1
|
Nagata M, Ikuse T, Tokushima K, Arai N, Jimbo K, Kudo T, Shimizu T. High galectin expression in Helicobacter pylori-infected gastric mucosa in childhood. Pediatr Neonatol 2025; 66:241-246. [PMID: 39244403 DOI: 10.1016/j.pedneo.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Mild Th1 and Th17 immune responses in childhood against Helicobacter pylori are presumed to be responsible for H. pylori colonization and mucosal atrophy reduction. However, the mechanism remains unclear. In this study, we aimed to investigate the childhood-specific immune responses observed after H. pylori infection by analyzing galectin expression in the gastric mucosa. We focused on galectin-1 (Gal-1) and galectin-9 (Gal-9), which function to suppress Th1 and Th17 immune responses. METHODS We analyzed changes in the expression of Gal-1 and Gal-9 in the gastric mucosa of pediatric patients with H. pylori infection. Ten pediatric patients with and ten patients without H. pylori infection who underwent biopsy to assess the cause of chronic abdominal symptoms using esophagogastroduodenoscopy were evaluated. Gal-1 and Gal-9 expression in the biopsy tissues of the gastric antrum and corpus was analyzed by immunohistochemical staining. RESULTS Gal-1 expression was significantly increased in the stromal cells of the corpus owing to H. pylori infection. No alterations in Gal-1 expression due to H. pylori infection were observed in the antral tissue. Helicobacter pylori infection considerably increased Gal-9 expression in all tissues. According to previous reports, the increased expression of Gal-9 associated with H. pylori infection is not observed in adults. Therefore, the increased expression of Gal-9 associated with H. pylori infection is specific to pediatric patients. CONCLUSION The increased expression of Gal-1 and Gal-9 may suppress Th1 and Th17 immune responses against H. pylori infection during childhood, promote H. pylori colonization, and reduce inflammation in the gastric mucosa of pediatric patients.
Collapse
Affiliation(s)
- Masumi Nagata
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Tamaki Ikuse
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| | - Kaori Tokushima
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobuyasu Arai
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Keisuke Jimbo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takahiro Kudo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
2
|
Hu W, Chen ZM, Wang Y, Yang C, Wu ZY, You LJ, Zhai ZY, Huang ZY, Zhou P, Huang SL, Li XX, Yang GH, Bao CJ, Cui XB, Xia GL, Ou Yang MP, Zhang L, Wu WKK, Li LF, Tan LK, Zhang YX, Gong W. Single-cell RNA sequencing dissects the immunosuppressive signatures in Helicobacter pylori-infected human gastric ecosystem. Nat Commun 2025; 16:3903. [PMID: 40281037 PMCID: PMC12032416 DOI: 10.1038/s41467-025-59339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Helicobacter pylori (H. pylori) manipulates the host immune system to establish a persistent colonization, posing a serious threat to human health, but the mechanisms remain poorly understood. Here we integrate single-cell RNA sequencing and TCR profiling for analyzing 187,192 cells from 11 H. pylori-negative and 12 H. pylori-positive individuals to describe the human gastric ecosystem reprogrammed by H. pylori infection, as manifested by impaired antigen presentation and phagocytosis function. We further delineate a monocyte-to-C1QC+ macrophage differentiation trajectory driven by H. pylori infection, while T cell responses exhibit broad functional impairment and hyporesponsiveness with restricted clonal expansion capacity. We also identify an HLA-DRs- and CTLA4-expressing T cell population residing in H. pylori-inhabited stomach that potentially contribute to immune evasion. Together, our findings provide single-cell resolution information into the immunosuppressive microenvironment shaped by H. pylori infection, offering critical insights for developing novel therapeutic approaches to eliminate this globally prevalent pathogen.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ze Min Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Chao Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zi Ying Wu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhao Yu Huang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Si Lin Huang
- Department of Gastroenterology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Chong Ju Bao
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gui Li Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei Ping Ou Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lin Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Long Fei Li
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Li Kai Tan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Xuan Zhang
- Department of Pharmacology and Therapeutics, King's College London, London, UK
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Yi M, Chen S, Yi X, Zhang F, Zhou X, Zeng M, Song H. Helicobacter pylori infection process: from the molecular world to clinical treatment. Front Microbiol 2025; 16:1541140. [PMID: 40083792 PMCID: PMC11903457 DOI: 10.3389/fmicb.2025.1541140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Helicobacter pylori is a gram-negative microaerophilic microorganism intricately associated with chronic gastrointestinal disorders and gastric cancer. H. pylori can cause various upper digestive tract diseases, including chronic gastritis, peptic ulcer, gastroesophageal reflux disease, and gastric cancer. The bacterium exhibits a variety of pathogenic mechanisms, including colonization, the expression of virulence factors, and the development of drug resistance. This article presents a comprehensive review of H. pylori pathogenesis, emphasizing recent research advancements concerning the cytotoxin-associated gene A, vacuolating cytotoxin, outer membrane proteins, and other virulence factors. Additionally, it examines the molecular mechanisms underlying drug resistance and evaluates the efficacy of conventional therapeutic approaches. Recently, researchers have attempted novel therapeutic regimens, including probiotics and Chinese medicine-assisted therapies, to enhance therapeutic effects. This article aimed to offer an overview of the academic community's comprehension of H. pylori infection and to highlight the current treatment options.
Collapse
Affiliation(s)
- Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Fan Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Manna OM, Caruso Bavisotto C, Gratie MI, Damiani P, Bonaventura G, Cappello F, Tomasello G, D’Andrea V. Targeting Helicobacter pylori Through the "Muco-Microbiotic Layer" Lens: The Challenge of Probiotics and Microbiota Nanovesicles. Nutrients 2025; 17:569. [PMID: 39940427 PMCID: PMC11819664 DOI: 10.3390/nu17030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The muco-microbiotic layer represents a critical biological frontier in gastroenterology, emphasizing the intricate interplay between the protective mucus, its resident microbiota, and extracellular vesicles. This review explores the functional morphology of the gastric mucosa, focusing on the gastric muco-microbiotic layer, its role as a protective barrier, and its dynamic interaction with some of the most insidious pathogens such as Helicobacter pylori (H. pylori). Highlighting the multifaceted mechanisms of H. pylori pathogenesis, we have delved into bacterial virulence factors, host immune responses, and the microbiota's regulatory effects. Novel therapeutic strategies for H. pylori eradication, including traditional antibiotic therapies and emerging adjuvant treatments like probiotics and probiotic-derived extracellular vesicles, are critically examined. These findings underscore the potential of targeting nanovesicular interactions in the gastric mucosa, proposing a paradigm shift in the management of H. pylori infections to improve patient outcomes while mitigating antibiotic resistance.
Collapse
Affiliation(s)
- Olga Maria Manna
- Department of Sciences for Promotion of Health and Mother and Child Care, Surgical Pathology Unit, University of Palermo, 90133 Palermo, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
| | - Celeste Caruso Bavisotto
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Melania Ionelia Gratie
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Provvidenza Damiani
- Risk Management and Quality Unit, Hospital University “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Giuseppe Bonaventura
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Giovanni Tomasello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
5
|
Cozac-Szőke AR, Cozac DA, Negovan A, Tinca AC, Vilaia A, Cocuz IG, Sabău AH, Niculescu R, Chiorean DM, Tomuț AN, Cotoi OS. Immune Cell Interactions and Immune Checkpoints in the Tumor Microenvironment of Gastric Cancer. Int J Mol Sci 2025; 26:1156. [PMID: 39940924 PMCID: PMC11818890 DOI: 10.3390/ijms26031156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Gastric cancer (GC) ranks as the fifth most prevalent malignant neoplasm globally, with an increased death rate despite recent advancements in research and therapeutic options. Different molecular subtypes of GC have distinct interactions with the immune system, impacting the tumor microenvironment (TME), prognosis, and reaction to immunotherapy. Tumor-infiltrating lymphocytes (TILs) in the TME are crucial for preventing tumor growth and metastasis, as evidenced by research showing that patients with GC who have a significant density of TILs have better survival rates. But cancer cells have evolved a variety of mechanisms to evade immune surveillance, both sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) and Programmed Death-Ligand 1 (PD-L1) playing a pivotal role in the development of an immunosuppressive TME. They prevent T cell activation and proliferation resulting in a decrease in the immune system's capacity to recognize and eliminate malignant cells. These immune checkpoint molecules function via different but complementary mechanisms, the expression of Siglec-15 being mutually exclusive with PD-L1 and, therefore, providing a different therapeutic approach. The review explores how TILs affect tumor growth and patient outcomes in GC, with particular emphasis on their interactions within the TME and potential targeting of the PD-L1 and Siglec-15 pathways for immunotherapy.
Collapse
Affiliation(s)
- Andreea-Raluca Cozac-Szőke
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.-R.C.-S.); (A.H.S.); (R.N.); (D.M.C.)
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (I.-G.C.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Dan Alexandru Cozac
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.-R.C.-S.); (A.H.S.); (R.N.); (D.M.C.)
- Emergency Institute for Cardiovascular Diseases and Transplantation Targu Mures, 540142 Targu Mures, Romania
| | - Anca Negovan
- Department of Clinical Science-Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Andreea Cătălina Tinca
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (I.-G.C.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Alexandra Vilaia
- Department of Infectious Diseases I, Doctoral School of Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Iuliu-Gabriel Cocuz
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (I.-G.C.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Adrian Horațiu Sabău
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.-R.C.-S.); (A.H.S.); (R.N.); (D.M.C.)
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (I.-G.C.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Raluca Niculescu
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.-R.C.-S.); (A.H.S.); (R.N.); (D.M.C.)
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (I.-G.C.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Diana Maria Chiorean
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.-R.C.-S.); (A.H.S.); (R.N.); (D.M.C.)
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (I.-G.C.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Alexandru Nicușor Tomuț
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.C.T.); (I.-G.C.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| |
Collapse
|
6
|
Santacroce L, Topi S, Cafiero C, Palmirotta R, Jirillo E. The Role of the Immune Response to Helicobacter pylori Antigens and Its Relevance in Gastric Disorders. GASTROINTESTINAL DISORDERS 2025; 7:6. [DOI: 10.3390/gidisord7010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Helicobacter pylori (H.p.) is a Gram-negative bacterium endowed with gastric tropism. H.p. infection is widely spread throughout the world, accounting for various pathologies, such as peptic ulcer, gastric cancer, mucosa-associated lymphoid tissue lymphoma, and extra-gastric manifestations. This bacterium possesses several virulence factors, e.g., lipopolysaccharides (LPS), the toxins CagA and VacA, and adhesins, which elicit a robust immune response during the initial phase of the infection. Of note, the lipid A moiety of the LPS exhibits a lower endotoxic potency than that of other LPSs, thus facilitating infection through a mechanism of immune escape. H.p. colonization of the gastric mucosa induces an initial protective immune response with innate immune cells, e.g., neutrophils, monocytes, and macrophages, which engulf and kill bacteria. Moreover, the same cells, along with gastric epithelial cells, secrete cytokines and chemokines, which recruit T cells [T helper (h)1 and Th17 cells] to the site of infection, thus leading to H.p. eradication. In a large subset of individuals, the perturbation of such an immune equilibrium leads to a harmful response, with an expansion of T regulatory (TREG) cells, which suppress the protective immune response. In fact, TREG cells, via the production of interleukin (IL)-10, downregulate Th1- and Th17-related cytokines, thus allowing H.p. survival and the perpetuation of inflammation. As far as the humoral immune response is concerned, B cells, upon H.p. stimulation, produce autoreactive antibodies, and IgG anti-Lex antibodies are harmful to the gastric mucosa. In this review, the structure and function of H.p. antigenic components and immune mechanisms elicited by this bacterium will be described in relation to gastric damage.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | | | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
7
|
Yang C, Rodriguez y Baena A, Manso BA, Hu S, Lopez-Magaña R, Ohanyan M, Ottemann KM. Helicobacter pylori luxS mutants cause hyperinflammatory responses during chronic infection. Microbiol Spectr 2025; 13:e0107324. [PMID: 39641542 PMCID: PMC11705807 DOI: 10.1128/spectrum.01073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/30/2024] [Indexed: 12/07/2024] Open
Abstract
Helicobacter pylori infects roughly half the world's population, causing gastritis, peptic ulcers, and gastric cancer in a subset. These pathologies occur in response to a chronic inflammatory state, but it is not fully understood how H. pylori controls this process. We characterized the inflammatory response of H. pylori mutants that cannot produce the quorum sensing molecule autoinducer 2 (AI-2) by deleting the gene for the AI-2 synthase, luxS. Our work shows that H. pylori luxS mutants colonize the stomach normally but recruit high numbers of CD4+ T cells to the stomach during chronic infection. This increase in the number of CD4+ T cells correlated with elevated expression of CXCL9, a chemokine important for T cell recruitment. Together, our results suggest that H. pylori may utilize AI-2 signaling to modulate the inflammatory response during chronic infection. IMPORTANCE Many bacteria signal to each other using quorum sensing signals. One type of signal is called autoinducer 2 (AI-2), which is produced and sensed by the LuxS enzyme found in many bacteria, including the gastric pathogen Helicobacter pylori. H. pylori establishes chronic infections that last for decades and lead to serious disease outcomes. How AI-2 signaling and LuxS contribute to chronic H. pylori infection has not been studied. In this work, we analyzed how loss of H. pylori-created AI-2, via mutation of luxS, affects H. pylori chronic infection. luxS mutants did not have significant colonization defects, similar to their reported phenotype during early infection, but they did have high stomach levels of effector and regulatory T cells and T-cell-recruiting chemokines. These results suggest that H. pylori LuxS may play more of a role in modulating the immune response versus colonization.
Collapse
Affiliation(s)
- Christina Yang
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Bryce A. Manso
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Raymondo Lopez-Magaña
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Mané Ohanyan
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
8
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
9
|
Wang X, Wang J, Mao L, Yao Y. Helicobacter pylori outer membrane vesicles and infected cell exosomes: new players in host immune modulation and pathogenesis. Front Immunol 2024; 15:1512935. [PMID: 39726601 PMCID: PMC11670821 DOI: 10.3389/fimmu.2024.1512935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Outer membrane vesicles (OMVs) and exosomes are essential mediators of host-pathogen interactions. Elucidating their mechanisms of action offers valuable insights into diagnosing and treating infectious diseases and cancers. However, the specific interactions of Helicobacter pylori (H. pylori) with host cells via OMVs and exosomes in modulating host immune responses have not been thoroughly investigated. This review explores how these vesicles elicit inflammatory and immunosuppressive responses in the host environment, facilitate pathogen invasion of host cells, and enable evasion of host defenses, thereby contributing to the progression of gastric diseases and extra-gastric diseases disseminated through the bloodstream. Furthermore, the review discusses the challenges and future directions for investigating OMVs and exosomes, underscoring their potential as therapeutic targets in H. pylori-associated diseases.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, The First People’s Hospital of
Kunshan, Kunshan, Jiangsu, China
| | | | | | | |
Collapse
|
10
|
Cholidis P, Kranas D, Chira A, Galouni EA, Adamantidi T, Anastasiadou C, Tsoupras A. Shrimp Lipid Bioactives with Anti-Inflammatory, Antithrombotic, and Antioxidant Health-Promoting Properties for Cardio-Protection. Mar Drugs 2024; 22:554. [PMID: 39728129 DOI: 10.3390/md22120554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more. The various health-promoting effects deriving from the consumption of shrimp lipid bioactives and the usage of products containing shrimp lipid extracts are also addressed in this study, through the exploration of several mechanisms of action and the interference of shrimp lipids in these biochemical pathways. Nevertheless, further research on this cultivatable edible species is needed, due to their existing limitations and future prospects which are discussed in this paper.
Collapse
Affiliation(s)
- Paschalis Cholidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Dimitrios Kranas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Aggeliki Chira
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Evangelia Aikaterini Galouni
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| |
Collapse
|
11
|
Safikhani Mahmoodzadeh A, Moazamian E, Shamsdin SA, Kaydani GA. Altered Cytokine Production in Patients with Helicobacter pylori Infection. Middle East J Dig Dis 2024; 16:235-241. [PMID: 39807418 PMCID: PMC11725024 DOI: 10.34172/mejdd.2024.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/02/2024] [Indexed: 01/16/2025] Open
Abstract
Background Helicobacter pylori is a gram-negative pathogen. The infection caused by this pathogen may result in gastritis and can increase the risk of gastric cancer. This study investigated the relationship between H. pylori infection as the main risk factor for gastritis and changes in serum inflammatory cytokine levels. Methods Blood samples from 85 patients with stomach pain, including 46 H. pylori-positive (Hp+) and 39 H. pylori-negative (Hp-) cases, were collected and referred to a gastroenterologist. After isolation and identification of H. pylori, the severity of gastritis was determined for each patient based on the histopathological findings. Finally, the serum levels of cytokines were measured using the multiplex kit and flow cytometry methods. Results There were significant differences in the levels of interleukin-2 (IL-2), IL-4, IL-17A, IL-17F, IL-22, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) between the Hp- and the Hp+ specimens (P≤0.05). The levels of IL-2, IL-17A, IL-17F, IL-22, TNF-α, and IFN-γ were significantly higher in patients with mild and moderate gastritis than Hp- group (P≤0.05). In addition, IL-4 significantly increased in patients with moderate gastritis compared with Hp- individuals (P=0.008). Conclusion Among the inflammatory cytokines evaluated in this study, IL-17A, IL-17F, and IL-22 may play a crucial role in developing moderate gastritis in infected patients with H. pylori.
Collapse
Affiliation(s)
- Abdollah Safikhani Mahmoodzadeh
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Abas Kaydani
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaze Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189139. [PMID: 38897421 DOI: 10.1016/j.bbcan.2024.189139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Guang Zhao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China; Department of Emergency Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
13
|
Rogozynski NP, Dixon B. The Th1/Th2 paradigm: A misrepresentation of helper T cell plasticity. Immunol Lett 2024; 268:106870. [PMID: 38788801 DOI: 10.1016/j.imlet.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
For decades, the Th1/2 paradigm has been used to classify immune responses as either Th1 or Th2-biased. However, in recent years, a staggering amount of evidence has emerged to support rejection of the classical Th1/Th2 paradigm, such as the discoveries of new helper T cell subsets, helper T cell plasticity and protective mixed-Th1/Th2 responses. This opinion piece investigates the shortcomings of classical Th1/Th2 paradigm in the context of recent works, with the goal of facilitating the development of newer models to represent the diversity of Th cells.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
14
|
Jafarzadeh A, Jafarzadeh Z, Nemati M, Yoshimura A. The Interplay Between Helicobacter pylori and Suppressors of Cytokine Signaling (SOCS) Molecules in the Development of Gastric Cancer and Induction of Immune Response. Helicobacter 2024; 29:e13105. [PMID: 38924222 DOI: 10.1111/hel.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Spagnuolo R, Scarlata GGM, Paravati MR, Abenavoli L, Luzza F. Change in Diagnosis of Helicobacter pylori Infection in the Treatment-Failure Era. Antibiotics (Basel) 2024; 13:357. [PMID: 38667033 PMCID: PMC11047737 DOI: 10.3390/antibiotics13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection is a prevalent global health issue, associated with several gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. The landscape of H. pylori treatment has evolved over the years, with increasing challenges due to antibiotic resistance and treatment failure. Traditional diagnostic methods, such as the urea breath test, stool antigen test, and endoscopy with biopsy, are commonly used in clinical practice. However, the emergence of antibiotic-resistant strains has led to a decline in treatment efficacy, necessitating a re-evaluation of common diagnostic tools. This narrative review aims to explore the possible changes in the diagnostic approach of H. pylori infection in the era of treatment failure. Molecular techniques, including polymerase chain reaction and whole genome sequencing, which have high sensitivity and specificity, allow the detection of genes associated with antibiotic resistance. On the other hand, culture isolation and a phenotypic antibiogram could be used in the diagnostic routine, although H. pylori is a fastidious bacterium. However, new molecular approaches are promising tools for detecting the pathogen and its resistance genes. In this regard, more real-life studies are needed to reveal new diagnostic tools suitable for identifying multidrug-resistant H. pylori strains and for outlining proper treatment.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Luzza
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (R.S.); (G.G.M.S.); (M.R.P.); (L.A.)
| |
Collapse
|
16
|
Zhang X, He Y, Zhang X, Fu B, Song Z, Wang L, Fu R, Lu X, Xing J, Lv J, Guo M, Huo X, Liu X, Lu J, Du X, Ge Z, Chen Z, Li C. Sustained exposure to Helicobacter pylori induces immune tolerance by desensitizing TLR6. Gastric Cancer 2024; 27:324-342. [PMID: 38310631 PMCID: PMC10896808 DOI: 10.1007/s10120-023-01461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1β and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Yang He
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
- School of Nursing, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaolu Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Bo Fu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zidai Song
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Liang Wang
- Peking University Ninth School of Clinical Medicine, Beijing, People's Republic of China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Jianyi Lv
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Meng Guo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xueyun Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xin Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Jing Lu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Du
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, USA
| | - Zhenwen Chen
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Changlong Li
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Ali A, AlHussaini KI. Helicobacter pylori: A Contemporary Perspective on Pathogenesis, Diagnosis and Treatment Strategies. Microorganisms 2024; 12:222. [PMID: 38276207 PMCID: PMC10818838 DOI: 10.3390/microorganisms12010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and is associated with various gastrointestinal disorders. H. pylori is a pervasive pathogen, infecting nearly 50% of the world's population, and presents a substantial concern due to its link with gastric cancer, ranking as the third most common cause of global cancer-related mortality. This review article provides an updated and comprehensive overview of the current understanding of H. pylori infection, focusing on its pathogenesis, diagnosis, and treatment strategies. The intricate mechanisms underlying its pathogenesis, including the virulence factors and host interactions, are discussed in detail. The diagnostic methods, ranging from the traditional techniques to the advanced molecular approaches, are explored, highlighting their strengths and limitations. The evolving landscape of treatment strategies, including antibiotic regimens and emerging therapeutic approaches, is thoroughly examined. Through a critical synthesis of the recent research findings, this article offers valuable insights into the contemporary knowledge of Helicobacter pylori infection, guiding both clinicians and researchers toward effective management and future directions in combating this global health challenge.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Khalid I. AlHussaini
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 4233-13317, Saudi Arabia
| |
Collapse
|
19
|
Afkhamipour M, Kaviani F, Dalali S, Piri-Gharaghie T, Doosti A. Potential Gastric Cancer Immunotherapy: Stimulating the Immune System with Helicobacter pylori pIRES2-DsRed-Express- ureF DNA Vaccines. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0004. [PMID: 38346161 DOI: 10.2478/aite-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/20/2023] [Indexed: 02/15/2024]
Abstract
Most gastric cancers (GC) are thought to be caused by Helicobacter pylori (H. pylori) infections. However, there is mounting evidence that GC patients with positive H. pylori status have improved prognoses. The H. pylori-induced cellular immune reaction may inhibit cancer. In this study, BALB/c mice were immunized using recombinant plasmids that encode the ureF gene of H. pylori. Purified functional splenic CD3+ T lymphocytes are used to study the anticancer effects in vitro and in vivo. The immunological state of GC patients with ongoing H. pylori infection is mimicked by the H. pylori DNA vaccines, which cause a change in the reaction from Th1 to Th2. Human GC cells grow more slowly when stimulated CD3+ T lymphocytes are used as adoptive infusions because they reduce GC xenograft development in vivo. The more excellent ratios of infiltrating CD8+/CD4+ T cells, the decreased invasion of regulatory FOXP3+ Treg lymphocytes, and the increased apoptosis brought on by Caspase9/Caspase-3 overexpression and Survivin downregulation may all contribute to the consequences. Our findings suggest that in people with advanced GC, H. pylori pIRES2-DsRed-Express-ureF DNA vaccines may have immunotherapeutic utility.
Collapse
Affiliation(s)
- Mahsa Afkhamipour
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Kaviani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Dalali
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Biotechnology Research Center, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
20
|
Yunle K, Tong W, Jiyang L, Guojun W. Advances in Helicobacter pylori vaccine research: From candidate antigens to adjuvants-A review. Helicobacter 2024; 29:e13034. [PMID: 37971157 DOI: 10.1111/hel.13034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Helicobacter pylori is a Gram-negative, spiral-shaped bacterium that infects approximately 50% of the world's population and has been strongly associated with chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoma, and gastric cancer. The elimination of H. pylori is currently considered one of the most effective strategies for the treatment of gastric-related diseases, so antibiotic therapy is the most commonly used regimen for the treatment of H. pylori infection. Although this therapy has some positive effects, antibiotic resistance has become another clinically prominent problem. Therefore, the development of a safe and efficient vaccine has become an important measure to prevent H. pylori infection. METHODS PubMed and ClinicalTrials.gov were systematically searched from January 1980 to March 2023 with search terms-H. pylori vaccine, adjuvants, immunization, pathogenesis, and H. pylori eradication in the title and/or abstract of literature. A total of 5182 documents were obtained. Based on the principles of academic reliability, authority, nearly publicated, and excluded the similar documents, finally, 75 documents were selected, organized, and analyzed. RESULTS Most of the candidate antigens used as H. pylori vaccines in these literatures are whole-cell antigens and virulence antigens such as UreB, VacA, CagA, and HspA, and the main types of vaccines for H. pylori are whole bacteria vaccines, vector vaccines, subunit vaccines, nucleic acid vaccines, epitope vaccines, etc. Some vaccines have shown good immune protection in animal trials; however, few vaccines show good in clinical trials. The only H. pylori vaccine passed phase 3 clinical trial is a recombinant subunit vaccine using Urease subunit B (UreB) as the vaccine antigen, and it shows good prophylactic effects. Meanwhile, the adjuvant system for vaccines against this bacterium has been developed considerably. In addition to the traditional mucosal adjuvants such as cholera toxin (CT) and E. coli heat labile enterotoxin (LT), there are also promising safer and more effective mucosal adjuvants. All these advances made safe and effective H. pylori vaccines come into service as early as possible. CONCLUSIONS This review briefly summarized the advances of H. pylori vaccines from two aspects, candidates of antigens and adjuvants, to provide references for the development of vaccine against this bacterium. We also present our prospects of exosomal vaccines in H. pylori vaccine research, in the hope of inspiring future researchers.
Collapse
Affiliation(s)
- Kuang Yunle
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wu Tong
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Liu Jiyang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wu Guojun
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
21
|
Brackman LC, Jung MS, Green EH, Joshi N, Revetta FL, McClain MS, Markham NO, Piazuelo MB, Scott Algood HM. IL-17 signaling protects against Helicobacter pylori-induced gastric cancer. Gut Microbes 2024; 16:2430421. [PMID: 39588838 PMCID: PMC11639209 DOI: 10.1080/19490976.2024.2430421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Helicobacter pylori infection is the predominant risk factor for the development of gastric cancer. Risk is enhanced by specific H. pylori virulence factors, diet, and the inflammatory response. Chronic activation of T helper (Th) 1 and Th17 pathways contributes to prolonged inflammation; yet, higher expression of IL-17 receptor (IL-17RA) is a favorable prognostic marker for survival after gastric cancer diagnosis. The protective impact of IL-17RA signaling is not understood. To investigate if IL-17RA signaling protects during H. pylori-induced carcinogenesis, the transgenic InsGAStg/tg mouse, which is prone to H. pylori-induced gastric cancer, was utilized. InsGAStg/tg mice and InsGAStg/tgIl17ra-/- mice were infected with a cag type 4 secretion system (T4SS) positive H. pylori strain for up to 6 months. Six weeks post-infection, IL-17RA deficiency led to increased bacterial burden, increased gastritis, and development of lymphoid follicles. Increased inflammation was associated with heightened cellular proliferation and earlier loss of parietal and chief cells in InsGAStg/tgIl17ra-/- mice. Gastric cancers developed more frequently by 3- and 6-months post-infection in H. pylori-infected InsGAStg/tgIl17ra-/- mice compared to InsGAStg/tg mice. Chronic inflammation was exacerbated with IL-17RA deficiency, characterized by elevated Th1/Th17 cytokines, increased B cell infiltration, and enhanced IgA production, despite reduced expression of the polymeric immunoglobulin receptor. Further, paragastric lymph nodes of InsGAStg/tgIl17ra-/- mice were enlarged relative to controls and displayed altered gene expression profiles. Increased inflammation was accompanied by a significant increase in Cybb expression, which encodes NADPH oxidase 2, suggesting that increased oxidative damage may occur in the absence of IL-17RA. Further, there is increased phosphorylation of histone 2AX in IL-17RA deficient mice, indicating that the DNA damage response is highly activated. These data suggest that IL-17RA signaling activates a protective pathway to prevent excessive inflammation which otherwise can lead to increased oxidative stress, DNA damage, and drive gastric carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Lee C. Brackman
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew S. Jung
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily H. Green
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nikhita Joshi
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- School of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Frank L. Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark S. McClain
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O. Markham
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Holly M. Scott Algood
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
| |
Collapse
|
22
|
Zhang X, Zhang K, Yan L, Wang P, Zhao F, Hu S. The role of toll-like receptors in immune tolerance induced by Helicobacter pylori infection. Helicobacter 2023; 28:e13020. [PMID: 37691007 DOI: 10.1111/hel.13020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, microaerobic bacterium that colonizes the gastric mucosa in about half of the world's population. H. pylori infection can lead to various diseases. Chronic infection by H. pylori exposes the gastric mucosa to bacterial components such as lipopolysaccharide (LPS), outer membrane vesicles (OMVs), and several toxic proteins. Infected with H. pylori activates the release of pro-inflammatory factors and triggers inflammatory responses that damage the gastric mucosa. As the only microorganism that permanently colonizes the human stomach, H. pylori can suppress host immunity to achieve long-term colonization. Toll-like receptors (TLRs) play a crucial role in T-cell activation, promoting innate immune responses and immune tolerance during H. pylori infection. Among the 10 TLRs found in humans, TLR2, TLR4, TLR5, and TLR9 have been thoroughly investigated in relation to H. pylori-linked immune regulation. In the present review, we provide a comprehensive analysis of the various mechanisms employed by different TLRs in the induction of immune tolerance upon H. pylori infection, which will contribute to the research of pathogenic mechanism of H. pylori.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Ke Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Linlin Yan
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Pengfei Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Fan Zhao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Shoukui Hu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
23
|
Trovato A, Tsang T, Manem N, Donovan K, Gemoets DE, Ashley C, Dellon ES, Tadros M. The Impact of Obesity on the Fibrostenosis Progression of Eosinophilic Esophagitis in a U.S. Veterans Cohort. Dysphagia 2023; 38:866-873. [PMID: 36074175 DOI: 10.1007/s00455-022-10510-9,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/08/2022] [Indexed: 01/30/2025]
Abstract
Whether obesity is protective against progression of EoE is unknown. The aim of this study was to assess factors that alter the progression of EoE and determine if BMI is correlated with reduced disease severity. In this retrospective analysis of the Department of Veterans Affairs electronic health records, patients with EoE who received at least one dilation were identified using ICD and CPT codes. Kaplan-Meier curves determined the relationship between BMI and time to second esophageal dilation as a measurement of severity of disease. Cox proportional hazards models assessed the risk of second dilation adjusted for potential confounders. Of 2890 patients with EoE and at least one dilation, 40% were obese (n = 1165). There were no clinically significant differences in demographics between obese and non-obese patients. Non-obese patients were more likely to be smokers and had a higher mean average of the number of dilation visits compared to obese patients (p < 0.05). When stratified by obesity, non-obese individuals had a median time to next dilation of 6.53 years (95% CI (5.83, 7.79)) compared to 9.24 years for obese individuals (95% CI (7.40, 15.04)). When stratified by six BMI categories, median time to second dilation increased with increasing BMI. The hazard ratio of second dilation for obese individuals was 0.81 (95% CI (0.72-0.92)). EoE patients with a higher BMI were less likely to undergo a second dilation compared to those with a lower BMI. Obesity may have a protective role in EoE or severe strictures may lead to malnourishment. Further research into these possibilities is needed.
Collapse
Affiliation(s)
- Alexa Trovato
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Tyler Tsang
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Nihita Manem
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Katherine Donovan
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Darren E Gemoets
- Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY, 12208, USA
| | - Christopher Ashley
- Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY, 12208, USA
| | - Evan S Dellon
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, CB#7080, 130 Mason Farm Rd, Chapel Hill, NC, 27599-7080, USA
| | - Micheal Tadros
- Albany Medical Center, 43 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
24
|
Konorev MR, Tyshevich EN, Pavlyukov RA. Application of N-Acetyl-Glucosaminil-N-Acetyl-Muramyl Dipeptide during Triple Component Anti-Helicobacter Pylori Therapy in the Period of Coronavirus Infection COVID-19. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 33:60-69. [DOI: 10.22416/1382-4376-2023-33-2-60-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Aim: evaluation of the incidence of COVID-19 infection after three-component H. pylori eradication therapy while taking N-acetyl-glucosaminyl-N-acetyl-muramyl dipeptide (GMDP).Materials and methods. A prospective randomized comparative clinical study was carried out. The study included 208 patients (147 men, 61 women; mean age — 48.1 ± 14.5 years) with duodenal ulcer associated with Helicobacter pylori (H. pylori) who underwent eradication therapy. H. pylori in the gastric mucosa was detected by a morphological method and a rapid urease test before treatment and 6-8 weeks after the end of treatment and the withdrawal of all drugs. Patients were divided into three groups according to treatment protocols: omeprazole 0.04 g/day, clarithromycin 1 g/day, amoxicillin 2 g/day (OСA; n = 103); omeprazole 0.04 g/day, clarithromycin 1 g/day, amoxicillin 2 g/day + GMDP 0.001 g/day (OCAL1; n = 61) or 0.01 g/day (OCAL10; n = 44) for 10 days. Detection of SARS-CoV-2 RNA by PCR was carried out from April 2020 to April 2022. Tracking completeness was 96.6 %.Results. The frequency of H. pylori eradication depending on “intention to treat” (ITT) and “per protocol” (PP): OCA — 79 % (95 % CI: 71-87) and 83 % (95 % CI: 75-91); OCAL1 — 95 % (95 % CI: 88-100) and 97 % (95 % CI: 92-100); OCAL10 — 96 % (95 % CI: 89-100) and 98 % (95 % CI: 93-100) respectively. The frequency of adverse reactions depending on ITT and PP: OCA — 24 % (95 % CI: 16-33) and 26 % (95 % CI: 17-35); OCAL1 — 2 % (95 % CI: 0.01-8) and 2 % (95 % CI: 0.01-8); OCAL10 — 2 % (95 % CI: 0.01-7) and 2 % (95 % CI: 0.01-7). The incidence of COVID-19 infection depending on ITT and PP: OCA — 9 % (95 % CI: 3-14) and 9 % (95 % CI: 3-15); OCAL1 + OCAL10 — 1 % (95 % CI: 0.003-1.9) and 1 % (95 % CI: 0.001-2.9), respectively.Conclusions. In H. pylori-infected patients, GMDP (an immunomodulator based on L. bulgaricus) at a dose of 1-10 mg/day, during a 10-day triple eradication therapy, allows a significant (p < 0.05) increase in the frequency of H. pylori eradication and reduce the incidence of adverse reactions compared with a 10-day protocol without adjuvant therapy with GMDP. There was a significant (p < 0.05) decrease in the incidence of COVID-19 infection after H. pylori eradication therapy with GMDP.
Collapse
|
25
|
Sukri A, Hanafiah A, Patil S, Lopes BS. The Potential of Alternative Therapies and Vaccine Candidates against Helicobacter pylori. Pharmaceuticals (Basel) 2023; 16:ph16040552. [PMID: 37111309 PMCID: PMC10141204 DOI: 10.3390/ph16040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Alternative therapies and vaccination are essential to combat the emergence of multidrug-resistant Helicobacter pylori and to prevent the development of gastroduodenal diseases. This review aimed to systematically review recent studies on alternative therapies, i.e., probiotics, nanoparticles, and natural products from plants, as well as recent progress in H. pylori vaccines at the preclinical stage. Articles published from January 2018 to August 2022 were systematically searched using PubMed, Scopus, Web of Science, and Medline. After the screening process, 45 articles were eligible for inclusion in this review. Probiotics (n = 9 studies) and natural products from plants (n = 28 studies) were observed to inhibit the growth of H. pylori, improve immune response, reduce inflammation, and reduce the pathogenic effects of H. pylori virulence factors. Natural products from plants also showed anti-biofilm activity against H. pylori. However, clinical trials of natural products from plants and probiotics are still lacking. A paucity of data assessing the nanoparticle activity of N-acylhomoserine lactonase-stabilized silver against H. pylori was observed. Nonetheless, one nanoparticle study showed anti-biofilm activity against H. pylori. Promising results of H. pylori vaccine candidates (n = 7) were observed at preclinical stage, including elicitation of a humoral and mucosal immune response. Furthermore, the application of new vaccine technology including multi-epitope and vector-based vaccines using bacteria was investigated at the preclinical stage. Taken together, probiotics, natural products from plants, and nanoparticles exhibited antibacterial activity against H. pylori. New vaccine technology shows promising results against H. pylori.
Collapse
Affiliation(s)
- Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Bruno S Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
26
|
Zhang X, Sun K, Tang C, Cen L, Li S, Zhu W, Liu P, Chen Y, Yu C, Li L. LECT2 modulates dendritic cell function after Helicobacter pylori infection via the CD209a receptor. J Gastroenterol Hepatol 2023; 38:625-633. [PMID: 36740832 DOI: 10.1111/jgh.16138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori, a gram-negative bacterium persisting on the gastric mucosa, is involved in the pathogenesis of a variety of gastric diseases. Leukocyte cell-derived chemotaxin 2 (LECT2) treatment increased the phagocytic capacity of lymphocytes and improved immune function in bacterial infection. Whether the immune cells infected with H. pylori are affected by LECT2 is unclear. METHODS Bone marrow-derived dendritic cells (BMDCs) from wild-type C57BL/6 mice, CD209a knockout mice, or LECT2 knockout mice were exposed to H. pylori at a multiplicity of infection of 10 for 24 h. The maturity of DCs and the cytokines secreted by DCs were analyzed by flow cytometry, western blot, and real-time PCR. The signaling pathway underlying CD209a activation after LECT2 treatment were also detected. RESULTS LECT2 treatment promoted H. pylori-induced BMDC maturation and produced a high level of anti-inflammatory cytokine (IL-10) but a low level of pro-inflammatory cytokine (IL-23p40). Moreover, LECT2-pretreated DCs shifted the development of pro-inflammatory Th1/Th17 cells to Treg cells. CD209a mediated LECT2-induced maturation and secretion of DC in H. pylori-primed BMDCs. LECT2 was further confirmed to induce the secretion of certain cytokines via CD209a-JNK/P38 MAPK pathway. CONCLUSION This study reveals that LECT2 modulated the functions of H. pylori-primed DCs in a CD209a-dependent manner, which might hinder the clearance of H. pylori and contribute to its colonization.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Kefang Sun
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Sha Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Wei Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Lan Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| |
Collapse
|
27
|
Dincă AL, Meliț LE, Gurzu S, Mocan S, Ghiga DV, Mărginean CO. Helicobacter pylori—The Bridge between Local and Systemic Inflammation in Children. APPLIED SCIENCES 2023; 13:2162. [DOI: 10.3390/app13042162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Helicobacter pylori (H. pylori)-associated inflammatory status is no longer a debatable topic in children. The aim of our study was to to compare the inflammatory status in pediatric patients with H. pylori gastritis and non-H. pylori gastritis versus control group. We performed a prospective study on 68 children with dyspeptic symptoms which were divided into 3 groups: 14 children with H. pylori gastritis (group 1), 26 children with non-H. pylori gastritis (group 2) and 28 children with no pathological findings—control group (group 3). Several laboratory parameters, histopathological and immunohistochemistry tests were performed in all children for detecting inflammatory status. We noticed a significant difference in terms of rural area between the three groups (p = 0.0404). Comparing the laboratory parameters between the three groups, we noticed significant differences in terms of serological tests (p = 0094), and NLR (p = 0.0253), the latter being significantly higher in children with H. pylori-induced gastritis as compared to those with non-H. pylori gastritis (0.0107). According to the Dunn’s Multiple Comparison Test, we noticed a significantly elevated neutrophil level in children with H. pylori-induced gastritis when compared to non-H. pylori gastritis group (p = 0.0146), as well as a significantly increased eosinophil count in patients with non-H. pylori gastritis as compared to control group (p = 0.0417). The immunohistochemistry method pointed out no significant variation concerning interleukin (IL 6) between children with gastritis and control group [RR = 1.283, IC (95%): 0.9404–1.751, p = 0.0988]. Additionally, children with gastritis regardless of the etiology have a significant risk of associating increased gastric expression of tumor necrosis factor alpha (TNF α) [RR = 3.967; CI (95%): 1.283–12.263; p = 0.0063]. Moreover, TNF α was significantly associated with presence of H. pylori gastritis (p = 0.0002). The early detection of local inflammation triggered by this infection might preempt gastric carcinogenesis, while identifying H. pylori-induced systemic inflammation lowers the risk of severe extraintestinal manifestations.
Collapse
Affiliation(s)
- Andreea Ligia Dincă
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| | - Simona Gurzu
- Department of Pathology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
- Department of Pathology, County Emergency Clinical Hospital of Târgu Mureș, Gheorghe Marinescu Street No. 50, 540139 Târgu Mureș, Romania
- Research Center of Oncopathology and Translational Medicine (CCOMT), “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 50, 540139 Târgu Mureș, Romania
| | - Simona Mocan
- Department of Pathology, County Emergency Clinical Hospital of Târgu Mureș, Gheorghe Marinescu Street No. 50, 540139 Târgu Mureș, Romania
| | - Dana Valentina Ghiga
- Department of Scientific Medical Research Methodology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| |
Collapse
|
28
|
Dieye Y, Nguer CM, Thiam F, Diouara AAM, Fall C. Recombinant Helicobacter pylori Vaccine Delivery Vehicle: A Promising Tool to Treat Infections and Combat Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11121701. [PMID: 36551358 PMCID: PMC9774608 DOI: 10.3390/antibiotics11121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health threat. Experts agree that unless proper actions are taken, the number of deaths due to AMR will increase. Many strategies are being pursued to tackle AMR, one of the most important being the development of efficient vaccines. Similar to other bacterial pathogens, AMR in Helicobacter pylori (Hp) is rising worldwide. Hp infects half of the human population and its prevalence ranges from <10% in developed countries to up to 90% in low-income countries. Currently, there is no vaccine available for Hp. This review provides a brief summary of the use of antibiotic-based treatment for Hp infection and its related AMR problems together with a brief description of the status of vaccine development for Hp. It is mainly dedicated to genetic tools and strategies that can be used to develop an oral recombinant Hp vaccine delivery platform that is (i) completely attenuated, (ii) can survive, synthesize in situ and deliver antigens, DNA vaccines, and adjuvants to antigen-presenting cells at the gastric mucosa, and (iii) possibly activate desired compartments of the gut-associated mucosal immune system. Recombinant Hp vaccine delivery vehicles can be used for therapeutic or prophylactic vaccination for Hp and other microbial pathogens.
Collapse
Affiliation(s)
- Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
- Correspondence: or ; Tel.: +221-784-578-766
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Cheikh Fall
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
| |
Collapse
|
29
|
Trovato A, Tsang T, Manem N, Donovan K, Gemoets DE, Ashley C, Dellon ES, Tadros M. The Impact of Obesity on the Fibrostenosis Progression of Eosinophilic Esophagitis in a U.S. Veterans Cohort. Dysphagia 2022; 38:866-873. [PMID: 36074175 DOI: 10.1007/s00455-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Whether obesity is protective against progression of EoE is unknown. The aim of this study was to assess factors that alter the progression of EoE and determine if BMI is correlated with reduced disease severity. In this retrospective analysis of the Department of Veterans Affairs electronic health records, patients with EoE who received at least one dilation were identified using ICD and CPT codes. Kaplan-Meier curves determined the relationship between BMI and time to second esophageal dilation as a measurement of severity of disease. Cox proportional hazards models assessed the risk of second dilation adjusted for potential confounders. Of 2890 patients with EoE and at least one dilation, 40% were obese (n = 1165). There were no clinically significant differences in demographics between obese and non-obese patients. Non-obese patients were more likely to be smokers and had a higher mean average of the number of dilation visits compared to obese patients (p < 0.05). When stratified by obesity, non-obese individuals had a median time to next dilation of 6.53 years (95% CI (5.83, 7.79)) compared to 9.24 years for obese individuals (95% CI (7.40, 15.04)). When stratified by six BMI categories, median time to second dilation increased with increasing BMI. The hazard ratio of second dilation for obese individuals was 0.81 (95% CI (0.72-0.92)). EoE patients with a higher BMI were less likely to undergo a second dilation compared to those with a lower BMI. Obesity may have a protective role in EoE or severe strictures may lead to malnourishment. Further research into these possibilities is needed.
Collapse
Affiliation(s)
- Alexa Trovato
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Tyler Tsang
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Nihita Manem
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Katherine Donovan
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Darren E Gemoets
- Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY, 12208, USA
| | - Christopher Ashley
- Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY, 12208, USA
| | - Evan S Dellon
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, CB#7080, 130 Mason Farm Rd, Chapel Hill, NC, 27599-7080, USA
| | - Micheal Tadros
- Albany Medical Center, 43 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
30
|
Sukri A, Hanafiah A, Kosai NR. The Roles of Immune Cells in Gastric Cancer: Anti-Cancer or Pro-Cancer? Cancers (Basel) 2022; 14:cancers14163922. [PMID: 36010915 PMCID: PMC9406374 DOI: 10.3390/cancers14163922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Gastric cancer is still one of the leading causes of death caused by cancer in developing countries. The emerging role of immunotherapy in cancer treatment has led to more research to elucidate the roles of essential immune cells in gastric cancer prognosis. We reviewed the roles of immune cells including T cells, B cells, dendritic cells, macrophages and natural killer cells in gastric cancer. Although the studies conducted on the roles of immune cells in gastric cancer pathogenesis produced conflicting results, understanding the roles of immune cells in gastric cancer will help us to harness them for application in immunotherapy for better prognosis and management of gastric cancer patients. Abstract Despite the fact that the incidence of gastric cancer has declined over the last decade, it is still the world’s leading cause of cancer-related death. The diagnosis of early gastric cancer is difficult, as symptoms of this cancer only manifest at a late stage of cancer progression. Thus, the prognosis of gastric cancer is poor, and the current treatment for improving patients’ outcomes involves the application of surgery and chemotherapy. Immunotherapy is one of the most recent therapies for gastric cancer, whereby the immune system of the host is programmed to combat cancer cells, and the therapy differs based upon the patient’s immune system. However, an understanding of the role of immune cells, namely the cell-mediated immune response and the humoral immune response, is pertinent for applications of immunotherapy. The roles of immune cells in the prognosis of gastric cancer have yielded conflicting results. This review discusses the roles of immune cells in gastric cancer pathogenesis, specifically, T cells, B cells, macrophages, natural killer cells, and dendritic cells, as well as the evidence presented thus far. Understanding how cancer cells interact with immune cells is of paramount importance in designing treatment options for gastric cancer immunotherapy.
Collapse
Affiliation(s)
- Asif Sukri
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Shah Alam 43200, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence:
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
31
|
Old and New Aspects of H. pylori-Associated Inflammation and Gastric Cancer. CHILDREN 2022; 9:children9071083. [PMID: 35884067 PMCID: PMC9322908 DOI: 10.3390/children9071083] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022]
Abstract
H. pylori is involved in the development of 80% of gastric cancers and 5.5% of all malignant conditions worldwide. Its persistence within the host’s stomach causes chronic inflammation, which is a well-known hallmark of carcinogenesis. A wide range of cytokines was reported to be involved in the initiation and long-term persistence of this local and systemic inflammation. IL-8 was among the first cytokines described to be increased in patients with H. pylori infection. Although, this cytokine was initially identified to exert a chemoattracting effect that represents a trigger for the activation of inflammatory cells within H.-pylori-infected mucosa, more recent studies failed in encountering any association between IL-8 and H. pylori infection. IL-6 is a multifunctional, pleiotropic and multipotent cytokine involved in mediating the interaction between innate and adaptive immunity with a dichotomous role acting as both a proinflammatory and an anti-inflammatory cytokine depending on the signaling pathway. IL-1α functions as a promoter of angiogenesis and vascular endothelial cell proliferation in gastric carcinoma since it is closely related to H.-pylori-induced inflammation in children. IL-1β is an essential trigger and enhancer of inflammation. The association between a low IL-1β level and an increased TNF-α level might be considered a risk factor for peptic ulcer disease in the setting of H. pylori infection. IL-10 downregulates both cytotoxic inflammatory responses and cell-mediated immune responses. H. pylori uses the immunosuppressive role of IL-10 to favor its escape from the host’s immune system. TGFβ is a continuous inflammatory mediator that promotes the adherence of H. pylori to the host’s cells and their subsequent colonization. The role of H.-pylori-induced inflammatory responses in the onset of gastric carcinogenesis seems to represent the missing puzzle piece for designing effective preventive and therapeutic strategies in patients with H.-pylori-associated gastric cancer.
Collapse
|
32
|
Mărginean CO, Meliț LE, Săsăran MO. Traditional and Modern Diagnostic Approaches in Diagnosing Pediatric Helicobacter pylori Infection. CHILDREN 2022; 9:children9070994. [PMID: 35883980 PMCID: PMC9316053 DOI: 10.3390/children9070994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori) is the most common bacterial infection worldwide, is usually acquired during childhood and is related to gastric carcinogenesis during adulthood. Therefore, its early proper diagnosis and subsequent successful eradication represent the cornerstones of gastric cancer prevention. The aim of this narrative review was to assess traditional and modern diagnostic methods in terms of H. pylori diagnosis. Several invasive and non-invasive methods were described, each with its pros and cons. The invasive diagnostic methods comprise endoscopy with biopsy, rapid urease tests, histopathological exams, cultures and biopsy-based molecular tests. Among these, probably the most available, accurate and cost-effective test remains histology, albeit molecular tests definitely remain the most accurate despite their high costs. The non-invasive tests consist of urea breath tests, serology, stool antigens and non-invasive molecular tests. Urea breath tests and stool antigens are the most useful in clinical practice both for the diagnosis of H. pylori infection and for monitoring the eradication of this infection after therapy. The challenges related to accurate diagnosis lead to a choice that must be based on H. pylori virulence, environmental factors and host peculiarities.
Collapse
Affiliation(s)
- Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
- Correspondence:
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
| |
Collapse
|
33
|
Taghipour A, Bahadory S, Badri M, Yadegar A, Mirsamadi ES, Mirjalali H, Zali MR. A systematic review and meta-analysis on the co-infection of Helicobacter pylori with intestinal parasites: public health issue or neglected correlation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:808-818. [PMID: 32729738 DOI: 10.1080/09603123.2020.1798890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The current study was conducted to assess the prevalence and odds ratio (OR) of co-infection of Helicobacter pylori (H. pylori) and intestinal parasites (IPs). English databases were searched. A total of 18 studies including 14 studies with cross-sectional design (a total of 3739 participants) and 4 studies with case-control design (397 patients and 320 controls) met the eligibility criteria. The pooled prevalence of H. pylori, intestinal parasite infections (IPIs), and their co-infections in different populations were 48.3% (95% CI, 34.1-62.8%), 15.4% (95% CI, 10-22.8%), and 11% (95% CI, 6.7-17.6%), respectively. The co-infection of H. pylori and Giardia was 7.6% (95% CI, 4.9-11.7%). Although statistically not significant, the risk of co-infection of H. pylori and IPIs was higher in case group compared to control group (OR, 1.59; 95% CI, 0.77-3.25). The overlaps between H. pylori and IPIs in countries with lower human development index (HDI) and income levels were high.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Bahadory
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Badri
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Sun H, He T, Wu Y, Yuan H, Ning J, Zhang Z, Deng X, Li B, Wu C. Cytotoxin-Associated Gene A-Negative Helicobacter pylori Promotes Gastric Mucosal CX3CR1+CD4+ Effector Memory T Cell Recruitment in Mice. Front Microbiol 2022; 13:813774. [PMID: 35154057 PMCID: PMC8829513 DOI: 10.3389/fmicb.2022.813774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Helicobacter pylori can cause many kinds of gastric disorders, ranging from gastritis to gastric cancer. Cytotoxin-associated gene A (CagA)+H. pylori is more likely to cause gastric histopathologic damage than CagA–H. pylori. However, the underlying mechanism needs to be further investigated. Materials and methods Mice were intragastrically administered equal amounts of CagA+ or CagA–H. pylori. Four weeks later, 24 chemokines in stomachs were measured using a mouse chemokine array, and the phenotypes of the recruited gastric CD4+ T cells were analyzed. The migration pathway was evaluated. Finally, the correlation between each pair among the recruited CD4+ T cell sub-population, H. pylori colonization level, and histopathologic damage score were determined by Pearson correlation analysis. Results The concentration of chemokines, CCL3 and CX3CL1, were significantly elevated in CagA–H. pylori-infected gastric mucosa than in CagA+H. pylori-infected gastric mucosa. Among them, CX3CL1 secreted by gastric epithelial cells, which was elicited more effectively by CagA–H. pylori than by the CagA+ strain, dramatically promoted mucosal CD4+ T cell migration. The expression of CX3CR1, the only known receptor of CX3CL1, was upregulated on the surface of gastric CD4+ T cells in CagA–H. pylori-infected stomach. In addition, most of the CX3CR1-positive gastric CD4+ T cells were CD44+CD69–CCR7– effector memory T cells (Tem). Pearson correlation analysis showed that the recruited CX3CR1+CD4+ Tem cell population was negatively correlated with H. pylori colonization level and histopathologic damage score. Conclusion CagA–H. pylori promotes gastric mucosal CX3CR1+CD4+ Tem recruitment in mice.
Collapse
Affiliation(s)
- Heqiang Sun
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yanan Wu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhenhua Zhang
- Department of Gastroenterology of the 305 Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xinli Deng
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Bin Li,
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Chao Wu,
| |
Collapse
|
35
|
Tilahun M, Gedefie A, Belayhun C, Sahle Z, Abera A. Helicobacter pylori Pathogenicity Islands and Giardia lamblia Cysteine Proteases in Role of Coinfection and Pathogenesis. Infect Drug Resist 2022; 15:21-34. [PMID: 35023934 PMCID: PMC8747529 DOI: 10.2147/idr.s346705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a well-known human-specific stomach pathogen that infects more than half of the world’s population. The infection with this bacterium can cause a variety of gastrointestinal problems, including chronic gastritis, peptic ulcers, and even cancer. H. pylori is a highly infectious bacterium. H. pylori causes an increase in gastric mucosa pH or gastric mucosa intestinal metaplasia. These modifications in the stomach environment are necessary for G. lamblia colonization to occur. Giardia lamblia is a flagellate protozoan parasite that can cause giardiasis in humans and other mammals. It dwells in the duodenum and upper jejunum. Globally, over 280 million cases of human giardiasis are predicted to occur each year. Simultaneous human colonization by G. lamblia and H. pylori is a typical occurrence since the viruses’ predisposing factors are similar in both groups. Giardiasis is a parasitic infection that affects both children and adults worldwide. Infection with Giardia is more common in underdeveloped countries. Globally, more than 200 million cases of giardiasis are detected each year. In contrast, the presence of G. lamblia in the host body triggers an immunological response comparable to that of H. pylori, with lymphocytes strongly polarized towards Th1. As a result, their combined presence exacerbates host tissue damage. The major goal of this seminar is to describe the pathophysiology, immunology, and clinical aspects of G. lamblia and H. pylori coinfection using a comprehensive search of PubMed, Lancet, and Google Scholar sources. Upper gastrointestinal problems such as upper abdominal pain, abdominal bloating, nausea, vomiting, epigastric pain/burning, and belching are all caused by both organisms. Differentiation by physical examination is impossible in people infected with both bacteria. For this coinfection distinction, a laboratory diagnosis is required. G. lamblia and H. pylori, when present together, have a synergistic effect on the host and can cause serious damage. As a result, researchers should delve deeper into the mechanics underlying this potential microbial interaction.
Collapse
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Chernet Belayhun
- Department of Medical Laboratory Science, Mehal Meda Hospital, North Showa, Ethiopia
| | - Zenawork Sahle
- Department of Medical Laboratory Science, Debre Birhan Health Science College, North Showa, Ethiopia
| | - Admasu Abera
- Department of Medical Laboratory Science, Debre Birhan Health Science College, North Showa, Ethiopia
| |
Collapse
|
36
|
Jang S, Hansen LM, Su H, Solnick JV, Cha JH. Host immune response mediates changes in cagA copy number and virulence potential of Helicobacter pylori. Gut Microbes 2022; 14:2044721. [PMID: 35289715 PMCID: PMC8928821 DOI: 10.1080/19490976.2022.2044721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori is the major risk factor for gastric cancer. H. pylori harboring the type IV secretion system (T4SS) and its effector CagA encoded on the cag pathogenicity Island (cagPAI) increases the risk. H. pylori PMSS1 has a multi-cagA genotype, modulating cagA copy number dynamically from zero to four copies. To examine the effect of the immune response on cagA copy number change, we utilized a mouse model with different immune status. PMSS1 recovered from Rag1-/- mice, lacking functional T or B cells, retained more cagA copies. PMSS1 recovered from Il10-/- mice, showing intense inflammation, had fewer cagA copies compared to those recovered from wild-type mice. Moreover, cagA copy number of PMSS1 recovered from wild-type and Il10-/- mice was positively correlated with the capacity to induce IL-8 secretion at four weeks of infection. Since recombination in cagY influences T4SS function, including CagA translocation and IL-8 induction, we constructed a multiple linear regression model to predict H. pylori-induced IL-8 expression based on cagA copy number and cagY recombination status; H. pylori induces more IL-8 secretion when the strain has more cagA copies and intact cagY. This study shows that H. pylori PMSS1 in mice with less intense immune response possess higher cagA copy number than those infected in mice with more intense immune response and thus the multi-cagA genotype, along with cagY recombination, functions as an immune-sensitive regulator of H. pylori virulence.
Collapse
Affiliation(s)
- Sungil Jang
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Lori M. Hansen
- Center for Immunology and Infectious Diseases; Departments of Medicine and of Microbiology and Immunology, School of Medicine; University of California Davis, Davis, CA, USA
| | - Hanfu Su
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Jay V. Solnick
- Center for Immunology and Infectious Diseases; Departments of Medicine and of Microbiology and Immunology, School of Medicine; University of California Davis, Davis, CA, USA
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Moghadam MT, Chegini Z, Norouzi A, Dousari AS, Shariati A. Three-Decade Failure to the Eradication of Refractory Helicobacter pylori Infection and Recent Efforts to Eradicate the Infection. Curr Pharm Biotechnol 2021; 22:945-959. [PMID: 32767919 DOI: 10.2174/1389201021666200807110849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Helicobacter pylori causes dangerous and deadly diseases such as gastric cancer and duodenal ulcers. Eradication and treatment of this bacterium are very important due to the deadly diseases caused by H. pylori and the high cost of treatment for countries. METHODS Thus, we present a complete list of the most important causes of failure in the treatment and eradication of H. pylori, and address new therapeutic methods that may be effective in controlling this bacterium in the future. RESULTS Many efforts have been made to control and eradicate this bacterium over the years, but no success has been achieved since its eradication is a complex process affected by the bacterial properties and host factors. Previous studies have shown that various factors are involved in the failure to eradicate H. pylori, such as new genotypes of the bacterium with higher pathogenicity, inappropriate patient cooperation, mutations, biofilm formation and dormant forms that cause antibiotic resistance, acidic stomach pH, high bacterial load, smoking, immunosuppressive features and intracellular occurrence of H. pylori. On the other hand, recent studies reported that the use of probiotics, nanoparticles, antimicrobial peptides, natural product and vaccines can be helpful in the treatment and eradication of H. pylori infections. CONCLUSION Eradication of H. pylori is crucial for the treatment of important diseases such as gastric cancer. Therefore, it seems that identifying the failure causes of treating this bacterium can be helpful in controlling the infections. Besides, further studies on new therapeutic strategies may help eradicate H. pylori in the future.
Collapse
Affiliation(s)
- Majid T Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Norouzi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Aref Shariati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Abstract
Background: Various microorganisms such as bacteria, virus, and fungi can infect humans and cause not just a simple infection but septic conditions, organ dysfunction, and precancerous conditions or cancer involving various organ systems. After the discovery of the microscope, it was easier to discover and study such microorganisms, as in the case of Helicobacter pylori, a pathogen that was seen in the distant era of the nineteenth century but without being recognized as such. It took 100 years to later discover the pathogenesis and the cancer that this bacterium can cause. Since it was discovered, until today, there has been a continuous search for the understanding of its pathogenetic mechanisms, and the therapeutic approach is continuously updated. Methods: We investigated how diagnosis and therapy were dealt with in the past and how researchers sought to understand, exactly, the pathogenetic biomolecular mechanisms of H. pylori, from the genesis of the infection to the current knowledge, with an analysis of carcinogenic mechanisms in the stomach. We have examined the scientific evolution of the knowledge of the disease over these 40 years in the gastroenterological and pharmacological fields. This was possible through a search in the databases of Medline, the WHO website, the Centers for Disease Control and Prevention (CDC) website, PubMed, and Web of Science to analyze the earlier and the latest data regarding H. pylori. Results: With the scientific discoveries over time, thanks to an increasing number of progressions in scientific research in the analysis of the gastric mucosa, the role of Helicobacter pylori in peptic ulcer, carcinogenesis, and in some forms of gastric lymphoma was revealed. Furthermore, over the years, the biomolecular mechanism involvement in some diseases has also been noted (such as cardiovascular ones), which could affect patients positive for H. pylori. Conclusions: Thanks to scientific and technological advances, the role of the bacterium H. pylori in carcinogenesis has been discovered and demonstrated, and new prospective research is currently attempting to investigate the role of other factors in the stomach and other organs. Cancer from H. pylori infection had a high incidence rate compared to various types of cancer, but in recent years, it is improving thanks to the techniques developed in the detection of the bacterium and the evolution of therapies. Thus, although it has become an increasingly treatable disease, there is still continuous ongoing research in the field of treatment for resistance and pharma compliance. Furthermore, in this field, probiotic therapy is considered a valid adjuvant.
Collapse
|
39
|
Pirzadeh M, Khalili N, Rezaei N. The interplay between aryl hydrocarbon receptor, H. pylori, tryptophan, and arginine in the pathogenesis of gastric cancer. Int Rev Immunol 2020; 41:299-312. [DOI: 10.1080/08830185.2020.1851371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
40
|
Sato H, Ota Y, Kido Y, Matsumoto T, Matsubara Y, Matano T, Hirata Y, Kawana-Tachikawa A, Yamaoka Y, Yotsuyanagi H, Adachi E. Gut-Homing CD4 + T Cells Are Associated with the Activity of Gastritis in HIV-Infected Adults. AIDS Res Hum Retroviruses 2020; 36:910-917. [PMID: 32709216 DOI: 10.1089/aid.2020.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown that HIV-infected individuals were less susceptible to chronic gastritis and Helicobacter pylori infection. Th1 and Th17 cells are important components of the immune response to H. pylori in adults. We investigated the relative importance of Th1 versus Th17 responses for mucosal inflammation and protection. We conducted a prospective cross-sectional study to evaluate the relationship among the peripheral blood gut-homing CD4+ T cell subset, the severity of chronic H. pylori gastritis, and H. pylori amount in the gastric mucosa. Biopsy specimens were obtained at the time of gastroendoscopy, which was used for classification of histological gastritis by updated-Sydney system. Peripheral blood mononuclear cells were collected at the same point to determine the frequency of peripheral blood gut homing CD4+ T cells (CCR9+integrin β7+) and CD4+ memory T cells subsets by flow cytometry. H. pylori amount in the gastric mucosa was measured using 16S ribosomal RNA gene amplicon sequencing. Peripheral blood gut-homing CD4+ T cells were significantly higher in individuals with histological gastritis compared with those without chronic gastritis (median 16.8 cells/μL vs. 9.7 cells/μL; p = .0307). In particular, there were significant differences in gut-homing Th1 (median 1.3 cells/μL vs. 0.5 cells/μL; p = .0061) and nonconventional Th1 (median 0.4 cells/μL vs. 0.2 cells/μL; p = .0196). In addition, there was a significant positive correlation between H. pylori amount in the gastric mucosa measured using 16S ribosomal RNA gene amplicon sequencing and gut-homing Th1 subsets. Our findings suggested that gut Th1 may play a key role in the development of chronic gastritis in HIV-infected individuals.
Collapse
Affiliation(s)
- Hidenori Sato
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Yasuo Matsubara
- Division of Advanced Genome Medicine, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Chen P, Ming S, Lao J, Li C, Wang H, Xiong L, Zhang S, Liang Z, Niu X, Deng S, Geng L, Wu M, Wu Y, Gong S. CD103 Promotes the Pro-inflammatory Response of Gastric Resident CD4 + T Cell in Helicobacter pylori-Positive Gastritis. Front Cell Infect Microbiol 2020; 10:436. [PMID: 32974219 PMCID: PMC7472738 DOI: 10.3389/fcimb.2020.00436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
CD103 is considered as a surface marker for the resident immune cells. However, little is known about the intrinsic function of CD103 in infection and inflammation. In this study, we found that CD103 was highly expressed in CD4+T cells of the gastric mucosa from patients with H. pylori-positive gastritis. Mucosal resident CD103+CD4+T cells exhibited an increase in the CD45RO+CCR7− effector memory phenotype and high expression of the chemokine receptors CXCR3 and CCR9 compared with those in CD103−CD4+T cells. An In vitro coculture study demonstrated that H. pylori-specific antigen CagA/VacA-primed dendritic cells (DCs) induced proliferation and IFN-γ, TNF as well as IL-17 production by CD103+CD4+T cells from patients with H. pylori-positive gastritis, while blocking CD103 with a neutralizing antibody reduced proliferation and IFN-γ, TNF, and IL-17 production by CD103+CD4+T cells cocultured with DCs. Moreover, immunoprecipitation revealed that CD103 interacted with TCR α/β and CD3ζ, and activation of CD103 enhanced the phosphorylation of ZAP70 induced by the TCR signal. Finally, increased T-bet and Blimp1 levels were also observed in CD103+CD4+T cells, and activating CD103 increased T-bet and Blimp1 expression in CD4+T cells. Our results explored the intrinsic function of CD103 in gastric T cells from patients with H. pylori-positive gastritis, which may provide a therapeutic target for the treatment of gastritis.
Collapse
Affiliation(s)
- Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Siqi Ming
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juanfeng Lao
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunna Li
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zibin Liang
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Niu
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Simei Deng
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Minhao Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjian Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Hussain Z, El-Omar E, Lee YY. Dual infective burden of Helicobacter pylori and intestinal parasites: Good or bad news for the host? Indian J Gastroenterol 2020; 39:111-116. [PMID: 32372188 DOI: 10.1007/s12664-020-01045-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zahid Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Yeong Yeh Lee
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia. .,School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.
| |
Collapse
|
43
|
Nemattalab M, Shenagari M, Taheri M, Mahjoob M, Nazari Chamaki F, Mojtahedi A, Hasan-Alizadeh E, Ashrafkhani B, Mousavi Niri N. Co-expression of Interleukin-17A molecular adjuvant and prophylactic Helicobacter pylori genetic vaccine could cause sterile immunity in Treg suppressed mice. Cytokine 2020; 126:154866. [PMID: 31629103 DOI: 10.1016/j.cyto.2019.154866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
The increasing clinical significance of Helicobacter pylori (H. pylori) in human stomach cancer has led to global efforts to eradicate this pathogen. Recent studies have confirmed the importance of some cytokines such as Interleukin-18 (IL-18), Interleukin-8 (IL-8), Interleukin-17A (IL-17A) and Interleukin-22 (IL-22) in the pathogenesis of the so-called bacterium. This study was designed to compare the effects of Type 1T helper (Th1), Type 2T helper (Th2) cells, Regulatory T cells (Treg) and T helper 17 (Th17) modulatory effects on the efficacy of designed H. pylori vaccine by incorporating some molecular adjuvants in Treg competent and Treg suppressed groups. A bicistronic vector was used for simultaneous expression of codon-optimized Outer inflammatory protein a (OipA) gene and modified mice IL-18, IL-17A, IL-22 and Foxp3 (forkhead box P3) cytokines from four cassettes. Immunization of mice groups was performed using produced plasmids intradermally. Specific IgG1 and IgG2 and IgA antibody titers produced in mice were confirmed by enzyme-linked immunosorbent assay (ELISA) in sera and intestine obtained four weeks after the last immunization. After being stimulated with a mixture of both anti-CD28 mAb and H. pylori lysate, frequencies of single Interferon-Gamma (IFN-γ), single IL-17 and dual IFN-γ/IL-17-secreting T-cells were documented using dual-color FluoroSpot. The kinetics of Th1, Th2 and Th17 in the immunized animals was determined by relative quantification of IL-17A, IL-22, IFN-γ, IL-8, IL-2 and IL-4 specific mRNAs. Four weeks after bacterial challenge, quantitative colony count in the isolated and homogenized stomachs was utilized to assess the level of protective immunity among all groups. The results of immunologic assays showed that the highest cell-mediated immunity cytokines were produced in IL-17 receiving group in which the Treg responses were suppressed previously by the administration of the Foxp3 as an immunogen. In addition, potent clearance of Helicobacter pylori infection was seen in this group as well.
Collapse
Affiliation(s)
- Mehran Nemattalab
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mojtaba Taheri
- Department of Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahjoob
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Ali Mojtahedi
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Babak Ashrafkhani
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Neda Mousavi Niri
- Department of Biotechnology, Faculty of Advanced Medical Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
44
|
The oncogenic roles of bacterial infections in development of cancer. Microb Pathog 2020; 141:104019. [PMID: 32006638 DOI: 10.1016/j.micpath.2020.104019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Initiation of cancer is interconnected with different factors like infections. It has been estimated that infections, particularly viruses, participate in about 20% of all cancers. Bacteria as the most common infectious agents are also reported to be emerging players in the establishment of malignant cells. Microbial infections are able to modulate host cell transformation for promoting malignant features through the production of carcinogenic metabolites participating in inflammation responses, disruption of cell metabolism, and integrity and also genomic or epigenetic manipulations. It seems that the best example of the role of bacteria in cancer promotion is Helicobacter pylori infection, which is related to gastric cancer. World Health Organization (WHO) describes bacterium as class I carcinogens. Several bacterial infections have been reported in association with prevalent cancers. In this review, we will summarize the role of known bacterial infections in the initiation of the main common cancers, which show high mortality in the world. Examining the microbiomes in cancer patients is important and necessary to better understand the pathogenesis of this disease and also to plan therapeutic interventions.
Collapse
|
45
|
Elkoshi Z. The Binary Classification Of Chronic Diseases. J Inflamm Res 2019; 12:319-333. [PMID: 31908517 PMCID: PMC6927256 DOI: 10.2147/jir.s227279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Acute diseases start with an insult and end when insult disappears. If the trauma induces an immune reaction (which happens in most cases), this reaction must be terminated with some type of resolution mechanism, when the cause of the trauma ceases. Chronicity develops if insult is permanent or if the resolution mechanism is defective. Another way to reach disease chronicity is a positive feedback loop, whereby the immune reaction activates an internal, insult-like reaction. A distinction between chronic states characterized by a persistent, low suppressive effect and those characterized by a persistent, high suppressive effect of regulatory T cells (Treg), is proposed. This two-class division represents two ways to reach chronicity: (a) by maintaining inflammatory reaction long after insult disappears ("low Treg"), or (b) by suppressing inflammatory reaction prior to the disappearance of insult ("high Treg"). This two-class division may explain the strong association between certain pathogens and cancer, on one hand, and between several other pathogens and autoimmunity, on the other hand. The weak association between autoimmune diseases and HIV infection and the relatively weak association between autoimmune diseases and cancer may be elucidated as well. In addition, the model rationalizes why immune-modulating drugs, which are effective in cancer, are also effective in "high Treg" viral infections, while corticosteroids, which are generally effective in autoimmune diseases, are also effective in other "low Treg" diseases (such as asthma, atopic dermatitis, and "low Treg" infections) but are not effective in solid malignancies and "high Treg" infections. Moreover, the model expounds why certain bacteria inhibit tumor growth and why these very bacteria induce autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Taro Pharmaceutical Industries, Haifa Bay, Israel
| |
Collapse
|
46
|
Wiese-Szadkowska M, Helmin-Basa A, Eljaszewicz A, Gackowska L, Januszewska M, Motyl I, Andryszczyk M, Wieczynska J, Michalkiewicz J. Selected commensal bacteria change profiles of Helicobacter pylori-induced T cells via dendritic cell modulation. Helicobacter 2019; 24:e12614. [PMID: 31328382 DOI: 10.1111/hel.12614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mechanisms of downregulation of protective immunity against Helicobacter pylori (Hp) infection strongly depend on dendritic cell (DC)-induced T-lymphocyte differentiation pattern. Lactic acid bacteria (LAB) strains can modulate Hp-induced immunoresponse by changes in DC activation profiles. Here, we want to find out if the LAB-pulsed DCs will change Hp-induced T-cell responsiveness patterns. MATERIALS AND METHODS The naive peripheral CD4+ T cells were co-cultured with Hp CagA + pulsed monocyte-derived DCs (DC/CD4+ T cell) in the presence/absence of the feces-derived probiotics: antagonistic or non-antagonistic to Hp (Lactobacillus rhamnosus 900, Lr, Lactobacillus paracasei 915, Lp, respectively), as assessed by the agar slab method. The regulatory T-cell (Treg) population was assessed by flow cytometry, and IFN-γ, IL-12p70, IL-10, and IL-17A levels were evaluated by ELISA method. RESULTS The Hp-pulsed DC/CD4+ T-cell co-cultures were characterized by high IL-10, decreased IL-12p70 and IFN-γ levels, and elevated Treg population. In contrast, Lr-pulsed DC/CD4+ T-cell co-cultures expressed low IL-10, high IL-12p70 and IFN-γ levels and declined Treg population; this responsiveness pattern was not changed by Hp. The responsiveness pattern of the Lp/Hp-pulsed DC/CD4+ T-cell co-cultures did not differ from those pulsed with Hp alone. CONCLUSION In contrast to Lp, Lr probiotic strain overcomes Hp-mediated immune profile in the DC/T-cell co-cultures toward Th1 pattern and limited generation of Tregs in vitro. Lr may therefore be used as a component of anti-Hp treatment.
Collapse
Affiliation(s)
| | - Anna Helmin-Basa
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Lidia Gackowska
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Ilona Motyl
- Faculty of Biotechnology and Food Sciences, The Institute of Technology Fermentation and Microbiology, Technical University of Lodz, Łodz, Poland
| | - Marek Andryszczyk
- Faculty of Mechanical Engineering, University of Technology and Sciences in Bydgoszcz, Bydgoszcz, Poland
| | - Jolanta Wieczynska
- Department of Clinical Microbiology and Immunology, Children's Memorial Hospital, Warsaw, Poland
| | - Jacek Michalkiewicz
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Clinical Microbiology and Immunology, Children's Memorial Hospital, Warsaw, Poland
| |
Collapse
|
47
|
Jafarzadeh A, Nemati M, Jafarzadeh S. The important role played by chemokines influence the clinical outcome of Helicobacter pylori infection. Life Sci 2019; 231:116688. [PMID: 31348950 DOI: 10.1016/j.lfs.2019.116688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The extended infection with Helicobacter pylori (H. pylori), one of the most frequent infectious agents in humans, may cause gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. During H. pylori infection, different kinds of inflammatory cells such as dendritic cells, macrophages, neutrophils, mast cells, eosinophils, T cells and B cells are accumulated into the stomach. The interactions between chemokines and their respective receptors recruit particular types of the leukocytes that ultimately determine the nature of immune response and therefore, have a main influence on the consequence of infection. The suitable production of chemokines especially in the early stages of H. pylori infection shapes appropriate immune responses that contribute to the H. pylori elimination. The unbalanced expression of the chemokines can contribute in the induction of inappropriate responses that result in the tissue damage or malignancy. Thus, chemokines and their receptors may be promising potential targets for designing the therapeutic strategies against various types H. pylori-related gastrointestinal disorders. In this review, a comprehensive explanation regarding the roles played by chemokines in H. pylori-mediated peptic ulcer, gastritis and gastric malignancies was provided while presenting the potential utilization of these chemoattractants as therapeutic elements.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
48
|
Sokolova O, Naumann M. Crosstalk Between DNA Damage and Inflammation in the Multiple Steps of Gastric Carcinogenesis. Curr Top Microbiol Immunol 2019; 421:107-137. [PMID: 31123887 DOI: 10.1007/978-3-030-15138-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the last years, intensive investigations in molecular biology and cell physiology extended tremendously the knowledge about the association of inflammation and cancer. In frame of this paradigm, the human pathogen Helicobacter pylori triggers gastritis and gastric ulcer disease, and contributes to the development of gastric cancer. Mechanisms, by which the bacteria-induced inflammation in gastric mucosa leads to intestinal metaplasia and carcinoma, are represented in this review. An altered cell-signaling response and increased production of free radicals by epithelial and immune cells account for the accumulation of DNA damage in gastric mucosa, if infection stays untreated. Host genetics and environmental factors, especially diet, can accelerate the process, which offers the opportunity of intervention based on a balanced nutrition. It is supposed that inflammation might influence stem- or progenitor cells in gastric tissue predisposing for metaplasia or tumor relapse. Herein, DNA is strongly mutated and labile, which restricts therapy options. Thus, the understanding of the mechanisms that underlie gastric carcinogenesis will be of preeminent importance for the development of strategies for screening and early detection. As most gastric cancer patients face late-stage disease with a poor overall survival, the development of multi-targeted therapeutic intervention strategies is a major challenge for the future.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
49
|
Davinelli S, Melvang HM, Andersen LP, Scapagnini G, Nielsen ME. Astaxanthin from Shrimp Cephalothorax Stimulates the Immune Response by Enhancing IFN-γ, IL-10, and IL-2 Secretion in Splenocytes of Helicobacter Pylori-Infected Mice. Mar Drugs 2019; 17:md17070382. [PMID: 31248010 PMCID: PMC6669458 DOI: 10.3390/md17070382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Infection with Helicobacter pylori is a critical cause of gastrointestinal diseases. A crucial host response associated with H. pylori infection includes gastric inflammation, which is characterized by a sustained recruitment of T-helper (Th) cells to the site of infection and distinct patterns of cytokine production. Adequate nutritional status, especially frequent consumption of dietary antioxidants, appears to protect against infection with H. pylori. The aim of the present study was to investigate whether astaxanthin (AXT) from shrimp cephalothorax may modulate cytokine release of splenocytes in H. pylori-infected mice (n = 60). Six- to eight-week-old female mice were divided into three groups (n = 20 per group) to receive a daily oral dose of 10 or 40 mg of AXT for six weeks. After six weeks, a trend toward interferon gamma (IFN-γ) upregulation was found (40 mg; p < 0.05) and a significant dose-dependent increase of interleukin 2 (IL-2) and IL-10 (both p < 0.05) was observed. These results suggest that AXT induces higher levels of IL-2 and a shift to a balanced Th1/Th2 response by increasing IFN-γ and augmenting IL-10. We concluded that AXT may influence the pattern of cytokines during H. pylori infection.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy.
| | - Heidi Mikkelsen Melvang
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Leif Percival Andersen
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy.
| | | |
Collapse
|
50
|
Gupta N, Maurya S, Verma H, Verma VK. Unraveling the factors and mechanism involved in persistence: Host-pathogen interactions in Helicobacter pylori. J Cell Biochem 2019; 120:18572-18587. [PMID: 31237031 DOI: 10.1002/jcb.29201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori and humans have one of the most complex relationships in nature. How a bacterium manages to live in one of the harshest and hostile environments is a topic of unraveling mysteries. H. pylori is a prevalent species and it colonizes the human gut of more than 50% of the world population. It infects the epithelial region of antrum and persists there for a long period. Over the time of evolution, H. pylori has developed complex strategies to extend the degree of inflammation in gastric mucosa. H. pylori needs specific adaptations for initial colonization into the host environment like helical shape, flagellar movement, chemotaxis, and the production of urease enzyme that neutralizes acidic environment of the stomach. There are several factors from the bacterium as well as from the host that participate in these complex interactions. On the other hand, to establish the persistent infection, H. pylori escapes the immune system by mimicking the host antigens. This pathogen has the ability to dodge the immune system and then persist there in the form of host cell, which leads to immune tolerance. H. pylori has an ability to manipulate its own pathogen-associated molecular patterns, which leads to an inhibition in the binding with specific pattern recognition receptors of the host to avoid immune cell detection. Also, it manipulates the host metabolic homeostasis in the gastric epithelium. Besides, it has several genes, which may get involved in the acquisition of nutrition from the host to survive longer in the host. Due to the persistence of H. pylori, it causes chronic inflammation and raises the chances of gastric cancer. This review highlights the important elements, which are certainly responsible for the persistence of H. pylori in the human host.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Shweta Maurya
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Harshvardhan Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Vijay K Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| |
Collapse
|