cells Cloning 2013; 6:19-29. [PMID: 24426786 PMCID: PMC3850364 DOI: 10.2147/sccaa.s34798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The development of the technology for derivation of induced pluripotent stem (iPS) cells from human patients and animal models has opened up new pathways to the better understanding of many human diseases, and has created new opportunities for therapeutic approaches. Here, we consider one important neurological disease, Parkinson's, the development of relevant neural cell lines for studying this disease, and the animal models that are available for testing the survival and function of the cells, following transplantation into the central nervous system. Rapid progress has been made recently in the application of protocols for neuroectoderm differentiation and neural patterning of pluripotent stem cells. These developments have resulted in the ability to produce large numbers of dopaminergic neurons with midbrain characteristics for further study. These cells have been shown to be functional in both rodent and nonhuman primate (NHP) models of Parkinson's disease. Patient-specific iPS cells and derived dopaminergic neurons have been developed, in particular from patients with genetic causes of Parkinson's disease. For complete modeling of the disease, it is proposed that the introduction of genetic changes into NHP iPS cells, followed by studying the phenotype of the genetic change in cells transplanted into the NHP as host animal, will yield new insights into disease processes not possible with rodent models alone.
Collapse
Affiliation(s)
- Zhifang Qiu
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Steven L Farnsworth
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anuja Mishra
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter J Hornsby
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
23
|
Farnsworth SL, Qiu Z, Mishra A, Hornsby PJ. Directed neural differentiation of induced pluripotent stem cells from non-human primates. Exp Biol Med (Maywood) 2013; 238:276-84. [PMID: 23598973 DOI: 10.1177/1535370213482442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells) are important for the future development of regenerative medicine involving autologous cell therapy. Before autologous cell therapy can be applied to human patients, suitable animal models must be developed, and in this context non-human primate models are critical. We previously characterized several lines of marmoset iPS cells derived from newborn skin fibroblasts. In the present studies, we explored methods for the directed differentiation of marmoset iPS cells in the neuroectodermal lineage. In this process we used an iterative process in which combinations of small molecules and protein factors were tested for their effects on mRNA levels of genes that are markers for the neuroectodermal lineage. This iterative process identified combinations of chemicals/factors that substantially improved the degree of marker gene expression over the initially tested combinations. This approach should be generally valuable in the directed differentiation of pluripotent cells for experimental cell therapy.
Collapse
Affiliation(s)
- Steven L Farnsworth
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
24
|
Wiedemann A, Hemmer K, Bernemann I, Göhring G, Pogozhykh O, Figueiredo C, Glage S, Schambach A, Schwamborn JC, Blasczyk R, Müller T. Induced pluripotent stem cells generated from adult bone marrow-derived cells of the nonhuman primate (Callithrix jacchus) using a novel quad-cistronic and excisable lentiviral vector. Cell Reprogram 2013. [PMID: 23194452 DOI: 10.1089/cell.2012.0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regenerative medicine is in need of solid, large animal models as a link between rodents and humans to evaluate the functionality, immunogenicity, and clinical safety of stem cell-derived cell types. The common marmoset (Callithrix jacchus) is an excellent large animal model, genetically close to humans and readily used worldwide in clinical research. Until now, only two groups showed the generation of induced pluripotent stem cells (iPSCs) from the common marmoset using integrating retroviral vectors. Therefore, we reprogrammed bone marrow-derived mesenchymal cells (MSCs) of adult marmosets in the presence of TAV, SB431542, PD0325901, and ascorbic acid via a novel, excisable lentiviral spleen focus-forming virus (SFFV)-driven quad-cistronic vector system (OCT3/4, KLF4, SOX2, C-MYC). Endogenous pluripotency markers like OCT3/4, KLF4, SOX2, C-MYC, LIN28, NANOG, and strong alkaline phosphatase signals were detected. Exogenous genes were silenced and additionally the cassette was removed with a retroviral Gag precursor system. The cell line could be cultured in absence of leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) and could be successfully differentiated into embryoid bodies and teratomas with presence of all three germ layers. Directed differentiation generated neural progenitors, megakaryocytes, adipocytes, chondrocytes, and osteogenic cells. Thus, all criteria for fully reprogrammed bone marrow-MSCs of a nonhuman primate with a genetically sophisticated construct could be demonstrated. These cells will be a promising tool for future autologous transplantations.
Collapse
Affiliation(s)
- Anastasia Wiedemann
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|