1
|
Bhardwaj S, Badiyal A, Dhiman S, Bala J, Walia A. Exploring Halophiles for Reclamation of Saline Soils: Biotechnological Interventions for Sustainable Agriculture. J Basic Microbiol 2025:e70048. [PMID: 40357706 DOI: 10.1002/jobm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Soil salinization is a major constraint on agricultural productivity, particularly in arid and semi-arid regions where limited rainfall cannot wash salts from plant root zones. This leads to disruptions in water uptake, ion balance, photosynthesis, respiration, nutrient absorption, hormone regulation and rhizosphere microbiome disturbances in plants. Chemical and biological methods can help mitigate soil salinity, but biological approaches, like using halophytes and salt-tolerant microorganisms, are preferred for environmental sustainability. Halophytes, however, represent only about 1% of flora and are habitat specific, so halophilic plant growth-promoting (PGP) microbes have emerged as a key eco-friendly solution. Halophilic PGP bacteria have shown promise in remediating saline soils, enhancing fertility and boosting crop resilience by inducing salinity tolerance (IST) and promoting plant growth traits. In the era of modern agriculture where chemical inputs are at their peak of application rendering the soil infertile, halophilic PGP bacteria represent a promising, sustainable approach to support food security, aligning with Sustainable Development Goals for zero hunger.
Collapse
Affiliation(s)
- Shiwani Bhardwaj
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Anila Badiyal
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Shailja Dhiman
- Department of Plant Breeding and Genetics, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Jyoti Bala
- Department of Organic Agriculture and Natural Farming, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
2
|
Kelidkazeran E, Bouri Yildiz M, Sahin F. In Vitro Assessment of Biological and Functional Properties of Potential Probiotic Strains Isolated from Commercial and Dairy Sources. Microorganisms 2025; 13:970. [PMID: 40431142 PMCID: PMC12114396 DOI: 10.3390/microorganisms13050970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Probiotic species have garnered significant attention for their health benefits extending beyond gastrointestinal health. This study investigated the biological and enzymatic functions of selected probiotic species, specifically Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus), Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), Lactobacillus acidophilus, and Lactobacillus delbrueckii, among others, through in vitro experiments. Enzymatic activities, including hemolytic, lipase, esterase, and protease functions, were evaluated. Antioxidant capacity was assessed using DPPH radical scavenging assays, while antimicrobial efficacy was tested against common pathogenic bacteria. Antibiotic-resistance patterns were analyzed to ascertain their safety for human consumption. Furthermore, simulated digestive fluid tolerance experiments were conducted to evaluate survival in the gastrointestinal tract. The findings indicate that these probiotic strains exhibit diverse functionalities beyond intestinal health, with potential roles in digestion, oxidative stress reduction, and immune support. This study provides valuable insights into the functional diversity of probiotics, suggesting their broader applications in health and nutrition. Future research should focus on in vivo validation, mechanism elucidation, and clinical studies to determine optimal dosages and strain-specific benefits.
Collapse
Affiliation(s)
| | | | - Fikrettin Sahin
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Türkiye; (E.K.); (M.B.Y.)
| |
Collapse
|
3
|
Okoth BA, Makonde HM, Bosire CM, Kibiti CM. Characterization and Enzymatic Potential of Bacteria and Fungi From Mwakirunge Dumpsite, Kenya. Int J Microbiol 2025; 2025:7818433. [PMID: 40297764 PMCID: PMC12037257 DOI: 10.1155/ijm/7818433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Accumulation of solid waste is a major global challenge. The conventional waste disposal methods are often ineffective in mitigating solid waste pollution, highlighting the need for other sustainable alternatives. This study is aimed at isolating and identifying potential waste-degrading microorganisms from Mwakirunge dumpsite in Mombasa, Kenya. A total of 16 soil samples were collected using a randomized block design. The samples were inoculated in enriched basal media containing mixed municipal solid waste and incubated at 37°C for 21 days. Microbial identification was conducted using standard morphological, biochemical, and molecular approaches. DNA was extracted using organic isolation methods, and PCR amplification of the 16S rRNA gene for bacteria and the ITS gene for fungi was performed. Phylogenetic analysis grouped bacterial isolates into phylum Bacillota (Firmicutes), Pseudomonadota (Proteobacteria), and Actinomycetota (Actinobacteria) that included members of the genera bacilli, Pseudomonas, brevibacilli, Microbacterium, Ochrobactrum, Paenibacillus, Staphylococcus, Isoptericola, and Streptomyces. Fungal isolates belonged to the genus Aspergillus within the phylum Ascomycota. Three bacterial isolates B4S2 b (MZ571886), B3S1 (MZ571907), and B3S4 B (MZ571915) and one fungal isolate B2S2 a1 (MZ569413) had low sequence similarities with their closely known taxonomic relatives. The ability of the isolates to produce lipase, esterase, cellulase, amylase, and gelatinase enzymes was tested using the agar diffusion method. The results showed a significant level of enzyme production (p < 0.05). Bacillus cereus (MZ571899) exhibited the highest esterase activity; Streptomyces thermocarboxydus (MZ571882) exhibited the highest lipase activity, Bacillus subtilis (MZ571887) exhibited the highest amylase activity, and Bacillus licheniformis (MZ571888) exhibited the highest cellulase activity, while Pseudomonas stutzeri (MZ571900) exhibited the highest gelatinase activity. We recommend further studies to characterize the isolates with low sequence percentage similarities to establish their true identities. In addition, further enzymatic studies are required to quantify, characterize, and purify these enzymes for industrial applications.
Collapse
Affiliation(s)
- Beryle Atieno Okoth
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Huxley Mae Makonde
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Carren Moraa Bosire
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| |
Collapse
|
4
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
5
|
Cui X, Gao Z, Han X, Yu Q, Cauduro VH, Flores EMM, Ashokkumar M, Qiu X, Cui J. Ultrasound-assisted preparation of shikonin-loaded emulsions for the treatment of bacterial infections. ULTRASONICS SONOCHEMISTRY 2025; 115:107302. [PMID: 40056870 PMCID: PMC11930738 DOI: 10.1016/j.ultsonch.2025.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Bacteria can encapsulate themselves in a self-generated matrix of hydrated extracellular polymeric substances such as polysaccharides, proteins, and nucleic acids, thereby forming bacterial biofilm infections. These biofilms are drug resistant and will diminish the efficacy of antimicrobial agents, rendering treatment of such infections challenging. Herein, an innovative strategy is proposed to synergistically degrade bacterial biofilms and eradicate the entrapped bacteria through integrating α-amylase (α-Amy), shikonin (SK) and epigallocatechin gallate (EGCG) within an emulsion. The natural protein α-Amy is deployed to enzymatically hydrolyze the polysaccharide of biofilms. Due to the amphipilic properties of α-Amy and the cross-linking capability of EGCG, the formed α-Amy/SK@EGCG emulsion possess high stability. SK was encapsulated within the emulsion through ultrasound-assisted assembly, targeting to treat bacterial infection after biofilm degradation. In vitro and in vivo experiments demonstrate that the polyphenol-protein stabilized emulsion loaded with antibacterial SK achieves profound penetration into the biofilms due to the extracellular polysaccharide hydrolysis mediated by α-Amy. As a result, the α-Amy/SK@EGCG emulsion can significantly alleviate inflammation symptoms and accelerate the healing process of biofilm-infected wounds. This study provides a promising therapeutic strategy for the development of novel materials aimed for the enhanced treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinxin Han
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Vitoria H Cauduro
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | | | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
6
|
Vasudhevan P, Ruoyu Z, Ma H, Singh S, Varshney D, Pu S. Biocatalytic enzymes in food packaging, biomedical, and biotechnological applications: A comprehensive review. Int J Biol Macromol 2025; 300:140069. [PMID: 39832587 DOI: 10.1016/j.ijbiomac.2025.140069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The increasing environmental concerns and health risks associated with synthetic chemicals have driven the demand for sustainable and eco-friendly solutions. Biocatalysis, employing enzymes or whole cells as biocatalysts, has emerged as a powerful alternative. This review provides a comprehensive analysis of the applications of biocatalytic enzymes in food packaging, biomedical sciences, and biotechnology. We highlight the potential of enzymes like laccase, glucose oxidase, lysozyme, protease, lipase, cellulase, and asparaginase to replace traditional chemical methods, driving innovation and sustainability. The global enzyme market is also analyzed, including current trends, emerging demands, and the impact of the COVID-19 pandemic. This review aims to bridge knowledge gaps, emphasize recent technological breakthroughs, and showcase the potential of biocatalytic enzymes to address critical industrial challenges while supporting environmental sustainability and economic growth.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| | - Zhang Ruoyu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Division of research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Deekshant Varshney
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Division of Research & innovation, Uttaranchal University, Dehradun, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
7
|
Rono JK, Zhang Q, He Y, Wang S, Lyu Y, Yang ZM, Feng Z. Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil. Biotechnol Lett 2025; 47:33. [PMID: 40085274 DOI: 10.1007/s10529-025-03574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Metagenomics is increasingly recognized as a vital technique for exploring uncultured microorganisms, with one key application being the discovery of novel enzymes for industrial use. This study identified an endoglucanase gene from soil metagenome, termed ZFEG1801, which was expressed in E. coli BL21, purified, and characterized for its biochemical properties. The 72.8 kDa recombinant protein exhibited hydrolytic activity against sodium carboxymethyl cellulose (CMC) and konjac glucomannan (KG), with activities of 12.1 U/mg and 42.1 U/mg, respectively. The enzyme displayed optimal activity at pH 5 for CMC and pH 6 for KG, with broad pH stability ranging from 5 to 9. The optimal temperature was 40 °C, and it remained thermally stable between 20 and 40 °C, retaining over 60% of its activity. The enzyme activity remained stable in the presence of most metal ions; however, CMCase activity was inhibited by Cu2+, while glucomannanase activity was inhibited by Mn2+, Fe3+, and Ca2+. The catalytic efficiency towards both substrates was reduced by addition of SDS, DMSO, ethanol, isopropanol and acetonitrile. The Vmax and Km of the purified recombinant enzyme were 106.4 μmol/L/min and 4.9 mg/mL for CMC, and 833.3 μmol/L/min and 11.1 mg/mL for KG, respectively. The dual catalytic properties of ZFEG1801, broad pH stability and resistance to additives, demonstrate its potential for use in various biomass degradation processes.
Collapse
Affiliation(s)
- Justice Kipkorir Rono
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingyun Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong He
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Szulc J, Grzyb T, Nizioł J, Krupa S, Szuberla W, Ruman T. Direct 3D Mass Spectrometry Imaging Analysis of Environmental Microorganisms. Molecules 2025; 30:1317. [PMID: 40142092 PMCID: PMC11946574 DOI: 10.3390/molecules30061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Assessing the spatial distribution of microorganisms' metabolites in growth medium remains a challenge. Here, we present the first use of the newly developed LARAPPI/CI-MSI 3D (laser ablation remote atmospheric pressure photoionization/chemical ionization mass spectrometry imaging) method for direct three-dimensional (3D) mass spectrometry imaging of bacterial and fungal metabolites in solid culture media. Two-dimensional (2D) MSI was also performed, and it indicated the presence of metabolites belonging to, and including, amino acids and their derivatives, dipeptides, organic acids, fatty acids, sugars and sugar derivatives, benzene derivatives, and indoles. Distribution at a selected depth within the culture medium with the estimation of concentration across all dimensions of 16 metabolites was visualized using LARAPPI/CI-MSI 3D. The imaging results were correlated with the results of ultra-high-performance liquid chromatography-ultra-high-resolution mass spectrometry (UHPLC-UHRMS). A total of 351-393 chemical compounds, depending on the tested microorganism, were identified, while 242-262 were recognized in the HMDB database in MetaboAnalyst (v 6.0). The LARAPPI/CI-MSI 3D method enables the rapid screening of the biotechnological potential of environmental strains, facilitating the discovery of industrially valuable biomolecules.
Collapse
Affiliation(s)
- Justyna Szulc
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland;
| | - Tomasz Grzyb
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland;
| | - Joanna Nizioł
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (J.N.); (S.K.); (W.S.); (T.R.)
| | - Sumi Krupa
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (J.N.); (S.K.); (W.S.); (T.R.)
| | - Wiktoria Szuberla
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (J.N.); (S.K.); (W.S.); (T.R.)
| | - Tomasz Ruman
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (J.N.); (S.K.); (W.S.); (T.R.)
| |
Collapse
|
9
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Sultan M, Rahim A, Sarwar F. Recent trends in production and potential applications of microbial amylases: A comprehensive review. Protein Expr Purif 2025; 227:106640. [PMID: 39645158 DOI: 10.1016/j.pep.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
α-amylases are vital biocatalysts that constitute a billion-dollar industry with a substantial and enduring global demand. Amylases hydrolyze the α-1,4-glycosidic linkages in starch polymers to generate maltose and malto-oligosaccharides subunits. Amylases are key enzymes that have promising applications in various industrial processes ranging from pharmaceutical, pulp and paper, textile food industries to bioremediation and biofuel sectors. Microbial enzymes have been widely used in industrial applications owing to their ease of availability, cost-effectiveness and better stability at extreme temperatures and pH. α-amylases derived from distinct microbial origins exhibit diverse characteristics, which make them suitable for specific applications. The routine application of immobilized enzymes has become a standard practice in the production of numerous industrial products across the pharmaceutical, chemical, and food industries. This review details the structural makeup of microbial α-amylase to understand its thermodynamic characteristics, aiming to identify key areas that could be targeted for improving the thermostability, pH tolerance and catalytic activity of α-amylase through various immobilization techniques or specific enzyme engineering methods. Additionally, the review briefly explores the enzyme production strategies, potential sources of α-amylases, and use of cost-effective and sustainable raw materials for enzyme production to obtain α-amylases with unconventional applications in various industrial sectors. Major hurdles, challenges and future prospects involving microbial α-amylases has been briefly discussed by considering its diverse applications in industrial bioprocessing.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Industrial Biotechnology Devision, National Institute for Biotechnology and Genetics Engineering (NIBGE), 44000, Faisalabad, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Department of Biotechnology, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Mohsin Sultan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Aqdas Rahim
- Department of Biotechnology, Fatima Jinnah Women University, 46000, Rawalpindi, Pakistan.
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
10
|
Yang X, Wang B, Zeng H, Liang L, Zhang R, Deng W, Zhao X, Yuan J. A Modified Polydopamine Nanoparticle Loaded with Melatonin for Synergistic ROS Scavenging and Anti-Inflammatory Effects in the Treatment of Dry Eye Disease. Adv Healthc Mater 2025; 14:e2404372. [PMID: 39828670 DOI: 10.1002/adhm.202404372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Indexed: 01/22/2025]
Abstract
Dry eye disease (DED) is a multifaceted ocular surface disorder that significantly impacts patients' daily lives and imposes a substantial economic burden on society. Oxidative stress, induced by the overproduction of reactive oxygen species (ROS), is a critical factor perpetuating the inflammatory cycle in DED. Effectively scavenging ROS is essential to impede the progression of DED. In this study, boronophenylalanine- containing polydopamine (PDA-PBA) nanoparticles are developed loaded with melatonin (MT), which are blended with poly(vinyl alcohol) (PVA) to create eye drops PVA/ PDA-PBA@MT (PPP@MT). In vitro and in vivo studies demonstrate that PPP@MT exhibits dual functionalities in reducing ROS production and downregulating inflammatory pathways, thereby preserving mitochondrial integrity and further inhibiting programmed cell death. Following PPP@MT treatment, tear secretion, corneal structure, and the number of goblet cells are markedly restored in a mouse model of dry eye, indicating the therapeutic efficacy of this agent. Collectively, PPP@MT, characterized by minimal side effects and favorable bioavailability, offers promising therapeutic insights for the management of DED and other ROS-mediated disorders.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lihong Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Runze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wenrui Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing, 100730, China
| |
Collapse
|
11
|
Mohammadi-Gollou A, Jeddi F, Najafzadeh N, Mohammadzadeh-Vardin M. Bioinformatic Analysis of L-Asparaginase Structures in Halophilic ( Bacillus subtilis), Mesophilic ( Kibdelosporangium), and Thermophilic ( Thermococcus kodakarensis) Bacteria: New Insights on L-asparaginase as a Potent Antileukemic Agent. JOURNAL OF KERMAN UNIVERSITY OF MEDICAL SCIENCES 2025; 32:2441. [DOI: 10.34172/jkmu.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/01/2024] [Indexed: 05/03/2025]
Abstract
Background: The L-asparaginase enzyme is used as an anticancer agent in treating acute lymphoblastic leukemia (ALL). Moreover, it has widespread applications in medicine, food, and pharmaceutical industries. Methods: The nucleotide and amino acid sequences of L-asparaginase derived from Bacillus subtilis BEST7613, Kibdelosporangium sp. MJ126-NF4, and Thermococcus kodakarensis KOD1 have been obtained from the GenBank and the NCBI databases. The EMBOSS Water pairwise sequence alignments were performed using ClustalW 1.83. Prediction of secondary and tertiary protein structures of the different L-asparaginase molecules studied was done using SWISS-MODEL software. In addition, the protein domains of L-asparaginase originating from the three mentioned bacteria were analyzed using PROSITE software. Theoretical isoelectric point (pI), molecular weight, and amino acid composition were predicted using the protein pI calculator (http:// isoelectric.ovh.org/). Results: Despite the structural differences in L-asparaginase enzymes in the three bacterial strains, there were no differences in their functional characteristics, including molecular weight, pI, and functional domain. Conclusion: Analyzing structural differences and finding functional similarities can be useful in designing drugs with higher stability and biological half-life. Our analysis showed that proteins with different structures could have similar functional characteristics, which proves the codon usage hypothesis.
Collapse
Affiliation(s)
- Ali Mohammadi-Gollou
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Farhad Jeddi
- Department of Medical Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mohammadzadeh-Vardin
- Department of Medical Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
12
|
Prisacar M, Leichert LI. Functional metaproteomics for enzyme discovery. Methods Enzymol 2025; 714:61-82. [PMID: 40288855 DOI: 10.1016/bs.mie.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Discovery of microbial biocatalysts traditionally relied on activity screening of isolated bacterial strains. However, since most microorganisms cannot be cultivated in the lab, such an approach leaves the majority of the microbial enzyme diversity untapped. Metagenomic approaches, in which the DNA from a microbial community is directly isolated and then used either for the creation of an expression library or for sequencing and metagenome annotation have alleviated this shortcoming to an extent, but have their own limitations: the generation of large expression libraries is time-consuming and their screening is costly, while metagenome annotation can infer biocatalytic function only from prior knowledge. We have thus developed a functional metaproteomic approach, which combines the immediacy of traditional activity screening with the comprehensiveness of a meta-omics approach. Briefly, the whole metaproteome of an environmental sample is separated on a 2-D gel, biocatalytically active proteins are visualized in-gel through zymography, and those candidate biocatalysts are then identified through mass spectrometry, searching against a metagenome-derived database obtained from the very same environmental sample. Here we explain the process in detail, with a focus on esterases, and give guidelines on how to develop a functional metaproteomic workflow for enzyme discovery.
Collapse
Affiliation(s)
- Marina Prisacar
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse, Bochum, Germany
| |
Collapse
|
13
|
Yu M, Wang S, Lin D. Mechanism and Application of Biomaterials Targeting Reactive Oxygen Species and Macrophages in Inflammation. Int J Mol Sci 2024; 26:245. [PMID: 39796102 PMCID: PMC11720555 DOI: 10.3390/ijms26010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, an adaptive reaction to harmful stimuli, is a necessary immune system response and can be either acute or chronic. Since acute inflammation tends to eliminate harmful stimuli and restore equilibrium, it is generally advantageous to the organism. Chronic inflammation, however, is caused by either increased inflammatory signaling or decreased pro-anti-inflammatory signaling. According to current studies, inflammation is thought to be a major factor in a number of chronic diseases, including diabetes, cancer, arthritis, inflammatory bowel disease, and obesity. Consequently, reducing inflammation is essential for both preventing and delaying diseases. The application of biomaterials in the treatment of inflammatory illnesses has grown in recent years. A variety of biomaterials can be implanted either by themselves or in conjunction with other bioactive ingredients and therapeutic agents. The mechanisms of action and therapeutic applications of well-known anti-inflammatory biomaterials are the main topics of this article.
Collapse
|
14
|
Wang C, Xi Z, Sun X, Han J, Guo R. In situ growth of MnO 2 nanoparticles on supramolecular polyaniline as chiral nanozymes for effective enantioselective catalysis. Chem Commun (Camb) 2024; 60:14798-14801. [PMID: 39584395 DOI: 10.1039/d4cc05482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In situ growth of MnO2 nanoparticles (NPs) onto chiral P/M-polyaniline (P/M-PANI) scaffolds efficiently regulates the supramolecular chirality, making them function as chiral nanozymes for controllable enantioselective catalysis. Compared with the ex situ loaded MnO2 NPs onto P/M-PANI scaffolds, the enantioselectivity of the in situ growth system is significantly enhanced due to the stronger bonding between catalytic centers and supramolecular scaffolds.
Collapse
Affiliation(s)
- Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| |
Collapse
|
15
|
Jadhav R, Mach RL, Mach-Aigner AR. Protein secretion and associated stress in industrially employed filamentous fungi. Appl Microbiol Biotechnol 2024; 108:92. [PMID: 38204136 PMCID: PMC10781871 DOI: 10.1007/s00253-023-12985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Application of filamentous fungi for the production of commercial enzymes such as amylase, cellulase, or xylanase is on the rise due to the increasing demand to degrade several complex carbohydrates as raw material for biotechnological processes. Also, protein production by fungi for food and feed gains importance. In any case, the protein production involves both cellular synthesis and secretion outside of the cell. Unfortunately, the secretion of proteins or enzymes can be hampered due to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) as a result of too high synthesis of enzymes or (heterologous) protein expression. To cope with this ER stress, the cell generates a response known as unfolded protein response (UPR). Even though this mechanism should re-establish the protein homeostasis equivalent to a cell under non-stress conditions, the enzyme expression might still suffer from repression under secretory stress (RESS). Among eukaryotes, Saccharomyces cerevisiae is the only fungus, which is studied quite extensively to unravel the UPR pathway. Several homologs of the proteins involved in this signal transduction cascade are also found in filamentous fungi. Since RESS seems to be absent in S. cerevisiae and was only reported in Trichoderma reesei in the presence of folding and glycosylation inhibitors such as dithiothreitol and tunicamycin, more in-depth study about this mechanism, specifically in filamentous fungi, is the need of the hour. Hence, this review article gives an overview on both, protein secretion and associated stress responses in fungi. KEY POINTS: • Enzymes produced by filamentous fungi are crucial in industrial processes • UPR mechanism is conserved among many fungi, but mediated by different proteins • RESS is not fully understood or studied in industrially relevant filamentous fungi.
Collapse
Affiliation(s)
- Reshma Jadhav
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
16
|
Zakaria MR, Vodovnik M, Zorec M, Liew KJ, Tokiman L, Chong CS. A description of Joostella sp. strain CR20 with potential biotechnological applications. Antonie Van Leeuwenhoek 2024; 118:38. [PMID: 39613983 DOI: 10.1007/s10482-024-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The underexplored halophilic genus Joostella within the Flavobacteriaceae family consists of only two species, both of which have received little attention for their potential biotechnological applications. In this study, we report the isolation and characterisation of a novel halophilic bacterium, strain CR20, using a genomic approach to investigate its biotechnological potential. Analysis of the 16S rRNA gene revealed that strain CR20 shares 97.5% and 96.2% sequence similarity with Joostella marina DSM 19592 T and Joostella atrarenae M1-2 T, respectively. Strain CR20 exhibited average nucleotide identity and digital DNA-DNA hybridisation values of 76.8-79.1% and 20.8-22.8%, respectively, with Joostella spp., which fall below the species delineation thresholds. Additionally, strain CR20 demonstrated average amino acid identity and percentage of conserved proteins values of 81.3-84.0% and 71.7-75.3%, respectively, with Joostella spp., above the genus delineation thresholds. Meanwhile, the average amino acid identity and percentage of conserved proteins values of strain CR20 against Galbibacter spp. are 73.9-80.0% and 61.3-72.3%, respectively, also above the genus delineation thresholds. These findings indicated strain CR20 has a close relationship with both genera. Chemotaxonomic analysis of strain CR20 identified predominant fatty acids, including iso-C17:0 3OH (25.3%), iso-C15:0 (14%), and C16:1 ω6c/C16:1 ω7c (12.2%). The assembled genome comprises 62 contigs, with a size of approximately 3,168,727 bp and a G + C content of 35.1%. Among 2,804 predicted genes, 2,559 were classified into 25 COG functional groups. A total of 68 genes with potential industrial applications were identified, including 1 β-mannanase, 2 β-xylosidases, 1 polysaccharide deacetylase, 4 other hemicellulases, 6 β-glucosidases, 25 proteases, and 29 phosphate-solubilising enzymes. Hydrolytic assays confirmed that strain CR20 produces these enzymes extracellularly. These findings highlight strain CR20 has potential for industrial applications.
Collapse
Affiliation(s)
- Muhammad Ramziuddin Zakaria
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Maša Vodovnik
- Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maša Zorec
- Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lili Tokiman
- Johor National Parks Corporation, Kota Iskandar, 79575, Iskandar Puteri, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
17
|
Itakorode BO, Itakorode DI, Torimiro N, Okonji RE. Kinetic and thermodynamic investigation of Rhodanese synthesized by enhanced Klebsiella oxytoca JCM 1665 strain: a comparative between the free and immobilized enzyme entrapped in alginate beads. Prep Biochem Biotechnol 2024; 54:1275-1284. [PMID: 38696619 DOI: 10.1080/10826068.2024.2347407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Klebsiella oxytoca JCM 1665 was subjected to extracellular rhodanese production using a submerged fermentation technique. The organism was further engineered for higher cyanide tolerance and rhodanese yield using ethylmethanesulfonate as a mutagen. Mutagenesis resulted in an improved mutant with high cyanide tolerance (100 mM) and rhodanese yield (26.7 ± 0.67 U/mL). This yield was 4.34-fold higher than the wild strain (6.15 ± 0.65 U/mL). At temperatures ranging from 30 to 80 °C, the first-order thermal denaturation constant (Kd) for free enzyme increases from 0.00818 to 0.0333 min-1 while the immobilized enzyme increases from 0.003 to 0.0204 min-1. The equivalent half-life reduces from 99 to 21 minutes and 231 to 35 minutes, respectively. Residual activity tests were used to assess the thermodynamic parameters for both enzyme preparations. For the free enzyme, the parameters obtained were enthalpy (29.40 to 29.06 kJ.mol-1), entropy (-194.24 to -197.50 J.mol-1K-1) and Gibbs free energy (90.20 to 98.80 kJ.mol-1). In addition, for immobilized rhodanese, we obtained enthalpy (40.40 to 40.07 kJ.mol-1), entropy (-164.21 to - 165.20 J.mol-1K-1) and Gibbs free energy (91.80 to 98.40 kJ.mol-1. Regarding its operational stability, the enzyme was able to maintain 63% of its activity after being used for five cycles. Immobilized K. oxytoca rhodanese showed a marked resistance to heat inactivation compared to free enzyme forms; making it of utmost significance in many biotechnological applications.
Collapse
Affiliation(s)
- Babamotemi Oluwasola Itakorode
- Department of Biotechnology, Osun State University, Osogbo, Nigeria
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, Osun State, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University Ile-Ife, Osun state, Nigeria
| | - Raphael Emuebie Okonji
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, Osun State, Nigeria
| |
Collapse
|
18
|
Seidler Y, Rimbach G, Lüersen K, Vinderola G, Ipharraguerre IR. The postbiotic potential of Aspergillus oryzae - a narrative review. Front Microbiol 2024; 15:1452725. [PMID: 39507340 PMCID: PMC11538067 DOI: 10.3389/fmicb.2024.1452725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae has a long tradition in East Asian food processing. It is therefore not surprising that in recent years fermentation products of A. oryzae have attracted attention in the emerging field of postbiotics. This review aims to provide a comprehensive summary of the potential postbiotic effects of fermentation products from A. oryzae, by discussing possible mechanisms of action against the background of the molecular composition determined so far. In particular, cell wall constituents, enzymes, extracellular polymeric substances, and various metabolites found in A. oryzae fermentation preparations are described in detail. With reference to the generally assumed key targets of postbiotics, their putative beneficial bioactivities in modulating the microbiota, improving epithelial barrier function, influencing immune responses, metabolic reactions and signaling through the nervous system are assessed. Drawing on existing literature and case studies, we highlight A. oryzae as a promising source of postbiotics, particularly in the context of animal health and nutrition. Challenges and opportunities in quality control are also addressed, with a focus on the necessity for standardized methods to fully harness the potential of fungal-based postbiotics. Overall, this article sheds light on the emerging field of A. oryzae-derived postbiotics and emphasizes the need for further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Yvonne Seidler
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
19
|
Wu C, Li Q, Su R, Wang Y, Qi W. Construction of Smartphone-Integrated Nanozyme Sensor Based on Amino Acid-Modulated Gold Nanoparticles. Chembiochem 2024; 25:e202400370. [PMID: 38923146 DOI: 10.1002/cbic.202400370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Amino acids are not only the building blocks of proteins but also lead to the development of novel nanomaterials with unique properties. Herein, we proposed a simple strategy to produce gold nanoparticles (Au NPs) with peroxidase-like (POD-like) activities by using a series of amino acids as reducing agents, named Au NPs@M (M represents different amino acids). The Au NPs@His was identified as the nanozyme with the most potent catalytic performance, which was used in combination with smartphones to achieve rapid detection of hydrogen peroxide with a detection limit of 0.966 μM. It also enables rapid detection of glucose with a detection limit of 2.904 μM, highlighting the significant contribution of Au NPs@His in expediting the detection of critical biomolecules. This work not only provides a convenient and highly efficient method to identify glucose but also shows the potential of histidine as a reducing agent in constructing Au nanomaterials exerting enzyme-like catalysis.
Collapse
Affiliation(s)
- Congnan Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
20
|
Patil PD, Kelkar RK, Patil NP, Pise PV, Patil SP, Patil AS, Kulkarni NS, Tiwari MS, Phirke AN, Nadar SS. Magnetic nanoflowers: a hybrid platform for enzyme immobilization. Crit Rev Biotechnol 2024; 44:795-816. [PMID: 37455411 DOI: 10.1080/07388551.2023.2230518] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/04/2023] [Indexed: 07/18/2023]
Abstract
The use of organic-inorganic hybrid nanoflowers as a support material for enzyme immobilization has gained significant attention in recent years due to their high stability, ease of preparation, and enhanced catalytic activity. However, a major challenge in utilizing these hybrid nanoflowers for enzyme immobilization is the difficulty in handling and separating them due to their low density and high dispersion. To address this issue, magnetic nanoflowers have emerged as a promising alternative enzyme immobilization platform due to their easy separation, structural stability, and ability to enhance catalytic efficiency. This review focuses on different methods for designing magnetic nanoflowers, as well as future research directions. Additionally, it provides examples of enzymes immobilized in the form of magnetic nanoflowers and their applications in environmental remediation, biosensors, and food industries. Finally, the review discusses possible ways to improve the material for enhanced catalytic activity, structural stability, and scalability.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Radhika K Kelkar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Neha P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Pradnya V Pise
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gandhinagar, India
| | - Sadhana P Patil
- Department of Biotechnology, National Institute of Technology, Tadepalligudam, India
| | - Arundhatti S Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Nishant S Kulkarni
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Ajay N Phirke
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
21
|
Karia M, Kaspal M, Alhattab M, Puri M. Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids. Mar Drugs 2024; 22:301. [PMID: 39057410 PMCID: PMC11277628 DOI: 10.3390/md22070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Omega-3 fatty acids are essential fatty acids that are not synthesised by the human body and have been linked with the prevention of chronic illnesses such as cardiovascular and neurodegenerative diseases. However, the current dietary habits of the majority of the population include lower omega-3 content compared to omega-6, which does not promote good health. To overcome this, pharmaceutical and nutraceutical companies aim to produce omega-3-fortified foods. For this purpose, various approaches have been employed to obtain omega-3 concentrates from sources such as fish and algal oil with higher amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Among these techniques, enzymatic enrichment using lipase enzymes has gained tremendous interest as it is low in capital cost and simple in operation. Microorganism-derived lipases are preferred as they are easily produced due to their higher growth rate, and they hold the ability to be manipulated using genetic modification. This review aims to highlight the recent studies that have been carried out using marine lipases for the enrichment of omega-3, to provide insight into future directions. Overall, the covalent bond-based lipase immobilization to various support materials appears most promising; however, greener and less expensive options need to be strengthened.
Collapse
Affiliation(s)
- Mahejbin Karia
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Mona Kaspal
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Mariam Alhattab
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Munish Puri
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide 5042, Australia
| |
Collapse
|
22
|
Tian Z, Liu L, Wu L, Yang Z, Zhang Y, Du L, Zhang D. Enhancement of vitamin B 6 production driven by omics analysis combined with fermentation optimization. Microb Cell Fact 2024; 23:137. [PMID: 38750497 PMCID: PMC11095007 DOI: 10.1186/s12934-024-02405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Microbial engineering aims to enhance the ability of bacteria to produce valuable products, including vitamin B6 for various applications. Numerous microorganisms naturally produce vitamin B6, yet the metabolic pathways involved are rigorously controlled. This regulation by the accumulation of vitamin B6 poses a challenge in constructing an efficient cell factory. RESULTS In this study, we conducted transcriptome and metabolome analyses to investigate the effects of the accumulation of pyridoxine, which is the major commercial form of vitamin B6, on cellular processes in Escherichia coli. Our omics analysis revealed associations between pyridoxine and amino acids, as well as the tricarboxylic acid (TCA) cycle. Based on these findings, we identified potential targets for fermentation optimization, including succinate, amino acids, and the carbon-to-nitrogen (C/N) ratio. Through targeted modifications, we achieved pyridoxine titers of approximately 514 mg/L in shake flasks and 1.95 g/L in fed-batch fermentation. CONCLUSION Our results provide insights into pyridoxine biosynthesis within the cellular metabolic network for the first time. Our comprehensive analysis revealed that the fermentation process resulted in a remarkable final yield of 1.95 g/L pyridoxine, the highest reported yield to date. This work lays a foundation for the green industrial production of vitamin B6 in the future.
Collapse
Affiliation(s)
- Zhizhong Tian
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lijuan Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zixuan Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yahui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liping Du
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Abdelrazek NA, Saleh SE, Raafat MM, Ali AE, Aboulwafa MM. Production of highly cytotoxic and low immunogenic L-asparaginase from Stenotrophomonas maltophilia EMCC2297. AMB Express 2024; 14:51. [PMID: 38704453 PMCID: PMC11069494 DOI: 10.1186/s13568-024-01700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
L-asparaginase is an important therapeutic enzyme that is frequently utilized in the chemotherapy regimens of adults as well as pediatric patients with acute lymphoblastic leukemia. However, a high rate of hypersensitivity with prolonged use has limited its utilization. Stenotrophomonas maltophilia (S. maltophilia) EMCC2297 isolate was reported as a novel and promising source for L- asparaginase. The present study aimed at the production, purification, and characterization of L- asparaginase from S. maltophilia EMCC2297 isolate. The microbial production of L-asparaginase by the test isolate could be increased by pre-exposure to chloramphenicol at 200 µg/ml concentration. S. maltophilia EMCC2297 L-asparaginase could be purified to homogeneity by ammonium sulphate precipitation and the purified form obtained by gel exclusion chromatography showed total activity of 96.4375 IU/ml and specific activity of 36.251 IU/mg protein. SDS-PAGE analysis revealed that the purified form of the enzyme is separated at an apparent molecular weight of 17 KDa. Michaelis-Menten constant analysis showed a Km value of 4.16 × 10- 2 M with L-asparagine as substrate and Vmax of 10.67 IU/ml. The antitumor activity of the purified enzyme was evaluated on different cell lines and revealed low IC50 of 2.2 IU/ml and 2.83 IU/ml for Hepatocellular cancer cell line (HepG-2), human leukemia cancer cell line (K-562), respectively whereas no cytotoxic effect could be detected on normal human lung fibroblast cells (MRC-5). However, mice treated with native L-asparaginase showed lower IgG titre compared to commercial L-asparaginase. This study highlights the promising characteristics of this enzyme making it a valuable candidate for further research and development to be an adduct in cancer chemotherapy.
Collapse
Affiliation(s)
- Nada A Abdelrazek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Sarra E Saleh
- Department of Microbiology and immunology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Marwa M Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Amal E Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and immunology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sudr, Egypt.
| |
Collapse
|
24
|
Hosseini Hooshiar M, Badkoobeh A, Kolahdouz S, Tadayonfard A, Mozaffari A, Nasiri K, Salari S, Safaralizadeh R, Yasamineh S. The potential use of nanozymes as an antibacterial agents in oral infection, periodontitis, and peri-implantitis. J Nanobiotechnology 2024; 22:207. [PMID: 38664778 PMCID: PMC11044492 DOI: 10.1186/s12951-024-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Several studies suggest that oral pathogenic biofilms cause persistent oral infections. Among these is periodontitis, a prevalent condition brought on by plaque biofilm. It can even result in tooth loss. Furthermore, the accumulation of germs around a dental implant may lead to peri-implantitis, which damages the surrounding bone and gum tissue. Furthermore, bacterial biofilm contamination on the implant causes soft tissue irritation and adjacent bone resorption, severely compromising dental health. On decontaminated implant surfaces, however, re-osseointegration cannot be induced by standard biofilm removal techniques such as mechanical cleaning and antiseptic treatment. A family of nanoparticles known as nanozymes (NZs) comprise highly catalytically active multivalent metal components. The most often employed NZs with antibacterial activity are those that have peroxidase (POD) activity, among other types of NZs. Since NZs are less expensive, more easily produced, and more stable than natural enzymes, they hold great promise for use in various applications, including treating microbial infections. NZs have significantly contributed to studying implant success rates and periodontal health maintenance in periodontics and implantology. An extensive analysis of the research on various NZs and their applications in managing oral health conditions, including dental caries, dental pulp disorders, oral ulcers, peri-implantitis, and bacterial infections of the mouth. To combat bacteria, this review concentrates on NZs that imitate the activity of enzymes in implantology and periodontology. With a view to the future, there are several ways that NZs might be used to treat dental disorders antibacterially.
Collapse
Affiliation(s)
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Shirin Kolahdouz
- School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Tadayonfard
- Postgraduate Department of Prosthodontics, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sara Salari
- Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Reza Safaralizadeh
- Restarative Dentistry, Department of Dental, Faculty Tabriz Medical University, Tabriz, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
25
|
Ainousah BE, Ibrahim SRM, Alzain AA, Mohamed SGA, Hussein HGA, Ashour A, Abdallah HM, Mohamed GA. Exploring the potential of Aspergillus wentii: secondary metabolites and biological properties. Arch Microbiol 2024; 206:216. [PMID: 38619638 DOI: 10.1007/s00203-024-03934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Fungi are of considerable importance due to their capacity to biosynthesize various secondary metabolites with bioactive properties that draw high attention in new drug discovery with beneficial uses for improving human well-being and life quality. Aspergillus genus members are widespread and cosmopolitan species with varying economic significance in the fields of industry, medicine, and agriculture. Its species are renowned for their biosynthesis of secondary metabolites, characterized by both potent biological activity and structural novelty, making them a substantial reservoir for the development of new pharmaceuticals. The current work aimed at focusing on one species of this genus, Aspergillus wentii Wehmer, including its reported secondary metabolites in the period from 1951 to November 2023. A total of 97 compounds, including nitro-compounds, terpenoids, anthraquinones, xanthones, benzamides, and glucans. A summary of their bioactivities, as well as their biosynthesis was highlighted. Additionally, the reported applications of this fungus and its enzymes have been discussed. This review offers a useful reference that can direct future research into this fungus and its active metabolites, as well as their possible pharmacological and biotechnological applications.
Collapse
Affiliation(s)
- Bayan E Ainousah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, 21442, Jeddah, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Medani, Gezira, Sudan
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Hazem G A Hussein
- Preparatory Year Program, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Abdul Kareem ZG, Yasser Al-Zamily OM, Al-Khafaji NSK. Purification and characterization of α-galactosidase isolated from Klebsiella pneumoniae in the human oral cavity. Int J Biol Macromol 2024; 261:129550. [PMID: 38244734 DOI: 10.1016/j.ijbiomac.2024.129550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The enzyme α-Galactosidase (α-D-galactoside galactohydrolase [EC 3.2.1.22]) is an exoglycosidase that hydrolyzes the terminal α-galactosyl moieties of glycolipids and glycoproteins. It is ubiquitous in nature and possesses extensive applications in the food, pharma, and biotechnology industries. The present study aimed to purify α-galactosidase from Klebsiella pneumoniae, a bacterium isolated from the human oral cavity. The purification steps involved ammonium sulfate precipitation (70 %), dialysis, ion exchange chromatography using a DEAE-cellulose column, and affinity monolith chromatography. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis was used to determine the molecular weight of the purified enzyme. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were determined by using p-nitrophenyl-α-D-galactopyranoside as substrate. The results showed that the purification fold, specific activity, and yield were 126.52, 138.58 units/mg, and 21.5 %, respectively. The SDS-PAGE showed that the molecular weight of the purified enzyme was 75 kDa. The optimum pH and temperature of the purified α-galactosidase were detected at pH 6.0 and 50 °C, respectively. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were 4.6 mM and 769.23 U/ml, respectively. α-galactosidase from Klebsiella pneumoniae was purified and characterized. (SDS-PAGE) analysis showed that the purified enzyme appeared as single band with a molecular weight of 75 kDa.
Collapse
Affiliation(s)
- Zainab G Abdul Kareem
- Department of Chemistry, College of Science, University of Babylon, Iraq; Department of Basic Science, College of Dentistry, University of Babylon, Iraq.
| | | | | |
Collapse
|
27
|
Scheibel DM, Gitsov IPI, Gitsov I. Enzymes in "Green" Synthetic Chemistry: Laccase and Lipase. Molecules 2024; 29:989. [PMID: 38474502 DOI: 10.3390/molecules29050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.
Collapse
Affiliation(s)
- Dieter M Scheibel
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
| | - Ioan Pavel Ivanov Gitsov
- Science and Technology, Medtronic Incorporated, 710 Medtronic Parkway, Minneapolis, MN 55432, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse, NY 13210, USA
| |
Collapse
|
28
|
Simau FA, Ahmed U, Khan KM, Khan NA, Siddiqui R, Alharbi AM, Alfahemi H, Anwar A. Lactase can target cellular differentiation of Acanthamoeba castellanii belonging to the T4 genotype. Parasitol Res 2024; 123:117. [PMID: 38294565 DOI: 10.1007/s00436-024-08131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
The free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.
Collapse
Affiliation(s)
- Fathimath Afaaf Simau
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Khalid Mohammed Khan
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ahmad M Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, 21944, Taif, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, 65799, Al-Baha, Saudi Arabia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| |
Collapse
|
29
|
Ariaeenejad S, Gharechahi J, Foroozandeh Shahraki M, Fallah Atanaki F, Han JL, Ding XZ, Hildebrand F, Bahram M, Kavousi K, Hosseini Salekdeh G. Precision enzyme discovery through targeted mining of metagenomic data. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:7. [PMID: 38200389 PMCID: PMC10781932 DOI: 10.1007/s13659-023-00426-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Foroozandeh Shahraki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research, Institute (ILRI), Nairobi, 00100, Kenya
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | - Falk Hildebrand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, Norfolk, UK
- Digital Biology, Earlham Institute, Norwich, Norfolk, UK
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | | |
Collapse
|
30
|
Soeka YS, Sulistiyani TR, Wulandari NF, Rahmawati SI, Mardiah, Ariyanti D, Budiyanto A, Bin Arif A. Physicochemical and phytochemical characteristics of fermented sorghum flour using Bacillus amyloliquefaciens, Saccharomyces cerevisiae and consortium B. amyloliquefaciens and S. cerevisiae. AIP CONFERENCE PROCEEDINGS 2024; 2970:050017. [DOI: 10.1063/5.0209899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Bansal K, Sundram S, Malviya R. Herbal Components Inspiring Current Lifestyle Disease Treatment: Role of Nutraceuticals. Curr Drug Res Rev 2024; 16:111-127. [PMID: 37183457 DOI: 10.2174/2589977515666230512142020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Nutraceuticals are the foods that are used to prevent and cure diseases. Food and nutrients are essential for the body's normal function and aid in the maintenance of an individual's health and prevent various diseases. Nutraceuticals are medicinal foods that aid in the maintenance of health, the enhancement of immunity, and the prevention and treatment of specific diseases. The markets of nutraceuticals are one of the fastest-growing industry segments. The prime reason for this accelerated market growth lies in the fact that nutraceuticals are low cost, can prevent diseases to occur, hence, can save the health care cost, have more nutritional value, and many others. Nutraceuticals can be classified on different foundations based on what they promise, natural sources, and nutraceutical food available in the market. This article will discuss those classifications in detail along with the role of nutraceuticals in lifestyle diseases, regulations, market trends, and prospects of nutraceuticals. The article will also highlight the concern areas which play as the limiting factor in the nutraceuticals industry growth like lack of quality control, lack of data on its working, and many other things.
Collapse
Affiliation(s)
- Khushboo Bansal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Buddha Nagar, U.P., India
| | - Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Buddha Nagar, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Buddha Nagar, U.P., India
| |
Collapse
|
32
|
Koilybayeva M, Shynykul Z, Ustenova G, Waleron K, Jońca J, Mustafina K, Amirkhanova A, Koloskova Y, Bayaliyeva R, Akhayeva T, Alimzhanova M, Turgumbayeva A, Kurmangaliyeva G, Kantureyeva A, Batyrbayeva D, Alibayeva Z. Gas Chromatography-Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities. Molecules 2023; 28:7556. [PMID: 38005278 PMCID: PMC10673538 DOI: 10.3390/molecules28227556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bacillus species produce different classes of antimicrobial and antioxidant substances: peptides or proteins with different structural compositions and molecular masses and a broad range of volatile organic compounds (VOCs), some of which may serve as biomarkers for microorganism identification. The aim of this study is the identification of biologically active compounds synthesized by five Bacillus species using gas chromatography coupled to mass spectrometry (GC-MS). The current study profoundly enhances the knowledge of antibacterial and antioxidant metabolites ensuring the unambiguous identification of VOCs produced by some Bacillus species, which were isolated from vegetable samples of potato, carrot, and tomato. Phylogenetic and biochemical studies were used to identify the bacterial isolates after culturing. Phylogenetic analysis proved that five bacterial isolates BSS12, BSS13, BSS16, BSS21, and BSS25 showed 99% nucleotide sequence similarities with Bacillus safensis AS-08, Bacillus cereus WAB2133, Bacillus acidiproducens NiuFun, Bacillus toyonesis FORT 102, and Bacillus thuringiensis F3, respectively. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including yeast strains such as Candida albicans, Candida krusei, and bacterial strains of Enterococcus hirae, Escherichia coli, Klebsiella aerogenes, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Shigella sonnei, Salmonella enteritidis, Serratia marcescens, Pseudomonas aeruginosa, and Proteus vulgaris. GC-MS analysis of bacterial strains found that VOCs from Bacillus species come in a variety of chemical forms, such as ketones, alcohols, terpenoids, alkenes, etc. Overall, 69 volatile organic compounds were identified from five Bacillus species, and all five were found to share different chemical classes of volatile organic components, which have a variety of pharmacological applications. However, eight antibacterial compounds with different concentrations were commonly found in all five species: acetoin, acetic acid, butanoic acid, 2-methyl-, oxime-, methoxy-phenyl, phenol, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, nonanoic acid, and hexadecanoic acid, methyl. The present study has demonstrated that bacterial isolates BSS25, BSS21, and BSS16 display potent inhibitory effects against Candida albicans, while BSS25, BSS21, and BSS13 exhibit the ability to restrain the growth and activity of Candida krusei. Notably, BSS25 and BSS21 are the only isolates that demonstrate substantial inhibitory activity against Klebsiella aerogenes. This disparity in inhibitory effects could be attributed to the higher concentrations of acetoin in BSS25 and BSS21, whereas BSS16 and BSS13 have relatively elevated levels of butanoic acid, 2-methyl-. Certainly, the presence of acetoin and butanoic acid, 2-methyl-, contributes to the enhanced antibacterial potential of these bacterial strains, in conjunction with other organic volatile compounds and peptides, among other factors. The biology and physiology of Bacillus can be better understood using these results, which can also be used to create novel biotechnological procedures and applications. Moreover, because of its exceptional ability to synthesize and produce a variety of different antibacterial compounds, Bacillus species can serve as natural and universal carriers for antibiotic compounds in the form of probiotic cultures and strains to fight different pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Moldir Koilybayeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Gulbaram Ustenova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. Hallera 107, 80-416 Gdańsk, Poland; (K.W.); (J.J.)
| | - Joanna Jońca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. Hallera 107, 80-416 Gdańsk, Poland; (K.W.); (J.J.)
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdańsk, University of Gdansk, 80-307 Gdańsk, Poland
| | - Kamilya Mustafina
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Akerke Amirkhanova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Yekaterina Koloskova
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Raushan Bayaliyeva
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Tamila Akhayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Mereke Alimzhanova
- Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan;
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Gulden Kurmangaliyeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Aigerim Kantureyeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Dinara Batyrbayeva
- Scientific Clinical Diagnostic Laboratory, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (D.B.); (Z.A.)
| | - Zhazira Alibayeva
- Scientific Clinical Diagnostic Laboratory, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (D.B.); (Z.A.)
| |
Collapse
|
33
|
Tjørnelund HD, Vind J, Brask J, Woodley JM, Peters GH. Candida antarctica lipase B performance in organic solvent at varying water activities studied by molecular dynamics simulations. Comput Struct Biotechnol J 2023; 21:5451-5462. [PMID: 38022691 PMCID: PMC10665702 DOI: 10.1016/j.csbj.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Applications of lipases in low-water environments are found across a broad range of industries, including the pharmaceutical and oleochemical sectors. This includes condensation reactions in organic solvents where the enzyme activity has been found to depend strongly on both the solvent and the water activity (aw). Despite several experimental and computational studies, knowledge is largely empirical, and a general predictive approach is much needed. To close this gap, we chose native Candida antarctica lipase B (CALB) and two mutants thereof and used molecular dynamics (MD) simulations to gain a molecular understanding of the effect of aw on the specific activity of CALB in hexane. Based on the simulations, we propose four criteria to understand the performance of CALB in organic media, which is supported by enzyme kinetics experiments. First, the lipase must be stable in the organic solvent, which was the case for native CALB and the two mutants studied here. Secondly, water clusters that form and grow close to the active site must not block the path of substrate molecules into the active site. Thirdly, the lipase's lid must not cover the active site. Finally, mutations and changes in aw must not disrupt the geometry of the active site. We show that mutating specific residues close to the active site can hinder water cluster formation and growth, making the lipase resistant to changes in aw. Our computational screening criteria could potentially be used to screen in-silico designed variants, so only promising candidates could be pushed forward to characterisation.
Collapse
Affiliation(s)
- Helena D. Tjørnelund
- Department of Chemistry, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | | | | | - John M. Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Günther H.J. Peters
- Department of Chemistry, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
34
|
Han M, Huang J, Niu Z, Guo Y, Wei Z, Ding Y, Li C, Wang P, Wen G, Li X. Amorphous hollow manganese silicate nanosphere oxidase mimic for ultrasensitive and high-reliable colorimetric detection of biothiols. Mikrochim Acta 2023; 190:450. [PMID: 37875688 DOI: 10.1007/s00604-023-06034-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Metal-based nanozymes with exceptional physicochemical property and intrinsic enzymatic properties have been widely used in industrial, medical, and diagnostic fields. However, low substrate affinity results in unsatisfying catalytic kinetic and instability in complicated conditions, which significantly decreases their sensitivity and reliability. Herein, an amorphous hollow manganese silicate nanosphere (defined as AHMS) has been successfully synthesized via a facile one-step hydrothermal method and utilized in the archetype for colorimetric detection of biothiols with high sensitivity and high reliability. The experimental data demonstrates that ultrafast affinity of the substrate contributes to enhanced sensitivity with outstanding catalytic kinetic features (Km = 27.1 μM) and low limit of detection (LODGSH = 20 nM). The designed sensor demonstrates a reliable applicability for analysis of biological liquids (fetal calf serum and Staphylococcus aureus) and design of visual logic gates. Therefore, AHMS provides a promising strategy for ultrasensitive and high-reliable biosensing.
Collapse
Affiliation(s)
- Mengxuan Han
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jianyu Huang
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Zhihui Niu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Yang Guo
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Zicheng Wei
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Yingying Ding
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Chengfeng Li
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Peng Wang
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Guangwu Wen
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Xiaowei Li
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
35
|
Kaur D, Sharma V, Joshi A, Batra N, Ramniwas S, Sharma AK. Pectinases as promising green biocatalysts having broad-spectrum applications: Recent trends, scope, and relevance. Biotechnol Appl Biochem 2023; 70:1663-1678. [PMID: 36977651 DOI: 10.1002/bab.2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Pectinases are a collection of multiple enzymes that have a common substrate, that is, pectin. They can act on different parts of pectin due to the structural heterogeneity of pectin. Therefore, they have been placed in different groups, such as protopectinases, polygalacturonases, polymethylesterases, pectin lyases, and pectate lyases. They are naturally present both in multicellular organisms such as higher plants and in unicellular organisms such as microbes. In past decade, it has been witnessed that chemical and mechanical methods employed in industrial processes have led to environmental hazards and serious health disorders, thus increasing the search for eco-friendly approaches with minimal health risks. Hence, microbial enzymes have been extensively used as safer alternative for these environmentally unsafe methods. Among these microbial enzymes, pectinases hold great significance and is one of the principal enzymes that have been used commercially. It is predominantly used as a green biocatalyst for fruit, fiber, oil, textile, beverage, pulp, and paper industry. Thus, this review focuses on the structure of pectin, microbial sources of pectin, and principle industrial applications of pectinases.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Amit Joshi
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, GGDSD College, Chandigarh, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| |
Collapse
|
36
|
Mendonça APS, Dos Reis KL, Barbosa-Tessmann IP. Aspergillus clavatus UEM 04: An efficient producer of glucoamylase and α-amylase able to hydrolyze gelatinized and raw starch. Int J Biol Macromol 2023; 249:125890. [PMID: 37479205 DOI: 10.1016/j.ijbiomac.2023.125890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
The best amylolytic activity production by Aspergillus clavatus UEM 04 occurred in submersed culture, with starch, for 72 h, at 25 °C, and 100 rpm. Exclusion chromatography partially purified two enzymes, which ran as unique bands in SDS-PAGE with approximately 84 kDa. LC-MS/MS identified a glucoamylase (GH15) and an α-amylase (GH13_1) as the predominant proteins and other co-purified proteins. Zn2+, Cu2+, and Mn2+ activated the glucoamylase, and SDS, Zn2+, Fe3+, and Cu2+ inhibited the α-amylase. The α-amylase optimum pH was 6.5. The optimal temperatures for the glucoamylase and α-amylase were 50 °C and 40 °C, and the Tm was 53.1 °C and 56.3 °C, respectively. Both enzymes remained almost fully active for 28-32 h at 40 °C, but the α-amylase thermal stability was calcium-dependent. Furthermore, the glucoamylase and α-amylase KM for starch were 2.95 and 1.0 mg/mL, respectively. Still, the Vmax was 0.28 μmol/min of released glucose for glucoamylase and 0.1 mg/min of consumed starch for α-amylase. Moreover, the glucoamylase showed greater affinity for amylopectin and α-amylase for maltodextrin. Additionally, both enzymes efficiently degraded raw starch. At last, glucose was the main product of glucoamylase, and α-amylase produced mainly maltose from gelatinized soluble starch hydrolysis.
Collapse
Affiliation(s)
- Ana Paula Silva Mendonça
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Karina Lima Dos Reis
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Ione Parra Barbosa-Tessmann
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| |
Collapse
|
37
|
Kolotylo V, Piwowarek K, Kieliszek M. Microbiological transglutaminase: Biotechnological application in the food industry. Open Life Sci 2023; 18:20220737. [PMID: 37791057 PMCID: PMC10543708 DOI: 10.1515/biol-2022-0737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
Microbial transglutaminases (mTGs) belong to the family of global TGs, isolated and characterised by various bacterial strains, with the first being Streptomyces mobaraensis. This literature review also discusses TGs of animal and plant origin. TGs catalyse the formation of an isopeptide bond, cross-linking the amino and acyl groups. Due to its broad enzymatic activity, TG is extensively utilised in the food industry. The annual net growth in the utilisation of enzymes in the food processing industry is estimated to be 21.9%. As of 2020, the global food enzymes market was valued at around $2.3 billion USD (mTG market was estimated to be around $200 million USD). Much of this growth is attributed to the applications of mTG, benefiting both producers and consumers. In the food industry, TG enhances gelation and modifies emulsification, foaming, viscosity, and water-holding capacity. Research on TG, mainly mTG, provides increasing insights into the wide range of applications of this enzyme in various industrial sectors and promotes enzymatic processing. This work presents the characteristics of TGs, their properties, and the rationale for their utilisation. The review aims to provide theoretical foundations that will assist researchers worldwide in building a methodological framework and furthering the advancement of biotechnology research.
Collapse
Affiliation(s)
- Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| |
Collapse
|
38
|
Bourne CM, Wallisch P, Dacek MM, Gardner TJ, Pierre S, Vogt K, Corless BC, Bah MA, Romero-Pichardo JE, Charles A, Kurtz KG, Tan DS, Scheinberg DA. Host Interactions with Engineered T-cell Micropharmacies. Cancer Immunol Res 2023; 11:1253-1265. [PMID: 37379366 PMCID: PMC10472090 DOI: 10.1158/2326-6066.cir-22-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Genetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Herein, we expanded the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with T-cell receptor (TCR)-engineered T cells. We demonstrate that SEAKER cells localized specifically to tumors, and activated bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells were efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.
Collapse
Affiliation(s)
- Christopher M. Bourne
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan M. Dacek
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas J. Gardner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Broderick C. Corless
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mamadou A. Bah
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jesus E. Romero-Pichardo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angel Charles
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Keifer G. Kurtz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Derek S. Tan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
39
|
Li X, Jing X, Yu Z, Huang Y. Diverse Antibacterial Treatments beyond Antibiotics for Diabetic Foot Ulcer Therapy. Adv Healthc Mater 2023; 12:e2300375. [PMID: 37141030 DOI: 10.1002/adhm.202300375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Indexed: 05/05/2023]
Abstract
Diabetic foot ulcer (DFU), a common complication of diabetes, has become a great burden to both patients and the society. The delayed wound closure of ulcer sites resulting from vascular damage and neutrophil dysfunction facilitates bacterial infection. Once drug resistance occurs or bacterial biofilm is formed, conventional therapy tends to fail and amputation is unavoidable. Therefore, effective antibacterial treatment beyond antibiotics is of utmost importance to accelerate the wound healing process and prevent amputation. Considering the complexity of multidrug resistance, biofilm formation, and special microenvironments (such as hyperglycemia, hypoxia, and abnormal pH value) at the infected site of DFU, several antibacterial agents and different mechanisms have been explored to achieve the desired outcome. The present review focuses on the recent progress of antibacterial treatments, including metal-based medications, natural and synthesized antimicrobial peptides, antibacterial polymers, and sensitizer-based therapy. This review provides a valuable reference for the innovation of antibacterial material design for DFU therapy.
Collapse
Affiliation(s)
- Xiaoyuan Li
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Xin Jing
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Ziqian Yu
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
40
|
Chamanmalik MI, Antony AM, Yelamaggad CV, Patil SA, Patil SA. Biogenic Silver Nanoparticles/Mg-Al Layered Double Hydroxides with Peroxidase-like Activity for Mercury Detection and Antibacterial Activity. Molecules 2023; 28:5754. [PMID: 37570724 PMCID: PMC10421139 DOI: 10.3390/molecules28155754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Over the past decade, the attention of researchers has been drawn to materials with enzyme-like properties to substitute natural enzymes. The ability of nanomaterials to mimic enzymes makes them excellent enzyme mimics; nevertheless, there is a wide berth for improving their activity and providing a platform to heighten their potential. Herein, we report a green and facile route for Tectona grandis leaves extract-assisted synthesis of silver nanoparticles (Ag NPs) decorated on Mg-Al layered double hydroxides (Mg-Al-OH@TGLE-AgNPs) as a nanocatalyst. The Mg-Al-OH@TGLE-AgNPs nanocatalyst was well characterized, and the average crystallite size of the Ag NPs was found to be 7.92 nm. The peroxidase-like activity in the oxidation of o-phenylenediamine in the presence of H2O2 was found to be an intrinsic property of the Mg-Al-OH@TGLE-AgNPs nanocatalyst. In addition, the use of the Mg-Al-OH@TGLE-AgNPs nanocatalyst was extended towards the quantification of Hg2+ ions which showed a wide linearity in the concentration range of 80-400 μM with a limit of detection of 0.2 nM. Additionally, the synergistic medicinal property of Ag NPs and the phytochemicals present in the Tectona grandis leaves extract demonstrated notable antibacterial activity for the Mg-Al-OH@TGLE-AgNPs nanocatalyst against Gram-negative Escherichia coli and Gram-positive Bacillus cereus.
Collapse
Affiliation(s)
- Masira I. Chamanmalik
- Centre for Nano and Material Sciences, Jain Global Campus, Jain (Deemed-to-be University), Kanakapura, Bangalore 562112, India; (M.I.C.); (A.M.A.)
| | - Arnet Maria Antony
- Centre for Nano and Material Sciences, Jain Global Campus, Jain (Deemed-to-be University), Kanakapura, Bangalore 562112, India; (M.I.C.); (A.M.A.)
| | - C. V. Yelamaggad
- Centre for Nano and Soft Matter Sciences, Survey No. 7, Shivanapura, Bangalore 562162, India;
| | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences, Jain Global Campus, Jain (Deemed-to-be University), Kanakapura, Bangalore 562112, India; (M.I.C.); (A.M.A.)
| |
Collapse
|
41
|
Egbune EO, Ezedom T, Orororo OC, Egbune OU, Avwioroko OJ, Aganbi E, Anigboro AA, Tonukari NJ. Solid-state fermentation of cassava (Manihot esculenta Crantz): a review. World J Microbiol Biotechnol 2023; 39:259. [PMID: 37493900 DOI: 10.1007/s11274-023-03706-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Solid-state fermentation (SSF) is a promising technology for producing value-added products from cassava (Manihot esculenta Crantz). In this process, microorganisms are grown on cassava biomass without the presence of free-flowing liquid. Compared to other processing methods, SSF has several advantages, such as lower costs, reduced water usage, and higher product yields. By enhancing the content of bioactive compounds like antioxidants and phenolic compounds, SSF can also improve the nutritional value of cassava-based products. Various products, including enzymes, organic acids, and biofuels, have been produced using SSF of cassava. Additionally, SSF can help minimize waste generated during cassava processing by utilizing cassava waste as a substrate, which can reduce environmental pollution. The process has also been explored for the production of feed and food products such as tempeh and cassava flour. However, optimizing the process conditions, selecting suitable microbial strains, and developing cost-effective production processes are essential for the successful commercialization of SSF of cassava.
Collapse
Affiliation(s)
- Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria.
- Tonukari Biotechnology Laboratory, Sapele, Delta state, Nigeria.
| | - Theresa Ezedom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Osuvwe C Orororo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Olisemeke U Egbune
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Eferhire Aganbi
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Georgia State University, J. Mack Robinson College of Business, 3348 Peachtree Rd NE, Atlanta, GA, 30326, USA
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Tonukari Biotechnology Laboratory, Sapele, Delta state, Nigeria
| |
Collapse
|
42
|
Vélez MA, Wolf VI, Espariz M, Acciarri G, Magni C, Hynes E, Perotti MC. Study of volatile compounds profiles in milk matrices using Enterococcus faecalis EstA and Rhizomucor miehei lipase. Food Res Int 2023; 169:112861. [PMID: 37254435 DOI: 10.1016/j.foodres.2023.112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
The use of esterase/lipase enzymes of different origins in food industry is a widely employed strategy to enhance the formation of characteristic aromatic compounds derived from fat and diversify flavour. In the present work, we studied EstA enzyme of Enterococcus faecalis and a high purity Rhizomucor miehei lipase (Palatase). EstA was obtained recombinantly in Escherichia coli BL21 (DE3), and optimum esterase activity was detected at pH 6.75 and 40 °C. We evaluated the effect of the enzymes on milk mixtures prepared with different fat contents (2.8 and 6%) and structure (native or homogenized) on volatile compounds profiles. The milk fat structure before and after the application of low homogenization was characterized by dynamic light dispersion and microscopy. Native milk fat mixtures presented particles of 4.6 μm and 184 nm and homogenized mixtures had particles of 1.4 μm and 258 nm; microscopy images were in concordance with these results. Fifteen volatile compounds were identified, including ketones, esters, alcohols, and acids. We showed the key role of milk fat levels and microstructure in the nature of the volatile compounds produced by the R. miehei enzyme. Both in native or homogenized states, the highest content of fat favored a higher production of acids whereas the lowest fat level favored a higher esters production along with a more balanced volatile profile. For EstA enzyme, results showed a limited action on fat, as biosynthesis of esters only increased with the highest fat level homogenized.
Collapse
Affiliation(s)
- María A Vélez
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina.
| | - Verónica I Wolf
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - Martín Espariz
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Giuliana Acciarri
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Erica Hynes
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - María C Perotti
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| |
Collapse
|
43
|
Sorour AA, Olama ZA, El-Naggar MY, Ali SM. Bioprocess development for extraction and purification of cellulases from Aspergillus niger 3ASZ using statistical experimental design techniques. Int J Biol Macromol 2023; 242:124759. [PMID: 37150365 DOI: 10.1016/j.ijbiomac.2023.124759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
The amount of cellulosic materials is large and may lead to environmental pollution, so they can be converted into useful materials for use in food or energy. Statistical design (Plackett-Burman and Box-Behnken) was the main topic of this study and was used to optimize the effect of environmental factors on cellulase production by Aspergillus niger. Cellulase production using Plackett-Burman was 6.86-fold higher than the production of cellulase using the basal medium. B0X-Benken showed an increase in the cellulase production equal to 18 times compared to the basal medium, where the cellulase produced had an activity equal to 79.4 U/mL/min. Ammonium sulfate precipitation was applied to the crude enzyme, followed by sequential fractionation with an Amicon system. The Amicon was used to demonstrate the final volume, total enzyme activity, specific activity, purification fold, and yield of cellulase (partially purified enzyme). Numerous cellulolytic enzymes are abundant in Aspergillus species. All of the data showed that Aspergillus sp. might be a reliable source of industrially and economically useful cellulases. By statistically calculating the relevance of a large number of elements in one experiment using a multifactorial statistical design, time may be saved while still maintaining the validity of each component.
Collapse
Affiliation(s)
- Aman A Sorour
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Egypt
| | - Zakia A Olama
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Egypt
| | - Moustafa Y El-Naggar
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Egypt
| | - Safaa M Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| |
Collapse
|
44
|
Bourne CM, Wallisch P, Dacek M, Gardner T, Pierre S, Vogt K, Corless BC, Bah MA, Romero Pichardo J, Charles A, Kurtz KG, Tan DS, Scheinberg DA. Host-cell Interactions of Engineered T cell Micropharmacies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535717. [PMID: 37205431 PMCID: PMC10187158 DOI: 10.1101/2023.04.05.535717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genetically engineered, cytotoxic, adoptive T cells localize to antigen positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with an orthogonal killing mechanism to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Here, we also expand the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with TCR-engineered T cells. We demonstrate that SEAKER cells localize specifically to tumors, and activate bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells are efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.
Collapse
Affiliation(s)
- Christopher M. Bourne
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
| | - Megan Dacek
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
| | - Thomas Gardner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kristen Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10065
| | - Broderick C. Corless
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
| | - Mamadou A. Bah
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Jesus Romero Pichardo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Angel Charles
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Keifer G. Kurtz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
| | - Derek S. Tan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
45
|
Nandhakumar P, Bhatia A, Lee NS, Yoon YH, Yang H. Rapid nanocatalytic reaction using antibody-conjugated gold nanoparticles for simple and sensitive detection of parathyroid hormone. Int J Biol Macromol 2023; 241:124574. [PMID: 37100334 DOI: 10.1016/j.ijbiomac.2023.124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Biomolecule-conjugated metal nanoparticles (NPs) have been primarily used as colorimetric labels in affinity-based bioassays for point-of-care testing. A facile electrochemical detection scheme using a rapid nanocatalytic reaction of a metal NP label is required to achieve more quantitative and sensitive point-of-care testing. Moreover, all the involved components should be stable in their dried form and solution. This study developed a stable component set that allows for rapid and simple nanocatalytic reactions combined with electrochemical detection and applied it for the sensitive detection of parathyroid hormone (PTH). The component set consists of an indium-tin oxide (ITO) electrode, ferrocenemethanol (FcMeOH), antibody-conjugated Au NPs, and ammonia borane (AB). Despite being a strong reducing agent, AB is selected because it is stable in its dried form and solution. The slow direct reaction between FcMeOH+ and AB provides a low electrochemical background, and the rapid nanocatalytic reaction allows for a high electrochemical signal. Under optimal conditions, PTH could be quantified in a wide range of concentrations in artificial serum, with a detection limit of ~0.5 pg/mL. Clinical validation of the developed PTH immunosensor using real serum samples indicates that this novel electrochemical detection scheme is promising for quantitative and sensitive immunoassays for point-of-care testing.
Collapse
Affiliation(s)
- Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Aman Bhatia
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Nam-Sihk Lee
- EONE Laboratories, Incheon 22014, Republic of Korea
| | | | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
46
|
Munawar A, Shaheen M, Ramzan S, Masih SA, Jabeen F, Younis T, Aslam M. DIVERISTY and enzymatic potential of indigenous bacteria from unexplored contaminted soils in Faisalabad. Heliyon 2023; 9:e15256. [PMID: 37095930 PMCID: PMC10122040 DOI: 10.1016/j.heliyon.2023.e15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Bacteria residing in contaminated waste soil degrade and utilize organic and inorganic material as a source of nutrients as well as reduce environmental contamination through their enzymatic machinery. This enzymatic potential of indigenous bacteria can be exploited at industrial level through detailed screening, characterization, optimization and purification. In present study, diversity and enzymatic potential of indigenous bacteria was investigated through qualitative and quantitative screening methods from unexplored contaminated soil waste sites in Faisalabad. Shannon diversity (H') index revealed that twenty-eight soil samples from four contaminated sites were highly diverse of amylase, protease and lipase producing bacteria. Maximum protease producing bacteria were detected in fruit waste (1.929 × 107), whereas amylase and lipase producing bacteria were found in industrial (1.475 × 107) and (5.38 × 106), in household waste soil samples. Most of the indigenous bacterial isolates showed potential for multiple enzymes. An isolate OC5 exhibited capability for amylase production and optimization at a wider range of cultural conditions; pH (6-8), temperature (25 °C, 37 °C, 45 °C), incubation time (24-72 h), and NaCl concentrations 0.5-13%, using (1%) starch and lactose as substrates. An isolate OC5 was identified by molecular identification and phylogenetic analysis showed 99% sequence similarity with Bacillus spp. ANOVA was used to analyzed all data statistically. This study enhances the importance of initial screening and reporting of industrially potent indigenous bacteria from unexplored contaminated waste soils. In future, indigenous bacteria in contaminated wastes may be good candidates to solve various environmental pollution problems.
Collapse
Affiliation(s)
- Ayesha Munawar
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Musrat Shaheen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
- Corresponding author.
| | - Sobia Ramzan
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Somi Akram Masih
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Faiza Jabeen
- Department of Zoology, University of Education, Lahore, 54000, Pakistan
| | - Tahira Younis
- Department of Biochemistry and Biotechnology, The Women University, Multan, Pakistan
| | - Maryam Aslam
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
47
|
Bulka NR, Barbosa-Tessmann IP. Characterization of an Amylolytic Enzyme from Massilia timonae of the GH13_19 Subfamily with Mixed Maltogenic and CGTase Activity. Appl Biochem Biotechnol 2023; 195:2028-2056. [PMID: 36401066 DOI: 10.1007/s12010-022-04226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/20/2022]
Abstract
This work reports the characterization of an amylolytic enzyme from the bacteria Massilia timonae CTI-57. A gene encoding this protein was expressed from the pTrcHis2B plasmid in Escherichia coli BL21 Star™ (DE3). The purified protein had 64 kDa, and its modeled structure showed a monomer with the conserved α-amylases structure composed of the domain A with the characteristic (β/α)8-barrel, the small domain B, and the domain C with an antiparallel beta-sheet. Phylogenetic analysis demonstrated that the expressed protein belongs to the GH13_19 subfamily of glycoside hydrolases. The ions Ca2+, Mn2+, Na+, Mg2+, Mo6+, and K+ did activate the purified enzyme, while EDTA and the ions Fe2+, Hg2+, Zn2+, and Cu2+ were strong inhibitors. SDS was also a strong inhibitor. The enzyme's optimal pH and temperature were 7.0 and 45 °C, respectively, and its Tm was 62.2 °C. The KM of the purified enzyme for starch was 13 mg/mL, and the Vmax was 0.24 μmol of reducing sugars released per min. The characterized enzyme presented higher specificity for maltodextrin and starch and produced maltose as the main starch hydrolysis product. This is the first characterized maltose-forming amylolytic enzyme from the GH13_19 subfamily. The purified enzyme produced β-cyclodextrin from starch and maltodextrin and could be considered a cyclodextrin glucanotransferase (CGTase). This is the first report of a GH13_19 subfamily enzyme with CGTase activity.
Collapse
Affiliation(s)
- Nathalia Rodrigues Bulka
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | |
Collapse
|
48
|
Dhanasekaran S, Selvadoss PP, Manoharan SS. Anti-Fungal Potential of Structurally Diverse FDA-Approved Therapeutics Targeting Secreted Aspartyl Proteinase (SAP) of Candida albicans: an In Silico Drug Repurposing Approach. Appl Biochem Biotechnol 2023; 195:1983-1998. [PMID: 36401722 DOI: 10.1007/s12010-022-04207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
In recent years, candidiasis attains major clinical importance due to its unique pathogenic strategy, which distinguishes it from other nosocomial infections. Secreted aspartyl proteinases (SAPs) is a hydrolytic enzyme secreted by Candida species that mediate versatile biological activity including hyphal formation, adherence, biofilm formation, phenotypic adaptation, etc. Emerging clinical evidence strongly suggested that conventional anti-fungal agent's are often prone to high level of resistance upon repeated exposure. Drug repurposing is an ideal strategy that shall impose the additional clinical benefits of the already approved molecules. Hence, through this realistic pathway, the potential of the suitable lead candidates will be explored in order to prolong the life span of existing molecules thereby need for newer therapeutics shall be avoided. The main aim of the present investigation is to determine the enzyme inhibitory potential of certain FDA-approved antibiotics and to validate its efficacy against the virulent enzyme secreted aspartyl proteinase (SAP) of Candida albicans via the AutoDock simulation program. The outcome of in silico dynamic simulations depicts that the drugs such as gentamicin, clindamycin, meropenem, metronidazole, and aztreonam emphasize superior binding affinity in terms of demonstrating considerable interaction with the core catalytic residues (Asp 32, Asp86, Asp 218, Gly220, Thr 221, and Thr 222). Data further indicates that the drug gentamicin exhibited best binding affinity of - 14.16 kcal/mol followed by meropenem (- 9.20 kcal/mol), clindamycin (- 9.00 kcal/mol), ciprofloxacin (- 8.95 kcal/mol), and imipenem (- 8.00 kcal/mol). In conclusion, repurposed antibiotics like gentamicin, clindamycin, meropenem, metronidazole, and aztreonam shall be considered an alternate drug of choice for the clinical management of drug resistant candida infections in the near future.
Collapse
Affiliation(s)
- Sivaraman Dhanasekaran
- Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India.
| | - Pradeep Pushparaj Selvadoss
- Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - Solomon Sundar Manoharan
- Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| |
Collapse
|
49
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
50
|
Pedezzi R, Evangelista DE, da Rosa Garzon NG, de Oliveira Simões FA, de Oliveira AHC, Polikarpov I, Cabral H. Biochemical and biophysical properties of a recombinant serine peptidase from Purpureocillium lilacinum. Biophys Chem 2023; 296:106978. [PMID: 36827753 DOI: 10.1016/j.bpc.2023.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The industrial uses of peptidases have already been consolidated; however, their range of applications is increasing. Thus, the biochemical characterization of new peptidases could increase the range of their biotechnological applications. In silico analysis identified a gene encoding a putative serine peptidase from Purpureocillium lilacinum (Pl_SerPep), annotated as a cuticle-degrading enzyme. The Pl_SerPep gene product was expressed as a recombinant in a Komagataella phaffii (previously Pichia pastoris) expression system. The enzyme (rPl_SerPep) showed optimal pH and temperature of 8.0 and 60 °C, respectively. Moreover, rPl_SerPep has a higher thermal stability than the cuticle-degrading enzymes described elsewhere. The structural analysis indicated a conformational change in the rPl_SerPep secondary structure, which would allow an increase in catalytic activity at 60 °C. Komagataella phaffii secretes rPl_SerPep with the pro peptide in its inactive form. Low-resolution small-angle X-ray scattering (SAXS) analysis showed little mobility of the pro peptide portion, which indicates the apparent stability of the inactive form of the enzyme. The presence of 20 mM guanidine in the reaction resulted in the maintenance of activity, which was apparently a consequence of pro peptide structure flexibilization.
Collapse
Affiliation(s)
- Rafael Pedezzi
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Danilo Elton Evangelista
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos 13566-590, SP, Brazil
| | - Nathalia Gonsales da Rosa Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Flávio Antônio de Oliveira Simões
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | | | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos 13566-590, SP, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil.
| |
Collapse
|