1
|
Shuai F, Yin Y, Yao Y, Deng L, Wen Y, Zhao H, Han X. A nucleoside-based supramolecular hydrogel integrating localized self-delivery and immunomodulation for periodontitis treatment. Biomaterials 2025; 316:123024. [PMID: 39705922 DOI: 10.1016/j.biomaterials.2024.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Periodontitis is a highly prevalent oral disease characterized by bacterial-induced hyperactivation of the host immune system, leading to a sustained inflammatory response and osteoclastic activity, which ultimately results in periodontal destruction. In this work, an immunomodulatory supramolecular hydrogel for the topical treatment of periodontitis was synthesized using a simple one-pot method. This phenylboronate ester-based 8AGPB hydrogel exhibited excellent stability, self-healing properties, injectability, and biocompatibility. During degradation, the 8AGPB hydrogel releases immunomodulatory agent 8-aminoguanosine (8AG), which regulates MAPK and NF-κB signaling pathways by modulation of second messengers in macrophages. In combination with 1,4-phenylenediboronic acid (PBA), which possesses antioxidant properties, 8AG effectively inhibits ROS production and oxidative damage in LPS-stimulated macrophages, lowering the M1/M2 macrophage polarization ratio and reducing the secretion of pro-inflammatory factors. In an experimental periodontitis model using C57BL/6 mice, periodontal injection of the 8AGPB hydrogel reduced inflammatory infiltration and osteoclastic activity through immunomodulation and inhibition of osteoclast differentiation, thereby ameliorating periodontal destruction during periodontitis progression. Overall, the 8AGPB supramolecular hydrogel, serving as an injectable self-delivery platform for 8AG, may represent a promising novel strategy for periodontitis treatment and offer insights for the development of future topical anti-inflammatory systems.
Collapse
Affiliation(s)
- Fangyuan Shuai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lanzhi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
2
|
Sarmiento-Ordóñez JM, Brito-Samaniego DR, Vásquez-Palacios AC, Pacheco-Quito EM. Association Between Porphyromonas gingivalis and Alzheimer's Disease: A Comprehensive Review. Infect Drug Resist 2025; 18:2119-2136. [PMID: 40308631 PMCID: PMC12043021 DOI: 10.2147/idr.s491628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/13/2025] [Indexed: 05/02/2025] Open
Abstract
Background Periodontitis has long been linked to various inflammatory, chronic, and immunological diseases, such as heart disease or diabetes. Recently, there has been increasing scientific interest in the bidirectional relationship that may exist between periodontitis and the presence and progression of Alzheimer's disease (AD), where it is hypothesized that the infiltration of oral microorganisms (mainly Porphyromonas gingivalis) into the bloodstream, which subsequently reaches the brain, causes inflammatory and neurodegenerative processes related to AD. Purpose The purpose of this review is to determine the association between Porphyromonas gingivalis and Alzheimer's disease in older adults. Patients and Methods It was carried out using different databases such as PubMed, Web of Science, among others, of no more than 10 years old focused on older adult patients who have presented periodontitis and Alzheimer's disease. MESH-indexed terms were used, getting 307 articles. After removing 206 duplicates and applying inclusion criteria (language, relevance, and contribution to the study's objectives), 24 articles were selected for analysis. Conclusion Evidence has been found that gingipains produced by P. gingivalis may contribute to the formation of amyloid plaques in the brain and nerve cell damage characteristic of Alzheimer's disease. It has also been observed that P. gingivalis can enter the brain and stimulate a local immune response. Although the association is promising, more research is needed to confirm it and to develop effective treatments. These findings may have significant implications for clinical practice, potentially leading to preventive or therapeutic strategies targeting oral health as a modifiable risk factor for AD. Further research could focus on exploring these pathways and developing targeted interventions.
Collapse
Affiliation(s)
- Jéssica María Sarmiento-Ordóñez
- Unidad Académica de Salud y Bienestar, Facultad de Odontología, Universidad Católica de Cuenca, Cuenca, Ecuador
- Grupo de Investigación Innovación y Desarrollo Farmacéutico en Odontología, Facultad de Odontología, Jefatura de Investigación e Innovación, Universidad Católica de Cuenca, Cuenca, Ecuador
| | | | | | - Edisson-Mauricio Pacheco-Quito
- Unidad Académica de Salud y Bienestar, Facultad de Odontología, Universidad Católica de Cuenca, Cuenca, Ecuador
- Grupo de Investigación Innovación y Desarrollo Farmacéutico en Odontología, Facultad de Odontología, Jefatura de Investigación e Innovación, Universidad Católica de Cuenca, Cuenca, Ecuador
| |
Collapse
|
3
|
Ren F, Zheng S, Luo H, Yu X, Li X, Song S, Bu W, Sun H. Fibroblast derived C3 promotes the progression of experimental periodontitis through macrophage M1 polarization and osteoclast differentiation. Int J Oral Sci 2025; 17:30. [PMID: 40240339 PMCID: PMC12003657 DOI: 10.1038/s41368-025-00361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/18/2025] Open
Abstract
Complement C3 plays a critical role in periodontitis. However, its source, role and underlying mechanisms remain unclear. In our study, by analyzing single-cell sequencing data from mouse model of periodontitis, we identified that C3 is primarily derived from periodontal fibroblasts. Subsequently, we demonstrated that C3a has a detrimental effect in ligature-induced periodontitis. C3ar-/- mice exhibited significantly less destruction of periodontal support tissues compared to wild-type mice, characterized by mild gingival tissue damage and reduced alveolar bone loss. This reduction was associated with decreased production of pro-inflammatory mediators and reduced osteoclast infiltration in the periodontal tissues. Mechanistic studies suggested that C3a could promote macrophage polarization and osteoclast differentiation. Finally, by analyzing single-cell sequencing data from the periodontal tissues of patients with periodontitis, we found that the results observed in mice were consistent with human data. Therefore, our findings clearly demonstrate the destructive role of fibroblast-derived C3 in ligature-induced periodontitis, driven by macrophage M1 polarization and osteoclast differentiation. These data strongly support the feasibility of C3a-targeted interventions for the treatment of human periodontitis.
Collapse
Affiliation(s)
- Feilong Ren
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shize Zheng
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Huanyu Luo
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoyi Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, China
| | - Xianjing Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoyi Song
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Wenhuan Bu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Bineshaq FS, Athanasiou AE, Makrygiannakis MA, Kalfas S, Kaklamanos EG. How Does Allergen Sensitization Affect Orthodontic Tooth Movement-Associated Phenomena? A Systematic Review of Animal Studies. Dent J (Basel) 2025; 13:166. [PMID: 40277496 PMCID: PMC12026435 DOI: 10.3390/dj13040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The immune reactions of patients suffering from chronic allergies and asthma are associated with systemic imbalances that may lead to the overexpression of mediators potentially involved in bone remodeling during orthodontic tooth movement. Aim: The aim of this systematic review was to evaluate the existing evidence from animal studies with regard to the effects of allergen sensitization on the phenomena correlated with orthodontically induced tooth movement. Materials and Methods: This systematic review was based on PRISMA 2020 guidelines. A search without restrictions and hand searching were performed from inception to December 2024. The investigation focused on the impact of allergen sensitization on phenomena associated with orthodontic tooth movement. After the retrieval and selection of relevant studies, data extraction was performed, and the data's risk of bias was evaluated with the SYRCLE's Risk of Bias Tool. Results: From the detected records, the inclusion criteria were met by only three studies. At the beginning of tooth movement, periodontal ligament was found to be more compressed in the stress area and more stretched in the tension area in sensitized animals. The amount of tooth movement after 14 days of force application was also greater. However, there were conflicting outcomes regarding root resorption. The risk of bias in the retrieved studies was assessed as high overall. Conclusions: Despite the fact that existing evidence is not directly related to human beings and is based on a limited number of animal studies, allergen sensitization could potentially influence the phenomena associated with orthodontic tooth movement, and orthodontists should be aware of the relevant implications.
Collapse
Affiliation(s)
- Fatima Saeed Bineshaq
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.B.)
| | - Athanasios E. Athanasiou
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.B.)
- School of Dentistry, European University Cyprus, 2404 Nicosia, Cyprus
| | - Miltiadis A. Makrygiannakis
- School of Dentistry, European University Cyprus, 2404 Nicosia, Cyprus
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotirios Kalfas
- School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios G. Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.S.B.)
- School of Dentistry, European University Cyprus, 2404 Nicosia, Cyprus
- School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Luo J, Chen K, Nong X. Potential regulation of artesunate on bone metabolism through suppressing inflammatory infiltration in type 2 diabetes mellitus. Immunopharmacol Immunotoxicol 2025; 47:147-158. [PMID: 39762719 DOI: 10.1080/08923973.2024.2444953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Osteoimmunology is an emerging field that explores the interplay between bone and the immune system. The immune system plays a critical role in the pathogenesis of diabetes and significantly affects bone homeostasis. Artesunate, a first-line treatment for malaria, is known for its low toxicity and multifunctional properties. Increasing evidence suggests that artesunate possesses anti-inflammatory, immunoregulatory, and osteogenic effects. This review aims to explore the relationship between immune regulation and bone metabolism in type 2 diabetes (T2DM) and to investigate the potential therapeutic application of artesunate. METHODS This review systematically examines literature from PubMed/Medline, Elsevier, Web of Science, Embase, the International Diabetes Federation, and other relevant databases. RESULTS This review synthesizes evidence from multiple sources to delineate the relationship between T lymphocytes and T2DM, the regulation of T lymphocyte subsets in bone metabolism, and the effects of artesunate on both T lymphocytes and bone metabolism. Recent studies suggest a bidirectional regulatory relationship between T2DM and T lymphocytes (CD4+ T and CD8+ T) during the onset and progression of the disease, with inflammatory and anti-inflammatory cytokines serving as key mediators. T lymphocyte subsets and their cytokines play a pivotal role in regulating osteogenesis and osteoclastogenesis in pathological conditions. Furthermore, artesunate has shown promise in modulating inflammatory infiltration and bone metabolism. CONCLUSION The accumulated evidence indicates that artesunate exerts regulatory effects on bone metabolism in T2DM by influencing T lymphocyte differentiation.
Collapse
Affiliation(s)
- Jinghong Luo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kun Chen
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Guo ZY, Yin NN, Li XF, Wang MM, Sui XN, Jiang CD, Xu MH, Jia XE, Fu CJ, Chen TL, Liu X. Exosomes secreted from M2-polarized macrophages inhibit osteoclast differentiation via CYLD. Tissue Cell 2025; 93:102645. [PMID: 39671756 DOI: 10.1016/j.tice.2024.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE Bone resorption mediated by osteoclast differentiation induces the occurrence of bone-related diseases. Macrophages, an origin of osteoclasts, whose M2 type can reduce inflammation-induced bone damage. We aimed to investigate the effect of M2 macrophage-derived exosomes on osteoclast formation and elucidate its underlying mechanism. MATERIALS AND METHODS Exosomes were isolated from M2 macrophages (M2-exo) and were used to treat osteoclast-like cells. Osteoclast formation was evaluated using tartrate-resistant acid phosphatase, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. The molecular mechanism of M2-exo function was analyzed by qRT-PCR, phosphor-kinase array analysis, and Western blotting. RESULTS M2-exo was internalized by osteoclasts and inhibited osteoclast differentiation in vitro. Moreover, CYLD was highly expressed in M2 macrophages and M2-exo-treated osteoclasts, and knockdown of it abrogated the inhibition of osteoclast differentiation caused by M2-exo. Additionally, CYLD suppressed the phosphorylation of STAT3, and STAT3 activator colivelin reversed the inhibition of osteoclast differentiation induced by CYLD overexpression. CONCLUSION M2-exo inhibits osteoclast differentiation via delivering CYLD, which inactivates STAT3 signaling. These findings may provide a novel therapeutic option for bone diseases including periodontitis.
Collapse
Affiliation(s)
- Zi-Yan Guo
- Department of Stomatology, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Nan-Nan Yin
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China
| | - Xiao-Fei Li
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China
| | - Meng-Meng Wang
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China
| | - Xiao-Na Sui
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China
| | - Cai-di Jiang
- Department of Stomatology, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Ming-Hua Xu
- Department of Stomatology, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xiao-E Jia
- Department of Stomatology, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chong-Jian Fu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China.
| | - Tie-Lou Chen
- Department of Periodontal, Military Dental Center, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.
| | - Xin Liu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China.
| |
Collapse
|
7
|
Yasser S, Mohammed AAAR, El-Safty S, Shon A, Al-Gabri RS, Alqutaibi AY, Fouad H, Saleh RG. Comparing the effect of using calcified autogenous nano dentin particles versus micro dentin particles in the healing of mandibular bony defects in New Zealand rabbits. BMC Res Notes 2025; 18:125. [PMID: 40134026 PMCID: PMC11934702 DOI: 10.1186/s13104-025-07191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE This study aimed to compare the regenerative effect of autogenous micro-dentin and nano-dentin particles on bone regeneration in rabbits' mandibular defects. Sixty adult New Zealand rabbits were randomly divided into three groups: a control group, a micro-dentin group, and a nano-dentin group. A critical-sized bony defect was created at the lower border of the mandible. Bone regeneration was evaluated at two, four, and eight weeks using light microscopy, cone beam computed tomography (CBCT) scans, and histomorphometric analysis. RESULTS Nano-dentin significantly enhanced bone density and defect closure, as evidenced by CBCT and histological analyses. At eight weeks, it promoted extensive new bone formation, nearly bridging the defect, with minimal residual graft material compared to the micro-dentin group. Histomorphometric analysis confirmed its superior osteogenic potential, demonstrating enhanced bone regeneration and graft resorption. These findings highlight nano-dentin as a highly effective biomaterial for mandibular bone repair.
Collapse
Affiliation(s)
- Sarah Yasser
- Oral Biology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | | | - Samy El-Safty
- Dental Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Ahmed Shon
- Removable Prosthodontics Department, Faculty of Dental Medicine, AL-Azhar University, Cairo, Egypt
- Dental Department, Al Mouwasat Hospital, Al Madinah Al Munawwarah, Al-Madinah, Saudi Arabia
| | | | - Ahmed Yaseen Alqutaibi
- Prosthodontic Department, Faculty of Dentistry, Ibb University, Ibb, Yemen
- Substitutive Dental Science Department, College of Dentistry, Taibah University, Al-Madinah, Saudi Arabia
| | - Hasnaa Fouad
- Oral Biology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Oral Biology Department, College of Oral and Dental Medicine, Alsalam University, Tanta, Egypt
| | - Reda G Saleh
- Oral Biology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Zhang Z, Liu Y, Yu T, Liu Z. Unraveling the Complex Nexus of Macrophage Metabolism, Periodontitis, and Associated Comorbidities. J Innate Immun 2025; 17:211-225. [PMID: 40058341 PMCID: PMC11968099 DOI: 10.1159/000542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/07/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up. BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up.
Collapse
Affiliation(s)
- Zihan Zhang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,
| | - Tian Yu
- Department of Stomatology, Nanbu Country People's Hospital, Nanchong, China
| | - Zhen Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
9
|
Li M, Li F, Zhu C, Zhang C, Le Y, Li Z, Wan Q. The glycolytic enzyme PKM2 regulates inflammatory osteoclastogenesis by modulating STAT3 phosphorylation. J Biol Chem 2025; 301:108389. [PMID: 40057191 PMCID: PMC11999595 DOI: 10.1016/j.jbc.2025.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Periodontitis is a prevalent chronic inflammatory disease characterized by alveolar bone resorption mediated by osteoclasts. Pyruvate kinase M2 (PKM2), a key enzyme in glycolysis and pyruvate metabolism, has recently been recognized for its regulatory roles beyond metabolism, including gene expression and protein kinase activity. However, its exact role in osteoclastogenesis remains unclear. This study investigates the function of PKM2 in inflammatory osteoclastogenesis and explores its potential as a therapeutic target for periodontitis. Using murine bone marrow-derived macrophages (BMMs) stimulated with lipopolysaccharides (LPS) to mimic inflammatory conditions in vitro, we analyzed PKM2 expression and glycolytic activity during osteoclastogenesis through bioinformatics, tartrate-resistant acid phosphatase (TRAP) staining, phalloidin staining, quantitative real-time PCR (RT-qPCR), and Western blotting. Glycolysis was inhibited using 2-deoxy-D-glucose (2-DG), while TEPP-46 was used to activate PKM2. In a mouse model of periodontitis, the effects of TEPP-46 on alveolar bone loss were evaluated using micro-computed tomography, immunohistochemistry, TRAP staining, and hematoxylin-eosin (HE) staining. The results demonstrated that LPS significantly enhanced osteoclastogenesis and glycolysis, increasing PKM2 expression in osteoclasts. Inhibiting glycolysis with 2-DG suppressed osteoclast formation and osteoclast-related gene expression under inflammatory conditions. TEPP-46 treatment reduced nuclear dimeric PKM2 levels, decreased phosphorylated signal transducer and activator of transcription three (p-STAT3) expression, and inhibited osteoclastogenesis and osteoclast-related gene expression. Co-immunoprecipitation confirmed an interaction between nuclear dimeric PKM2 and p-STAT3. In vivo, TEPP-46 effectively reduced alveolar bone loss by preventing PKM2 nuclear translocation and STAT3 phosphorylation. These findings reveal that PKM2 regulates inflammatory osteoclastogenesis through modulation of glycolysis and STAT3 signaling, highlighting its potential as a therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Mingjuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Feng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chongjie Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yushi Le
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zubing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qilong Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Li H, Zheng F, Tao A, Wu T, Zhan X, Tang H, Cui X, Ma Z, Li C, Jiang J, Wang Y. LncRNA H19 promotes osteoclast differentiation by sponging miR-29c-3p to increase expression of cathepsin K. Bone 2025; 192:117340. [PMID: 39615642 DOI: 10.1016/j.bone.2024.117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND Osteoporosis is a prevalent metabolic bone disease. Osteoporotic fractures can lead to severe functional impairment and increased mortality. Long noncoding RNA H19 has emerged as a pivotal player in bone remodeling, serving both as a biomarker and a regulator. While previous research has elucidated H19's role in promoting osteogenic differentiation through diverse mechanisms, its involvement in osteoclast differentiation remains largely unknown. METHODS In this study, we used lentiviral vectors to stably overexpress or knockdown H19 in RAW264.7 cell lines. Quantitative reverse polymerase chain reaction, Western blot, tartrate resistant acid phosphatase staining and bone resorption assay were performed to assess the level of osteoclast differentiation and bone resorption capacity. And fluorescence in situ hybridization, dual-luciferase reporter and RNA immunoprecipitation were used to explore the specific mechanism of H19 regulating osteoclast differentiation in vitro. Then, ovariectomized osteoporosis models in wild type mice and H19 knockout mice were conducted. And micro-CT analysis, HE staining, and immunohistochemistry were performed to verify the mechanism of H19 regulating osteoclast differentiation in vivo. Bone marrow derived monocytes and bone mesenchymal stem cells were extracted from mice and assayed for osteoclastic and osteogenic-related assays, respectively. RESULTS In vitro, H19 promoted osteoclast differentiation and bone resorption of RAW264.7 cells, while miR-29c-3p inhibited them. Both H19 and cathepsin K were the target genes of miR-29c-3p. In vivo, H19 knockout mice have increased femur bone mineral density, decreased osteoclast formation, and reduced cathepsin K expression. MiR-29c-3p agomir could increase bone mineral density in osteoporotic mice on the premise of H19 knockout. CONCLUSIONS H19 upregulates cathepsin K expression through sponging miR-29c-3p, which promoting osteoclast differentiation and enhancing bone resorption. This underscores the potential of H19 and miR-29c-3p as promising biomarkers for osteoporosis.
Collapse
Affiliation(s)
- Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; National Center of Stomatology & National Clinical Research Center for Oral Diseases, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Anqi Tao
- Department of Pathology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Xinxin Zhan
- Department of Dental Materials & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; Dental Medical Devices Testing Center, Peking University School of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Hongyi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Xinyu Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Zeyun Ma
- Department of VIP service, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
11
|
Lam W, Yao Y, Tang C, Wang Y, Yuan Q, Peng L. Bifunctional mesoporous HMUiO-66-NH 2 nanoparticles for bone remodeling and ROS scavenging in periodontitis therapy. Biomaterials 2025; 314:122872. [PMID: 39383779 DOI: 10.1016/j.biomaterials.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Periodontal bone defects represent an irreversible consequence of periodontitis associated with reactive oxygen species (ROS). However, indiscriminate removal of ROS proves to be counterproductive for tissue repair and insufficient for addressing existing bone defects. In the treatment of periodontitis, it is crucial to rationally alleviate local ROS while simultaneously promoting bone regeneration. In this study, Zr-based large-pore hierarchical mesoporous metal-organic framework (MOF) nanoparticles (NPs) HMUiO-66-NH2 were successfully proposed as bifunctional nanomaterials for bone regeneration and ROS scavenging in periodontitis therapy. HMUiO-66-NH2 NPs demonstrated outstanding biocompatibility both in vitro and in vivo. Significantly, these NPs enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under normal and high ROS conditions, upregulating osteogenic gene expression and mitigating oxidative stress. Furthermore, in vivo imaging revealed a gradual degradation of HMUiO-66-NH2 NPs in periodontal tissues. Local injection of HMUiO-66-NH2 effectively reduced bone defects and ROS levels in periodontitis-induced C57BL/6 mice. RNA sequencing highlighted that differentially expressed genes (DEGs) are predominantly involved in bone tissue development, with notable upregulation in Wnt and TGF-β signaling pathways. In conclusion, HMUiO-66-NH2 exhibits dual functionality in alleviating oxidative stress and promoting bone repair, positioning it as an effective strategy against bone resorption in oxidative stress-related periodontitis.
Collapse
Affiliation(s)
- Waishan Lam
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Salvatori R, Generali L, Bellei E, Bergamini S, Bertoldi C. The Inflammation-Initiating and Resolving Mechanisms and Oxidation: Could Periodontal Therapy and Nutritional Strategy Improve the Systemic Health? A Narrative Review. Food Sci Nutr 2025; 13:e70096. [PMID: 40124109 PMCID: PMC11925718 DOI: 10.1002/fsn3.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Periodontitis (PDS) is one of the most common and crippling systemic diseases. It is a chronic inflammatory condition that leads to the loss of periodontal attachment, resulting in tooth loss. In addition to its effects on oral health and nutrition, PDS is closely linked to other systemic conditions such as diabetes mellitus (DM), cardiovascular diseases (CVD), and rheumatoid arthritis (RA). The active role of inflammation and oxidation in systemic health, as well as their relationship with periodontal therapy, has been investigated. This review explores the evidence on how periodontal therapy and dietary lifestyle can help reduce chronic inflammation, limit oxidation, and prevent related pathologies. Nonsurgical periodontal therapy (NSPT) and nutrition have been extensively discussed as potential contributors to positive clinical outcomes by resolving inflammatory pathogenic pathways. NSPT, foods, and dietary supplements represent therapeutic strategies that address the underlying mechanisms of chronic inflammation and oxidation at various stages. A key finding from this review is that periodontal treatment, in conjunction with nutritional counseling, can improve clinical outcomes in PDS, DM, CVD, and RA. However, for NSPT, nutrition, and dietary composition to be effective, they should be integrated into a sustainable, long-term lifestyle.
Collapse
Affiliation(s)
- Roberta Salvatori
- Department of Medical and Surgical Sciences for Children and AdultsUniversity of Modena and Reggio Emilia School of MedicineModenaItaly
| | - Luigi Generali
- Department, of Surgery, Medicine, Dentistry and Morphological Sciences With Transplant Surgery, Oncology and Regenerative Medicine RelevanceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Elisa Bellei
- Department, of Surgery, Medicine, Dentistry and Morphological Sciences With Transplant Surgery, Oncology and Regenerative Medicine RelevanceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Stefania Bergamini
- Department, of Surgery, Medicine, Dentistry and Morphological Sciences With Transplant Surgery, Oncology and Regenerative Medicine RelevanceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Carlo Bertoldi
- Department, of Surgery, Medicine, Dentistry and Morphological Sciences With Transplant Surgery, Oncology and Regenerative Medicine RelevanceUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
13
|
Zhou K, Chen H, Dong J, Song Z, Sun M. Identification of ferroptosis-related genes in periodontitis through bioinformatics analysis and experimental validation. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102291. [PMID: 39954997 DOI: 10.1016/j.jormas.2025.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Periodontitis is a multifactorial chronic inflammatory disease of periodontal tissues. Ferroptosis is a form of regulated cell death, which is characterized by iron-dependent lipid peroxidation and involved in various inflammatory diseases. This study aims to identify ferroptosis-related genes associated with periodontitis and further validate their relevance through in vitro experiments. METHODS Iron accumulation and localization were detected using Prussian blue staining. Differentially expressed genes in periodontitis were identified from GSE16134 and GSE10334, and intersected with ferroptosis genes to obtain differentially expressed ferroptosis genes (FerDEGs). Functional enrichment analyses of FerDEGs were performed by GO and KEGG. Hub genes were screened through PPI network analysis. The expression of these hub genes in gingival tissues and in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (HGFs) with/without ferrostatin-1 (Fer-1) detected by qRT-PCR and Western Blot. RESULTS Ferroptosis was observed in gingival tissues affected by periodontitis. A total of 24 FerDEGs involved in periodontitis were identified. GO analysis and KEGG analysis highlighted the intrinsic apoptotic signaling pathway and ferroptosis as the top enriched pathways. PPI network analysis identified five hub genes. The mRNA expression levels of hub genes were significantly higher in inflammatory gingival tissues and HGFs stimulated with LPS (P < 0.05). The upregulated expression of PTGS2 and IL6 in HGFs were reversed by Fer-1 (P < 0.05). CONCLUSION This study highlights five ferroptosis-related genes as potential targets for future research into the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Kecong Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, PR China
| | - Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, PR China
| | - Jiachen Dong
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, PR China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, PR China.
| | - Mengjun Sun
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, PR China.
| |
Collapse
|
14
|
Valverde A, George A, Nares S, Naqvi AR. Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res 2025; 60:101-120. [PMID: 39044454 PMCID: PMC11873684 DOI: 10.1111/jre.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Anne George
- Department of Oral BiologyCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Salvador Nares
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
15
|
Chen M, Huang B, Su X. Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair. J Mol Med (Berl) 2025; 103:137-156. [PMID: 39821702 DOI: 10.1007/s00109-025-02513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair. Mesenchymal stem cells (MSCs) represent a potential alternative for the treatment of periodontal bone defects due to their self-renewal and differentiation capabilities. Recent research indicates that MSCs exert their effects primarily through paracrine mechanisms. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) serve as pivotal mediators in intercellular communication, transferring microRNAs (miRNAs), messenger RNAs (mRNAs), proteins, and cytokines to recipient cells, thereby emulating the therapeutic effects of MSCs. In periodontitis, MSC-EVs play a pivotal role in immunomodulation and bone remodeling, thereby facilitating periodontal bone repair. As a cell-free therapy, MSC-EVs demonstrate considerable clinical potential due to their specialized membrane structure, minimal immunogenicity, low toxicity, high biocompatibility, and nanoscale size. This review indicates that MSC-EVs represent a promising approach for periodontitis treatment, with the potential to overcome the limitations of traditional therapies and offer a more effective solution for bone repair in periodontal disease. In this review, we introduce MSC-EVs, emphasizing their mechanisms and clinical applications in periodontal bone repair. It synthesizes recent advances, existing challenges, and future prospects to present up-to-date information and novel techniques for periodontal regeneration and to guide the improvement of MSC-EV therapy in clinical practice.
Collapse
Affiliation(s)
- Mengbing Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Yin C, Fu L, Guo S, Liang Y, Shu T, Shao W, Xia H, Xia T, Wang M. Senescent Fibroblasts Drive FAP/OLN Imbalance Through mTOR Signaling to Exacerbate Inflammation and Bone Resorption in Periodontitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409398. [PMID: 39716898 PMCID: PMC11831441 DOI: 10.1002/advs.202409398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Fibroblast activation protein (FAP), predominantly expressed in activated fibroblasts, plays a key role in inflammatory bone diseases, but its role in periodontitis remains unclear. Accordingly, this study identified a positive association between FAP levels and periodontitis susceptibility using Mendelian randomization analysis. Human and mouse periodontitis tissues show elevated FAP and reduced osteolectin (OLN), an endogenous FAP inhibitor, indicating a FAP/OLN imbalance. Single-cell RNA sequencing revealed gingival fibroblasts (GFs) as the primary FAP and OLN source, with periodontitis-associated GFs showing increased reactive oxygen species, cellular senescence, and mTOR pathway activation. Rapamycin treatment restored the FAP/OLN balance in GFs. Recombinant FAP increased pro-inflammatory cytokine secretion and osteoclast differentiation in macrophages, exacerbating periodontal damage, whereas FAP inhibition reduced macrophage inflammation, collagen degradation, and bone resorption in experimental periodontitis. Therefore, senescent fibroblasts drive the FAP/OLN imbalance through mTOR activation, contributing to periodontitis progression. Consequently, targeting FAP may offer a promising therapeutic strategy for periodontitis.
Collapse
Affiliation(s)
- Chenghu Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Shuling Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Youde Liang
- Department of Stomatology CenterThe People's Hospital of Baoan Shenzhen (The Second Affiliated Hospital of Shenzhen University)ShenzhenGuangdong518081P. R. China
| | - Taizhi Shu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Wenjun Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool & Hospital of StomatologyWuhan UniversityWuhan430079China
| |
Collapse
|
17
|
Choi HY, Kim HJ, Lee JY, Joo JY. Adjunctive Treatment Effect of Non-Thermal Atmospheric Pressure Plasma in Periodontitis-Induced Rats. J Clin Med 2025; 14:896. [PMID: 39941567 PMCID: PMC11818203 DOI: 10.3390/jcm14030896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: As non-thermal atmospheric pressure plasma (NTP) is known to have advantages in application in the medical field, we consider its applicability to periodontitis, a representative chronic inflammatory disease. The purpose of this study was to evaluate the effect of NTP in inhibiting the progression of periodontitis in a rat model when additionally used in scaling and root planing (SRP). Methods: To induce experimental periodontitis in 20 rats, ligatures were placed in the maxillary second molar and lipopolysaccharide from Porphyromonas gingivalis was injected around the teeth. Then, NTP treatment was performed for 2 or 5 min, together with scaling and root planing (SRP). To evaluate alveolar bone loss, micro-computed tomography (micro-CT) analysis and hematoxylin-eosin (H-E) staining were performed. Tartrate-resistant acid phosphatase (TRAP) analysis was performed to compare the number of osteoclasts, while immunohistochemistry (IHC) analysis was performed to determine the expression levels of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG). Enzyme-linked immunosorbent assay (ELISA) analysis was performed for the detection of cytokines (TNF-α, IL-1β, and IL-10) in tissues and sera. Results: When SRP was combined with NTP, alveolar bone loss was decreased, the number of osteoclasts and RANKL expression were decreased, OPG expression was increased, and pro-inflammatory cytokine (TNF-α and IL-1β) levels were significantly decreased. Compared with the NTP treatment for 2 min, when treated for 5 min, less alveolar bone loss, fewer osteoclasts, a lower RANKL expression level, and a higher OPG expression level were observed. Conclusions: This study evaluated the adjunctive treatment effect of NTP in periodontitis-induced rats. Based on the results of this study, we suggest that supplemental NTP treatment may be a good option for non-surgical periodontal treatment; however, further studies are needed to elucidate the mechanism through which NTP suppresses periodontal inflammation.
Collapse
Affiliation(s)
- Hee-Young Choi
- Department of Periodontology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (H.-Y.C.); (H.-J.K.); (J.-Y.L.)
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (H.-Y.C.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| | - Ju-Youn Lee
- Department of Periodontology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (H.-Y.C.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (H.-Y.C.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
18
|
Lv H, Luo H, Tan W, Zhong J, Xiong J, Liu Z, Wu Q, Lin S, Cao K. Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02244-1. [PMID: 39871069 DOI: 10.1007/s10753-025-02244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects. To address the limitations of existing therapies and enhance drug utilization, this study explores the potential of KR as a therapeutic agent for inflammatory bone resorption and delineates its underlying mechanisms. In vitro experiments reveal that KR notably inhibits osteoclastogenesis and reduces the expression of osteoclastic markers. Additionally, KR decreases the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, while downregulating NADPH oxidase 1 (NOX1) and Kelch-like ECH-associated protein 1 (Keap1) to diminish ROS production. Furthermore, KR activates the nuclear factor erythroid 2-related factor 2 (Nrf2), which enhances the activity of heme oxygenase-1 (HO-1) and catalase (CAT), facilitating the clearance of excess ROS. The compound also hinders osteoclast formation and functionality by inhibiting the PI3K/AKT/GSK-3β signaling pathway. Lentiviral knockdown of CAT can partially reverse these effects of KR. Meanwhile, in vivo experiments indicate that KR effectively mitigates bone loss in an LPS-induced inflammatory bone resorption model. In summary, KR is a promising new star in breaking through the limitations of previous drugs and treating inflammatory bone resorption.
Collapse
Affiliation(s)
- Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Wen Tan
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhiming Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qin Wu
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China
| | - Sijian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Kai Cao
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China.
| |
Collapse
|
19
|
Chen H, Zhao Z, Zhang R, Zhang G, Liang X, Xu C, Sun Y, Li Y, Boyer C, Xu FJ. Adaptable Hydrogel with Strong Adhesion of Wet Tissue for Long-Term Protection of Periodontitis Wound. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413373. [PMID: 39568256 DOI: 10.1002/adma.202413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Periodontitis is a severe gum infection characterized by inflammation of the tissues surrounding the teeth. The disease is challenging to manage due to its exposure to a wet and dynamic oral environment, where conventional hydrogels often suffer from weak adhesion, short residence time, and vulnerability to bacterial invasion. In this study, an innovative hydrogel system based on in situ light curing is proposed. The hydrogel precursor, comprising sodium alginate and a calcium ion network, is designed and adhere to the irregular and smooth surfaces of periodontal tissue before curing. Upon light irradiation, a second network polymerizes rapidly, establishing multiple interactions with the tissue, which enhances adhesion strength. Benefited from this engineering strategy, the hydrogel exhibits a low swelling rate, effectively mitigating adhesion loss in the moist oral environment. Additionally, the hydrogel demonstrates excellent long-lasting wet adhesion, maintaining its presence in periodontal tissue over 120 hours. It also serves as an effective physical barrier against bacterial invasion, achieving a blocking efficiency of 99.9%. This novel design concept offers a promising approach for developing advanced medical dressings for periodontitis, providing sustained therapeutic benefits.
Collapse
Affiliation(s)
- Honggui Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zifan Zhao
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Key Laboratory of Digital Stomatology, Beijing Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, 100081, China
| | - Rui Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyang Liang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuchun Sun
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Key Laboratory of Digital Stomatology, Beijing Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, 100081, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
20
|
Zhao J, Jiao J, Chen X, Zhang Y, Chen T, Xie J, Ou X. Procyanidin B2 targeted CCR7 expression to inhibit the senescence-associated secretory phenotype through the NF-κB pathway to promote osteogenic differentiation of periodontal ligament stem cells in periodontitis. Int Immunopharmacol 2024; 143:113435. [PMID: 39500084 DOI: 10.1016/j.intimp.2024.113435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 12/08/2024]
Abstract
Periodontitis is recognized as a chronic inflammatory disease, with aging emerging as a significant risk factor. Cellular senescence plays a crucial role in the biological process of aging. The senescence-associated secretory phenotype (SASP) is characterized by a series of pro-inflammatory factors, chemokines, and proteases, which are hallmark characteristics of senescent cells. These factors collectively alter the local environment, impacting the function of periodontal ligament stem cells (PDLSCs). Procyanidin B2 (PB2), the main dimer of oligomeric procyanidins, possesses antioxidant, anti-inflammatory, and anti-cancer properties. The molecular mechanisms through which PB2 exerts its protective effects against periodontitis remain incompletely understood. Therefore, this research aimed to investigate the effects and underlying mechanisms of PB2 on the osteogenic differentiation of PDLSCs within an inflammatory environment. To simulate a chronic inflammatory condition, PDLSCs were stimulated with Porphyromonas gingivalis Lipopolysaccharide (Pg. LPS). The findings indicated that PB2 significantly alleviated the inflammatory responses, enhanced the activity of antioxidant enzymes, and upregulated the osteogenic differentiation of PDLSCs stimulated by Pg. LPS. RNA sequencing (RNA-Seq) revealed that Pg. LPS influenced the cell cycle, cellular senescence, and NF-κB signaling pathways. In contrast, PB2 treatment reduced the number of senescent cells and diminished the expression of senescence-associated proteins and genes. Western blot analysis verified that PB2 also decreased the levels of CCR7 and suppressed the NF-κB signaling pathways. In conclusion, PB2 targeted CCR7 expression to inhibit the SASP through NF-κB signaling pathway, demonstrating its anti-inflammatory and osteogenic properties, positioning PB2 as a promising therapeutic option for the adjuvant treatment of periodontitis.
Collapse
Affiliation(s)
- Junwei Zhao
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jilan Jiao
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Xin Chen
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Yuemeng Zhang
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaoyan Ou
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China.
| |
Collapse
|
21
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS-AKT/mTOR-Autophagy Interplay-Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [PMID: 39767145 PMCID: PMC11727345 DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients' clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
22
|
Özden C, Afacan B, İlhan HA, Köse T, Emingil G. Oral biofluid levels of Activin-A and interleukin-1beta in stage III periodontitis. Clin Oral Investig 2024; 29:7. [PMID: 39656274 DOI: 10.1007/s00784-024-06088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/28/2024] [Indexed: 02/07/2025]
Abstract
OBJECTIVES Activin-A belongs to the transforming growth factor-beta superfamily and is a multifunctional cytokine that plays a role in inflammation, immune response, tissue repair and regeneration. Proinflammatory cytokine interleukin-1beta (IL-1β) can increase Activin-A expression in various cell types. This study aims to evaluate gingival crevicular fluid (GCF) and salivary Activin-A and IL-β levels in stage III periodontitis. MATERIALS AND METHODS 23 patients with stage III periodontitis, 26 with gingivitis and 26 periodontally healthy individuals were included. Full-mouth clinical periodontal indices were recorded, unstimulated whole saliva and GCF samples were obtained, Activin-A and IL-1β total amounts were determined by ELISA. Statistical comparisons were performed using non-parametric tests. Receiver operating characteristics curve was used for estimating the area under the curve (AUC). RESULTS Periodontitis group exhibited significantly lower GCF Activin-A levels but higher IL-1β levels than the periodontally healthy group (p < 0.05). Gingivitis group had similar GCF Activin-A and IL-1β levels to the periodontitis and periodontally healthy groups (p > 0.05). Salivary Activin-A and IL-1β concentrations were similar among study groups (p > 0.05). GCF Activin-A level showed an excellent diagnostic performance (an AUC value of 0.82 with 87% sensitivity) to discriminate periodontitis from periodontal health. CONCLUSIONS For the first time, this study demonstrated oral biofluid levels of Activin-A in periodontal health and diseases. Within the limits of the study, it might be suggested that diseased sites in periodontitis are associated with reduced Activin-A and increased IL-1β levels in GCF. CLINICAL RELEVANCE Reduced GCF Activin-A levels and the accompanying increase in IL-1β might be associated with diseased sites in stage III periodontitis.
Collapse
Affiliation(s)
- Can Özden
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey.
| | - Harika Atmaca İlhan
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İzmir Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, İstinye University, İstanbul, Turkey
| |
Collapse
|
23
|
Schulze-Späte U, Wurschi L, van der Vorst EPC, Hölzle F, Craveiro RB, Wolf M, Noels H. Crosstalk between periodontitis and cardiovascular risk. Front Immunol 2024; 15:1469077. [PMID: 39717783 PMCID: PMC11663742 DOI: 10.3389/fimmu.2024.1469077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 12/25/2024] Open
Abstract
Recent demographic developments resulted in an aged society with a rising disease burden of systemic and non-communicable diseases (NCDs). In cardiovascular disease (CVD), a NCD with high morbidity and mortality, recent preventive strategies include the investigation of comorbidities to reduce its significant economic burden. Periodontal disease, an oral bacterial-induced inflammatory disease of tooth-supporting tissue, is regulated in its prevalence and severity by the individual host response to a dysbiotic oral microbiota. Clinically, both NCDs are highly associated; however, shared risk factors such as smoking, obesity, type II diabetes mellitus and chronic stress represent only an insufficient explanation for the multifaceted interactions of both disease entities. Specifically, the crosstalk between both diseases is not yet fully understood. This review summarizes current knowledge on the clinical association of periodontitis and CVD, and elaborates on how periodontitis-induced pathophysiological mechanisms in patients may contribute to increased cardiovascular risk with focus on atherosclerosis. Clinical implications as well as current and future therapy considerations are discussed. Overall, this review supports novel scientific endeavors aiming at improving the quality of life with a comprehensive and integrated approach to improve well-being of the aging populations worldwide.
Collapse
Affiliation(s)
- Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Ludwig Wurschi
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, School of Medicine, Uniklinik RWTH Aachen, Aachen, Germany
| | - Rogerio B. Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
24
|
Giannasi C, Cadelano F, Della Morte E, Baserga C, Mazzucato C, Niada S, Baj A. Unlocking the Therapeutic Potential of Adipose-Derived Stem Cell Secretome in Oral and Maxillofacial Medicine: A Composition-Based Perspective. BIOLOGY 2024; 13:1016. [PMID: 39765683 PMCID: PMC11673083 DOI: 10.3390/biology13121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
The adipose-derived stem cell (ADSC) secretome is widely studied for its immunomodulatory and regenerative properties, yet its potential in maxillofacial medicine remains largely underexplored. This review takes a composition-driven approach, beginning with a list of chemokines, cytokines, receptors, and inflammatory and growth factors quantified in the ADSC secretome to infer its potential applications in this medical field. First, a review of the literature confirmed the presence of 107 bioactive factors in the secretome of ADSCs or other types of mesenchymal stem cells. This list was then analyzed using the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) software, revealing 844 enriched biological processes. From these, key processes were categorized into three major clinical application areas: immunoregulation (73 factors), bone regeneration (13 factors), and wound healing and soft tissue regeneration (27 factors), with several factors relevant to more than one area. The most relevant molecules were discussed in the context of existing literature to explore their therapeutic potential based on available evidence. Among these, TGFB1, IL10, and CSF2 have been shown to modulate immune and inflammatory responses, while OPG, IL6, HGF, and TIMP1 contribute to bone regeneration and tissue repair. Although the ADSC secretome holds great promise in oral and maxillofacial medicine, further research is needed to optimize its application and validate its clinical efficacy.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Francesca Cadelano
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Elena Della Morte
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Camilla Baserga
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Camilla Mazzucato
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Stefania Niada
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Alessandro Baj
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| |
Collapse
|
25
|
Pekiner FN, Yılmaz G, Keser G, Eyüboğlu TF, Özcan M. Evaluation of Alveolar Bone Destruction Patterns in the Posterior Region of the Maxilla Through Cone Beam Computer Tomography on 361 Consecutive Patients: Effect of Age and Gender. Clin Exp Dent Res 2024; 10:e70000. [PMID: 39535486 PMCID: PMC11558261 DOI: 10.1002/cre2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES The aim of this retrospective study is to evaluate the effect of age and gender on the alveolar bone destruction pattern with cone beam computed tomography (CBCT) in the posterior region of the maxilla. MATERIALS AND METHODS The study group included CBCT image records of 361 consecutive patients (180 males and 181 females) aged 20 years and older. Alveolar crest morphology in the maxillary right and left first and second molar teeth on retrospective images was classified as a horizontal or vertical defect (one-walled, two-walled, three-walled, and combined bone defect) on four surfaces (mesial, distal, buccal, and palatinal). Bone crater defects were defined, and furcation involvements and combined periodontal-endodontic lesions (CPELs) were placed in another category. RESULTS In 361 patients, 1444 teeth were evaluated from adults between 20 and 63 years of age; 49.9% of the patients were male and 50.1% were female. Female patients had a considerably greater rate of one-walled horizontal damage in the right molar teeth than male patients (p = 0.002; p < 0.05). Patients with combined horizontal destruction in the right and left molar teeth, horizontal destruction in the palatinal, and horizontal three-walled destruction had a significantly higher mean age than patients without these periodontal destructions (p = 0.000; p < 0.05). Males were shown to have statistically higher frequencies of horizontal defects when defects were combined or distally and palatally located. CONCLUSIONS Age and gender affect the alveolar bone loss pattern. Except for single-walled destructions, it has been found that the frequency of horizontal destruction increases with age. Horizontal destruction in the palatinal along with horizontal three-walled destruction increased with age.
Collapse
Affiliation(s)
- Filiz Namdar Pekiner
- Department of Oral and Maxillofacial Radiology, Faculty of DentistryMarmara UniversityIstanbulTürkiye
| | | | - Gaye Keser
- Department of Oral and Maxillofacial Radiology, Faculty of DentistryMarmara UniversityIstanbulTürkiye
| | - Tan Fırat Eyüboğlu
- Department of Endodontics, Faculty of DentistryIstanbul Medipol UniversityIstanbulTürkiye
| | - Mutlu Özcan
- Clinic of Masticatory Disorders and Dental Biomaterials, Center of Dental MedicineUniversity of ZurichZurichSwitzerland
| |
Collapse
|
26
|
Zeng K, Lin Y, Liu S, Wang Z, Guo L. Applications of piezoelectric biomaterials in dental treatments: A review of recent advancements and future prospects. Mater Today Bio 2024; 29:101288. [PMID: 40018432 PMCID: PMC11866170 DOI: 10.1016/j.mtbio.2024.101288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 03/01/2025] Open
Abstract
Piezoelectric biomaterials have attracted considerable attention in dental medicine due to their unique ability to convert mechanical force into electricity and catalyze reactions. These materials demonstrate biocompatibility, high bioactivity, and stability, making them suitable for applications such as tissue regeneration, caries prevention, and periodontal disease treatment. Despite their significant potential, the clinical application of these materials in treating oral diseases remains limited, facing numerous challenges in clinical translation. Therefore, further research and data are crucial to advance their application in dentistry. The review emphasizes the transformative impact of multifunctional piezoelectric biomaterials on enhancing dental therapies and outlines future directions for their integration into oral healthcare practices.
Collapse
Affiliation(s)
- Kaichen Zeng
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifan Lin
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shirong Liu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyan Wang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Li H, Du W, Ye X, Luo X, Duan X. Genetic analysis of potential markers and therapeutic targets for immunity in periodontitis. FRONTIERS IN DENTAL MEDICINE 2024; 5:1480346. [PMID: 39917706 PMCID: PMC11797874 DOI: 10.3389/fdmed.2024.1480346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 02/09/2025] Open
Abstract
Objective Periodontitis is a chronic inflammatory periodontal disease resulting in destroyed periodontal tissue. Many studies have found that the host's inflammatory immune responses are involved in the risk of periodontal tissue damage. In this study, we aim to identify potential biomarkers and therapeutic targets related to immunity in periodontitis. Methods GSE16134 and GSE10334 were downloaded from the Gene Expression Omnibus (GEO) database, and the immune-related genes were obtained from the Immunology Database and Analysis Portal (ImmPort). After the differentially expressed immune-related genes (DE-IRGs) were identified, enrichment analysis was performed. Two machine learning methods, the least absolute shrinkage and selector operation (LASSO) logistic regression and the support vector machine-recursive feature elimination (SVM-RFE), were used to screen out potential markers for the diagnosis of periodontitis. The CIBERSORT algorithm and LM22 matrix were used to analyze the percentage of infiltrating immune cells in periodontitis. Finally, the potential drug targets for the selected immune-related marker genes were predicted using relevant databases. Results A total of 7 genes (CD19, CXCR4, FABP4, FOS, IGHD, IL2RG, and PPBP) were upregulated in periodontitis samples. The area under the receiver operating characteristic curve (AUC) value of only one gene for distinguishing periodontitis from healthy samples ranged from 0.724 to 0.894. The prediction ability of the combined risk score of these 7 DE-IRGs was improved (AUC = 0.955). Naïve B cells, neutrophils, plasma cells, and activated memory CD4 T cells were significantly enriched in periodontitis samples, and 25 drugs targeting 4 DE-IRGs were predicted. Conclusion We developed a diagnostic model based on seven IRGs for periodontitis. The possible drugs targeting IRGs may provide new ideas for periodontitis treatment.
Collapse
Affiliation(s)
- Hui Li
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Wanqing Du
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xin Ye
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xi Luo
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuejing Duan
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
28
|
Yilmaz M, Bal İ, Hanli S, Turkmen E, Balci N, Toygar HU. Annexin levels in GCF determine the imbalance of periodontal inflammatory regulation. Sci Rep 2024; 14:28833. [PMID: 39572681 PMCID: PMC11582596 DOI: 10.1038/s41598-024-80418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE Annexin-1 (ANXA1), a member of the annexin family, plays a role in the resolution of inflammation and the regulation of anti-inflammatory responses, while annexin-2 (ANXA2) is involved in the initiation of the inflammatory responses. The aim of this study was to determine the effects of annexin family (ANXA1 and ANXA2) in periodontal disease. METHODS Healthy participants (n:25) and stage III, grade B periodontitis (n:25) patients enrolled for this study. Clinical periodontal parameters and the periodontal inflamed surface area (PISA) levels were noted. Serum, saliva, and gingival crevicular fluid (GCF) samples were collected to measure the ANXA1, ANXA2 and IL-1β levels. RESULTS Salivary and serum concentrations of ANXA1 was significantly lower in the periodontitis group than in the control group (respectively, p = 0.0177 and p = < 0.0001). Periodontitis patients demonstrated higher serum ANXA2 and IL-1β concentrations compared to controls (respectively, p = 0.0002 and p = 0.0017). As an inflammatory index; saliva, serum and GCF ANXA1/ANXA2 ratio were significantly lower in the periodontitis group compared to healthy controls. CONCLUSIONS The data suggest that periodontitis is associated with a disruption of the balance between pro-inflammatory mechanisms (ANXA2 and IL-1beta) and inflammation resolution (ANXA1), in parallel with PISA levels. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT06554756 (15/08/2024).
Collapse
Affiliation(s)
- Melis Yilmaz
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - İpek Bal
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Sena Hanli
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Emrah Turkmen
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Nur Balci
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey.
| | - Hilal Uslu Toygar
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| |
Collapse
|
29
|
Su W, Zhang D, Wang Y, Lei L, Li H. G protein-coupled receptor 91 activations suppressed mineralization in Porphyromonas gingivalis-infected osteoblasts. Sci Rep 2024; 14:27606. [PMID: 39528607 PMCID: PMC11554824 DOI: 10.1038/s41598-024-78944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Succinate receptor GPR91 is one of the G protein-coupled receptors (GPCRs) that interacts with various proteins to regulate diverse cellular functions such as cell morphology, apoptosis, and differentiation. In this study, we investigated whether the GPR91-mediated signaling pathway regulates mineralization in Porphyromonas gingivalis (P. gingivalis)-treated osteoblasts and to determine its potential role in osteoclast differentiation. Primary mouse osteoblasts from wild-type (WT) and GPR91 knockout (GPR91-/-) mice infected with P. gingivalis were used for in vitro experiments. The results showed that inhibition by 4C, a specific inhibitor, and GPR91 knockout promoted mineralization in P. gingivalis-infected osteoblasts. Surprisingly, GPR91 knockdown decreased the migration ability of osteoblasts. Moreover, compared with P. gingivalis-infected WT osteoblasts, GPR91-/- osteoblasts exhibited decreased RANKL production, and conditioned media (CM) from bacteria-infected GPR91-/- osteoblasts suppressed the formation of osteoclast precursors. Moreover, P. gingivalis mediated the role of GPR91 in osteoblast mineralization by activating the NF-κB pathway. These findings suggest that GPR91 activation reduces mineralization of P. gingivalis-infected osteoblasts and promotes osteoclastogenesis in macrophages. Therefore, targeting GPR91 may mitigate the loss of alveolar bone during bacterial infection.
Collapse
Affiliation(s)
- Wenqi Su
- Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, People's Republic of China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Dandan Zhang
- Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, People's Republic of China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Yujia Wang
- Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, People's Republic of China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Lang Lei
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Houxuan Li
- Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, People's Republic of China.
| |
Collapse
|
30
|
Sharma P, Saurav S, Tabassum Z, Sood B, Kumar A, Malik T, Mohan A, Girdhar M. Applications and interventions of polymers and nanomaterials in alveolar bone regeneration and tooth dentistry. RSC Adv 2024; 14:36226-36245. [PMID: 39534053 PMCID: PMC11555558 DOI: 10.1039/d4ra06092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory diseases exert a significant influence on the periodontium, serving as a primary contributor to the development of periodontitis. The advancement of periodontitis, characterized by manifestations, such as gingival recession, increased periodontal pocket depth and resorption across the alveolar bone, cementum and periodontal ligaments, poses a significant risk of dental detachment. Untreated or delayed treatment further worsens these deleterious outcomes. This emphasizes the critical importance of timely and effective interventions in reducing the consequences associated with periodontitis. Addressing these challenges requires to focus on the fabrication of bioactive materials, particularly scaffolds, as pivotal elements in tissue engineering processes aimed at alveolar bone regeneration. The incorporation of natural polymers, particularly their amalgamation with clays and clay minerals, such as montmorillonite and LAPONITE®, has been identified as a prospective pathway for advancing biomaterials in the realm of dentistry. This amalgamation holds significant potential for the production of biomaterials with enhanced properties, underscoring its relevance and applicability in dental research. This review paper explores the current advancements in natural polymer-based biomaterials employed in various dental applications, including oral caries, regenerative medicine and alveolar bone regeneration. The principal aim of this investigation is to briefly compile and present the existing knowledge while updating information on the utilization of natural polymers in the formulation of biomaterials. Additionally, the paper aims to elucidate their applications within contemporary research trends and developments in the field of odontology. This article extensively delves into pertinent research to assess the progress of nanotechnology in the context of tissue regeneration and the treatment of oral diseases.
Collapse
Affiliation(s)
- Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Bhawana Sood
- School of Physical and Chemical Engineering, Lovely Professional University Phagwara 144401 Punjab India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology New Delhi 110067 India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University Jimma 0000 Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University Phagwara 144401 Punjab India
| |
Collapse
|
31
|
Meng Q, Han J, Zhang X, Su W, Liu B, Liu T. Comprehensive Analysis of Immune Infiltration and Key Genes in Peri-Implantitis Using Bioinformatics and Molecular Biology Approaches. Med Sci Monit 2024; 30:e941870. [PMID: 39501535 PMCID: PMC11552188 DOI: 10.12659/msm.941870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/10/2024] [Indexed: 11/13/2024] Open
Abstract
BACKGROUND Peri-implantitis is the main cause of failure of implant treatment, and there is little research on its molecular mechanism. This study aimed to identify key biomarkers and immune infiltration of peri-implantitis using a bioinformatics method. MATERIAL AND METHODS Three Gene Ontology (GO) gene expression profiles were selected from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified by the LIMMA package, and functional correlations of DEGs were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Information on immune-related genes was obtained from ImmPort (https://www.immport.org) and InnateDB (http://www.innatedb.com). Immune-related DEGs were screened by least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE). The single-sample Gene Set Enrichment Analysis algorithm was used to analyze immune cell infiltration in gingival tissue between peri-implantitis and normal controls. Finally, results of bioinformatics analysis were verified by qPCR. RESULTS A total of 398 DEGs were identified, of which 96 were immune-related. Enrichment analysis showed these genes were enriched in inflammatory response, leucocyte chemotaxis, immune response-regulating signaling pathway, and cell activation. Seven key genes were selected by LASSO and SVM-RFE. Receiver operating characteristic curve results showed these genes had excellent diagnostic efficacy. Results of qPCR showed significant differences in the expression of these genes. CONCLUSIONS Differences in key genes and immune infiltration between peri-implantitis and gingival tissues of normal controls may provide new insights into the development of peri-implantitis. Elucidating the difference in immune infiltration between peri-implantitis tissues and normal tissues will help to understand the development of peri-implantitis.
Collapse
Affiliation(s)
- Qingxun Meng
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, PR China
- School of Medicine, Nankai University, Tianjin, PR China
| | - Jing Han
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, PR China
- School of Medicine, Nankai University, Tianjin, PR China
| | - Xi Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, PR China
- School of Medicine, Nankai University, Tianjin, PR China
| | - Wenxuan Su
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, PR China
- School of Medicine, Nankai University, Tianjin, PR China
| | - Beibei Liu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, PR China
- School of Medicine, Nankai University, Tianjin, PR China
| | - Taicheng Liu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, PR China
- School of Medicine, Nankai University, Tianjin, PR China
| |
Collapse
|
32
|
He Z, Lv JC, Zheng ZL, Gao CT, Xing JW, Li BL, Liu HH, Liu Y, Xu JZ, Li ZM, Luo E. Hierarchically structured nanofibrous scaffolds spatiotemporally mediate the osteoimmune micro-environment and promote osteogenesis for periodontitis-related alveolar bone regeneration. Acta Biomater 2024; 189:323-336. [PMID: 39395703 DOI: 10.1016/j.actbio.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Periodontitis suffer from inflammation-induced destruction of periodontal tissues, resulting in the serious loss of alveolar bone. Controlling inflammation and promoting bone regeneration are two crucial aspects for periodontitis-related alveolar bone defect treatment. Herein, we developed a hierarchically structured nanofibrous scaffold with a nano-embossed sheath and a bone morphogenetic protein 2-loaded core to match the periodontitis-specific features that spatiotemporally modulated the osteoimmune environment and promoted periodontal bone regeneration. We investigated the potential of this unique scaffold to treat periodontitis-related alveolar bone defects in vivo and in vitro. The results demonstrated that the hierarchically structured scaffold effectively reduced the inflammatory levels in macrophages and enhanced the osteogenic potential of bone mesenchymal stem cells in an inflammatory microenvironment. Moreover, in vivo experiments revealed that the hierarchically structured scaffold significantly ameliorated inflammation in the periodontium and inhibited alveolar bone resorption. Notably, the hierarchically structured scaffold also exhibited a prolonged effect on promoting alveolar bone regeneration. These findings highlight the significant therapeutic potential of hierarchically structured nanofibrous scaffolds for the treatment of periodontitis, and their promising role in the field of periodontal tissue regeneration. STATEMENT OF SIGNIFICANCE: We present a novel hierarchically structured nanofibrous scaffold of coupling topological and biomolecular signals for precise spatiotemporal modulation of the osteoimmune micro-environment. Specifically, the scaffold was engineered via coaxial electrospinning of the poly(ε-caprolactone) sheath and a BMP-2/polyvinyl alcohol core, followed by surface-directed epitaxial crystallization to generate cyclic nano-lamellar embossment on the sheath. With this unique hierarchical structure, the cyclic nano-lamellar sheath provided a direct nano-topographical cue to alleviate the osteoimmune environment, and the stepwise release of BMP-2 from the core provided a biological cue for bone regeneration. This research underscores the potential of hierarchically structured nanofibrous scaffolds as a promising therapeutic approach for periodontal tissue regeneration and highlights their role in advancing periodontal tissue engineering.
Collapse
Affiliation(s)
- Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia-Cheng Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zi-Li Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Cui-Ting Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia-Wei Xing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bo-Lun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hang-Hang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
33
|
SantaCruz-Calvo S, Saraswat S, Hasturk H, Dawson DR, Zhang XD, Nikolajczyk BS. Periodontitis and Diabetes Differentially Affect Inflammation in Obesity. J Dent Res 2024; 103:1313-1322. [PMID: 39382110 DOI: 10.1177/00220345241280743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Periodontitis (PD) potentiates systemic inflammatory diseases and fuels a feed-forward loop of pathogenic inflammation in obesity and type 2 diabetes (T2D). Published work in this area often conflates obesity with obesity-associated T2D; thus, it remains unclear whether PD similarly affects the inflammatory profiles of these 2 distinct systemic diseases. We collected peripheral blood mononuclear cells (PBMCs) from cross-sectionally recruited subjects to estimate the ability of PD to affect cytokine production in human obesity and/or T2D. We analyzed 2 major sources of systemic inflammation: T cells and myeloid cells. Bioplex quantitated cytokines secreted by PBMCs stimulated with T cell- or myeloid-targeting activators, and we combinatorially analyzed outcomes using partial least squares discriminant analysis. Our data show that PD significantly shifts peripheral T cell- and myeloid-generated inflammation in obesity. PD also changed myeloid- but not T cell-generated inflammation in T2D. T2D changed inflammation in samples from subjects with PD, and PD changed inflammation in samples from subjects with T2D, consistent with the bidirectional relationship of inflammation between these 2 conditions. PBMCs from T2D subjects with stage IV PD produced lower amounts of T cell and myeloid cytokines compared with PBMCs from T2D subjects with stage II to III PD. We conclude that PD and T2D affect systemic inflammation through overlapping but nonidentical mechanisms in obesity, indicating that characterizing both oral and metabolic status (beyond obesity) is critical for identifying mechanisms linking PD to systemic diseases such as obesity and T2D. The finding that stage IV PD cells generate fewer cytokines in T2D provides an explanation for the paradoxical findings that the immune system can appear activated or suppressed in PD, given that many studies do not report PD stage. Finally, our data indicate that a focus on multiple cellular sources of cytokines will be imperative to clinically address the systemic effects of PD in people with obesity.
Collapse
Affiliation(s)
- S SantaCruz-Calvo
- Department of Pharmacology & Nutritional Sciences, Lexington, KY, USA
- Biostatistics
| | | | - H Hasturk
- Forsyth Institute, Cambridge, MA, USA
| | - D R Dawson
- Oral Health Practice, University of Kentucky, Lexington, KY, USA
| | - X D Zhang
- Biostatistics
- Forsyth Institute, Cambridge, MA, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington KY, USA
| | - B S Nikolajczyk
- Department of Pharmacology & Nutritional Sciences, Lexington, KY, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington KY, USA
| |
Collapse
|
34
|
Fujimoto H, Kimura-Kataoka K, Takeuchi A, Yoshimiya M, Kawakami R. Evaluation of age estimation using alveolar bone images. Forensic Sci Int 2024; 364:112237. [PMID: 39366073 DOI: 10.1016/j.forsciint.2024.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/01/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE The purpose of this study is to examine the time-related changes of alveolar bone in 2D images quantitatively and to estimate age groups based on the change index. MATERIALS AND METHODS The 238 panoramic X-ray images and 140 CT panoramic reconstructed images of the permanent dentition period were used to examine age-related changes. Comparisons between the younger age group and each of the other age groups were calculated using the landmark method of Procrustes analysis. As aging changes were observed in each age group, age estimation was performed using antemortem panoramic X-ray images and postmortem CT images so that they could be used in practice. The CT images used in the age estimation were performed using forty-two postmortem CT panoramic reconstructed images of known age submitted to the judicial autopsy. RESULTS Both panoramic and CT images showed changes in the alveolar bone over time. Age estimation using postmortem CT images provided a certain assessment. CONCLUSION In this study, clinically observed changes in alveolar bone over time were quantified on the images. Furthermore, the possibility of age estimation by alveolar bone was also suggested. The use of an updatable clinical database that can be stored in coordinate values offers the potential for age estimation in line with the times.
Collapse
Affiliation(s)
- Hideko Fujimoto
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Japan; Division of Legal Medicine, Tottori University, Japan; Fujimoto Clinic for Oral and Maxillofacial Surgery, Japan.
| | | | - Akiko Takeuchi
- Department of Forensic medicine, Center for Cause of Death Investigation, Graduate School of Medicine, Hokkaido University, Japan; Department Radiology, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Motoo Yoshimiya
- Department of Forensic Medicine, University of Fukui School of Medical Sciences, Japan
| | - Ryoji Kawakami
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Japan
| |
Collapse
|
35
|
German IJS, Barbalho SM, Andreo JC, Zutin TLM, Laurindo LF, Rodrigues VD, Araújo AC, Guiguer EL, Direito R, Pomini KT, Shinohara AL. Exploring the Impact of Catechins on Bone Metabolism: A Comprehensive Review of Current Research and Future Directions. Metabolites 2024; 14:560. [PMID: 39452941 PMCID: PMC11509841 DOI: 10.3390/metabo14100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Degenerative musculoskeletal diseases represent a global health problem due to the progressive deterioration of affected individuals. As a bioactive compound, catechins have shown osteoprotective properties by stimulating osteoblastic cells and inhibiting bone resorption. Thus, this review aimed to address the mechanism of action of catechins on bone tissue. Methods: The search was applied to PubMed without limitations in date, language, or article type. Fifteen articles matched the topic and objective of this review. Results: EGCG (epigallocatechin gallate) and epicatechin demonstrated action on the osteogenic markers RANKL, TRAP, and NF-κβ and expression of BMPs and ALP, thus improving the bone microarchitecture. Studies on animals showed the action of EGCG in increasing calcium and osteoprotegerin levels, in addition to regulating the transcription factor NF-ATc1 associated with osteoclastogenesis. However, it did not show any effect on osteocalcin and RANK. Regarding human studies, EGCG reduced the risk of fracture in a dose-dependent manner. In periodontal tissue, EGCG reduced IL-6, TNF, and RANKL in vitro and in vivo. Human studies showed a reduction in periodontal pockets, gingival index, and clinical attachment level. The action of EGCG on membranes and hydrogels showed biocompatible and osteoinductive properties on the microenvironment of bone tissue by stimulating the expression of osteogenic growth factors and increasing osteocalcin and alkaline phosphate levels, thus promoting new bone formation. Conclusions: EGCG stimulates cytokines related to osteogenes, increasing bone mineral density, reducing osteoclastogenesis factors, and showing great potential as a therapeutic strategy for reducing the risk of bone fractures.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Tereza Lais Menegucci Zutin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed. ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| |
Collapse
|
36
|
Peng B, Wang L, Han G, Cheng Y. Mesenchymal stem cell-derived exosomes: a potential cell-free therapy for orthodontic tooth stability management. Stem Cell Res Ther 2024; 15:342. [PMID: 39354604 PMCID: PMC11446149 DOI: 10.1186/s13287-024-03962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Orthodontic relapse (OR) occurs at a rate of over 70%. Retention is the current attempt at prevention, but it requires a considerable amount of time and cannot fully block OR. It's imperative to find a safe and effective method for managing post-orthodontic tooth stability. Periodontal bone remodeling is one crucial biological foundation of OR. Mesenchymal stem cell-derived exosomes (MSC-Exo) show promise in relapse management by regulating periodontal bone remodeling. MSC-Exo can prevent relapse by regulating periodontal ligament function, osteoclast activity, osteoblast differentiation, macrophage polarization, and periodontal microcirculation. In recent years, exosome-loaded hydrogels, which achieve controlled exosome release, have demonstrated efficacy in promoting bone regeneration and remodeling, offering promising prospects for OR management. This review aims to highlight the use of MSC-Exo-based therapy for preventing OR, offering new insights for future research focused on improving tooth stability and enhancing orthodontic anchorage.
Collapse
Affiliation(s)
- Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Lianhao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Orthodontics Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
37
|
Uçan Yarkaç F, Babayiğit O, Gokturk O. Associations between immune-inflammatory markers, age, and periodontal status: a cross-sectional study. Odontology 2024; 112:1296-1306. [PMID: 38443702 DOI: 10.1007/s10266-024-00907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
Since periodontal disease is associated with many systemic diseases, it is important to evaluate its effects on host responses in elderly individuals. To this end, this study investigated salivary interleukin (IL)-17, IL-18, toll-like receptor (TLR) 2, TLR4, and tumor necrosis factor-alpha (TNF-α) levels in patient groups with different periodontal health statuses and immunologically evaluated the relationship between age and periodontal health status. A total of 60 individuals aged 18-40 years (young individuals) and 60 individuals aged 65 years or older (elderly individuals) were included in this study. According to periodontal disease status, the patients were divided into periodontally healthy, gingivitis, and periodontitis subgroups. Clinical periodontal parameters, including probing depth (PD), clinical attachment level (CAL), plaque index (PI), and gingival index (GI), were recorded. Saliva samples were collected and analyzed using ELISA to determine the levels of IL-17, IL-18, TLR2, TLR4, and TNF-α. Higher clinical periodontal parameter (PD, CAL, PI, and GI) and inflammatory marker (IL-17, IL-18, TNF-α, TLR2, and TLR4) levels were found in patients with periodontitis than those in periodontally healthy individuals and patients with gingivitis (P < 0.05). Salivary inflammatory marker levels were significantly higher in elderly individuals than those in young individuals in all subgroups (P < 0.05). A positive correlation was found between inflammatory marker levels and clinical periodontal parameters, but there was no correlation between TLR2 and PI or GI. This study suggests a significant increase in host response to periodontal disease as the disease progresses, with the levels of cytokines and TLR expression exhibiting an increasing trend with age. Increased IL-17, IL-18, TLR2, TLR4, and TNF-α levels in elderly individuals in all periodontal health subgroups might suggest the role of these cytokines and TLR pathway in the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- Fatma Uçan Yarkaç
- Department of Periodontology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey
| | - Osman Babayiğit
- Department of Periodontology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey.
| | | |
Collapse
|
38
|
Zhou L, Teng N, Gao T, Wang H, Gao X. Protective effect of carvacrol hydrogel on the alveolar bone in rats with periodontitis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:593-608. [PMID: 39304503 PMCID: PMC11493864 DOI: 10.7518/hxkq.2024.2024037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES This study aimed to investigate the protective effect and mechanism of carvacrol hydrogel on the alveolar bone in rats with periodontitis. METHODS A thermosensitive hydrogel supported by carvacrol was prepared using poloxamer and hydroxypropyl methyl cellulose as matrix. SD rats were randomly divided into blank group, periodontitis group, blank hydrogel group, and low-, medium-, and high-dose hydrogel groups. The periodontitis symptoms and the CT structure of the alveolar bone were observed. The changes in liver, spleen, kidney, and periodontal tissues were observed. The related indexes of bone metabolism in serum were detected. The expression of osteoprotegerin (OPG) and nuclear transcription factor-κB (NF-κB) pathway proteins was determined by Western blot. The levels of inflammatory factors were assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS Carvacrol hydrogel had good slow release, biocompatibility, and cell adhesion. The periodontitis of rats in the carvacrol hydrogel group was significantly alleviated, the expression of OPG protein in gingival tissue was significantly increased (P<0.01), and the levels of receptor activator of NF-κB ligand (RANKL), receptor activator of NF-κB (RANK), NF-κB protein, and inflammatory factors were significantly decreased (P<0.01). CONCLUSIONS Carvacrol hydrogel can regulate the OPG and NF-κB pathways, reduce alveolar bone absorption, and improve periodontal inflammation.
Collapse
Affiliation(s)
- Lulu Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Nian Teng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tiantian Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
39
|
Li M, Sun J, Zhao D, Zhang W, Xu Q. Inhibitory impact of a mesoporous silica nanoparticle-based drug delivery system on Porphyromonas gingivalis-induced bone resorption. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:56. [PMID: 39347836 PMCID: PMC11442573 DOI: 10.1007/s10856-024-06827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Controlling and reducing plaque formation plays a pivotal role in preventing and treating periodontal disease, often utilizing antibacterial drugs to enhance therapeutic outcomes. Mesoporous silica nanoparticles (MSN), an FDA-approved inorganic nanomaterial, possess robust physical and chemical properties, such as adjustable pore size and pore capacity, easy surface modification, and high biosafety. Numerous studies have exploited MSN to regulate drug release and facilitate targeted delivery. This study aimed to synthesize an MSN-tetracycline (MSN-TC) complex and investigate its inhibitory potential on Porphyromonas gingivalis (P. gingivalis)-induced bone resorption. The antibacterial efficacy of MSN-TC was evaluated through bacterial culture experiments. A P. gingivalis-induced bone resorption model was constructed by subcutaneously injecting P. gingivalis around the cranial bone of rats. Micro-computed tomography was employed to assess the inhibitory impact of MSN and MSN-TC on bone resorption. Furthermore, the influence of MSN and MSN-TC on osteoclast differentiation was examined in vitro. The MSN exhibited optimal pore size and particle dimensions for effective loading and gradual release of TC. MSN-TC demonstrated significant bacteriostatic activity against P. gingivalis. MSN-TC-treated rats showed significantly reduced cranial bone tissue destruction compared to MSN or TC-treated rats. Additionally, both MSN and MSN-TC exhibited inhibitory effects on the receptor activator of nuclear factor kappa-Β ligand-mediated osteoclast differentiation. The MSN-TC complex synthesized in this study demonstrated dual efficacy by exerting antibacterial effects on P. gingivalis and by resisting osteoclast differentiation, thereby mitigating bone resorption induced by P. gingivalis.
Collapse
Affiliation(s)
- Mengya Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Jian Sun
- Department of Conservative Dentistry and Endodontics, Wuhan First Stomatological Hospital, Wuhan, China
| | - Dong Zhao
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, China
| | - Wen Zhang
- School of Medicine, Jianghan University, Wuhan, China
| | - Qingan Xu
- School of Medicine, Jianghan University, Wuhan, China.
- Department of Conservative Dentistry and Endodontics, Wuhan First Stomatological Hospital, Wuhan, China.
| |
Collapse
|
40
|
Koskinen Holm C, Rosendahl S, Oldenborg PA, Lundberg P. The expression of signal regulatory protein alpha (SIRPα) in periodontal cells and tissue. Acta Odontol Scand 2024; 83:486-492. [PMID: 39258954 PMCID: PMC11409820 DOI: 10.2340/aos.v83.41391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024]
Abstract
Signal regulatory protein alpha (SIRPα) is mainly expressed by cells of myeloid origin. This membrane glycoprotein is shown to be involved in regulation of different inflammatory conditions, such as colitis and arthritis. However, SIRPα has not been investigated in relationship to periodontitis, an inflammatory condition affecting the tooth supporting tissues. We aim to investigate if resident cells in the periodontium express SIRPα and whether a possible expression is affected by inflammatory conditions. Primary human keratinocytes, fibroblasts, periodontal ligament cells, and osteoblasts were cultured with or without the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) or interleukin-1-beta (IL-1β). All different periodontal cell types showed a basal mRNA expression of SIRPα. Pro-inflammatory cytokines induced a 2-3-fold significant increase in SIRPα expression in both cultured human gingival fibroblasts and osteoblasts but neither in keratinocytes nor in periodontal ligament cells. Tissue sections from human gingival tissue biopsies were histochemically stained for SIRPα. Epithelial keratinocytes and gingival fibroblasts stained positive in sections from periodontally healthy as well as in sections from periodontitis. In periodontitis sections, infiltrating leukocytes stained positive for SIRPα. We highlight our finding that oral keratinocytes, gingival fibroblasts, and periodontal ligament cells do express SIRPα, as this has not been presented before. The fact that inflammatory stimulation of gingival fibroblasts increased the expression of SIRPα, while an increased expression by gingival fibroblasts in periodontitis tissue in situ could not be detected, is indeed contradictory.
Collapse
Affiliation(s)
- Cecilia Koskinen Holm
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden; Department of Odontology, Section of Oral and Maxillofacial Surgery, Umeå University, Umeå, Sweden.
| | - Sara Rosendahl
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Per-Arne Oldenborg
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Pernilla Lundberg
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden
| |
Collapse
|
41
|
Tominari T, Matsumoto C, Tanaka Y, Shimizu K, Takatoya M, Sugasaki M, Karouji K, Kasuga U, Miyaura C, Miyata S, Itoh Y, Hirata M, Inada M. Roles of Toll-like Receptor Signaling in Inflammatory Bone Resorption. BIOLOGY 2024; 13:692. [PMID: 39336119 PMCID: PMC11429252 DOI: 10.3390/biology13090692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors expressed in immune cells, including neutrophils, macrophages, and dendritic cells. Microbe-associated molecular patterns, including bacterial components, membranes, nucleic acids, and flagella are recognized by TLRs in inflammatory immune responses. Periodontal disease is an inflammatory disease known to cause local infections associated with gingival inflammation, subsequently leading to alveolar bone resorption. Prostaglandin E2 (PGE2) is a key mediator of TLR-induced inflammatory bone resorption. We previously reported that membrane-bound PGE synthase (mPGES-1)-deficient mice failed to induce bone resorption by lipopolysaccharide (LPS), a major pathogenic factor involved in periodontal bone resorption. Further experiments exploring specific pathogen-promoting osteoclast differentiation revealed that various TLR ligands induced osteoclast differentiation in a co-culture model. The ligands for TLR2/1, TLR2/6, TLR3, and TLR5, as well as TLR4, induce osteoclast differentiation associated with the production of PGE2 and the receptor activator of nuclear factor-kappa B ligand (RANKL), an inevitable inducer of osteoclast differentiation in osteoblasts. In vivo, local injection of TLR ligands, including TLR2/1, TLR2/6, and TLR3, resulted in severe alveolar bone resorption. This review summarizes the latest findings on TLR-mediated osteoclast differentiation and bone resorption in inflammatory diseases, such as periodontal diseases.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Yuki Tanaka
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Kensuke Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Masaru Takatoya
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Moe Sugasaki
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Kento Karouji
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Urara Kasuga
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Shinji Miyata
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
| | - Yoshifumi Itoh
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
| |
Collapse
|
42
|
Pereira RRDS, Castro GBD, Magalhães CODE, Costa KB, Garcia BCC, Silva G, Carvalho JDCL, Machado ART, Vieira ER, Cassilhas RC, Pereira LJ, Dias-Peixoto MF, Andrade EF. High-intensity interval training mitigates the progression of periodontitis and improves behavioural aspects in rats. J Clin Periodontol 2024; 51:1222-1235. [PMID: 38798054 DOI: 10.1111/jcpe.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
AIM To investigate the effects of high-intensity interval training (HIIT) on periodontitis (PD) progression and behavioural outcomes. MATERIALS AND METHODS Forty-eight Wistar rats were divided into four groups: non-trained (NT); non-trained with PD; HIIT with PD; and HIIT. The HIIT protocol, involving daily treadmill sessions, spanned 8 weeks, with PD induced by ligature after the 6th week. Behavioural tests were conducted to assess anxiety and memory. Post euthanasia, we evaluated the systemic inflammatory profile and oxidative stress markers in the hippocampus and amygdala. A morphological evaluation and elemental composition analysis of the mandibular alveolar bone were performed. RESULTS PD exacerbated alveolar bone level, bone surface damage and alterations in calcium and phosphorus percentages on the bone surface (p < .05), while HIIT attenuated these changes (p < .05). HIIT improved systemic inflammatory markers altered by PD (tumour necrosis factor [TNF]-α, interleukin [IL]-10, TNF-α/IL-10 and IL-1β/IL-10 ratios, p < .05). PD animals exhibited lower total antioxidant capacity and levels of thiobarbituric acid reactive substances in the amygdala and hippocampus, respectively (p < .05). HIIT maintained these parameters at levels similar to those in NT animals. HIIT improved anxiety and memory outcomes altered by PD (p < .05). CONCLUSIONS HIIT attenuates systemic inflammation, anxiety and memory outcomes promoted by PD.
Collapse
Affiliation(s)
| | - Giselle Bicalho de Castro
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Karine Beatriz Costa
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Gabriela Silva
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | | | - Etel Rocha Vieira
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ricardo Cardoso Cassilhas
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Luciano José Pereira
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Eric Francelino Andrade
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| |
Collapse
|
43
|
Zhang Y, Shi H. Ginsenoside Rb3 alleviates the formation of osteoclasts induced by periodontal ligament fibroblasts in the periodontitis microenvironment through the STAT3 pathway. Cell Biol Int 2024; 48:1343-1353. [PMID: 38934258 DOI: 10.1002/cbin.12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
This study explores the potential role and mechanism of Ginsenoside Rb3 (Rb3) in modulating osteoclastogenesis induced by human periodontal ligament fibroblasts (hPLFs) within the periodontitis microenvironment. We investigated the anti-inflammatory effects of Rb3 on hPLFs stimulated with Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) utilizing quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay techniques. Moreover, the functional role of Rb3 in hPLFs-induced osteoclast formation was assessed by treating human bone marrow-derived macrophages (hBMMs) with conditioned medium from hPLFs, followed by analyses through qPCR, western blot analysis, and staining for tartrate-resistant acid phosphatase (TRAP) and phalloidin. The impact of Rb3 on the activation of the STAT3 signaling pathway was determined via western blot analysis. Results indicated that Rb3 treatment significantly suppressed the upregulation of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1, and IL-18) at both gene and protein levels in hPLFs induced by P.g-LPS. Furthermore, conditioned medium from Rb3 plus P.g-LPS treated hPLFs notably decreased the number of TRAP-positive cells, actin ring formations, and the expression of osteoclast marker genes (including CTSK, NFATC1, and ACP5). Rb3 also inhibited the P.g-LPS-induced activation of the STAT3 pathway, with the activation of STAT3 partially reversing the effects of Rb3 on inflammation and osteoclast differentiation. Collectively, Rb3 ameliorates inflammation in P.g-LPS-stimulated hPLFs and reduces hPLFs-induced osteoclastogenesis by inhibiting the STAT3 signaling pathway, suggesting its potential as a therapeutic agent for periodontitis.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hanping Shi
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
44
|
Altaca M, Cebesoy EI, Kocak-Oztug NA, Bingül I, Cifcibasi E. Interleukin-6, -17, and -35 levels in association with clinical status in stage III and stage IV periodontitis: a cross-sectional study. BMC Oral Health 2024; 24:1015. [PMID: 39215253 PMCID: PMC11363592 DOI: 10.1186/s12903-024-04751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study compared the concentrations of interleukin (IL)-6, IL-17, and IL-35 in the gingival crevicular fluid of periodontally healthy participants with individuals who had stage III and IV periodontitis. METHODS In total, 60 participants with stage III grade B-C (n = 12)-stage IV grade C (n = 18) periodontitis and 30 healthy controls were included in this cross-sectional study. Full-mouth clinical periodontal measurements were performed. Concentrations of IL-6, IL-17, and IL-35 were determined using enzyme-linked immunosorbent assays. Parametric/nonparametric methods, Pearson's/Spearman's correlation, and logistic regression methods were used for data analyses. RESULTS The periodontitis group exhibited significantly higher levels of IL-6, IL-17, and IL-35 compared with the healthy group (p < 0.001). IL-17 levels had a positive correlation with pocket depth (PD) (r = 0.395; p = 0.031) in the periodontitis group. IL-6, IL-17, and IL-35 levels were associated with periodontitis (odds ratio [OR] = 1.344, 95% confidence interval [CI] = 1.159-1.56; OR = 1.063, 95% CI = 1.025-1.102; OR = 1.261, 95% CI = 1.110-1.434, respectively) (p < 0.001, p = 0.001, p < 0.001, respectively). Full-mouth and sampling sites PD and clinical attachment loss (CAL) values were significantly higher in the periodontitis group than in the healthy group (p < 0.001). CONCLUSIONS This study revealed upregulated levels of IL-6, IL-17, and IL-35 in periodontitis patients compared to healthy individuals. IL-17 shows a correlation with increased PD. These findings suggest a potential association between these cytokines and severe and advanced periodontitis. TRIAL REGISTRATION The trial was registered in ClinicalTrials.gov with this identifier NCT05306860 on 24/01/2022.
Collapse
Affiliation(s)
- Müge Altaca
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- Institute of Graduate Studies in Health Sciences, Department of Periodontology, Istanbul University, Istanbul, 34126, Turkey
| | - Elif Ilke Cebesoy
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- Institute of Graduate Studies in Health Sciences, Department of Periodontology, Istanbul University, Istanbul, 34126, Turkey
| | - Necla Asli Kocak-Oztug
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Ilknur Bingül
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul University, Istanbul, Turkey
| | - Emine Cifcibasi
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey.
| |
Collapse
|
45
|
Niu Q, Lin C, Yang S, Rong S, Wei J, Zhao T, Peng Y, Cheng Z, Xie Y, Wang Y. FoxO1-Overexpressed Small Extracellular Vesicles Derived from hPDLSCs Promote Periodontal Tissue Regeneration by Reducing Mitochondrial Dysfunction to Regulate Osteogenesis and Inflammation. Int J Nanomedicine 2024; 19:8751-8768. [PMID: 39220194 PMCID: PMC11365494 DOI: 10.2147/ijn.s470419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Periodontitis is a chronic infectious disease characterized by progressive inflammation and alveolar bone loss. Forkhead box O1 (FoxO1), an important regulator, plays a crucial role in maintaining bone homeostasis and regulating macrophage energy metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, FoxO1 was overexpressed into small extracellular vesicles (sEV) using engineering technology, and effects of FoxO1-overexpressed sEV on periodontal tissue regeneration as well as the underlying mechanisms were investigated. Methods Human periodontal ligament stem cell (hPDLSCs)-derived sEV (hPDLSCs-sEV) were isolated using ultracentrifugation. They were then characterized using transmission electron microscopy, Nanosight, and Western blotting analyses. hPDLSCs were treated with hPDLSCs-sEV in vitro after stimulation with lipopolysaccharide, and osteogenesis was evaluated. The effect of hPDLSCs-sEV on the polarization phenotype of THP-1 macrophages was also evaluated. In addition, we measured the reactive oxygen species (ROS) levels, adenosine triphosphate (ATP) production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells. Experimental periodontitis was established in vivo in mice. HPDLSCs-sEV or phosphate-buffered saline (PBS) were injected into periodontal tissues for four weeks, and the maxillae were collected and assessed by micro-computed tomography, histological staining, and small animal in vivo imaging. Results In vitro, FoxO1-overexpressed sEV promoted osteogenic differentiation of hPDLSCs in the inflammatory environment and polarized THP-1 cells from the M1 phenotype to the M2 phenotype. Furthermore, FoxO1-overexpressed sEV regulated the ROS level, ATP production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells in the inflammatory environment. In the in vivo analyses, FoxO1-overexpressed sEV effectively promoted bone formation and inhibited inflammation. Conclusion FoxO1-overexpressed sEV can regulate osteogenesis and immunomodulation. The ability of FoxO1-overexpressed sEV to regulate inflammation and osteogenesis can pave the way for the establishment of a therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Qingru Niu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Chuanmiao Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Shuqing Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Shuxuan Rong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Junbin Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Tingting Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yingying Peng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zhilan Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yunyi Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
46
|
Taccardi D, Chiesa A, Maiorani C, Pardo A, Lombardo G, Scribante A, Sabatini S, Butera A. Periodontitis and Depressive Disorders: The Effects of Antidepressant Drugs on the Periodontium in Clinical and Preclinical Models: A Narrative Review. J Clin Med 2024; 13:4524. [PMID: 39124790 PMCID: PMC11312867 DOI: 10.3390/jcm13154524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Several psychological conditions, including stress and depression, can adversely affect oral health; in fact, antidepressants, commonly used to treat depressive disorders, may have conflicting effects on the periodontal status of individuals. The aim of this review was to determine the effects of antidepressants on the periodontium. Methods: A literature search was conducted using electronic databases, Pubmed/MEDLINE, Cochrane Library, focusing on the use of antidepressants and their effects on periodontal health in animals or humans. Results: Seventeen articles have been included with the use of amitriptyline (two studies), desipramine (one study), imipramine (two studies), desvenlafaxine (one study), fluoxetine (six studies), venlafaxine (three studies) and tianeptine (two studies). One study evaluated several categories of antidepressants, such as selective serotonin reuptake inhibitors (SSRI), serotonin-norepinephrine reuptake inhibitors (SNRI), tricyclic, atypical and monoamine oxidase inhibitors (MAO). Most trials showed improvements in periodontal health, especially with fluoxetine, but also with imipramine, desipramine, desvenlafaxine and tianeptine; on the contrary, worsening of clinical periodontal indices and increased loss of alveolar bone were reported with venlafaxine. Conclusions: This review suggests that in the presence of comorbidity between periodontitis and depression, pharmacological treatment with SNRIs, SSRIs and mixed antidepressants is associated with improvement in periodontal parameters, except for venlafaxine. Healthcare professionals (especially oral and mental health professionals) should investigate proper adherence to medication therapy in patients with a history of periodontitis and depression. Further clinical trials are needed to confirm these results.
Collapse
Affiliation(s)
- Damiano Taccardi
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (D.T.); (A.C.); (A.S.); (A.B.)
| | - Alessandro Chiesa
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (D.T.); (A.C.); (A.S.); (A.B.)
| | - Carolina Maiorani
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (D.T.); (A.C.); (A.S.); (A.B.)
| | - Alessia Pardo
- Section of Oral and Maxillofacial Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37124 Verona, Italy;
| | - Giorgio Lombardo
- Section of Oral and Maxillofacial Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37124 Verona, Italy;
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (D.T.); (A.C.); (A.S.); (A.B.)
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Silvia Sabatini
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (D.T.); (A.C.); (A.S.); (A.B.)
| |
Collapse
|
47
|
de Oliveira G, de Andrade Rodrigues L, Souza da Silva AA, Gouvea LC, Silva RCL, Sasso-Cerri E, Cerri PS. Reduction of osteoclast formation and survival following suppression of cytokines by diacerein in periodontitis. Biomed Pharmacother 2024; 177:117086. [PMID: 39013222 DOI: 10.1016/j.biopha.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Periodontitis causes an increase in several bioactive agents such as interleukins (IL), tumor necrosis factor (TNF)-α and receptor activator of NF-kB ligand (RANKL), which induce the osteoclast formation and activity. Since diacerein exerts anti-TNF-α and anti-IL-1 effects, alleviating bone destruction in osteoarthritis, we investigated whether this drug inhibits the formation and survival of osteoclast in the periodontitis. Rats were distributed into 3 groups: 1) group with periodontitis treated with 100 mg/kg diacerein (PDG), 2) group with periodontitis treated with saline (PSG) and group control (CG) without any treatment. After 7, 15 and 30 days, the maxillae were collected for light and transmission electron microscopy analyses. Gingiva samples were collected to evaluate the mRNA levels for Tnf, Il1b, Tnfsf11 and Tnfrsf11b by RT-qPCR. In PDG, the expression of Tnf and Il1b genes reduced significantly compared to PSG, except for Tnf expression at 7 days. The number of osteoclasts reduced significantly in the PDG in comparison with PSG at 7 and 15 days. In all periods, the IL-6 immunoexpression, RANKL/OPG immunoexpression and mRNA levels of Tnfsf11/Tnfrsf11b ratio were significantly lower in PDG than in PSG. PDG exhibited significantly higher frequency of TUNEL-positive osteoclasts than in PSG and CG at all time points. Osteoclasts with caspase-3-immunolabelled cytoplasm and nuclei with masses of condensed chromatin were observed in PDG, confirming osteoclast apoptosis. Diacerein inhibits osteoclastogenesis by decreasing Tnf and Il1b mRNA levels, resulting in decreased RANKL/OPG ratio, and induces apoptosis in osteoclasts of alveolar process of rat molars with periodontitis.
Collapse
Affiliation(s)
- Gabriella de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Lucas de Andrade Rodrigues
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | | | - Lays Cristina Gouvea
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Renata Cristina Lima Silva
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil.
| |
Collapse
|
48
|
Choi JH, Sung SE, Kang KK, Lee S, Sung M, Park WT, Kim YI, Seo MS, Lee GW. Extracellular Vesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells Suppress RANKL-Induced Osteoclast Differentiation via miR122-5p. Biochem Genet 2024; 62:2830-2852. [PMID: 38017286 DOI: 10.1007/s10528-023-10569-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Researchers are increasingly interested in cell therapy using mesenchymal stem cells (MSCs) as an alternative remedy for osteoporosis, with fewer side effects. Thus, we isolated and characterized extracellular vesicles (EVs) from human adipose tissue-derived MSCs (hMSCs) and investigated their inhibitory effects on RANKL-induced osteoclast differentiation. Purified EVs were collected from the supernatant of hMSCs by tangential flow filtration. Characterization of EVs included typical evaluation of the size and concentration of EVs by nanoparticle tracking analysis and morphology analysis using transmission electron microscopy. hMSC-EVs inhibited RANKL-induced differentiation of bone marrow-derived macrophages (BMDMs) into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by EV treatment of osteoclasts. In addition, EVs decreased RANKL-induced phosphorylation of p38 and JNK and expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. To elucidate which part of the hMSC-EVs plays a role in the inhibition of osteoclast differentiation, we analyzed miRNA profiles in hMSC-EVs. The results showed that has-miR122-5p was present at significantly high read counts. Overexpression of miR122-5p in BMDMs significantly inhibited RANKL-induced osteoclast differentiation and induced defects in F-actin ring formation and bone resorption. Our results also revealed that RANKL-induced phosphorylation of p38 and JNK and osteoclast-specific gene expression was decreased by miR122-5p transfection, which was consistent with the results of hMSC-EVs. These findings suggest that hMSC-EVs containing miR122-5p inhibit RANKL-induced osteoclast differentiation via the downregulation of molecular mechanisms and could be a preventive candidate for destructive bone diseases.
Collapse
Affiliation(s)
- Joo-Hee Choi
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sijoon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Minkyoung Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu, 42415, Republic of Korea
| | | | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, Laboratory of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
49
|
Okamoto R, Hosokawa Y, Hosokawa I, Ozaki K, Hosaka K. Cardamonin inhibits the expression of inflammatory mediators in TNF-α-stimulated human periodontal ligament cells. Immunopharmacol Immunotoxicol 2024; 46:521-528. [PMID: 38918176 DOI: 10.1080/08923973.2024.2373217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Periodontis is a chronic inflammatory disease induced by periodontopathogenic bacteria. The excessive immune response caused by persistent bacterial infection leads to alveolar bone resorption and ultimately tooth loss. Cardamonin is a biologically active substance that is found in the Zingiberaceae family, such as Alpinia zerumbet, and is classified as a natural chalcone. There have been no attempts to use cardamonin for the treatment of periodontitis, and no reports have examined the effects of cardamonin on periodontal tissue component cells. The aim of this study was to analyze effects of cardamonin on expression of inflammation mediators produced by TNFα-stimulated human periodontal ligament cells (HPDLCs), including its effects on signal transduction molecules. METHODS Cytokine and chemokine levels were measured by ELISA. Protein expression in HPDLCs and activations of signal transduction pathway were determined by Western blotting. RESULTS Our results indicate that cardamonin suppresses C-C motif chemokine ligand (CCL)2, CCL20, C-X-C motif chemokine ligand (CXCL)10, and interleukin (IL)-6 production and intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 expression in TNF-α-stimulated HPDLCs. In addition, cardamonin induced the expression of the antioxidant enzyme, Heme Oxygenase (HO)-1, in HPDLCs. Furthermore, cardamonin suppressed TNF-α-stimulated c-Jun N-terminal kinase (JNK), nuclear factor (NF)-κB, and signal transducer and activator of transcription (STAT)3 signaling pathways in HPDLCs. CONCLUSION We show that cardamonin reduces inflammatory mediator production by inhibiting the activation of several signaling pathways in this manuscript.
Collapse
Affiliation(s)
- Risa Okamoto
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshitaka Hosokawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ikuko Hosokawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
50
|
Guo Y, Jiang S, Li H, Xie G, Pavel V, Zhang Q, Li Y, Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed Pharmacother 2024; 177:117139. [PMID: 39018871 DOI: 10.1016/j.biopha.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The notion that obesity can be a protective factor for bone health is a topic of ongoing debate. Increased body weight may have a positive impact on bone health due to its mechanical effects and the production of estrogen by adipose tissue. However, recent studies have found a higher risk of bone fracture and delayed bone healing in elderly obese patients, which may be attributed to the heightened risk of bone immune regulation disruption associated with obesity. The balanced functions of bone cells such as osteoclasts, osteoblasts, and osteocytes, would be subverted by aberrant and prolonged immune responses under obese conditions. This review aims to explore the intricate relationship between obesity and bone health from the perspective of osteoimmunology, elucidate the impact of disturbances in bone immune regulation on the functioning of bone cells, including osteoclasts, osteoblasts, and osteocytes, highlighting the deleterious effects of obesity on various diseases development such as rheumatoid arthritis (RA), osteoarthritis (AS), bone fracture, periodontitis. On the one hand, weight loss may achieve significant therapeutic effects on the aforementioned diseases. On the other hand, for patients who have difficulty in losing weight, the osteoimmunological therapies could potentially serve as a viable approach in halting the progression of these disease. Additional research in the field of osteoimmunology is necessary to ascertain the optimal equilibrium between body weight and bone health.
Collapse
Affiliation(s)
- Yating Guo
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|