1
|
Vo DK, Trinh KTL. Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines. Vaccines (Basel) 2025; 13:191. [PMID: 40006737 PMCID: PMC11860421 DOI: 10.3390/vaccines13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Using plants as bioreactors, molecular farming has emerged as a versatile and sustainable platform for producing recombinant vaccines, therapeutic proteins, industrial enzymes, and nutraceuticals. This innovative approach leverages the unique advantages of plants, including scalability, cost-effectiveness, and reduced risk of contamination with human pathogens. Recent advancements in gene editing, transient expression systems, and nanoparticle-based delivery technologies have significantly enhanced the efficiency and versatility of plant-based systems. Particularly in vaccine development, molecular farming has demonstrated its potential with notable successes such as Medicago's Covifenz for COVID-19, illustrating the capacity of plant-based platforms to address global health emergencies rapidly. Furthermore, edible vaccines have opened new avenues in the delivery of vaccines, mainly in settings with low resources where the cold chain used for conventional logistics is a challenge. However, optimization of protein yield and stability, the complexity of purification processes, and regulatory hurdles are some of the challenges that still remain. This review discusses the current status of vaccine development using plant-based expression systems, operational mechanisms for plant expression platforms, major applications in the prevention of infectious diseases, and new developments, such as nanoparticle-mediated delivery and cancer vaccines. The discussion will also touch on ethical considerations, the regulatory framework, and future trends with respect to the transformative capacity of plant-derived vaccines in ensuring greater global accessibility and cost-effectiveness of the vaccination. This field holds great promise for the infectious disease area and, indeed, for applications in personalized medicine and biopharmaceuticals in the near future.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Routier C, Hermida-Carrera C, Stavrinidou E. Investigating the Effect of Syringe Infiltration on Nicotiana tabacum (Tobacco). ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2025; 5:28-35. [PMID: 39850806 PMCID: PMC11752493 DOI: 10.1021/acsagscitech.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025]
Abstract
Plant infiltration techniques, particularly agroinfiltration, have transformed plant science and biotechnology by enabling transient gene expression for genetic engineering of plants or genomic studies. Recently, the use of infiltration has expanded to introduce nanomaterials and polymers in plants to enable nonnative functionalities. Despite its wide use, the impact of the infiltration process per se on plant physiology needs to be better understood. This study investigates the effect of syringe infiltration, a commonly employed technique in plants, using a typical infiltration buffer solution. Noninvasive and real-time monitoring methods, including high-resolution thermal imaging and a porometer/fluorometer, were used to study the physiological responses and stress levels of the infiltrated plants. Our results revealed localized cell damage at the infiltration site due to syringe compression, but the overall cell viability and tissue integrity were largely unaffected. Thermography showed a temporary temperature increase of the leaves and stomatal conductance alterations postinfiltration, with leaf recovery in 3-6 days. Additionally, fluorescence measurements indicated a 6% decrease in maximum quantum efficiency (F v/F m) and a 34% decrease in photosystem II (ΦPSII) quantum yield, persisting for 5 days after infiltration, suggesting sustained photosystem efficiency changes. Our work highlights the need to consider the effect of infiltration when performing biological studies and aims to facilitate the optimization of protocols commonly used in plant science and biotechnology.
Collapse
Affiliation(s)
- Cyril Routier
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Carmen Hermida-Carrera
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| |
Collapse
|
3
|
Melendez JA, Sun H, Bonner J, Chen Q. Characterization of a plant-derived monoclonal antibody targeting extracellular enveloped virions of Monkeypox virus. FRONTIERS IN PLANT SCIENCE 2024; 15:1481452. [PMID: 39554528 PMCID: PMC11563991 DOI: 10.3389/fpls.2024.1481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
In 2022, the global outbreak of monkeypox virus (MPXV) with increased human-to-human transmission triggered urgent public health interventions. Plant-derived monoclonal antibodies (mAbs) are being explored as potential therapeutic strategies due to their diverse mechanisms of antiviral activity. MPXV produces two key infectious particles: the mature virion (MV) and the extracellular enveloped virion (EV), both essential for infection and spread. Effective therapies must target both to halt replication and transmission. Our prior research demonstrated the development of a potent neutralizing mAb against MPXV MV. This study focuses on developing a plant-derived mAb targeting MPXV EV, which is critical for viral dissemination within the host and generally resistant to antibody neutralization. Our findings reveal that the mAb (H2) can be robustly produced in Nicotiana benthamiana plants via transient expression. The plant-made H2 mAb effectively targets MPXV EV by binding specifically to the A35 MPXV antigen. Importantly, H2 mAb shows notable neutralizing activity against the infectious MPXV EV particle. This investigation is the first to report the development of a plant-derived anti-EV mAb for MPXV prevention and treatment, as well as the first demonstration of anti-MPXV EV activity by an mAb across any production platform. It highlights the potential of plant-produced mAbs as therapeutics for emerging infectious diseases, including the MPXV outbreak.
Collapse
Affiliation(s)
- Jennifer A Melendez
- Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Haiyan Sun
- Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - James Bonner
- Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Qiang Chen
- Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Ludwig-Müller J. Production of Plant Proteins and Peptides with Pharmacological Potential. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:51-81. [PMID: 38286902 DOI: 10.1007/10_2023_246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The use of plant proteins or peptides in biotechnology is based on their identification as possessing bioactive potential in plants. This is usually the case for antimicrobial, fungicidal, or insecticidal components of the plant's defense system. They function in addition to a large number of specialized metabolites. Such proteins can be classified according to their sequence, length, and structure, and this has been tried to describe for a few examples here. Even though such proteins or peptides can be induced during plant-pathogen interaction, they are still present in rather small amounts that make the system not suitable for the production in large-scale systems. Therefore, a suitable type of host needs to be identified, such as cell cultures or adult plants. Bioinformatic predictions can also be used to add to the number of bioactive sequences. Some problems that can occur in production by the plant system itself will be discussed, such as choice of promoter for gene expression, posttranslational protein modifications, protein stability, secretion of proteins, or induction by elicitors. Finally, the plant needs to be set up by biotechnological or molecular methods for production, and the product needs to be enriched or purified. In some cases of small peptides, a direct chemical synthesis might be feasible. Altogether, the process needs to be considered marketable.
Collapse
|
5
|
Abstract
Since its discovery in 1937 in the West Nile district of Uganda, West Nile virus (WNV) has been one of the leading causes of mosquito-transmitted infectious diseases (Smithburn, Burke, Am J Trop Med 20:22, 1940). Subsequently, it spread to Europe, Asia, Australia, and finally North America in 1999 (Sejvar, Ochsner 5(3):6-10, 2003). Worldwide outbreaks have continued to increase since the 1990s (Chancey et al, Biomed Res Int 2015:376230, 2015). According to the Center for Disease Control and Prevention, more than 51,000 cases of WNV infection and nearly 2400 cases of WNV-related death were reported in the USA from 1999 to 2019. The estimated economic impact of WNV infections is close to 800 million dollars in the USA from 1999 to 2012 (Barrett, Am J Trop Med Hyg 90:389, 2014).
Collapse
Affiliation(s)
- Haiyan Sun
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josh Lesio
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Rai GK, Kumar P, Choudhary SM, Kosser R, Khanday DM, Choudhary S, Kumar B, Magotra I, Kumar RR, Ram C, Rouphael Y, Corrado G, Behera TK. Biomimetic Strategies for Developing Abiotic Stress-Tolerant Tomato Cultivars: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 12:86. [PMID: 36616215 PMCID: PMC9823378 DOI: 10.3390/plants12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The tomato is one of the most important vegetables in the world. The demand for tomatoes is high in virtually any country, owing to their gastronomic versatility and nutritional and aromatic value. Drought, salinity, and inadequate temperature can be major factors in diminishing yield, affecting physiological and biochemical processes and altering various metabolic pathways, from the aggregation of low molecular-weight substances to the transcription of specific genes. Various biotechnological tools can be used to alter the tomato genes so that this species can more rapidly or better adapt to abiotic stress. These approaches range from the introgression of genes coding for specific enzymes for mitigating a prevailing stress to genetic modifications that alter specific metabolic pathways to help tomato perceive environmental cues and/or withstand adverse conditions. In recent years, environmental and social concerns and the high complexity of the plant response may increase the attention of applied plant biotechnology toward biomimetic strategies, generally defined as all the approaches that seek to develop more sustainable and acceptable strategies by imitating nature's time-tested solutions. In this review, we provide an overview of some of the genetic sequences and molecules that were the objects of biotechnological intervention in tomato as examples of approaches to achieve tolerance to abiotic factors, improving existing nature-based mechanisms and solutions (biomimetic biotechnological approaches (BBA)). Finally, we discuss implications and perspectives within the GMO debate, proposing that crops modified with BBA should receive less stringent regulation.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya Maryam Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Danish Mushtaq Khanday
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Shallu Choudhary
- Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Bupesh Kumar
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjit Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Chet Ram
- Division of Crop Improvement, ICAR—Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Tusar Kanti Behera
- ICAR—Indian Institute of Vegetable Research, Jakhini (Shahanshapur), Varanasi 221305, India
| |
Collapse
|
7
|
Rozov SM, Zagorskaya AA, Konstantinov YM, Deineko EV. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:38. [PMID: 36616166 PMCID: PMC9824153 DOI: 10.3390/plants12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.
Collapse
Affiliation(s)
- Sergey M. Rozov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova Str. 132, Irkutsk 664033, Russia
| | - Elena V. Deineko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Coates RJ, Young MT, Scofield S. Optimising expression and extraction of recombinant proteins in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1074531. [PMID: 36570881 PMCID: PMC9773421 DOI: 10.3389/fpls.2022.1074531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are of paramount importance for research, industrial and medical use. Numerous expression chassis are available for recombinant protein production, and while bacterial and mammalian cell cultures are the most widely used, recent developments have positioned transgenic plant chassis as viable and often preferential options. Plant chassis are easily maintained at low cost, are hugely scalable, and capable of producing large quantities of protein bearing complex post-translational modification. Several protein targets, including antibodies and vaccines against human disease, have been successfully produced in plants, highlighting the significant potential of plant chassis. The aim of this review is to act as a guide to producing recombinant protein in plants, discussing recent progress in the field and summarising the factors that must be considered when utilising plants as recombinant protein expression systems, with a focus on optimising recombinant protein expression at the genetic level, and the subsequent extraction and purification of target proteins, which can lead to substantial improvements in protein stability, yield and purity.
Collapse
Affiliation(s)
| | | | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Cell-penetrating peptide for targeted macromolecule delivery into plant chloroplasts. Appl Microbiol Biotechnol 2022; 106:5249-5259. [PMID: 35821432 DOI: 10.1007/s00253-022-12053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/30/2022]
Abstract
Reports on chloroplast-targeted protein delivery using cell-penetrating peptides are scarce. In this study, a novel peptide-based macromolecule delivery strategy targeting chloroplasts was successfully developed in wheat mesophyll protoplasts. A peptide derived from the signal sequence of the chloroplast-targeted protein of ferredoxin-thioredoxin reductase catalytic chain of Spinacia oleracea with UniProtKB Id-P41348 exhibits properties of cellular internalization. DNase I was efficiently delivered into the chloroplast using 10 μM cTP with an efficiency of more than 90%. This cell-penetrating peptide-mediated approach offers various advantages over the existing chloroplast targeting methods, such as non-invasiveness, biocompatibility, low-toxicity, and target-specific delivery. The present study shows that peptide-based strategies hold tremendous potential in the field of chloroplast biotechnology. KEY POINTS: • Screening of database of chloroplast targeting peptides in order to develop an efficient cell-penetrating peptide termed as cTP. • cTP efficiently crosses the cell barrier and demonstrated chloroplast-localization. • cTP can be incorporated as a promising strategy for delivering macromolecules for crop improvement.
Collapse
|
10
|
Dunbar T, Tsakirpaloglou N, Septiningsih EM, Thomson MJ. Carbon Nanotube-Mediated Plasmid DNA Delivery in Rice Leaves and Seeds. Int J Mol Sci 2022; 23:ijms23084081. [PMID: 35456898 PMCID: PMC9028948 DOI: 10.3390/ijms23084081] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
CRISPR-Cas gene editing technologies offer the potential to modify crops precisely; however, in vitro plant transformation and regeneration techniques present a bottleneck due to the lengthy and genotype-specific tissue culture process. Ideally, in planta transformation can bypass tissue culture and directly lead to transformed plants, but efficient in planta delivery and transformation remains a challenge. This study investigates transformation methods that have the potential to directly alter germline cells, eliminating the challenge of in vitro plant regeneration. Recent studies have demonstrated that carbon nanotubes (CNTs) loaded with plasmid DNA can diffuse through plant cell walls, facilitating transient expression of foreign genetic elements in plant tissues. To test if this approach is a viable technique for in planta transformation, CNT-mediated plasmid DNA delivery into rice tissues was performed using leaf and excised-embryo infiltration with reporter genes. Quantitative and qualitative data indicate that CNTs facilitate plasmid DNA delivery in rice leaf and embryo tissues, resulting in transient GFP, YFP, and GUS expression. Experiments were also initiated with CRISPR-Cas vectors targeting the phytoene desaturase (PDS) gene for CNT delivery into mature embryos to create heritable genetic edits. Overall, the results suggest that CNT-based delivery of plasmid DNA appears promising for in planta transformation, and further optimization can enable high-throughput gene editing to accelerate functional genomics and crop improvement activities.
Collapse
|
11
|
Soleimanizadeh M, Jalali Javaran M, Bagheri A, Behdani M. Apoplastic Production of Recombinant AntiVEGF Protein Using Plant-Virus Transient Expression Vector. Mol Biotechnol 2022; 64:1013-1021. [PMID: 35332419 DOI: 10.1007/s12033-022-00483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Targeting of vascular endothelial growth factor (VEGF) using AntiVEGF can be a promising approach for angiogenesis inhibition and cancer therapy. In this study, we direct AntiVEGF recombinant protein accumulation to cucurbit plant apoplast using a suitable signal (Pr1b) sequence. After assembling the target gene construct and cloning into the expression vector, we infected the plants with the resulting pZYMV-AntiVEGF viral vector. Transcription of the target gene was confirmed with RT-PCR assays. The apoplast-targeted AntiVEGF recombinant protein was detected in infected plants by Dot-blot, western blot, and ELISA analysis. AntiVEGF protein accumulation in the apoplast resulted in levels of 1.2% of TSP (Total Soluble Protein) that demonstrated a two-order increase compared to the cytoplasm-targeted protein. After purification of AntiVEGF protein using aqueous two-phase system (ATPS), purified protein was analyzed with MTT assay. Our results reveal that production of biologically active and correctly processed apoplast-targeted AntiVEGF recombinant protein is possible in plant apoplast. The low level of cytoplasm-targeted AntiVEGF recombinant protein might result from the degradation of improperly folded protein.
Collapse
Affiliation(s)
- Mojgan Soleimanizadeh
- Department of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.
| | | | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Behdani
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Ji YR, Hsu YH, Syue MH, Wang YC, Lin SY, Huang TW, Young TH. Controlled Decomposable Hydrogel Triggered with a Specific Enzyme. ACS OMEGA 2022; 7:3254-3261. [PMID: 35128237 PMCID: PMC8811883 DOI: 10.1021/acsomega.1c05178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, superabsorbent polyelectrolyte hydrogels were synthesized by cross-linking a nondegradable poly (allylamine hydrochloride) (PAH) and a recombinant protein with a specific enzymatic cleavage site. The recombinant protein was produced by E. coli with the pET-32b(+) plasmid, which is featured with the thioredoxin (Trx) gene containing a thrombin recognition site and a T7/lac hybrid promoter for high expression of recombinant protein. The swelling test shows that the composite hydrogel still maintained a high swelling ratio to 900% when 15% recombinant protein was cross-linked with PAH. The degradation test shows that such a PAH composite hydrogel could be decomposed by the addition of specific enzyme thrombin, which might lead to new biomedical applications of hydrogels needed to be decomposable by specific time not determined by the time period.
Collapse
Affiliation(s)
- You-Ren Ji
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Ya-Hsiang Hsu
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Hua Syue
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Ying-Chu Wang
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Shyr-Yi Lin
- Division
of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department
of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Wei Huang
- Department
of Electrical Engineering, College of Electrical and Communication
Engineering, Yuan Ze University, Taoyuan 320, Taiwan
- Department
of Otolaryngology, Far Eastern Memorial
Hospital, New Taipei City 220, Taiwan
| | - Tai-Horng Young
- Institute
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
- Department
of Biomedical Engineering, National Taiwan
University Hospital, Taipei 100, Taiwan
| |
Collapse
|
13
|
Genetic Manipulation and Bioreactor Culture of Plants as a Tool for Industry and Its Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030795. [PMID: 35164060 PMCID: PMC8840042 DOI: 10.3390/molecules27030795] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
In recent years, there has been a considerable increase in interest in the use of transgenic plants as sources of valuable secondary metabolites or recombinant proteins. This has been facilitated by the advent of genetic engineering technology with the possibility for direct modification of the expression of genes related to the biosynthesis of biologically active compounds. A wide range of research projects have yielded a number of efficient plant systems that produce specific secondary metabolites or recombinant proteins. Furthermore, the use of bioreactors allows production to be increased to industrial scales, which can quickly and cheaply deliver large amounts of material in a short time. The resulting plant production systems can function as small factories, and many of them that are targeted at a specific operation have been patented. This review paper summarizes the key research in the last ten years regarding the use of transgenic plants as small, green biofactories for the bioreactor-based production of secondary metabolites and recombinant proteins; it simultaneously examines the production of metabolites and recombinant proteins on an industrial scale and presents the current state of available patents in the field.
Collapse
|
14
|
Lao González T, Ávalos Olivera I, Rodríguez-Mallon A. Mammalian Cell Culture as a Platform for Veterinary Vaccines. Methods Mol Biol 2022; 2411:37-62. [PMID: 34816397 DOI: 10.1007/978-1-0716-1888-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For more than three decades, mammalian cells have been the host par excellence for the recombinant protein production for therapeutic purposes in humans. Due to the high cost of media and other supplies used for cell growth, initially this expression platform was only used for the production of proteins of pharmaceutical importance including antibodies. However, large biotechnological companies that used this platform continued research to improve its technical and economic feasibility. The main qualitative improvement was obtained when individual cells could be cultured in a liquid medium similar to bacteria and yeast cultures. Another important innovation for growing cells in suspension was the improvement in chemically defined media that does not contain macromolecules; they were cheaper to culture as any other microbial media. These scientific milestones have reduced the cost of mammalian cell culture and their use in obtaining proteins for veterinary use. The ease of working with mammalian cell culture has permitted the use of this expression platform to produce active pharmaceutic ingredients for veterinary vaccines. In this chapter, the protocol to obtain recombinant mammalian cell lines will be described.
Collapse
Affiliation(s)
- Thailín Lao González
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ileanet Ávalos Olivera
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Alina Rodríguez-Mallon
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
15
|
Jugler C, Sun H, Chen Q. SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-Produced Anti-Interleukin 6 Receptor Monoclonal Antibody. Vaccines (Basel) 2021; 9:vaccines9111365. [PMID: 34835296 PMCID: PMC8623585 DOI: 10.3390/vaccines9111365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, has caused more than 4.5 million deaths worldwide. Severe and fatal cases of COVID-19 are often associated with increased proinflammatory cytokine levels including interleukin 6 (IL-6) and acute respiratory distress syndrome. In this study, we explored the feasibility of using plants to produce an anti-IL-6 receptor (IL-6R) monoclonal antibody (mAb) and examined its utility in reducing IL-6 signaling in an in vitro model, which simulates IL-6 induction during SARS-CoV-2 infection. The anti-IL6R mAb (IL6RmAb) was quickly expressed and correctly assembled in Nicotiana benthamiana leaves. Plant-produced IL6RmAb (pIL6RmAb) could be enriched to homogeneity by a simple purification scheme. Furthermore, pIL6RmAb was shown to effectively inhibit IL-6 signaling in a cell-based model system. Notably, pIL6RmAb also suppressed IL-6 signaling that was induced by the exposure of human peripheral blood mononuclear cells to the spike protein of SARS-CoV-2. This is the first report of a plant-made anti-IL-6R mAb and its activity against SARS-CoV-2-related cytokine signaling. This study demonstrates the capacity of plants for producing functionally active mAbs that block cytokine signaling and implies their potential efficacy to curb cytokine storm in COVID-19 patients.
Collapse
Affiliation(s)
- Collin Jugler
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (C.J.); (H.S.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Haiyan Sun
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (C.J.); (H.S.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (C.J.); (H.S.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: ; Tel.: +1-480-965-8110; Fax: +1-480-727-7615
| |
Collapse
|
16
|
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, Abd-Elsalam KA. Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. Int J Mol Sci 2021; 22:10882. [PMID: 34639221 PMCID: PMC8509792 DOI: 10.3390/ijms221910882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
Collapse
Affiliation(s)
- Maninder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| |
Collapse
|
17
|
Yaroshko OM. TRANSIENT EXPRESSION OF REPORTER GENES IN CULTIVARS OF Amaranthus caudatus L. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Local cultivars of A. caudatus: Helios and Karmin were used as plant material. Amaranth is a new pseudocereal introduced in Ukraine. The plant biomass of amaranth is used in medicine, food industry and cosmetology industry. Aim. The purpose of the work was to identify the optimal conditions for the transient expression of reporter genes in Amaranthus caudatus cultivars. Methods. Biochemical and microscopy methods were used in the following work. Seedlings and adult plants of different age were infiltrated with agrobacterial suspensions separately (genetic vector pCBV19 with a uidA gene and genetic vector pNMD2501 with a gfp gene in Agrobacterium tumefaciens GV3101 strain). Results. Transient expression of the uidA and gfp genes was obtained in amaranth plants after conduction series of experiments. The most intensive transient expression of gfp and uidA genes was observed in seedlings infiltrated at the age of 1 day. The maximum fluorescence of the GFP protein was observed on 5th–6th days. Conclusions. It was shown that the cultivar Helios was more susceptible to agrobacterial infection than the cultivar Karmin. The effectiveness of Agrobacterium mediated transformation was from 16% to 95% for the Helios cultivar and from 12% to 93% for the Karmin cultivar. The obtained results indicate that the studied amaranth cultivars can potentially be used for obtaining transient expression of target genes and synthesizing target proteins in their tissues in the future.
Collapse
|
18
|
Transient Gene Expression: an Approach for Recombinant Vaccine Production. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
19
|
Zheng L, Yang J, Chen Y, Ding L, Wei J, Wang H. An improved and efficient method of Agrobacterium syringe infiltration for transient transformation and its application in the elucidation of gene function in poplar. BMC PLANT BIOLOGY 2021; 21:54. [PMID: 33478390 PMCID: PMC7818742 DOI: 10.1186/s12870-021-02833-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/11/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Forest trees have important economic and ecological value. As a model tree, poplar has played a significant role in elucidating the molecular mechanisms underlying tree biology. However, a lack of mutant libraries and time-consuming stable genetic transformation processes severely limit progress into the functional characterization of poplar genes. A convenient and fast transient transformation method is therefore needed to enhance progress on functional genomics in poplar. METHODS A total of 11 poplar clones were screened for amenability to syringe infiltration. Syringe infiltration was performed on the lower side of the leaves of young soil-grown plants. Transient expression was evaluated by visualizing the reporters β-glucuronidase (GUS) and green fluorescent protein (GFP). The experimental parameters of the syringe agroinfiltration were optimized based on the expression levels of the reporter luciferase (LUC). Stably transformed plants were regenerated from transiently transformed leaf explants through callus-induced organogenesis. The functions of Populus genes in secondary cell wall-thickening were characterized by visualizing lignin deposition therein after staining with basic fuchsin. RESULTS We greatly improved the transient transformation efficiency of syringe Agrobacterium infiltration in poplar through screening for a suitable poplar clone from a variety of clones and optimizing the syringe infiltration procedure. The selected poplar clone, Populus davidiana × P. bolleana, is amenable to Agrobacterium syringe infiltration, as indicated by the easy diffusion of the bacterial suspension inside the leaf tissues. Using this technique, we localized a variety of poplar proteins in specific intracellular organelles and illustrated the protein-protein and protein-DNA interactions. The transiently transformed leaves could be used to generate stably transformed plants with high efficiency through callus induction and differentiation processes. Furthermore, transdifferentiation of the protoxylem-like vessel element and ectopic secondary wall thickening were induced in the agroinfiltrated leaves via the transient overexpression of genes associated with secondary wall formation. CONCLUSIONS The application of P. davidiana × P. bolleana in Agrobacterium syringe infiltration provides a foundation for the rapid and high-throughput functional characterization of Populus genes in intact poplar plants, including those involved in wood formation, and provides an effective alternative to Populus stable genetic transformation.
Collapse
Affiliation(s)
- Lin Zheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jixiu Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China
- College of Bioscience and Resources Environment, Beijing University of Agriculture, No. 7, Beinong Road, Huilongguan, Changping District, Beijing, 102206, People's Republic of China
| | - Yajuan Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Liping Ding
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China.
| | - Hongzhi Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
20
|
He J, Lai H, Esqueda A, Chen Q. Plant-Produced Antigen Displaying Virus-Like Particles Evokes Potent Antibody Responses against West Nile Virus in Mice. Vaccines (Basel) 2021; 9:60. [PMID: 33477363 PMCID: PMC7830312 DOI: 10.3390/vaccines9010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 01/11/2023] Open
Abstract
In this study, we developed a hepatitis B core antigen (HBcAg)-based virus-like particle (VLP) that displays the West Nile virus (WNV) Envelope protein domain III (wDIII) as a vaccine candidate for WNV. The HBcAg-wDIII fusion protein was quickly produced in Nicotiana benthamiana plants and reached a high expression level of approximately 1.2 mg of fusion protein per gram of leaf fresh weight within six days post gene infiltration. Electron microscopy and gradient centrifugation analysis indicated that the introduction of wDIII did not interfere with VLP formation and HBcAg-wDIII successfully assembled into VLPs. HBcAg-wDIII VLPs can be easily purified in large quantities from Nicotiana benthamiana leaves to >95% homogeneity. Further analysis revealed that the wDIII was displayed properly and demonstrated specific binding to an anti-wDIII monoclonal antibody that recognizes a conformational epitope of wDIII. Notably, HBcAg-wDIII VLPs were shown to be highly immunogenic and elicited potent humoral responses in mice with antigen-specific IgG titers equivalent to that of protective wDIII antigens in previous studies. Thus, our wDIII-based VLP vaccine offers an attractive option for developing effective, safe, and low-cost vaccines against WNV.
Collapse
Affiliation(s)
- Junyun He
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.H.); (H.L.); (A.E.)
| | - Huafang Lai
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.H.); (H.L.); (A.E.)
| | - Adrian Esqueda
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.H.); (H.L.); (A.E.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.H.); (H.L.); (A.E.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
21
|
Deguchi M, Kane S, Potlakayala S, George H, Proano R, Sheri V, Curtis WR, Rudrabhatla S. Metabolic Engineering Strategies of Industrial Hemp ( Cannabis sativa L.): A Brief Review of the Advances and Challenges. FRONTIERS IN PLANT SCIENCE 2020; 11:580621. [PMID: 33363552 PMCID: PMC7752810 DOI: 10.3389/fpls.2020.580621] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Industrial hemp (Cannabis sativa L.) is a diploid (2n = 20), dioecious plant that is grown for fiber, seed, and oil. Recently, there has been a renewed interest in this crop because of its panoply of cannabinoids, terpenes, and other phenolic compounds. Specifically, hemp contains terpenophenolic compounds such as cannabidiol (CBD) and cannabigerol (CBG), which act on cannabinoid receptors and positively regulate various human metabolic, immunological, and physiological functions. CBD and CBG have an effect on the cytokine metabolism, which has led to the examination of cannabinoids on the treatment of viral diseases, including COVID-19. Based on genomic, transcriptomic, and metabolomic studies, several synthetic pathways of hemp secondary metabolite production have been elucidated. Nevertheless, there are few reports on hemp metabolic engineering despite obvious impact on scientific and industrial sectors. In this article, recent status and current perspectives on hemp metabolic engineering are reviewed. Three distinct approaches to expedite phytochemical yield are discussed. Special emphasis has been placed on transgenic and transient gene delivery systems, which are critical for successful metabolic engineering of hemp. The advent of new tools in synthetic biology, particularly the CRISPR/Cas systems, enables environment-friendly metabolic engineering to increase the production of desirable hemp phytochemicals while eliminating the psychoactive compounds, such as tetrahydrocannabinol (THC).
Collapse
Affiliation(s)
- Michihito Deguchi
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Shriya Kane
- School of Medicine, Georgetown University, Washington, DC, United States
| | - Shobha Potlakayala
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Hannah George
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Renata Proano
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Vijay Sheri
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| | - Wayne R. Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Sairam Rudrabhatla
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA, United States
| |
Collapse
|
22
|
Tyurin AA, Suhorukova AV, Kabardaeva KV, Goldenkova-Pavlova IV. Transient Gene Expression is an Effective Experimental Tool for the Research into the Fine Mechanisms of Plant Gene Function: Advantages, Limitations, and Solutions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1187. [PMID: 32933006 PMCID: PMC7569937 DOI: 10.3390/plants9091187] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
A large data array on plant gene expression accumulated thanks to comparative omic studies directs the efforts of researchers to the specific or fine effects of the target gene functions and, as a consequence, elaboration of relatively simple and concurrently effective approaches allowing for the insight into the physiological role of gene products. Numerous studies have convincingly demonstrated the efficacy of transient expression strategy for characterization of the plant gene functions. The review goals are (i) to consider the advantages and limitations of different plant systems and methods of transient expression used to find out the role of gene products; (ii) to summarize the current data on the use of the transient expression approaches for the insight into fine mechanisms underlying the gene function; and (iii) to outline the accomplishments in efficient transient expression of plant genes. In general, the review discusses the main and critical steps in each of the methods of transient gene expression in plants; areas of their application; main results obtained using plant objects; their contribution to our knowledge about the fine mechanisms of the plant gene functions underlying plant growth and development; and clarification of the mechanisms regulating complex metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Irina V. Goldenkova-Pavlova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences (IPP RAS), Moscow 127276, Russia; (A.A.T.); (A.V.S.); (K.V.K.)
| |
Collapse
|
23
|
Abstract
Vaccines are biological preparations that improve immunity to particular diseases and form an important innovation of 19th century research. It contains a protein that resembles a disease-causing microorganism and is often made from weak or killed forms of the microbe. Vaccines are agents that stimulate the body’s immune system to recognize the antigen. Now, a new form of vaccine was introduced which will have the power to mask the risk side of conventional vaccines. This type of vaccine was produced from plants which are genetically modified. In the production of edible vaccines, the gene-encoding bacterial or viral disease-causing agent can be incorporated in plants without losing its immunogenic property. The main mechanism of action of edible vaccines is to activate the systemic and mucosal immunity responses against a foreign disease-causing organism. Edible vaccines can be produced by incorporating transgene in to the selected plant cell. At present edible vaccine are developed for veterinary and human use. But the main challenge faced by edible vaccine is its acceptance by the population so that it is necessary to make aware the society about its use and benefits. When compared to other traditional vaccines, edible vaccines are cost effective, efficient and safe. It promises a better prevention option from diseases.
Collapse
Affiliation(s)
- Vrinda M Kurup
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India.
| |
Collapse
|
24
|
Miyamoto T, Tsuchiya K, Numata K. Dual Peptide-Based Gene Delivery System for the Efficient Transfection of Plant Callus Cells. Biomacromolecules 2020; 21:2735-2744. [PMID: 32432860 DOI: 10.1021/acs.biomac.0c00481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to their diverse functions and tunable physicochemical properties, peptides are promising alternatives to the conventional gene delivery tools that are available for plant systems. However, peptide-mediated gene delivery is limited by low transfection efficiency in plants because of the insufficient cytosolic translocation of DNA cargo. Here, we report a dual peptide-based gene delivery system for the efficient transfection of plant callus cells. This system is based on the combination of an artificial peptide composed of cationic cell-penetrating and hydrophobic endosomal escape domains with a gene carrier peptide composed of amphiphilic cell-penetrating and cationic DNA-binding domains. Cellular internalization and transfection studies revealed that this dual peptide-based system enables more efficient transfection of callus cells than does a carrier peptide alone by enhancing the endocytic uptake and subsequent cytosolic translocation of a carrier peptide/DNA complex. The present strategy will expand the utility of peptide-mediated plant gene delivery for a wide range of applications and basic research.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Jugler C, Joensuu J, Chen Q. Hydrophobin-Protein A Fusion Protein Produced in Plants Efficiently Purified an Anti-West Nile Virus Monoclonal Antibody from Plant Extracts via Aqueous Two-Phase Separation. Int J Mol Sci 2020; 21:E2140. [PMID: 32244994 PMCID: PMC7139538 DOI: 10.3390/ijms21062140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
The development of monoclonal antibodies (mAbs) has provided vast opportunities to treat a wide range of diseases from cancer to viral infections. While plant-based production of mAbs has effectively lowered the upstream cost of mAb production compared to mammalian cell cultures, further optimization of downstream processing, especially in extending the longevity of Protein A resin by an effective bulk separation step, will further reduce the overall prohibitive cost of mAb production. In this study, we explored the feasibility of using aqueous two-phase separation (ATPS) in capturing and separating plant-made mAbs from host proteins. Our results demonstrated that an anti-West Nile virus mAb (E16) was efficiently separated from most plant host proteins by a single ATPS step, comprising the mixing of plant extracts containing Hydrophobin-Protein A fusion protein (HPA) and E16 and the subsequent incubation with an inexpensive detergent. This simple ATPS step yielded a highly enriched E16 mAb preparation with a recovery rate comparable to that of Protein A chromatography. The ATPS-enriched E16 retained its structural integrity and was fully functional in binding its target antigen. Notably, HPA-based ATPS was also effective in enriching E16 from plant host proteins when both HPA and E16 were produced in the same leaves, supporting the potential of further streamlining the downstream purification process. Thus, ATPS based on plant-produced HPA in unpurified extract is a cost-effective yet efficient initial capture step for purifying plant-made mAbs, which may significantly impact the approach of mAb purification.
Collapse
Affiliation(s)
- Collin Jugler
- The Biodesign Institute and School of Life Sciences, Arizona State University, Mail Zone 5401, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Jussi Joensuu
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Mail Zone 5401, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| |
Collapse
|
26
|
Deguchi M, Bogush D, Weeden H, Spuhler Z, Potlakayala S, Kondo T, Zhang ZJ, Rudrabhatla S. Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Sci Rep 2020; 10:3504. [PMID: 32103049 PMCID: PMC7044430 DOI: 10.1038/s41598-020-60323-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
Industrial hemp (Cannabis sativa L.) is a high-yielding annual crop primarily grown for fiber, seeds, and oil. Due to the phytochemical composition of hemp, there has been an increased interest in the market for nutraceuticals and dietary supplements for human health. Recent omics analysis has led to the elucidation of hemp candidate genes involved in the syntheses of specialized metabolites. However, a detailed study of these genes has not been undertaken due to the lack of a stable transformation system. We report for the first time an agroinfiltration system in hemp utilizing vacuum infiltration, which is an alternative method to stable transformation. A combination of 0.015% Silwett L-77, 5 mM ascorbic acid, and thirty second sonication followed by a 10-minute vacuum treatment resulted in the highest β-glucuronidase expression in the leaf, male and female flowers, stem, and root tissues. The phytoene desaturase gene was silenced with a transient hairpin RNA expression, resulting in an albino phenotype in the leaves and the male and female flowers. This agroinfiltration system would be useful for overexpression and silencing studies of target genes to regulate the yield of specialized metabolites in hemp.
Collapse
Affiliation(s)
- Michihito Deguchi
- Penn State Harrisburg, 777 West Harrisburg Pike, Middletown, Pennsylvania, USA
| | - Daniel Bogush
- Penn State Harrisburg, 777 West Harrisburg Pike, Middletown, Pennsylvania, USA
| | - Hannah Weeden
- Penn State Harrisburg, 777 West Harrisburg Pike, Middletown, Pennsylvania, USA
| | - Zachary Spuhler
- Penn State Harrisburg, 777 West Harrisburg Pike, Middletown, Pennsylvania, USA
| | - Shobha Potlakayala
- Penn State Harrisburg, 777 West Harrisburg Pike, Middletown, Pennsylvania, USA
| | - Takumasa Kondo
- AGROSAVIA, Centro de Investigación Palmira, Calle 23, Carrera 37, Continuo al Penal Palmira, Valle, Colombia
| | - Zhanyuan J Zhang
- Plant Biotechnology Innovation Laboratory, Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Sairam Rudrabhatla
- Penn State Harrisburg, 777 West Harrisburg Pike, Middletown, Pennsylvania, USA.
| |
Collapse
|
27
|
Current state-of-the-art in the use of plants for the production of recombinant vaccines against infectious bursal disease virus. Appl Microbiol Biotechnol 2020; 104:2287-2296. [PMID: 31980920 DOI: 10.1007/s00253-020-10397-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Infectious bursal disease is a widely spread threatening contagious viral infection of chickens that induces major damages to the Bursa of Fabricius and leads to severe immunosuppression in young birds causing significant economic losses for poultry farming. The etiological agent is the infectious bursal disease virus (IBDV), a non-enveloped virus belonging the family of Birnaviridae. At present, the treatment against the spread of this virus is represented by vaccination schedules mainly based on inactivated or live-attenuated viruses. However, these conventional vaccines present several drawbacks such as insufficient protection against very virulent strains and the impossibility to differentiate vaccinated animals from infected ones. To overcome these limitations, in the last years, several studies have explored the potentiality of recombinant subunit vaccines to provide an effective protection against IBDV infection. In this review, we will give an overview of these novel types of vaccines with special emphasis on current state-of-the-art in the use of plants as "biofactories" (plant molecular farming). In fact, plants have been thoroughly and successfully characterized as heterologous expression systems for the production of recombinant proteins for different applications showing several advantages compared with traditional expression systems (Escherichia coli, yeasts and insect cells) such as absence of animal pathogens in the production process, improved product quality and safety, reduction of manufacturing costs, and simplified scale-up.
Collapse
|
28
|
Matsuo K, Atsumi G. CRISPR/Cas9-mediated knockout of the RDR6 gene in Nicotiana benthamiana for efficient transient expression of recombinant proteins. PLANTA 2019; 250:463-473. [PMID: 31065786 DOI: 10.1007/s00425-019-03180-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION RDR6 gene knockout Nicotiana benthamiana plant was successfully produced using CRISPR/Cas9 technology. The production of recombinant proteins in plants has many advantages, such as safety and reduced costs. However, there are several problems with this technology, especially low levels of protein production. The dysfunction of the RNA silencing mechanism in plant cells would be effective to improve recombinant protein production because the RNA silencing mechanism efficiently degrades transgene-derived mRNAs. Therefore, to overcome this problem, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology was used to develop RNA silencing-related gene knockout transgenic Nicotiana benthamiana. We successfully produced RNA-dependent RNA polymerase 6 (RDR6), one of the most important components of the RNA silencing mechanism-knockout N. benthamiana (ΔRDR6 plants). The ΔRDR6 plants had abnormal flowers and were sterile, as with the Arabidopsis RDR6 mutants. However, a transient gene expression assay showed that the ΔRDR6 plants accumulated larger amounts of green fluorescent protein (GFP) and GFP mRNA than the wild-type (WT) plants. Small RNA sequencing analysis revealed that levels of small interfering RNA against the GFP gene were greatly reduced in the ΔRDR6 plants, as compared to that of the WT plants. These findings demonstrate that the ΔRDR6 plants can express larger amounts of recombinant proteins than WT plants and, therefore, would be useful for recombinant protein production and understanding the contributions of RDR6 to genetic and physiological events in plants.
Collapse
Affiliation(s)
- Kouki Matsuo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.
| | - Go Atsumi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| |
Collapse
|
29
|
Amiri M, Jalali-Javaran M, Haddad R, Ehsani P. In silico and in vivo analyses of the mutated human tissue plasminogen activator (mtPA) and the antithetical effects of P19 silencing suppressor on its expression in two Nicotiana species. Sci Rep 2018; 8:14079. [PMID: 30232346 PMCID: PMC6145930 DOI: 10.1038/s41598-018-32099-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/13/2018] [Indexed: 11/23/2022] Open
Abstract
Human tissue-type plasminogen activator is one of the most important therapeutic proteins involved in the breakdown of blood clots following the stroke. A mutation was found at position 1541 bp (G514E) and the mutated form was cloned into the binary vector pTRAc-ERH. In silico analysis showed that this mutation might have no significant effect on the active site of the tissue plasminogen activator enzyme. Accordingly, zymography assay confirmed the serine protease activity of the mutated form and its derivatives. The expression of the mutated form was verified with/without co-agroinjection of the P19 gene silencing suppressor in both Nicotiana tabacum and N. benthamiana. The ELISA results showed that the concentration of the mutated form in the absence of P19 was 0.65% and 0.74% of total soluble protein versus 0.141% and 1.36% in the presence of P19 in N. benthamiana and N. tabacum, respectively. In N. tabacum, co-agroinjection of P19 had the synergistic effect and increased the mutated tissue plasminogen activator production two-fold higher. However, in N. benthamiana, the presence of P19 had the adverse effect of five-fold reduction in the concentration. Moreover, results showed that the activity of the mutated form and its derivatives was more than that of the purified commercial tissue plasminogen activator.
Collapse
Affiliation(s)
- Mahshid Amiri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mokhtar Jalali-Javaran
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Raheem Haddad
- Agricultural Biotechnology Department, Imam Khomeini International University, Qazvin, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran (IPI), Tehran, Iran.
| |
Collapse
|
30
|
Habibi P, Soccol CR, O’Keefe BR, Krumpe LR, Wilson J, de Macedo LLP, Faheem M, Dos Santos VO, Prado GS, Botelho MA, Lacombe S, Grossi-de-Sa MF. Gene-silencing suppressors for high-level production of the HIV-1 entry inhibitor griffithsin in Nicotiana benthamiana. Process Biochem 2018; 70:45-54. [PMID: 32288594 PMCID: PMC7108441 DOI: 10.1016/j.procbio.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/26/2022]
Abstract
The exploration of emerging host organisms for the economic and efficient production of protein microbicides against HIV is urgently needed in resource-poor areas worldwide. In this study, the production of the novel HIV entry inhibitor candidate, griffithsin (GRFT), was investigated using Nicotiana benthamiana as the expression platform based on a non-viral vector. To increase the yield of recombinant GRFT, the RNA silencing defense mechanism of N. benthamiana was abolished by using three gene silencing suppressors. A transient expression system was used by transferring the GRFT gene, which encodes 122 amino acids, under the control of the enhanced CaMV 35S promoter. The presence of correctly assembled GRFT in transgenic leaves was confirmed using immunoglobulin-specific sandwich ELISA. The data demonstrated that the use of three gene silencing suppressors allowed the highest accumulation of GRFT, with a yield of 400 μg g-1 fresh weight, and this amount was reduced to 287 μg g-1 after purification, representing a recovery of 71.75%. The analysis also showed that the ability of GRFT expressed in N. benthamiana to bind to glycoprotein 120 is close to that of the GRFT protein purified from E. coli. Whole-cell assays using purified GRFT showed that our purified GRFT was potently active against HIV. This study provides the first high-level production of the HIV-1 entry inhibitor griffithsin with a non-viral expression system and illustrates the robustness of the co-agroinfiltration expression system improved through the use of three gene silencing suppressors.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, USA
| | - Lauren R.H. Krumpe
- Basic Science Program, Leidos Biomedical Research, Inc., Molecular Targets Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | | | - Muhammad Faheem
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | | | - Guilherme Souza Prado
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | | | - Severine Lacombe
- IRD, CIRAD, Universite Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
- Post Graduation Program in Biotechnology, University Potiguar, Natal, RN, Brazil
| |
Collapse
|
31
|
A plant-produced vaccine protects mice against lethal West Nile virus infection without enhancing Zika or dengue virus infectivity. Vaccine 2018; 36:1846-1852. [PMID: 29490880 DOI: 10.1016/j.vaccine.2018.02.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 01/21/2023]
Abstract
West Nile virus (WNV) has caused multiple global outbreaks with increased frequency of neuroinvasive disease in recent years. Despite many years of research, there are no licensed therapeutics or vaccines available for human use. One of the major impediments of vaccine development against WNV is the potential enhancement of infection by related flaviviruses in vaccinated subjects through the mechanism of antibody-dependent enhancement of infection (ADE). For instance, the recent finding of enhancement of Zika virus (ZIKV) infection by pre-exposure to WNV further complicates the development of WNV vaccines. Epidemics of WNV and the potential risk of ADE by current vaccine candidates demand the development of effective and safe vaccines. We have previously reported that the domain III (DIII) of the WNV envelope protein can be readily expressed in Nicotiana benthamiana leaves, purified to homogeneity, and promote antigen-specific antibody response in mice. Herein, we further investigated the in vivo potency of a plant-made DIII (plant-DIII) in providing protective immunity against WNV infection. Furthermore, we examined if vaccination with plant-DIII would enhance the risk of a subsequent infection by ZIKV and Dengue virus (DENV). Plant-DIII vaccination evoked antigen-specific cellular immune responses as well as humoral responses. DIII-specific antibodies were neutralizing and the neutralization titers met the threshold correlated with protective immunity by vaccines against multiple flaviviruses. Furthermore, passive administration of anti-plant DIII mouse serum provided full protection against a lethal challenge of WNV infection in mice. Notably, plant DIII-induced antibodies did not enhance ZIKV and DENV infection in Fc gamma receptor-expressing cells, addressing the concern of WNV vaccines in inducing cross-reactive antibodies and sensitizing subjects to subsequent infection by heterologous flavivirus. This study provides the first report of a WNV subunit vaccine that induces protective immunity, while circumventing induction of antibodies with enhancing activity for ZIKV and DENV infection.
Collapse
|
32
|
Abstract
Plant molecular farming depends on a diversity of plant systems for production of useful recombinant proteins. These proteins include protein biopolymers, industrial proteins and enzymes, and therapeutic proteins. Plant production systems include microalgae, cells, hairy roots, moss, and whole plants with both stable and transient expression. Production processes involve a narrowing diversity of bioreactors for cell, hairy root, microalgae, and moss cultivation. For whole plants, both field and automated greenhouse cultivation methods are used with products expressed and produced either in leaves or seeds. Many successful expression systems now exist for a variety of different products with a list of increasingly successful commercialized products. This chapter provides an overview and examples of the current state of plant-based production systems for different types of recombinant proteins.
Collapse
Affiliation(s)
| | - Thomas Bley
- Bioprocess Engineering, Institute of Food Technology and Bioprocess Engineering, TU Dresden, Dresden, Germany
| |
Collapse
|
33
|
von Schaewen A, Jeong IS, Rips S, Fukudome A, Tolley J, Nagashima Y, Fischer K, Kaulfuerst-Soboll H, Koiwa H. Improved recombinant protein production in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1486149. [PMID: 29932798 PMCID: PMC6110358 DOI: 10.1080/15592324.2018.1486149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Production and isolation of recombinant proteins are key steps in modern Molecular Biology. Expression vectors and platforms for various hosts, including both prokaryotic and eukaryotic systems, have been used. In basic plant research, Arabidopsis thaliana is the central model for which a wealth of genetic and genomic resources is available, and enormous knowledge has been accumulated over the past years - especially since elucidation of its genome in 2000. However, until recently an Arabidopsis platform had been lacking for preparative-scale production of homologous recombinant proteins. We recently established an Arabidopsis-based super-expression system, and used it for a structural pilot study of a multi-subunit integral membrane protein complex. This review summarizes the benefits and further potential of the model plant system for protein productions. ABBREVIATIONS Nb, Nicotiana benthamiana; OT, oligosaccharyltransferase.
Collapse
Affiliation(s)
- A. von Schaewen
- Molekulare Physiologie der Pflanzen; Institut für Biologie & Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - I. S. Jeong
- Vegetable and Fruit Improvement Center; Department of Horticultural Sciences; and Molecular and Environmental Plant Science Program, Texas A&M University; College Station, Texas, USA
- Department of Biomedical Engineering College of Creative Convergence Engineering, Catholic Kwandong University, Gangneung, Gangwon-do, South Korea
| | - S. Rips
- Molekulare Physiologie der Pflanzen; Institut für Biologie & Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - A. Fukudome
- Vegetable and Fruit Improvement Center; Department of Horticultural Sciences; and Molecular and Environmental Plant Science Program, Texas A&M University; College Station, Texas, USA
| | - J. Tolley
- Vegetable and Fruit Improvement Center; Department of Horticultural Sciences; and Molecular and Environmental Plant Science Program, Texas A&M University; College Station, Texas, USA
| | - Y. Nagashima
- Vegetable and Fruit Improvement Center; Department of Horticultural Sciences; and Molecular and Environmental Plant Science Program, Texas A&M University; College Station, Texas, USA
| | - K. Fischer
- Molekulare Physiologie der Pflanzen; Institut für Biologie & Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - H. Kaulfuerst-Soboll
- Molekulare Physiologie der Pflanzen; Institut für Biologie & Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - H. Koiwa
- Vegetable and Fruit Improvement Center; Department of Horticultural Sciences; and Molecular and Environmental Plant Science Program, Texas A&M University; College Station, Texas, USA
- CONTACT Hisashi Koiwa
| |
Collapse
|
34
|
Loh HS, Green BJ, Yusibov V. Using transgenic plants and modified plant viruses for the development of treatments for human diseases. Curr Opin Virol 2017; 26:81-89. [PMID: 28800551 PMCID: PMC7102806 DOI: 10.1016/j.coviro.2017.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/17/2022]
Abstract
Concept of plant-based biofactories for therapeutics and biologics. Industrial preference of transient expression system — agroinfiltration. Advancement of virus-like particles from epitope presentation to nanomedicine. Recent progress of plant-made therapeutics and biologics against human diseases.
Production of proteins in plants for human health applications has become an attractive strategy attributed by their potentials for low-cost production, increased safety due to the lack of human or animal pathogens, scalability and ability to produce complex proteins. A major milestone for plant-based protein production for use in human health was achieved when Protalix BioTherapeutics produced taliglucerase alfa (Elelyso®) in suspension cultures of a transgenic carrot cell line for the treatment of patients with Gaucher's disease, was approved by the USA Food and Drug Administration in 2012. In this review, we are highlighting various approaches for plant-based production of proteins and recent progress in the development of plant-made therapeutics and biologics for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia; Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA.
| |
Collapse
|
35
|
Dent M, Hurtado J, Paul AM, Sun H, Lai H, Yang M, Esqueda A, Bai F, Steinkellner H, Chen Q. Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity. J Gen Virol 2016; 97:3280-3290. [PMID: 27902333 PMCID: PMC5756494 DOI: 10.1099/jgv.0.000635] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
The mAb E60 has the potential to be a desirable therapeutic molecule since it efficiently neutralizes all four serotypes of dengue virus (DENV). However, mammalian-cell-produced E60 exhibits antibody-dependent enhancement of infection (ADE) activity, rendering it inefficacious in vivo, and treated animals more susceptible to developing more severe diseases during secondary infection. In this study, we evaluated a plant-based expression system for the production of therapeutically suitable E60. The mAb was transiently expressed in Nicotiana benthamianaWT and a ∆XFT line, a glycosylation mutant lacking plant-specific N-glycan residues. The mAb was efficiently expressed and assembled in leaves and exhibited highly homogenous N-glycosylation profiles, i.e. GnGnXF3 or GnGn structures, depending on the expression host. Both E60 glycovariants demonstrated equivalent antigen-binding specificity and in vitro neutralization potency against DENV serotypes 2 and 4 compared with their mammalian-cell-produced counterpart. By contrast, plant-produced E60 exhibited reduced ADE activity in Fc gamma receptor expressing human cells. Our results suggest the ability of plant-produced antibodies to minimize ADE, which may lead to the development of safe and highly efficacious antibody-based therapeutics against DENV and other ADE-prone viral diseases. Our study provides so far unknown insight into the relationship between mAb N-glycosylation and ADE, which contributes to our understanding of how sugar moieties of antibodies modulate Fc-mediated functions and viral pathogenesis.
Collapse
Affiliation(s)
- Matthew Dent
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jonathan Hurtado
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amber M. Paul
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Haiyan Sun
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Huafang Lai
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ming Yang
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Adrian Esqueda
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Fengwei Bai
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
36
|
Abstract
Plant-based vaccine technologies involve the integration of the desired genes encoding the antigen protein for specific disease into the genome of plant tissues by various methods. Agrobacterium-mediated gene transfer and transformation via genetically modified plant virus are the common methods that have been used to produce effective vaccines. Nevertheless, with the advancement of science and technology, new approaches have been developed to increase the efficiency of former methods such as biolistic, electroporation, agroinfiltration, sonication, and polyethylene glycol treatment. Even though plant-based vaccines provide many benefits to the vaccine industry, there are still challenges that limit the rate of successful production of these third-generation vaccines. Even with all the limitations, continuous efforts are still ongoing in order to produce efficient vaccine for many human and animals related diseases owing to its great potentials. This paper reviews the existing conventional methods as well as the development efforts by researchers in order to improve the production of plant-based vaccines. Several challenges encountered during and after the production process were also discussed.
Collapse
|
37
|
Diamos AG, Rosenthal SH, Mason HS. 5' and 3' Untranslated Regions Strongly Enhance Performance of Geminiviral Replicons in Nicotiana benthamiana Leaves. FRONTIERS IN PLANT SCIENCE 2016; 7:200. [PMID: 26941764 PMCID: PMC4764687 DOI: 10.3389/fpls.2016.00200] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/05/2016] [Indexed: 05/24/2023]
Abstract
We previously reported a recombinant protein production system based on a geminivirus replicon that yields high levels of vaccine antigens and monoclonal antibodies in plants. The bean yellow dwarf virus (BeYDV) replicon generates massive amounts of DNA copies, which engage the plant transcription machinery. However, we noticed a disparity between transcript level and protein production, suggesting that mRNAs could be more efficiently utilized. In this study, we systematically evaluated genetic elements from human, viral, and plant sources for their potential to improve the BeYDV system. The tobacco extensin terminator enhanced transcript accumulation and protein production compared to other commonly used terminators, indicating that efficient transcript processing plays an important role in recombinant protein production. Evaluation of human-derived 5' untranslated regions (UTRs) indicated that many provided high levels of protein production, supporting their cross-kingdom function. Among the viral 5' UTRs tested, we found the greatest enhancement with the tobacco mosaic virus omega leader. An analysis of the 5' UTRs from the Arabidopsis thaliana and Nicotinana benthamiana photosystem I K genes found that they were highly active when truncated to include only the near upstream region, providing a dramatic enhancement of transgene production that exceeded that of the tobacco mosaic virus omega leader. The tobacco Rb7 matrix attachment region inserted downstream from the gene of interest provided significant enhancement, which was correlated with a reduction in plant cell death. Evaluation of Agrobacterium strains found that EHA105 enhanced protein production and reduced cell death compared to LBA4301 and GV3101. We used these improvements to produce Norwalk virus capsid protein at >20% total soluble protein, corresponding to 1.8 mg/g leaf fresh weight, more than twice the highest level ever reported in a plant system. We also produced the monoclonal antibody rituximab at 1 mg/g leaf fresh weight.
Collapse
|
38
|
Chen Q. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible. Biotechnol J 2015; 10:671-80. [PMID: 25676782 PMCID: PMC4424112 DOI: 10.1002/biot.201400428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/02/2014] [Accepted: 01/15/2015] [Indexed: 11/07/2022]
Abstract
The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA; School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|