1
|
Wu W, Lan W, Jiao X, Wang K, Deng Y, Chen R, Zeng R, Li J. Pyroptosis in sepsis-associated acute kidney injury: mechanisms and therapeutic perspectives. Crit Care 2025; 29:168. [PMID: 40270016 PMCID: PMC12020238 DOI: 10.1186/s13054-025-05329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025] Open
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a severe complication characterized by high morbidity and mortality, driven by multi-organ dysfunction. Recent evidence suggests that pyroptosis, a form of programmed cell death distinct from apoptosis and necrosis, plays a critical role in the pathophysiology of S-AKI. This review examines the mechanisms of pyroptosis, focusing on inflammasome activation (e.g., NLRP3), caspase-mediated processes, and the role of Gasdermin D in renal tubular damage. We also discuss the contributions of inflammatory mediators, oxidative stress, and potential therapeutic strategies targeting pyroptosis, including inflammasome inhibitors, caspase inhibitors, and anti-inflammatory therapies. Lastly, we highlight the clinical implications and challenges in translating these findings into effective treatments, underscoring the need for personalized medicine approaches in managing S-AKI.
Collapse
Affiliation(s)
- Wenyu Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China
| | - Wanning Lan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Jiao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kai Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yawen Deng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Rui Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| | - Ruifeng Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| | - Jun Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
2
|
Wysoczańska B, Dratwa M, Nieszporek A, Niepiekło-Miniewska W, Kamińska D, Ramuś T, Rasała J, Krajewska M, Bogunia-Kubik K. Analysis of IL-17A, IL-17F, and miR-146a-5p Prior to Transplantation and Their Role in Kidney Transplant Recipients. J Clin Med 2024; 13:2920. [PMID: 38792460 PMCID: PMC11122464 DOI: 10.3390/jcm13102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: The balance between regulatory and Th17 cells plays an important role in maintaining the immune tolerance after kidney transplantation (KTx) which is essential for transplantation success, defined as a long graft survival and an absence of organ rejection. The present study aimed to assess whether the pretransplant characteristics of IL-17A and IL-17F, their receptors, as well as miR-146a-5p, an miRNA associated with IL-17A/F regulation, can predict KTx outcomes. Methods: A group of 108 pre-KTx dialysis patients and 125 healthy controls were investigated for single nucleotide substitutions within genes coding for IL-17A, IL-17F, their IL-17RA/RC receptors, and miR-146a-5p. Genotyping was performed using LightSNiP assays. In addition, IL17-A/F serum concentrations were determined using ELISA while miR-146a-5p expression was analyzed by RT-PCR. Results: The IL-17F (rs763780) G allele prevailed in KTx recipients as compared to healthy individuals (OR = 23.59, p < 0.0001) and was associated with a higher IL-17F serum level (p = 0.0381) prior to transplantation. Higher miR-146a-5p expression before KTx was more frequently detected in recipients with an increased IL-17A serum concentration (p = 0.0177). Moreover, IL-17A (rs2275913) GG homozygosity was found to be associated with an increased incidence of deaths before KTx (OR = 4.17, p = 0.0307). T-cell or acute rejection episodes were more frequently observed among patients with the C allele of miR-146a-5p (rs2910164) (OR = 5.38, p = 0.0531). IL17-RA/-RC genetic variants (p < 0.05) seem to be associated with eGFR values. Conclusions: These results imply that IL-17F (rs763780) polymorphism is associated with the serum level of this cytokine and may be related to the risk of renal disease and transplant rejection together with miR-146a-5p (rs2910164), while the IL-17A (rs2275913) genotype may affect patients' survival before KTx.
Collapse
Affiliation(s)
- Barbara Wysoczańska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.D.); (K.B.-K.)
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.D.); (K.B.-K.)
| | - Artur Nieszporek
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.D.); (K.B.-K.)
- Biobank Research Group, Lukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Tissue Immunology, Medical Center, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.K.); (M.K.)
| | - Tomasz Ramuś
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | | | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.K.); (M.K.)
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.D.); (K.B.-K.)
- Laboratory of Tissue Immunology, Medical Center, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
3
|
Naidu C, Cox AJ, Lewohl JM. Influence of sex and liver cirrhosis on the expression of miR-146a-5p and its target genes, IRAK1 and TRAF6. Brain Res 2024; 1827:148763. [PMID: 38215866 DOI: 10.1016/j.brainres.2024.148763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Long-term alcohol misuse triggers cellular adaptions in susceptible regions of the human brain, resulting in neurodegeneration, neuroinflammation and altered gene expression. Previous studies have identified ∼35 miRNAs, including miR-146a-5p, which are up-regulated in the frontal cortex of males with alcohol use disorder (AUD), but the influence of liver cirrhosis and sex is unknown. The expression of miR-146a-5p, IRAK1, and TRAF6 was measured in the prefrontal cortex of controls and individuals with AUD with and without cirrhosis of the liver. Further, individuals were genotyped for two SNPs, rs2910164 and rs57095329. The expression of miR-146a-5p was significantly different between sexes. In males the expression of miR-146a-5p was increased in individuals with AUD with and without liver cirrhosis compared with controls. In females miR-146a-5p expression was significantly lower in individuals with AUD compared with both controls and those with AUD and cirrhosis, suggesting that both the severity of alcohol misuse and the sex of the individual influences the expression of miR-146a-5p. The expression of TRAF6 was significantly lower in individuals with uncomplicated AUD compared with those with AUD and cirrhosis. The expression of IRAK1 did not differ between groups or sexes. There was no influence of genotype on expression. Increased expression of miR-146a-5p did not correlate with decreased IRAK1 or TRAF6 expression suggesting a loss of regulatory control of the TLR4 pathway. Understanding sex-specific differences in the regulation of gene expression in AUD is key to determine which inflammatory pathways could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Carol Naidu
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, Brisbane, Australia
| | - Amanda J Cox
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, Brisbane, Australia
| | - Joanne M Lewohl
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, Brisbane, Australia.
| |
Collapse
|
4
|
Zheng Y, Gao Y, Zhu W, Bai XG, Qi J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur J Med Chem 2024; 268:116300. [PMID: 38452729 DOI: 10.1016/j.ejmech.2024.116300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by an infection. Toll-like receptor 4 (TLR4) is activated by endogenous molecules released by injured or necrotic tissues. Additionally, TLR4 is remarkably sensitive to infection of various bacteria and can rapidly stimulate host defense responses. The TLR4 signaling pathway plays an important role in sepsis by activating the inflammatory response. Accordingly, as part of efforts to improve the inflammatory response and survival rate of patients with sepsis, several drugs have been developed to regulate the inflammatory signaling pathways mediated by TLR4. Inhibition of TLR4 signal transduction can be directed toward either TLR4 directly or other proteins in the TLR4 signaling pathway. Here, we review the advances in the development of small-molecule agents and peptides targeting regulation of the TLR4 signaling pathway, which are characterized according to their structural characteristics as polyphenols, terpenoids, steroids, antibiotics, anthraquinones, inorganic compounds, and others. Therefore, regulating the expression of the TLR4 signaling pathway and modulating its effects has broad prospects as a target for the treatment of lung, liver, kidneys, and other important organs injury in sepsis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Weiru Zhu
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Xian-Guang Bai
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| |
Collapse
|
5
|
Ul Islam Z, Baneen U, Khaliq T, Nurulain SM, Muneer Z, Hussain S. Association analysis of miRNA-146a and miRNA-499 polymorphisms with rheumatoid arthritis: a case-control and trio-family study. Clin Exp Med 2023; 23:1667-1675. [PMID: 36303006 DOI: 10.1007/s10238-022-00916-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
Single nucleotide polymorphism is known to alter the expression and processing of miRNAs leading to a variety of diseases including rheumatoid arthritis (RA). However, disagreement is present up to date regarding the association of miRNA-146a and miRNA-499 polymorphisms with RA. The goal of this study was to assess the association of polymorphisms at miRNA-146a and miRNA-499 with the pathogenesis of RA in patients originating from Pakistan. Initially, eleven hundred subjects (1100) comprises of 550 RA patients and 550 healthy controls were investigated in the case-control analysis. Spectrophotometric measurement of lipids and C-reactive protein was used, whereas interleukin-1 receptor associated kinase-1 and TNF-receptor associated factor-6 values were quantified by an enzyme-linked immunosorbent assay. Secondly, heritability of susceptible alleles was tested from 70 trio-families. The miRNA-146a rs2910164 and miRNA-499 rs3746444 polymorphisms were genotyped using the polymerase chain reaction followed by restriction digestion. A Significant association of miRNA-146a and miRNA-499 genotypes was observed with RA patients (P < 0.05, respectively). The miRNA-146a rs2910164 G (OR = 1.4, P < 0.05) and miRNA-499 rs3746444 C (OR = 1.6, P < 0.0001) allele was significantly associated with RA in comparison with controls, respectively. Besides, the transmission analysis revealed a significant (P < 0.05) inheritance of rs2910164 G and rs3746444 C allele from parents to affected offspring. The current research concludes that miRNA-146a (rs2910164; C > G) and miRNA-499 (rs3746444; T > C) polymorphisms are linked to RA in the population studied. Furthermore, it was demonstrated for the first time in our high-risk cohort that the rs2910164 G and rs3746444 C allele was strongly related to familial RA.
Collapse
Affiliation(s)
- Zia Ul Islam
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Umul Baneen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Taqdees Khaliq
- Department of Rheumatology, Federal Government Polyclinic Hospital, 44 Luqman Hakeem Road G/6, Islamabad, 46000, Pakistan
| | - Syed Muhammad Nurulain
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Zahid Muneer
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Sabir Hussain
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| |
Collapse
|
6
|
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova K, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-A Key Player in Immunity and Diseases. Int J Mol Sci 2023; 24:12767. [PMID: 37628949 PMCID: PMC10454149 DOI: 10.3390/ijms241612767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
miRNA-146a, a single-stranded, non-coding RNA molecule, has emerged as a valuable diagnostic and prognostic biomarker for numerous pathological conditions. Its primary function lies in regulating inflammatory processes, haemopoiesis, allergic responses, and other key aspects of the innate immune system. Several studies have indicated that polymorphisms in miRNA-146a can influence the pathogenesis of various human diseases, including autoimmune disorders and cancer. One of the key mechanisms by which miRNA-146a exerts its effects is by controlling the expression of certain proteins involved in critical pathways. It can modulate the activity of interleukin-1 receptor-associated kinase, IRAK1, IRAK2 adaptor proteins, and tumour necrosis factor (TNF) targeting protein receptor 6, which is a regulator of the TNF signalling pathway. In addition, miRNA-146a affects gene expression through multiple signalling pathways, such as TNF, NF-κB and MEK-1/2, and JNK-1/2. Studies have been carried out to determine the effect of miRNA-146a on cancer pathogenesis, revealing its involvement in the synthesis of stem cells, which contributes to tumourigenesis. In this review, we focus on recent discoveries that highlight the significant role played by miRNA-146a in regulating various defence mechanisms and oncogenesis. The aim of this review article is to systematically examine miRNA-146a's impact on the control of signalling pathways involved in oncopathology, immune system development, and the corresponding response to therapy.
Collapse
Affiliation(s)
- Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Artur Mustafin
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Elizaveta Ivanova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Ksenia Bakhtiyarova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Elza Khusnutdinova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| |
Collapse
|
7
|
Sprenkle NT, Serezani CH, Pua HH. MicroRNAs in Macrophages: Regulators of Activation and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:359-368. [PMID: 36724439 PMCID: PMC10316964 DOI: 10.4049/jimmunol.2200467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Macrophages are sentinels of the innate immune system that maintain tissue homeostasis and contribute to inflammatory responses. Their broad scope of action depends on both functional heterogeneity and plasticity. Small noncoding RNAs called microRNAs (miRNAs) contribute to macrophage function as post-transcriptional inhibitors of target gene networks. Genetic and pharmacologic studies have uncovered genes regulated by miRNAs that control macrophage cellular programming and macrophage-driven pathology. miRNAs control proinflammatory M1-like activation, immunoregulatory M2-like macrophage activation, and emerging macrophage functions in metabolic disease and innate immune memory. Understanding the gene networks regulated by individual miRNAs enhances our understanding of the spectrum of macrophage function at steady state and during responses to injury or pathogen invasion, with the potential to develop miRNA-based therapies. This review aims to consolidate past and current studies investigating the complexity of the miRNA interactome to provide the reader with a mechanistic view of how miRNAs shape macrophage behavior.
Collapse
Affiliation(s)
| | - C Henrique Serezani
- Department of Pathology, Microbiology, and Immunology
- Department of Medicine, Division of Infectious Diseases
- Vanderbilt Center for Immunobiology, Nashville, Tennessee 37232, USA
- Vandebilt Institute of Infection, Immunology and Inflammation; Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Heather H Pua
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, Nashville, Tennessee 37232, USA
- Vandebilt Institute of Infection, Immunology and Inflammation; Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
8
|
Formosa A, Turgeon P, dos Santos CC. Role of miRNA dysregulation in sepsis. Mol Med 2022; 28:99. [PMID: 35986237 PMCID: PMC9389495 DOI: 10.1186/s10020-022-00527-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Sepsis is defined as a state of multisystem organ dysfunction secondary to a dysregulated host response to infection and causes millions of deaths worldwide annually. Novel ways to counteract this disease are needed and such tools may be heralded by a detailed understanding of its molecular pathogenesis. MiRNAs are small RNA molecules that target mRNAs to inhibit or degrade their translation and have important roles in several disease processes including sepsis. Main body The current review adopted a strategic approach to analyzing the widespread literature on the topic of miRNAs and sepsis. A pubmed search of “miRNA or microRNA or small RNA and sepsis not review” up to and including January 2021 led to 1140 manuscripts which were reviewed. Two hundred and thirty-three relevant papers were scrutinized for their content and important themes on the topic were identified and subsequently discussed, including an in-depth look at deregulated miRNAs in sepsis in peripheral blood, myeloid derived suppressor cells and extracellular vesicles. Conclusion Our analysis yielded important observations. Certain miRNAs, namely miR-150 and miR-146a, have consistent directional changes in peripheral blood of septic patients across numerous studies with strong data supporting a role in sepsis pathogenesis. Furthermore, a large body of literature show miRNA signatures of clinical relevance, and lastly, many miRNAs deregulated in sepsis are associated with the process of endothelial dysfunction. This review offers a widespread, up-to-date and detailed discussion of the role of miRNAs in sepsis and is meant to stimulate further work in the field due to the potential of these small miRNAs in prompt diagnostics, prognostication and therapeutic agency. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00527-z.
Collapse
|
9
|
Mortazavi-Jahromi SS, Aslani M. Dysregulated miRNAs network in the critical COVID-19: An important clue for uncontrolled immunothrombosis/thromboinflammation. Int Immunopharmacol 2022; 110:109040. [PMID: 35839566 PMCID: PMC9271492 DOI: 10.1016/j.intimp.2022.109040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Known as a pivotal immunohemostatic response, immunothrombosis is activated to restrict the diffusion of pathogens. This beneficial intravascular defensive mechanism represents the close interaction between the immune and coagulation systems. However, its uncontrolled form can be life-threatening to patients with the critical coronavirus disease 2019 (COVID-19). Hyperinflammation and ensuing cytokine storm underlie the activation of the coagulation system, something which results in the provocation of more immune-inflammatory responses by the thrombotic mediators. This vicious cycle causes grave clinical complications and higher risks of mortality. Classified as an evolutionarily conserved family of the small non-coding RNAs, microRNAs (miRNAs) serve as the fine-tuners of genes expression and play a key role in balancing the pro/anticoagulant and pro-/anti-inflammatory factors maintaining homeostasis. Therefore, any deviation from their optimal expression levels or efficient functions can lead to severe complications. Despite their extensive effects on the molecules and processes involved in uncontrolled immunothrombosis, some genetic agents and uncontrolled immunothrombosis-induced interfering factors (e.g., miRNA-single nucleotide polymorphysms (miR-SNPs), the complement system components, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, and reactive oxygen species (ROS)) have apparently disrupted their expressions/functions. This review study aims to give an overview of the role of miRNAs in the context of uncontrolled immunothrombosis/thromboinflammation accompanied by some presumptive interfering factors affecting their expressions/functions in the critical COVID-19. Detecting, monitoring, and resolving these interfering agents mafy facilitate the design and development of the novel miRNAs-based therapeutic approaches to the reduction of complications incidence and mortality in patients with the critical COVID-19.
Collapse
Affiliation(s)
- Seyed Shahabeddin Mortazavi-Jahromi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran.
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Association of Polymorphisms in miR146a, an Inflammation-Associated MicroRNA, with the Risk of Idiopathic Recurrent Spontaneous Miscarriage: A Case-Control Study. DISEASE MARKERS 2022; 2022:1495082. [PMID: 35535334 PMCID: PMC9078850 DOI: 10.1155/2022/1495082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022]
Abstract
It has been established that microRNAs (miRNAs) are involved in the regulation of immune responses and serve as biomarkers of inflammatory diseases as well as recurrent spontaneous miscarriage (RSM). Herein, we aimed to study the relationship between three functional miR146a gene polymorphisms with idiopathic RSM (IRSM) susceptibility. We recruited 161 patients with IRSM and 177 healthy women with at least one live birth and without a history of abortion. Genotyping was performed using RFLP-PCR and ARMS-PCR methods. We found that the rs6864584 T/C decreased the risk of IRSM under dominant TT+TC vs. CC (OR = 0.029) and allelic C vs. T (OR = 0.028) contrast models. Regarding rs2961920 A/C and rs57095329 A/G polymorphisms, the enhanced risk of IRSM was observed under different genetic contrasted models, including the codominant CC vs. AA (OR = 2.81 for rs2961920) and codominant GG vs. AA (OR = 2.36 for rs57095329). After applying a Bonferroni correction, haplotype analysis revealed a 51% decreased risk of IRSM regarding the ACA genotype combination. This is the first study reporting that miR146a rs57095329 A/G, rs2961920A/C, and rs6864584 T/C polymorphisms are associated with the risk of IRSM in a southern Iranian population. Performing replicated case-control studies on other ethnicities is warranted to outline the precise effects of the studied variants on the risk of gestational trophoblastic disorders.
Collapse
|
11
|
Pinacchio C, Scordio M, Santinelli L, Frasca F, Sorrentino L, Bitossi C, Oliveto G, Viscido A, Ceci FM, Celani L, Ceccarelli G, Antonelli G, Mastroianni CM, d’Ettorre G, Scagnolari C. Analysis of serum microRNAs and rs2910164 GC single-nucleotide polymorphism of miRNA-146a in COVID-19 patients. J Immunoassay Immunochem 2022; 43:347-364. [DOI: 10.1080/15321819.2022.2035394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mirko Scordio
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Frasca
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy
| | - Leonardo Sorrentino
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy
| | - Camilla Bitossi
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy
| | - Giuseppe Oliveto
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy
| | - Agnese Viscido
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy
| | - Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luigi Celani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University, Hospital Policlinico Umberto I, Rome, Italy
- Department of Molecular Medicine, Pasteur Institute Italy, Cenci Bolognetti Foundation, Rome, Italy
| | | | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy
- Department of Molecular Medicine, Pasteur Institute Italy, Cenci Bolognetti Foundation, Rome, Italy
| |
Collapse
|
12
|
Abu Y, Vitari N, Yan Y, Roy S. Opioids and Sepsis: Elucidating the Role of the Microbiome and microRNA-146. Int J Mol Sci 2022; 23:1097. [PMID: 35163021 PMCID: PMC8835205 DOI: 10.3390/ijms23031097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis has recently been defined as life-threatening organ dysfunction caused by the dysregulated host response to an ongoing or suspected infection. To date, sepsis continues to be a leading cause of morbidity and mortality amongst hospitalized patients. Many risk factors contribute to development of sepsis, including pain-relieving drugs like opioids, which are frequently prescribed post-operatively. In light of the opioid crisis, understanding the interactions between opioid use and the development of sepsis has become extremely relevant, as opioid use is associated with increased risk of infection. Given that the intestinal tract is a major site of origin of sepsis-causing microbes, there has been an increasing focus on how alterations in the gut microbiome may predispose towards sepsis and mediate immune dysregulation. MicroRNAs, in particular, have emerged as key modulators of the inflammatory response during sepsis by tempering the immune response, thereby mediating the interaction between host and microbiome. In this review, we elucidate contributing roles of microRNA 146 in modulating sepsis pathogenesis and end with a discussion of therapeutic targeting of the gut microbiome in controlling immune dysregulation in sepsis.
Collapse
Affiliation(s)
- Yaa Abu
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nicolas Vitari
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Yan Yan
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Sabita Roy
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
13
|
Sankar S, Maruthai K, Bobby Z, Adhisivam B. MicroRNA Expression in Neonates with Late-onset Sepsis - A Cross-sectional Comparative Study. Immunol Invest 2022; 51:1647-1659. [PMID: 35026963 DOI: 10.1080/08820139.2021.2020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neonatal sepsis is a major health concern among neonates with higher morbidity and mortality rate. Studies have recently speculated the importance of differential expression of circulating mature micro-RNAs (miRNAs) which could serve as diagnostic as well as prognostic markers for risk of mortality in neonatal sepsis. This study aimed to analyze the expression pattern and to assess the diagnostic/prognostic value of miRNAs miR-21, miR-29a miR-31, miR-146a, and miR-155 in late-onset neonatal sepsis. METHODS A cross-sectional comparative study was conducted including 42 healthy controls and 42 neonates with late-onset neonatal sepsis. SYBR green-based miScript RT-PCR assay was used for the expression analysis and the comparative Ct method 2-delta (Ct) method was used for relative quantification of the candidate miRNAs in plasma. Significantly higher expression of miR-21 and miR-155 and lower expression of miR-29a and miR-146a was observed in cases compared to control except miR-31. In subgroups analysis, miR-21(p = .03) showed a significant difference between pre-term and term neonates and miR-31 (p = .01) and miR-155 (p = .03) showed a significant difference between low-birth-weight and normal-birth-weight neonates. miR-146a showed significantly lower expression in the non-survivor group compared to the survivor group (p = .005). A receiver operating characteristic curve (ROC) analysis of miR-21 and miR-29a (0.829 and 0.787 AUC of ROC curves) showed good discrimination for the identification of sepsis from non-sepsis neonates. CONCLUSION The current study shows evidence of differential expression of miRNAs in neonatal sepsis and this altered expression of candidate miRNAs could be involved in immune dysregulation, thus leading to sepsis-related severity in newborns.
Collapse
Affiliation(s)
- Saranya Sankar
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| | - Kathirvel Maruthai
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| | - Bethou Adhisivam
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| |
Collapse
|
14
|
Assessment of Association between miR-146a Polymorphisms and Expression of miR-146a, TRAF-6, and IRAK-1 Genes in Patients with Brucellosis. Mol Biol Rep 2022; 49:1995-2002. [PMID: 34981334 DOI: 10.1007/s11033-021-07014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Brucellosis is a major zoonosis all over the world. MicroRNAs are significant gene expression regulators and could be involved during the infections and also genetic alterations in the miRNAs sequence can affect primary miRNAs and precursor miRNAs processing and thus alter miRNAs expression. Current research studied the impact of the miR-146a polymorphism on miR-146a, TRAF-6, and IRAK-1 genes expression in patients with brucellosis illness. METHODS AND RESULTS In this research, 25 patients with brucellosis and 25 healthy participants with determined genotypes for miR-SNP rs2910164 and miR-SNP rs57095329 were recruited. IRAK-1, TRAF-6, and miR-146a expressions in peripheral blood mononuclear cells (PBMCs) were specified by quantitative real- time PCR (qRT-PCR). Moreover, interleukin-1β (IL-1β) and tumor necrosis factor- alpha (TNF-α) serum levels were assessed by a sandwich enzyme-linked immunosorbent assay (ELISA) technique. There was no significant difference in the expression level of miR-146a, IRAK-1, and TRAF-6, among the patients with brucellosis and control group. TRAF-6 PBMCs expression levels in the distinctive genotypes of rs2910164 were significantly observed in patients (P = 0.048). No significant distinctions were found in miR-146a, IRAK-1, and TRAF-6 expression levels and among the rs57095329 different genotypes in brucellosis patients and controls. Meanwhile, no significant relationship was found between the rs2910164 and rs57095329 genotypes and the serum level of cytokines mentioned between the two groups. We did not find any association between expression of TRAF-6, miR-146a, and IRAK-1 in PBMCs, and cytokines serum levels with two single nucleotide polymorphisms (SNPs) in miR-146a. CONCLUSIONS To the best of writers' knowledge, this research is the first one evaluating the probable link between the miR-146a rs2910164 and rs57095329 variant with miRNAs, relevant cytokine levels, and target genes in brucellosis.
Collapse
|
15
|
Kazemi S, Afshar S, Karami M, Saidijam M, Keramat F, Hashemi SH, Alikhani MY. Association between risk of brucellosis and genetic variations in MicroRNA-146a. BMC Infect Dis 2021; 21:1070. [PMID: 34656082 PMCID: PMC8520608 DOI: 10.1186/s12879-021-06775-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are the most common types of DNA changes in the human genome that leading to phenotypic differences in humans. MicroRNAs (miRNAs) are usually affected by various bacterial infections, and they are involved in controlling the immune responses. MicroRNA-146a (miR-146a) plays an essential role in the development of infectious and inflammatory diseases. The aim of the present study was to investigate the association between risk of brucellosis and genetic variations in miR-146a. METHODS This case-control study was conducted on 108 Brucellosis patients and 108 healthy controls. We genotyped two SNPs (rs2910164 and rs57095329) of the miR-146a using tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) and restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) methods. RESULTS The rs2910164 SNP was significantly associated with brucellosis in co-dominant [OR = 4.27, 95% CI = (2.35-7.79, P = 0.001] and dominant [OR = 3.52, 95% CI = (1.97-6.30, P = 0.001] models. Co-dominant (P = 0.047) and recessive (P = 0.018) models were significant at position rs57095329 between the two groups of patient and healthy. The A C haplotype (rs2910164 and rs57095329) was associated with brucellosis in the assessed population [OR (95% CI) = 1.98 (1.22-3.20), P = 0.0059]. CONCLUSIONS Consequently, our study demonstrated significant differences in genotype and haplotype frequencies of miR-146a variants between brucellosis patients and controls. Further studies on the larger sample sizes are required to verify the observed associations.
Collapse
Affiliation(s)
- Sima Kazemi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Manoochehr Karami
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Hamid Hashemi
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
de Mesquita TGR, Junior JDES, de Lacerda TC, Queiroz KLGD, Júnior CMDS, Neto JPDM, Gomes LAM, de Souza MLG, Guerra MVDF, Ramasawmy R. Variants of MIRNA146A rs2910164 and MIRNA499 rs3746444 are associated with the development of cutaneous leishmaniasis caused by Leishmania guyanensis and with plasma chemokine IL-8. PLoS Negl Trop Dis 2021; 15:e0009795. [PMID: 34543271 PMCID: PMC8483412 DOI: 10.1371/journal.pntd.0009795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Leishmania are intracellular protozoan parasites that cause a wide spectrum of clinical manifestations in genetically susceptible individuals with an insufficient or balanced Th1 immune response to eliminate the parasite. MiRNAs play important regulatory role in numerous biological processes including essential cellular functions. miR146-a acts as an inhibitor of interleukin 1 receptor associated kinase 1 (IRAK1) and tumour necrosis factor (TNF) receptor associated factor 6 (TRAF6) present in the toll-like receptors pathway while miR499a modulates TGF-β and TNF signalling pathways. Here, we investigated whether MIRNA146A rs2910164 and MIRNA499 rs3746444 variants are associated with the development of L. guyanensis (Lg)-cutaneous leishmaniasis (CL). The variants MIR146A rs2910164 and MIR499A rs3746444 were assessed in 850 patients with Lg-CL and 891 healthy controls by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma cytokines were measured using the BioPlex assay. Carriers of rs2910164 CC genotype have 30% higher odds of developing CL (ORadjage/sex = 1.3 [95%CI 0.9–1.8]; Padjage/sex 0.14) compared to individuals with the genotype GG (ORadjage/sex = 0.77 [95%CI 0.56–1.0]; Padjage/sex 0.14) if exposed to Lg-infection. Heterozygous GC individuals also showed lower odds of developing CL (ORadjage/sex = 0.77 [95%CI 0.5–1.1]; Padjage/sex 0.09). Homozygosity for the allele C is suggestive of an association with the development of Lg-CL among exposed individuals to Lg-infection. However, the odds of developing CL associated with the CC genotype was evident only in male individuals (ORadjage = 1.3 [95% CI = 0.9–2.0]; Padjage = 0.06). Individuals homozygous for the G allele tend to have higher plasma IL-8 and CCL5. Similarly, for the MIR499A rs3746444, an association with the G allele was only observed among male individuals (OR = 1.4 [1.0–1.9]; P = 0.009). In a dominant model, individuals with the G allele (GG-GA) when compared to the AA genotype reveals that carriers of the G allele have 40% elevated odds of developing Lg-CL (ORadjage = 1.4 [1.1–1.9]). Individuals with the GG genotype have higher odds of developing Lg-CL (ORadjage/sex = 2.0 [95%CI 0.83–5.0]; Padjage = 0.01. Individuals homozygous for the G allele have higher plasma IL-8. Genetic combinations of both variants revealed that male individuals exposed to Lg bearing three or four susceptible alleles have higher odds of developing Lg-CL (OR = 2.3 [95% CI 1.0–4.7]; p = 0.017). Both MIR146A rs2910164 and MIR499A rs3746444 are associated with the development of Lg-CL and this association is prevalent in male individuals. Leishmaniasis is caused by infection with Leishmania parasites. In regions with the presence of Leishmania parasites, all people do not develop the disease despite similar exposure. Only a proportion of inhabitants progress to the development of disease. Clinical manifestations depend on the vector and Leishmania species, as well the host genetic background and genetically determined immune responses. miRNAs play important roles in regulating gene expression and many biological processes including immune pathways. miR-146a targets TRAF6 and IRAK1 genes, that encode key adaptor molecules downstream of toll-like receptors (TLRs). TLRs are critical in immune response to Leishmania-infection. miR499-a modulates inflammation-related signalling pathways such as TGFβ, TNFα and TLR pathways. In this study, we showed that MIR146A and MIR499A variants are risk factors to developing cutaneous leishmaniasis caused by L. guyanensis in Amazonas state of Brazil. Individuals with these variants are susceptible to the development of CL.
Collapse
Affiliation(s)
- Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - José do Espírito Santo Junior
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | - Thais Carneiro de Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | | | | | | | | | | | - Marcus Vinitius de Farias Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas–REGESAM, Manaus, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas–REGESAM, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
17
|
Mormile R. Diabetes and susceptibility to COVID-19: may miR-146a make the difference between life and death? Minerva Endocrinol (Torino) 2021; 46:363-365. [PMID: 33792241 DOI: 10.23736/s2724-6507.21.03395-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Caserta, Italy -
| |
Collapse
|
18
|
Hefzy EM, Hassuna NA, Shaker OG, Masoud M, Abelhameed TA, Ahmed TI, Hemeda NF, Abdelhakeem MA, Mahmoud RH. miR-155 T/A (rs767649) and miR-146a A/G (rs57095329) single nucleotide polymorphisms as risk factors for chronic hepatitis B virus infection among Egyptian patients. PLoS One 2021; 16:e0256724. [PMID: 34437653 PMCID: PMC8389509 DOI: 10.1371/journal.pone.0256724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic variants in microRNAs (miRNAs) can alter the miRNAs expression and/or function, accordingly, affecting the related biological pathways and disease risk. Dysregulation of miR-155 and miR-146a expression levels has been well-described in viral hepatitis B (HBV). In the current study, we aimed to assess rs767649 T/A and rs57095329 A/G polymorphisms in miR-155, and miR-146a genes, respectively, as risk factors for Chronic HBV (CHBV) in the Egyptian population. Also, we aimed to do in silico analysis to investigate the molecules that primarily target these miRNAs. One hundred patients diagnosed as CHBV and one hundred age and sex-matched controls with evidence of past HBV infection were genotyped for miR-155 (rs767649) and miR-146a (rs57095329) using real-time polymerase chain reaction. The rs767649 AT and AA genotypes in CHBV patients confer four folds and ten folds risk respectively, as compared to control subjects [(AOR = 4.245 (95%CI 2.009–8.970), p<0.0001) and AOR = 10.583 (95%CI 4.012–27.919), p<0.0001, respectively)]. The rs767649 A allele was associated with an increased risk of developing CHBV (AOR = 2.777 (95%CI 1.847–4.175), p<0.0001). There was a significant difference in the frequency of rs57095329 AG and GG genotypes in CHBV patients compared to controls. AG and GG genotypes showed an increase in the risk of developing CHBV by about three and six folds respectively [AOR = 2.610 (95%CI 1.362–5.000), p = 0.004] and [AOR = 5.604 (95%CI 2.157–14.563), p<0.0001].We concluded that rs57095329 and rs767649 SNPs can act as potential risk factors for the development of CHBV in the Egyptian population.
Collapse
Affiliation(s)
- Enas M. Hefzy
- Faculty of Medicine, Department of Medical Microbiology and Immunology, Fayoum University, Fayoum, Egypt
- * E-mail:
| | - Noha A. Hassuna
- Faculty of Medicine, Department of Medical Microbiology and Immunology, Minia University, Minia, Egypt
| | - Olfat G. Shaker
- Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Cairo University, Cairo, Egypt
| | - Mohamed Masoud
- Faculty of Medicine, Department of Public Health, Fayoum University, Fayoum, Egypt
| | | | - Tarek I. Ahmed
- Faculty of Medicine, Department of Internal Medicine, Fayoum University, Fayoum, Egypt
| | - Nada F. Hemeda
- Faculty of Agriculture, Department of Genetics, Fayoum University, Fayoum, Egypt
| | | | - Rania H. Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Fayoum University, Fayoum, Egypt
| |
Collapse
|
19
|
Lu F, Chen H, Hong Y, Lin Y, Liu L, Wei N, Wu Q, Liao S, Yang S, He J, Shao Y. A gain-of-function NLRP3 3'-UTR polymorphism causes miR-146a-mediated suppression of NLRP3 expression and confers protection against sepsis progression. Sci Rep 2021; 11:13300. [PMID: 34172780 PMCID: PMC8233413 DOI: 10.1038/s41598-021-92547-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (LRR)-containing family protein 3 (NLRP3) regulated the maturation of inflammation-related cytokines by forming NLRP3 inflammasome, which plays pivotal roles in sepsis pathogenesis. In this study, we evaluated the genetic association of NLRP3 polymorphisms with sepsis (640 patients and 769 controls) and characterized the impact of NLRP3 polymorphisms on NLRP3 expression and inflammatory responses. No significant differences were observed in genotype/allelic frequencies of NLRP3 29940G>C between sepsis cases and controls. The G allele was significantly overrepresented in patients with septic shock than those in sepsis subgroup, and the GC/GG genetypes were related to the 28-day mortality of sepsis. Lipopolysaccharide challenge to peripheral blood mononuclear cells showed a significant suppression of NLRP3 mRNA expression and release of IL-1β and TNF-α in CC compared with the GC/GG genotype category. Functional experiments with luciferase reporter vectors containing the NLRP3 3′-UTR with the 29940 G-to-C variation in HUVECs and THP-1 cells showed a potential suppressive effect of miR-146a on NLRP3 transcription in the presence of the C allele. Taken together, these results demonstrated that the 29940 G-to-C mutation within the NLRP3 3′-UTR was a gain-of-function alteration that caused the suppression of NLRP3 expression and downstream inflammatory cytokine production via binding with miR-146a, which ultimately protected patients against susceptibility to sepsis progression and poor clinical outcome.
Collapse
Affiliation(s)
- Furong Lu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Hongpeng Chen
- The Department of Chemotherapy, Jieyang Affiliated Hospital, SunYat-Sen University, Jieyang, Guangdong, People's Republic of China
| | - Yuan Hong
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Yao Lin
- The Clinical Medicine Research Laboratory, The Intensive Care Unit, Jieyang Affiliated Hospital, SunYat-Sen University, Tianfu Road 107, Rongcheng District, Jieyang City, 522000, Guangdong Province, People's Republic of China
| | - Lizhen Liu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China.,The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Ning Wei
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Qinyan Wu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Shuanglin Liao
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Shuai Yang
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Junbing He
- The Clinical Medicine Research Laboratory, The Intensive Care Unit, Jieyang Affiliated Hospital, SunYat-Sen University, Tianfu Road 107, Rongcheng District, Jieyang City, 522000, Guangdong Province, People's Republic of China.
| | - Yiming Shao
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China. .,The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Stypińska B, Lewandowska A, Felis-Giemza A, Olesińska M, Paradowska-Gorycka A. Association study between immune-related miRNAs and mixed connective tissue disease. Arthritis Res Ther 2021; 23:19. [PMID: 33430976 PMCID: PMC7802256 DOI: 10.1186/s13075-020-02403-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mixed connective tissue disease (MCTD) is a rare condition that is distinguished by the presence of specific U1-RNP antibodies. Information about its etiopathology and diagnostics is still unclear. miRNAs such as miR-146, miR-155, and miR-143 emerged as key regulators of the immune system, known to be involved in the development of autoimmune diseases and cancers. We performed an association study between immune-related miRNAs and MCTD severity and susceptibility. Methods A total of 169 MCTD patients and 575 healthy subjects were recruited to the case–control study. The miRNA polymorphisms were genotyped using TaqMan SNP genotyping assay. TNF-α, IL-6, and IFN-γ levels in serum were determined using ELISA. qRT-PCR of TRAF6, IRAK1, and microRNAs was performed using Taqman miRNA assays and TaqMan Gene Expression Assays. Results miR-146a rs2910164 G allele and GG genotype as well as miR-143 rs713147 A allele were more frequent in healthy subjects than in MCTD patients. miR-146a rs2910164 CC genotype and miR-143 T-rs353299*T-rs353291*T-rs713147*G-rs353298 and C-rs353299*C-rs353291*T-rs713147*A-rs353298 haplotypes were associated with MCTD susceptibility. miR-146a rs2910164 C/T was associated with scleroderma and lymphadenopathy. miR-143 rs353299 C/T was associated with swollen fingers or hands, the presence of enlarged lymph nodes, and pericarditis/pleuritis. miR-143 rs353298 A/G was associated with the occurrence of pericarditis/pleuritis and scleroderma. miR-143 rs353291 T/C showed association with pericarditis/pleuritis. The serum TNF-α, IFN-γ, and IL-6 levels were significantly higher in MCTD patients compared to healthy subjects. miR-143 SNPs were associated with higher proinflammatory cytokine concentration in serum only in healthy controls. IRAK1 and TRAF6 expression were higher in the MCTD patients compared to controls. Conclusions The results of our case–control study indicate the possible significance of miR-146a and miR-143/145 in the susceptibility and clinical picture of MCTD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-020-02403-9.
Collapse
Affiliation(s)
- Barbara Stypińska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.
| | - Aleksandra Lewandowska
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology, and Rehabilitation, Spartanska 1, Warsaw, 02-637, Poland
| | - Anna Felis-Giemza
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology, and Rehabilitation, Spartanska 1, Warsaw, 02-637, Poland
| | - Marzena Olesińska
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology, and Rehabilitation, Spartanska 1, Warsaw, 02-637, Poland
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| |
Collapse
|
21
|
Arroyo AB, Águila S, Fernández-Pérez MP, Reyes-García AMDL, Reguilón-Gallego L, Zapata-Martínez L, Vicente V, Martínez C, González-Conejero R. miR-146a in Cardiovascular Diseases and Sepsis: An Additional Burden in the Inflammatory Balance? Thromb Haemost 2020; 121:1138-1150. [PMID: 33352593 DOI: 10.1055/a-1342-3648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The new concept of thrombosis associated with an inflammatory process is called thromboinflammation. Indeed, both thrombosis and inflammation interplay one with the other in a feed forward manner amplifying the whole process. This pathological reaction in response to a wide variety of sterile or non-sterile stimuli eventually causes acute organ damage. In this context, neutrophils, mainly involved in eliminating pathogens as an early barrier to infection, form neutrophil extracellular traps (NETs) that are antimicrobial structures responsible of deleterious side effects such as thrombotic complications. Although NETosis mechanisms are being unraveled, there are still many regulatory elements that have to be discovered. Micro-ribonucleic acids (miRNAs) are important modulators of gene expression implicated in human pathophysiology almost two decades ago. Among the different miRNAs implicated in inflammation, miR-146a is of special interest because: (1) it regulates among others, Toll-like receptors/nuclear factor-κB axis which is of paramount importance in inflammatory processes, (2) it regulates the formation of NETs by modifying their aging phenotype, and (3) it has expression levels that may decrease among individuals up to 50%, controlled in part by the presence of several polymorphisms. In this article, we will review the main characteristics of miR-146a biology. In addition, we will detail how miR-146a is implicated in the development of two paradigmatic diseases in which thrombosis and inflammation interact, cardiovascular diseases and sepsis, and their association with the presence of miR-146a polymorphisms and the use of miR-146a as a marker of cardiovascular diseases and sepsis.
Collapse
Affiliation(s)
- Ana B Arroyo
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Sonia Águila
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - María P Fernández-Pérez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Ascensión M de Los Reyes-García
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Laura Reguilón-Gallego
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Laura Zapata-Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| |
Collapse
|
22
|
An association study between MiR-146a and INSR gene polymorphisms and hypertensive disorders of pregnancy in Northeastern Han Chinese population. Placenta 2020; 104:94-101. [PMID: 33310299 DOI: 10.1016/j.placenta.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Hypertensive disorders of pregnancy(HDP) is a complex and challenging group of pregnancy complications that is one of the leading causes of maternal and fetal death worldwide. Recent studies have shown that the single nucleotide polymorphism(SNP) may play a role in the pathogenesis of HDP. This study aimed to investigate the association of MiR-146a rs2910164 and insulin receptor(INSR) rs2059806 SNPs with HDP and their associated complications in the Han population of Northeast China. METHODS A total of 240 HDP patients and 380 healthy controls were selected for genotype determination. For the most special and high incidence of HDP, we also studied the SNPs in association with pre-eclampsia(PE) patients. In addition, HDP complicated with gestational diabetes mellitus(GDM) patients was further analyzed to identify the association between SNPs and HDP-related complications. Multivariate logical regression analysis combined with 10, 000 permutation test corrections was used to analyze the association of MiR-146a and INSR SNPs with HDP. RESULTS After adjusting for relevant factors, MiR-146a rs2910164 or INSR rs2059806 SNPs were not significantly different between HDP or PE patients and healthy controls(P>0.05). Meanwhile, MiR146a rs2910164 and INSR rs2059806 SNPs were not significantly different between HDP complicated with GDM and control group. DISCUSSION Our data indicates that MiR-146a rs2910164 and INSR rs2059806 SNPs may not be significantly related with HDP in the Han population of Northeast China living in Heilongjiang Province.
Collapse
|
23
|
Keewan E, Naser SA. MiR-146a rs2910164 G > C polymorphism modulates Notch-1/IL-6 signaling during infection: a possible risk factor for Crohn's disease. Gut Pathog 2020; 12:48. [PMID: 33072191 PMCID: PMC7557229 DOI: 10.1186/s13099-020-00387-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MiR-146a, an effector mediator, targets Notch-1 and regulates the innate and adaptive immune systems response. Recently, we reported that Notch-1 signaling plays a key role in macrophage polarization and response during infection. We employed Mycobacterium avium paratuberculosis (MAP) infection in Crohn's disease (CD) as a model to demonstrate the role of Notch-1/IL-6 signaling on MCL-1 based apoptosis and intracellular MAP infection and persistence. This study was designed to investigate the impact of polymorphisms in miR146a on the immune response and infection in our MAP-CD model. METHODS We determined the incidence of miR-146a rs2910164 G > C in 42 blood samples from clinical CD patients and controls. We also measured the effect of rs2910164 on expression of Notch-1 and IL-6, and plasma IL-6 protein levels in our study group. Finally, we analyzed the blood samples for MAP DNA and studied any correlation with miR-146a polymorphism. Samples were analyzed for statistical significance using unpaired tow-tailed t-test, unpaired two-tailed z-score and odds ratio. P < 0.05 considered significant. RESULTS MiR-146a rs2910164 GC was detected at a higher incidence in CD (52.6%) compared to healthy controls (21.7%) rs2910164 GC Heterozygous polymorphism upregulated Notch-1 and IL-6, by 0.9 and 1.7-fold, respectively. As expected, MAP infection was detected more in CD samples (63%) compared to healthy controls (9%). Surprisingly, MAP infection was detected at a higher rate in samples with rs2910164 GC (67%) compared to samples with normal genotype (33%). CONCLUSIONS The data clearly associates miR-146a rs2910164 GC with an overactive immune response and increases the risk to acquire infection. The study is even more relevant now in our efforts to understand susceptibility to SARS-CoV-2 infection and the development of COVID-19. This study suggests that genetic variations among COVID-19 patients may predict who is at a higher risk of acquiring infection, developing exacerbating symptoms, and possibly death. A high scale study with more clinical samples from different disease groups is planned.
Collapse
Affiliation(s)
- Esra’a Keewan
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra drive, Orlando, FL 32816 USA
| | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra drive, Orlando, FL 32816 USA
| |
Collapse
|
24
|
Pei JS, Chang WS, Hsu PC, Chen CC, Chin YT, Huang TL, Hsu YN, Kuo CC, Wang YC, Tsai CW, Gong CL, Bau DAT. Significant Association Between the MiR146a Genotypes and Susceptibility to Childhood Acute Lymphoblastic Leukemia in Taiwan. Cancer Genomics Proteomics 2020; 17:175-180. [PMID: 32108040 DOI: 10.21873/cgp.20178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIM Mounting evidence has shown that miRNAs play a critical role in the regulation of hematopoiesis of cell proliferation and apoptosis as well as in tumorigenesis. The miR146a rs2910164 polymorphism, which is closely responsive for its expression, has been reported to associate with the risk of several solid cancers. The study aimed at examining the association of the it with susceptibility to childhood acute lymphoblastic leukemia (ALL) in Taiwan. MATERIALS AND METHODS We recruited 266 patients with childhood ALL and 266 healthy controls, and rs2910164 genotypes were determined by the polymerase chain reaction-restriction fragment length polymorphism methodology. RESULTS The allele G was associated with decreased childhood ALL risk (OR=0.66, 95%CI=0.52-0.85, p=0.0011). Consistently, the GG genotype was associated with a decreased susceptibility (OR=0.40, 95%CI=0.23-0.67, p=0.0004). Patients with CG and GG genotypes were of earlier onset than those with CC genotype (p=0.0255 and p=0.0001). CONCLUSION MiR146a rs2910164 G allele serves as a protective marker for childhood ALL in Taiwan.
Collapse
Affiliation(s)
- Jen-Sheng Pei
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Pei-Chen Hsu
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Chao-Chun Chen
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Yu-Ting Chin
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Tai-Lin Huang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yuan-Nian Hsu
- Department of Family Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Chien-Chung Kuo
- Department of Pediatric Orthopedics, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yun-Chi Wang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Chi-Li Gong
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
25
|
Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR. Non-coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:51-74. [PMID: 32506014 PMCID: PMC7272511 DOI: 10.1016/j.omtn.2020.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is characterized as an uncontrolled host response to infection, and it represents a serious health challenge, causing excess mortality and morbidity worldwide. The discovery of sepsis-related epigenetic and molecular mechanisms could result in improved diagnostic and therapeutic approaches, leading to a reduced overall risk for affected patients. Accumulating data show that microRNAs, non-coding RNAs, and exosomes could all be considered as novel diagnostic markers for sepsis patients. These biomarkers have been demonstrated to be involved in regulation of sepsis pathophysiology. However, epigenetic modifications have not yet been widely reported in actual clinical settings, and further investigation is required to determine their importance in intensive care patients. Further studies should be carried out to explore tissue-specific or organ-specific epigenetic RNA-based biomarkers and their therapeutic potential in sepsis patients.
Collapse
Affiliation(s)
- Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Fadaei
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
26
|
Relationship between miR-155 and miR-146a polymorphisms and susceptibility to multiple sclerosis in an Egyptian cohort. Biomed Rep 2020; 12:276-284. [PMID: 32257191 DOI: 10.3892/br.2020.1286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/13/2019] [Indexed: 11/05/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system. It was previously demonstrated that miR-155 and miR-146a served a vital role in the pathophysiology of MS, and single nucleotide polymorphisms in miR-155 and miR-146a were found to be associated with the susceptibility to different autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and type I diabetes. The aim of the present study was to analyze the association between susceptibility to MS and two genetic polymorphisms (miR-155 rs767649 A>T and miR-146a rs57095329 A>G) in a cohort of Egyptian patients. The presence of the two polymorphisms were analyzed in 114 patients with MS and 152 healthy controls using quantitative PCR. The present study demonstrated for the first time that: The TT genotype and T allele in miR-155 (rs767649 A>T) polymorphism were associated with an increased risk of MS; the miR-146a (rs57095329 A>G) mutated G allele conferred protection against the development of MS in all genetic models; miR-155 rs767649 A>T was a risk associated polymorphism of MS in females, but not in males; and miR-155 rs767649 AT/TT and miR-146a rs57095329 GG genotypes showed significantly higher distributions among patients with higher Expanded Disability Status Scale scores and secondary progressive MS subgroups. Therefore, miR-155 rs767649 polymorphism may confer susceptibility to MS, whereas miR-146a rs57095329 may be protective against MS in an Egyptian cohort.
Collapse
|
27
|
Karam RA, Zidan HE, Karam NA, Abdel Rahman DM, El-Seifi OS. Diagnostic and prognostic significance of serum miRNA-146-a expression in Egyptian children with sepsis in a pediatric intensive care unit. J Gene Med 2019; 21:e3128. [PMID: 31693774 DOI: 10.1002/jgm.3128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/10/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Previous studies have suggested a strong genetic effect on sepsis pathogenesis. The present study aimed to investigate the role of miRNA-146-a expression in pediatric sepsis. METHODS The study included 55 pediatric sepsis patients and 60 control children of the same age and sex. Serum miRNA-146-a expression was measured using a quantitative real-time polymerase chain reaction. C-reactive protein, interleukin-6, tumor necrosis factor-α and procalcitonin levels were measured by an enzyme-linked immunosorbent assay. The outcome of the pediatric sepsis group was determined at 28 days of follow up. RESULTS The results obtained revealed that serum miRNA-146-a levels were significantly decreased in sepsis group compared to the control group. Serum level of miRNA-146a correlated with sepsis severity, with the pediatric septic shock group having the lowest level, followed by the severe sepsis and sepsis groups. The miRNA-146-a level could indicate sepsis (area under curve = 0.803). Serum miRNA-146-a expression was negatively associated with C-reactive protein, pro-calcitonin, interleukin-6 and tumor necrosis factor-α. Patients with miRNA-146-a at a level lower than 0.4 had an increased mortality rate. CONCLUSIONS miRNA-146-a is of significant diagnostic and prognostic value in pediatric sepsis and could be used for planning therapeutic strategies.
Collapse
Affiliation(s)
- Rehab A Karam
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nehad A Karam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa M Abdel Rahman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Omnia S El-Seifi
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
28
|
miR-23b Negatively Regulates Sepsis-Induced Inflammatory Responses by Targeting ADAM10 in Human THP-1 Monocytes. Mediators Inflamm 2019; 2019:5306541. [PMID: 31780861 PMCID: PMC6875296 DOI: 10.1155/2019/5306541] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background Previous studies have demonstrated pivotal roles of disintegrin and metalloproteinase 10 (ADAM10) in the pathogenesis of sepsis. MicroRNA- (miR-) 23b has emerged as an anti-inflammatory factor that prevents multiple autoimmune diseases. However, the underlying mechanisms of miR-23b in the regulation of ADAM10 and sepsis remain uncharacterized. Methods The expression levels of ADAM10 and miR-23b were detected by quantitative RT-PCR and western blot analysis. Cytokine production and THP-1 cell apoptosis were measured by enzyme-linked immunosorbent and annexin V apoptosis assays. Bioinformatics analyses and qRT-PCR, western blot, and luciferase reporter assays were performed to identify ADAM10 as the target gene of miR-23b. Results miR-23b expression was downregulated in the peripheral blood mononuclear cells of sepsis patients and LPS-induced THP-1 cells and was negatively correlated with the expression of ADAM10 and inflammatory cytokines. miR-23b regulated ADAM10 expression by directly binding to the 3′-UTR of ADAM10 mRNA. The overexpression of miR-23b alleviated the LPS-stimulated production of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and apoptosis by targeting ADAM10 in THP-1 cells. The inhibitor or knockdown of ADAM10 elicited effects similar to those of miR-23b on THP-1 cells upon LPS stimulation. Conclusions The present study demonstrated that miR-23b negatively regulated LPS-induced inflammatory responses by targeting ADAM10. The molecular regulatory mechanism of miR-23b in ADAM10 expression and sepsis-induced inflammatory consequences may provide potential therapeutic targets for sepsis.
Collapse
|
29
|
Iacob S, Iacob DG. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front Microbiol 2019; 10:1676. [PMID: 31447793 PMCID: PMC6692454 DOI: 10.3389/fmicb.2019.01676] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
The ecosystem of the gut microbiota consists of diverse intestinal species with multiple metabolic and immunologic activities and it is closely connected with the intestinal epithelia and mucosal immune response, with which it builds a complex barrier against intestinal pathogenic bacteria. The microbiota ensures the integrity of the gut barrier through multiple mechanisms, either by releasing antibacterial molecules (bacteriocins) and anti-inflammatory short-chain fatty acids or by activating essential cell receptors for the immune response. Experimental studies have confirmed the role of the intestinal microbiota in the epigenetic modulation of the gut barrier through posttranslational histone modifications and regulatory mechanisms induced by epithelial miRNA in the epithelial lumen. Any quantitative or functional changes of the intestinal microbiota, referred to as dysbiosis, alter the immune response, decrease epithelial permeability and destabilize intestinal homeostasis. Consequently, the overgrowth of pathobionts (Staphylococcus, Pseudomonas, and Escherichia coli) favors intestinal translocations with Gram negative bacteria or their endotoxins and could trigger sepsis, septic shock, secondary peritonitis, or various intestinal infections. Intestinal infections also induce epithelial lesions and perpetuate the risk of bacterial translocation and dysbiosis through epithelial ischemia and pro-inflammatory cytokines. Furthermore, the decline of protective anaerobic bacteria (Bifidobacterium and Lactobacillus) and inadequate release of immune modulators (such as butyrate) affects the release of antimicrobial peptides, de-represses microbial virulence factors and alters the innate immune response. As a result, intestinal germs modulate liver pathology and represent a common etiology of infections in HIV immunosuppressed patients. Antibiotic and antiretroviral treatments also promote intestinal dysbiosis, followed by the selection of resistant germs which could later become a source of infections. The current article addresses the strong correlations between the intestinal barrier and the microbiota and discusses the role of dysbiosis in destabilizing the intestinal barrier and promoting infectious diseases.
Collapse
Affiliation(s)
- Simona Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Balş", Bucharest, Romania
| | - Diana Gabriela Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
30
|
Role of sepsis modulated circulating microRNAs. EJIFCC 2019; 30:128-145. [PMID: 31263389 PMCID: PMC6599195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sepsis is a life-threating condition with dysregulated systemic host response to microbial pathogens leading to disproportionate inflammatory response and multi-organ failure. Various biomarkers are available for the diagnosis and prognosis of sepsis; however, these laboratory parameters may show limitations in these severe clinical conditions. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of post-transcriptional gene silencing. They normally control numerous intracellular events, such as signaling cascade downstream of Toll-like receptors (TLRs) to avoid excessive inflammation after infection. In contrast, abnormal miRNA expression contributes to the development of sepsis correlating with its clinical features and outcomes. Based on recent clinical studies altered levels of circulating miRNAs can act as potential diagnostic and prognostic biomarkers in sepsis. In this review, we summarized the available data about TLR-mediated inflammatory signaling with its intracellular response in immune cells and platelets upon sepsis, which are, at least in part, under the regulation of miRNAs. Furthermore, the role of circulating miRNAs is also described as potential laboratory biomarkers in sepsis.
Collapse
|
31
|
Cao M, Zhang W, Li J, Zhang J, Li L, Liu M, Yin W, Bai X. Inhibition of SIRT1 by microRNA-9, the key point in process of LPS-induced severe inflammation. Arch Biochem Biophys 2019; 666:148-155. [PMID: 30552873 PMCID: PMC7094484 DOI: 10.1016/j.abb.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 02/08/2023]
Abstract
Severe inflammation may lead to multiple organs dysfunction syndrome, which has a high mortality. MicroRNA is found participated in this process. In this study we developed a lipopolysaccharide-induced inflammation cell model on macrophages and a lipopolysaccharide-induced inflammation mouse model. It was found that during inflammation, microRNA-9 was increased, accompanied with the up-regulation of pro-inflammatory cytokines and anti-inflammatory cytokines. Down-regulation of microRNA-9 inhibited the up-regulation of inflammatory cytokines, promoted the up-regulation of anti-inflammatory cytokines and induced the remission of organ damage, showing a protective effect in inflammation. Bioinformatics analysis combined with luciferase reporter assay showed that SIRT1 was the target gene of microRNA-9. Transfection of microRNA-9 inhibitor could increase the level of SIRT1 and decrease the activation of NF-κB pathway in macrophages. Myeloid specific sirt1 knockout mice were included and we found that lack of SIRT1 in mice macrophages led to aggravated inflammation, cell apoptosis and organ injury, and eliminated the protective property of microRNA-9 inhibitor. In conclusion, we demonstrated that inhibition of microRNA-9 could alleviate inflammation through the up-regulation of SIRT1 and then suppressed the activation of NF-κB pathway. This is a meaningful explore about the specific mechanism of microRNA-9 in inflammation.
Collapse
Affiliation(s)
- Mengyuan Cao
- Department of Emergency, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Junjie Li
- Department of Emergency, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Lincheng Li
- Cadet Brigade, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Mingchuan Liu
- Cadet Brigade, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
32
|
TNFAIP3, TNIP1, and MyD88 Polymorphisms Predict Septic-Shock-Related Death in Patients Who Underwent Major Surgery. J Clin Med 2019; 8:jcm8030283. [PMID: 30813592 PMCID: PMC6463255 DOI: 10.3390/jcm8030283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/29/2022] Open
Abstract
Background: In many immune-related diseases, inflammatory responses and several clinical outcomes are related to increased NF-κB activity. We aimed to evaluate whether SNPs related to the NF-κB signaling pathway are associated with higher susceptibility to infection, septic shock, and septic-shock-related death in European patients who underwent major surgery. Methods: We performed a case-control study on 184 patients with septic shock and 212 with systemic inflammatory response syndrome, and a longitudinal substudy on septic shock patients. Thirty-three SNPs within genes belonging to or regulating the NF-κB signaling pathway were genotyped by Agena Bioscience’s MassARRAY platform. Results: No significant results were found for susceptibility to infection and septic shock in the multivariate analysis after adjusting for multiple comparisons. Regarding septic-shock-related death, patients with TNFAIP3 rs6920220 AA, TNIP1 rs73272842 AA, TNIP1 rs3792783 GG, and TNIP1 rs7708392 CC genotypes had the highest risk of septic-shock-related death in the first 28 and 90 days. Also, the MyD88 rs7744 GG genotype was associated with a higher risk of death during the first 90 days. Haplotype analysis shows us that patients with the TNIP1 GAG haplotype (composed of rs73272842, rs3792783, and rs7708392) had a lower risk of death in the first 28 days and the TNIP1 AGC haplotype was associated with a higher risk of death in the first 90 days. Conclusions: The SNPs in the genes TNFAIP3, TNIP1, and MyD88 were linked to the risk of septic-shock-related death in patients who underwent major surgery.
Collapse
|
33
|
Lu H, Wen D, Wang X, Gan L, Du J, Sun J, Zeng L, Jiang J, Zhang A. Host genetic variants in sepsis risk: a field synopsis and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:26. [PMID: 30683156 PMCID: PMC6347778 DOI: 10.1186/s13054-019-2313-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 01/07/2023]
Abstract
Background Published data revealed that host genetic variants have a substantial influence on sepsis susceptibility. However, the results have been inconsistent. We aimed to systematically review the published studies and quantitatively evaluate the effects of these variants on the risk of sepsis. Methods We searched the PubMed, EMBASE, Medline, Web of Knowledge, and HuGE databases to identify studies that investigated the associations between genetic variants and sepsis risk. Then, we conducted meta-analyses of the associations for genetic variants with at least three study populations and applied the Venice criteria to assess the association result credibility. Results A literature search identified 349 eligible articles that investigated 405 variants of 172 distinct genes. We performed 204 primary and 185 subgroup meta-analyses for 76 variants of 44 genes. The results showed that 29 variants of 23 genes were significantly associated with the risk of sepsis, including 8 variants of pattern recognition receptors (PRRs), 14 variants of cytokines, one variant of an immune-related gene and 6 variants of other genes. Furthermore, the cumulative epidemiological evidence of a significant association between each variant and the risk of sepsis was classified as strong or moderate for 18 variants. For the 329 variants with fewer than three study populations, 63 variants of 48 genes have been reported to be significantly associated with the risk of sepsis in a systematic review. Conclusion We identified several genetic variants that could influence the susceptibility to sepsis by systematic review and meta-analysis. This study provides a comprehensive overview of the genetic architecture of variants involved in sepsis susceptibility and novel insight that may affect personalized targeted treatment in the future clinical management of sepsis. Electronic supplementary material The online version of this article (10.1186/s13054-019-2313-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongxiang Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Dalin Wen
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Xu Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.,Department of Emergency Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Lebin Gan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.,Department of Emergency Surgery, The Affiliated Hospital, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Jianhui Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.
| | - Anqiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
34
|
Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, Bratu T, Popoiu CM, Nitu R, Dragomir T, AAbed HIM, Ivan MV. MicroRNA Expression is Associated with Sepsis Disorders in Critically Ill Polytrauma Patients. Cells 2018; 7:E271. [PMID: 30551680 PMCID: PMC6316368 DOI: 10.3390/cells7120271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
A critically ill polytrauma patient is one of the most complex cases to be admitted to the intensive care unit, due to both the primary traumatic complications and the secondary post-traumatic interactions. From a molecular, genetic, and epigenetic point of view, numerous biochemical interactions are responsible for the deterioration of the clinical status of a patient, and increased mortality rates. From a molecular viewpoint, microRNAs are one of the most complex macromolecular systems due to the numerous modular reactions and interactions that they are involved in. Regarding the expression and activity of microRNAs in sepsis, their usefulness has reached new levels of significance. MicroRNAs can be used both as an early biomarker for sepsis, and as a therapeutic target because of their ability to block the complex reactions involved in the initiation, maintenance, and augmentation of the clinical status.
Collapse
Affiliation(s)
- Alexandru Florin Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Dorel Sandesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Marius Papurica
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Bratu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Calin Marius Popoiu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Dragomir
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Hazzaa I M AAbed
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Mihaela Viviana Ivan
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| |
Collapse
|
35
|
Pan Y, Wang J, Xue Y, Zhao J, Li D, Zhang S, Li K, Hou Y, Fan H. GSKJ4 Protects Mice Against Early Sepsis via Reducing Proinflammatory Factors and Up-Regulating MiR-146a. Front Immunol 2018; 9:2272. [PMID: 30337925 PMCID: PMC6179039 DOI: 10.3389/fimmu.2018.02272] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023] Open
Abstract
Sepsis, defined as life-threatening organ dysfunction, is one of the most common causes of mortality in intensive care units with limited therapeutic options. However, the mechanism underlying the regulation of epigenetics on sepsis remains largely undefined. Here we showed that JMJD3, the histone lysine demethylase, played a critical role in the epigenetic regulation of innate immunity during early sepsis. Pharmacological inhibition of JMJD3 by GSKJ4 protected mice against early septic death and reduced pro-inflammatory cytokine interleukin-1β (IL-1β) production as well as IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) expression. Interestingly, GSKJ4 up-regulated the transcription of anti-inflammatory microRNA-146a (miR-146a) in peritoneal macrophages from septic mice. Mechanistically, JMJD3 negatively regulated the transcription of miR-146a via its demethylation of H3K27me3 on the promoter of miR-146a. Moreover, the transcription of miR-146a was positively regulated by nuclear factor-κB (NF-κB) p65. Inhibition of NF-κB p65 promoted JMJD3 binding to miR-146a promoter and decreased the tri-methylation level of H3K27, while the inhibition of JMJD3 did not affect the recruitment of NF-κB p65 to miR-146a promoter. These results highlight an epigenetic mechanism by which JMJD3 was inhibited by NF-κB p65 from binding to miR-146a promoter to promote the anti-inflammatory response. Taken together, our findings uncover a key role for JMJD3 in modulating the miR-146a transcription and shed light on the JMJD3 inhibitors could be potential therapeutic agents for early sepsis therapy.
Collapse
Affiliation(s)
- Yuchen Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jiali Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yaxian Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jiaojiao Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Shaolong Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Kuanyu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yayi Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
36
|
Naidoo P, Naidoo RN, Ramkaran P, Muttoo S, Asharam K, Chuturgoon AA. Maternal miRNA-146a G/C rs2910164 variation, HIV/AIDS and nitrogen oxide pollution exposure collectively affects foetal growth. Hum Exp Toxicol 2018; 38:82-94. [PMID: 29896975 DOI: 10.1177/0960327118781902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE: Nitrogen oxide (NOx) pollution and human immunodeficiency virus (HIV)/AIDS intensify inflammation during pregnancy and linked with adverse birth outcomes (ABOs). MicroRNA (miRNA)-146a plays a crucial role in regulating inflammation in the NF-κB pathway. The G/C rs2910164 dampens miRNA-146a activity and linked with inflammatory diseases. The present study investigated whether HIV/AIDS and NOx exposure throughout pregnancy further intensifies ABO in Black South African women genotyped for the rs2910164. METHODS: Pregnant women ( n = 300) were subdivided into low, medium and high NOx exposure groups, genotyped for the miRNA-146a G/C rs2910164 using polymerase chain reaction-restriction fragment length polymorphism, and further stratified based on HIV status. RESULTS: Unstratified data (HIV+ and HIV- mothers combined): Mothers from the high NOx group with the variant C-allele had low blood iron levels ( p = 0.0238), and had babies with reduced birthweights ( p = 0.0283). As NOx increased, the prevalence of preterm birth and low birth weight also increased in mothers with the variant C-allele versus wildtype G-allele. HIV-infected mothers: In all NOx exposure groups, mothers with the variant C-allele had higher systolic blood pressure (low: p = 0.0386, medium: p = 0.0367 and high: p = 0.0109) and had babies with lower Appearance, Pulse, Grimace, Activity and Respiration scores at 1 min (low: p = 0.0190, medium: p = 0.0301 and high: p = 0.0361). CONCLUSION: Maternal rs2910164 variant C-allele, NOx pollution and HIV/AIDS might collectively play a role in intensifying gestational hypertension and ABO.
Collapse
Affiliation(s)
- P Naidoo
- 1 Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, Durban, South Africa
| | - R N Naidoo
- 2 Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa
| | - P Ramkaran
- 1 Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, Durban, South Africa
| | - S Muttoo
- 2 Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa
| | - K Asharam
- 2 Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa
| | - A A Chuturgoon
- 1 Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
37
|
Alipoor B, Ghaedi H, Meshkani R, Omrani MD, Sharifi Z, Golmohammadi T. The rs2910164 variant is associated with reduced miR-146a expression but not cytokine levels in patients with type 2 diabetes. J Endocrinol Invest 2018; 41:557-566. [PMID: 29058209 DOI: 10.1007/s40618-017-0766-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Previous reports have demonstrated that genetic variations in microRNAs regulome could affect microRNAs-mediated regulation. Therefore, in the present study we were aimed at (1) comparison of microRNA 146-a (miR-146a) peripheral blood mononuclear cells (PBMCs) and plasma levels between diabetic patients and controls, and (2) investigating the possible association of rs2910164 with miR-146a and its related target genes expression and also serum cytokine levels. METHODS The study population consisted of 60 subjects including 30 type 2 diabetes (T2D) patients and 30 controls with determined genotypes for rs2910164. The RNA expression levels were determined by real-time PCR. Moreover, TNF-α, IL-6, IL-10 and IL-1β serum levels were measured using ELISA method. RESULTS Our results showed that the miR-146a expression levels were significantly decreased in PBMCs (P = 0.004) and plasma (P = 0.008) samples of patients with T2D compared to healthy participants. In addition, we observed that IRAK1 mRNA expression-but not TLR4, TRAF6 and NFĸB-was significantly increased in patients with T2D compared to controls (P = 0.028). The relative expression levels of miR-146a in plasma and PBMCs samples of diabetic patients with the rs2910164 GG genotypes were significantly higher than that in CC (P < 0.05). Moreover, no significant differences were found in miR-146a targets and cytokine levels between the rs2910164 different genotypes. CONCLUSION Our study demonstrated that miR-146a circulating levels were significantly elevated in controls compared with T2D patients. In addition, we identified that rs2910164-C allele is associated with reduced expression levels of the miR-146a but not its mRNAs targets and cytokine levels in diabetic patients.
Collapse
Affiliation(s)
- B Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - H Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - M D Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - T Golmohammadi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Maharaj AB, Naidoo P, Ghazi T, Abdul NS, Dhani S, Docrat TF, Ramkaran P, Tak PP, de Vries N, Chuturgoon AA. MiR-146a G/C rs2910164 variation in South African Indian and Caucasian patients with psoriatic arthritis. BMC MEDICAL GENETICS 2018; 19:48. [PMID: 29587639 PMCID: PMC5870474 DOI: 10.1186/s12881-018-0565-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Psoriasis and psoriatic arthritis (PsA) are inflammatory associated autoimmune disorders. MicroRNA (miR)-146a plays a crucial role in regulating inflammation. A single nucleotide polymorphism in the miR-146a gene (rs2910164), aberrantly alters its gene expression and linked with the pathogenesis of several disorders, including psoriasis and PsA. In South Africa, psoriasis and PsA are extremely rare in the indigenous African population and most common in both the Indian and Caucasian population. The aim of this study was to investigate whether the miR-146a rs2910164 contributes towards psoriasis and PsA development in South African Indian and Caucasian patients. METHODS South African Indian (n = 84) and Caucasian (n = 32) PsA patients (total n = 116) and healthy control subjects (Indian: n = 62 and Caucasian: n = 38; total n = 100) were recruited in the study. DNA was extracted from whole blood taken from all subjects, and genotyped for the miR-146a rs2910164 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Data for laboratory parameters were obtained from pathology reports. The consulting rheumatologist collected all other clinical data. RESULTS Unstratified data (Caucasians + Indians): A significant decrease in C-reactive protein (CRP) levels in PsA patients was observed (CRP monitored at inclusion vs. after 6 months of treatment) (18.95 ± 2.81 mg/L vs. 9.68 ± 1.32 mg/L, p = 0.0011). The miR-146a rs2910164 variant C-allele frequency in PsA patients was significantly higher vs. healthy controls (35.78% vs. 26% respectively, p = 0.0295, OR = 1.59 95% CI 1.05-2.40). Stratified data (Indians): The variant C-allele frequency in Indian PsA patients was significantly higher vs. healthy Indian controls (35.71% vs. 22.58%, p = 0.0200, OR = 1.91 95% CI 1.13-3.22). Stratified data (Caucasians): The variant C-allele frequency distribution between Caucasian PsA patients and healthy Caucasian controls was similar. CONCLUSION The rs2910164 variant C-allele may play a role in the progression of PsA in the South African Indian population. The main limitation in this study was the small sample size in the case-control cohorts, with a low overall statistical power (post-hoc power analysis = 19%).
Collapse
Affiliation(s)
- Ajesh B Maharaj
- Department of Internal Medicine, Prince Mshiyeni Memorial Hospital and School of Clinical Medicine, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Pragalathan Naidoo
- School of Laboratory Medicine and Medical Sciences, Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, George Campbell Building - South Entrance, 3rd Floor, King George V Avenue, Howard College Campus, Durban, 4001, South Africa
| | - Terisha Ghazi
- School of Laboratory Medicine and Medical Sciences, Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, George Campbell Building - South Entrance, 3rd Floor, King George V Avenue, Howard College Campus, Durban, 4001, South Africa
| | - Naeem S Abdul
- School of Laboratory Medicine and Medical Sciences, Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, George Campbell Building - South Entrance, 3rd Floor, King George V Avenue, Howard College Campus, Durban, 4001, South Africa
| | - Shanel Dhani
- School of Laboratory Medicine and Medical Sciences, Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, George Campbell Building - South Entrance, 3rd Floor, King George V Avenue, Howard College Campus, Durban, 4001, South Africa
| | - Taskeen F Docrat
- School of Laboratory Medicine and Medical Sciences, Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, George Campbell Building - South Entrance, 3rd Floor, King George V Avenue, Howard College Campus, Durban, 4001, South Africa
| | - Prithiksha Ramkaran
- School of Laboratory Medicine and Medical Sciences, Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, George Campbell Building - South Entrance, 3rd Floor, King George V Avenue, Howard College Campus, Durban, 4001, South Africa
| | - Paul-Peter Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Niek de Vries
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Anil A Chuturgoon
- School of Laboratory Medicine and Medical Sciences, Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, George Campbell Building - South Entrance, 3rd Floor, King George V Avenue, Howard College Campus, Durban, 4001, South Africa.
| |
Collapse
|
39
|
Montoya-Ruiz C, Jaimes FA, Rugeles MT, López JÁ, Bedoya G, Velilla PA. Variants in LTA, TNF, IL1B and IL10 genes associated with the clinical course of sepsis. Immunol Res 2017; 64:1168-1178. [PMID: 27592234 DOI: 10.1007/s12026-016-8860-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to explore the association between some SNPs of the TNF, LTA, IL1B and IL10 genes with cytokine concentrations and clinical course in Colombian septic patients. We conducted a cross-sectional study to genotype 415 septic patients and 205 patients without sepsis for the SNPs -308(G/A) rs1800629 of TNF; +252 (G/A) rs909253 of LTA; -511(A/G) rs16944 and +3953(C/T) rs1143634 of IL1B; and -1082(A/G) rs1800896, -819(C/T) rs1800871 and -592(C/A) rs1800872 of IL10. The association of theses SNPs with the following parameters was evaluated: (1) the presence of sepsis; (2) severity and clinical outcomes; (3) APACHE II and SOFA scores; and (4) procalcitonin, C-reactive protein, tumor necrosis factor, lymphotoxin alpha, interleukin 1 beta and interleukin 10 plasma concentrations. We found an association between the SNP LTA +252 with the development of sepsis [OR 1.29 (1.00-1.68)]; the SNP IL10 -1082 with sepsis severity [OR 0.53 (0.29-0.97)]; the TNF -308 with mortality [OR 0.33 (0.12-0.95)]; and the IL10 -592 and IL10 -1082 with admission to the intensive care unit (ICU) [OR 3.36 (1.57-7.18)] and [OR 0.18 (0.04-0.86)], respectively. None of the SNPs were associated with cytokine levels, procalcitonin and C-reactive protein serum concentrations, nor with APACHE II and SOFA scores. Our results suggest that these genetic variants play an important role in the development of sepsis and its clinical course.
Collapse
Affiliation(s)
- Carolina Montoya-Ruiz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Fabián A Jaimes
- Grupo Académico de Epidemiologia Clínica, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Departamento de Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Unidad de Investigaciones, Hospital Pablo Tobón Uribe Medellín, Calle 78B No. 69-240, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan Álvaro López
- Escuela de Microbiología, Grupo Inmunodeficiencias Primarias-Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Gabriel Bedoya
- Grupo Genética Molecular, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Paula A Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia. .,School of Medicine, University of Antioquia, Carrera 53 No. 61-30 Lab. 532, Sede de Investigación Universitaria - SIU, Medellín, Colombia.
| |
Collapse
|
40
|
Role of microRNAs in sepsis. Inflamm Res 2017; 66:553-569. [PMID: 28258291 DOI: 10.1007/s00011-017-1031-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
|
41
|
Venugopal P, Lavu V, RangaRao S, Venkatesan V. Evaluation of a Panel of Single-Nucleotide Polymorphisms in miR-146a and miR-196a2 Genomic Regions in Patients with Chronic Periodontitis. Genet Test Mol Biomarkers 2017; 21:228-235. [PMID: 28384038 DOI: 10.1089/gtmb.2016.0358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Periodontitis is an inflammatory disease caused by bacterial triggering of the host immune-inflammatory response, which in turn is regulated by microRNAs (miRNA). Polymorphisms in the miRNA pathways affect the expression of several target genes such as tumor necrosis factor-α and interleukins, which are associated with progression of disease. OBJECTIVE The objective of this study was to identify the association between the MiR-146a single nucleotide polymorphisms (SNPs) (rs2910164, rs57095329, and rs73318382), the MiR-196a2 (rs11614913) SNP and chronic periodontitis. METHODS Genotyping was performed for the MiR-146a (rs2910164, rs57095329, and rs73318382) and the MiR-196a2 (rs11614913) polymorphisms in 180 healthy controls and 190 cases of chronic periodontitis by the direct Sanger sequencing technique. The strength of the association between the polymorphisms and chronic periodontitis was evaluated using logistic regression analysis. Haplotype and linkage analyses among the polymorphisms was performed. Multifactorial dimensionality reduction was performed to determine epistatic interaction among the polymorphisms. RESULTS The MiR-196a2 polymorphism revealed a significant inverse association with chronic periodontitis. Haplotype analysis of MiR-146a and MiR-196a2 polymorphisms revealed 13 different combinations, of which 5 were found to have an inverse association with chronic periodontitis. CONCLUSION The present study has demonstrated a significant inverse association of MiR-196a2 polymorphism with chronic periodontitis.
Collapse
Affiliation(s)
- Priyanka Venugopal
- 1 Department of Human Genetics, Sri Ramachandra University , Chennai, India
| | - Vamsi Lavu
- 2 Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| | - Suresh RangaRao
- 2 Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| | | |
Collapse
|
42
|
Early Prediction of Sepsis Incidence in Critically Ill Patients Using Specific Genetic Polymorphisms. Biochem Genet 2016; 55:193-203. [PMID: 27943002 DOI: 10.1007/s10528-016-9785-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023]
Abstract
Several diagnostic methods for the evaluation and monitoring were used to find out the pro-inflammatory status, as well as incidence of sepsis in critically ill patients. One such recent method is based on investigating the genetic polymorphisms and determining the molecular and genetic links between them, as well as other sepsis-associated pathophysiologies. Identification of genetic polymorphisms in critical patients with sepsis can become a revolutionary method for evaluating and monitoring these patients. Similarly, the complications, as well as the high costs associated with the management of patients with sepsis, can be significantly reduced by early initiation of intensive care.
Collapse
|
43
|
Ho J, Chan H, Wong SH, Wang MHT, Yu J, Xiao Z, Liu X, Choi G, Leung CCH, Wong WT, Li Z, Gin T, Chan MTV, Wu WKK. The involvement of regulatory non-coding RNAs in sepsis: a systematic review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:383. [PMID: 27890015 PMCID: PMC5125038 DOI: 10.1186/s13054-016-1555-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Background Sepsis coincides with altered gene expression in different tissues. Accumulating evidence has suggested that microRNAs, long non-coding RNAs, and circular RNAs are important molecules involved in the crosstalk with various pathways pertinent to innate immunity, mitochondrial functions, and apoptosis. Methods We searched articles indexed in PubMed (MEDLINE), EMBASE and Europe PubMed Central databases using the Medical Subject Heading (MeSH) or Title/Abstract words (“microRNA”, “long non-coding RNA”, “circular RNA”, “sepsis” and/or “septic shock”) from inception to Sep 2016. Studies investigating the role of host-derived microRNA, long non-coding RNA, and circular RNA in the pathogenesis of and as biomarkers or therapeutics in sepsis were included. Data were extracted in terms of the role of non-coding RNAs in pathogenesis, and their applicability for use as biomarkers or therapeutics in sepsis. Two independent researchers assessed the quality of studies using a modified guideline from the Systematic Review Center for Laboratory animal Experimentation (SYRCLE), a tool based on the Cochrane Collaboration Risk of Bias tool. Results Observational studies revealed dysregulation of non-coding RNAs in septic patients. Experimental studies confirmed their crosstalk with JNK/NF-κB and other cellular pathways pertinent to innate immunity, mitochondrial function, and apoptosis. Of the included studies, the SYRCLE scores ranged from 3 to 7 (average score of 4.55). This suggests a moderate risk of bias. Of the 10 articles investigating non-coding RNAs as biomarkers, none of them included a validation cohort. Selective reporting of sensitivity, specificity, and receiver operating curve was common. Conclusions Although non-coding RNAs appear to be good candidates as biomarkers and therapeutics for sepsis, their differential expression across tissues complicated the process. Further investigation on organ-specific delivery of these regulatory molecules may be useful. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1555-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffery Ho
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Hung Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Sunny H Wong
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China. .,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China.
| | - Maggie H T Wang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Gordon Choi
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Czarina C H Leung
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Wai T Wong
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Zheng Li
- Department of Orthopedics Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Tony Gin
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China. .,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China.
| |
Collapse
|
44
|
Garo LP, Murugaiyan G. Contribution of MicroRNAs to autoimmune diseases. Cell Mol Life Sci 2016; 73:2041-51. [PMID: 26943802 PMCID: PMC11108434 DOI: 10.1007/s00018-016-2167-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs are a class of evolutionarily conserved, short non-coding RNAs that post-transcriptionally modulate the expression of multiple target genes. They are implicated in almost every biological process, including pathways involved in immune homeostasis, such as immune cell development, central and peripheral tolerance, and T helper cell differentiation. Alterations in miRNA expression and function can lead to major dysfunction of the immune system and mediate susceptibility to autoimmune disease. Here, we discuss the role of miRNAs in the maintenance of immune tolerance to self-antigens and the gain or loss of miRNA functions on tissue inflammation and autoimmunity.
Collapse
Affiliation(s)
- Lucien P Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
45
|
Zhong H, Cai Y, Cheng J, Cai D, Chen L, Su C, Li K, Chen P, Xu J, Cui L. Apolipoprotein E Epsilon 4 Enhances the Association between the rs2910164 Polymorphism of miR-146a and Risk of Atherosclerotic Cerebral Infarction. J Atheroscler Thromb 2016; 23:819-29. [PMID: 26875519 DOI: 10.5551/jat.32904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To analyse the relationship between two potentially functional single-nucleotide polymorphisms (SNPs) of the miR-146a gene (rs2910164 and rs57095329) and the risk of atherosclerotic cerebral infarction (ACI). METHODS A total of 297 patients with ACI and 300 matched healthy individuals were enrolled in the study. The miR-146a polymorphism was detected using the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS A significant difference in the C allele frequency at rs2910164 (p=0.028) was noted between patients with ACI and control subjects. In contrast, the genotype and allele frequencies of rs57095329 were not statistically associated with ACI. In addition, the decreased expression of miR-146a was significantly more frequent in ACI patients who were ApoEε4 (+) carriers (p=0.0233), and rs2910164 G>C was intimately associated with the ApoEε4-containing genotype in patients compared with the ApoEε4 (-) carriers (p=0.0323). CONCLUSIONS Our findings indicated that the C allele of rs2910164 miR-146a is an important risk factor for ACI, and ApoEε4 may function through attenuating miR-146a expression to enhance ACI susceptibility. This study provides new information about the possible relationship between miR-146a and ApoEε4 in the development of ACI, with potentially important therapeutic implications.
Collapse
Affiliation(s)
- Huidong Zhong
- Department of Neurosurgery, Affiliated second Hospital, Guangdong Medical University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Søndergaard ES, Alamili M, Coskun M, Gögenur I. MicroRNA's are novel biomarkers in sepsis – A systematic review. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2015. [DOI: 10.1016/j.tacc.2015.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
MiR-146b Mediates Endotoxin Tolerance in Human Phagocytes. Mediators Inflamm 2015; 2015:145305. [PMID: 26451077 PMCID: PMC4584235 DOI: 10.1155/2015/145305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 01/06/2023] Open
Abstract
A proper regulation of the innate immune response is fundamental to keep the immune system in check and avoid a chronic status of inflammation. As they act as negative modulators of TLR signaling pathways, miRNAs have been recently involved in the control of the inflammatory response. However, their role in the context of endotoxin tolerance is just beginning to be explored. We here show that miR-146b is upregulated in human monocytes tolerized by LPS, IL-10, or TGFβ priming and demonstrate that its transcription is driven by STAT3 and RUNX3, key factors downstream of IL-10 and TGFβ signaling. Our study also found that IFNγ, known to revert LPS tolerant state, inhibits miR-146b expression. Finally, we provide evidence that miR-146b levels have a profound effect on the tolerant state, thus candidating miR-146b as a molecular mediator of endotoxin tolerance.
Collapse
|
48
|
Oner T, Yenmis G, Tombulturk K, Cam C, Kucuk OS, Yakicier MC, Dizman D, Sultuybek GK. Association of Pre-miRNA-499 rs3746444 and Pre-miRNA-146a rs2910164 Polymorphisms and Susceptibility to Behcet's Disease. Genet Test Mol Biomarkers 2015; 19:424-30. [DOI: 10.1089/gtmb.2015.0016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tuba Oner
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Guven Yenmis
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kubra Tombulturk
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Cansu Cam
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ozlem Su Kucuk
- Department of Dermatological and Venereal Diseases, Bezmialem Medical Faculty, Bezmialem University, Istanbul, Turkey
| | - Mustafa Cengiz Yakicier
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem University, Istanbul, Turkey
| | - Didem Dizman
- Department of Dermatological and Venereal Diseases, Bezmialem Medical Faculty, Bezmialem University, Istanbul, Turkey
| | - Gonul Kanıgur Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
49
|
Xu HY, Wang ZY, Chen JF, Wang TY, Wang LL, Tang LL, Lin XY, Zhang CW, Chen BC. Association between ankylosing spondylitis and the miR-146a and miR-499 polymorphisms. PLoS One 2015; 10:e0122055. [PMID: 25836258 PMCID: PMC4383612 DOI: 10.1371/journal.pone.0122055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/06/2015] [Indexed: 01/07/2023] Open
Abstract
miRNAs are small, non-coding RNAs that regulate the expression of multiple target genes at the post-transcriptional level. Single-nucleotide polymorphisms (SNPs) in miRNA sequences may alter miRNA expression and have been implicated in the pathogenesis of multiple forms of arthritis, including rheumatoid arthritis (RA) and osteoarthritis. The present study explored the association between ankylosing spondylitis (AS) and two single nucleotide polymorphisms (SNPs), miR-146a rs2910164G>C and miR-499 rs3746444T>C, in a Han Chinese population. A case-control study consisting of 102 subjects with AS and 105 healthy controls was designed. The two miRNA SNPs were identified by direct sequencing. Subsequently, their gene and genotype frequencies were compared with healthy controls. A significant difference was observed in the miR-146a rs2910164G>C SNP. The frequency of the G allele was markedly higher in the AS patients than in the healthy controls (P = 0.005, Pc = 0.01, OR = 1.787), and the frequency of the GG genotype was higher in AS patients than in controls (P = 0.014, Pc = 0.042, OR = 2.516). However, no significant association was found between the miR-499 rs3746444T>C variant and susceptibility to AS. This is the first study to address the association between the miR-146a rs2910164G>C and miR-499 rs3746444T>C polymorphisms and AS, and it suggests a potential pathogenic factor for AS. Further studies are needed to validate our findings in a larger series, as well as in other ethnic backgrounds.
Collapse
Affiliation(s)
- Hui Ying Xu
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhang Yang Wang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jing Feng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tian Yang Wang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ling Ling Wang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Li Li Tang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian-yang Lin
- Injury Orthopaedics of Traditional Chinese medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chun-wu Zhang
- Injury Orthopaedics of Traditional Chinese medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- * E-mail:
| | - Bi-cheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
50
|
Cui L, Tao H, Wang Y, Liu Z, Xu Z, Zhou H, Cai Y, Yao L, Chen B, Liang W, Liu Y, Cheng W, Liu T, Ma G, Li Y, Zhao B, Li K. A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency. Seizure 2015; 27:60-5. [DOI: 10.1016/j.seizure.2015.02.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 01/06/2023] Open
|