1
|
Naseem A, Majeed Khan H, Umar A, Elshikh MS, Aljowaie RM, Gancarz M. Mechanistic insights of methylcinnamate in improving oxidative stress and inflammation in acetaminophen-induced hepatotoxic mice by upregulating Nrf2 pathway. J Pharm Pharmacol 2025; 77:418-429. [PMID: 39851237 DOI: 10.1093/jpp/rgaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Methylcinnamate (MC), a safe flavoring agent naturally found in Occimum basilicum L. is reported to have an anti-inflammatory responses in various disease models. Acetaminophen (APAP) toxicity is a significant contributor to acute liver injury, which leads to oxidative stress and inflammation. The transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulated the cellular defense mechanisms aid to antioxidant response facilitation and reduction in inflammation against various disorders. METHODOLOGY This study evaluated the protective effects of MC in APAP-induced hepatotoxicity in mice and its anti-oxidant, anti-inflammatory, and Nrf2 mechanisms were studied. In-vitro 2,2-diphenyl-1-picrylhydrazyl assay showed the antioxidant capacity of MC. Mice were pretreated with MC (25, 50, 75, and 100 mg/kg) orally for 7 days. After a fasting period of 16 h, hepatotoxicity was induced by injecting APAP 300 mg/kg intraperitoneal on day 7. Liver profile, oxidative test, and histopathological changes were studied. Gene expression of interlukin-1β (IL-1β), interlukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), cytochrome P450 2E1 (CYP2E1), Nrf2, and NAD(P)H dehydrogenase (quinone) 1 (NQO-1) were estimated by real time quantitative polymerase chain reaction (RT-qPCR). IL-1β, IL-6, and TNF-α concentrations were also analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS The MC treatment showed a notable reduction in alanine transaminase, aspartate aminotransferase and alkaline phosphatase activities, and total bilirubin level of serum. Moreover, MC significantly attenuated oxidative stress by rising the antioxidant enzymes catalase, glutathione, and superoxide dismutase and reducing the malondialdehyde and nitric oxide levels in the liver. Furthermore, MC successfully mitigated the levels of IL-1β, IL-6, and TNF-α, which were estimated through RT-qPCR and ELISA. The RT-qPCR revealed a CYP2E1 enzyme inhibition and significant upregulation of hepatic Nrf2 and NQO-1 levels after MC therapy. Histopathological analysis showed improvement in liver injury within the MC treatment groups. CONCLUSION It was concluded from this study that pretreatment of MC had successfully protected the liver through anti-inflammatory, anti-oxidant activity upon subsequent activation of Nrf2.
Collapse
Affiliation(s)
- Afshan Naseem
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Humaira Majeed Khan
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Quaid-e-Azam campus, Lahore, 54590, Pakistan
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| |
Collapse
|
2
|
Khanam A, Ijaz Hussain A, Mohammed EH, Nahar L, Rathore HA. Phenolic Profile of Seedless Ziziphus mauritiana Fruits and Leaves Extracts with In Vivo Antioxidant and Anti-Inflammatory Activities: Influence on Pro-Inflammatory Mediators. Chem Biodivers 2025; 22:e202401728. [PMID: 39475065 PMCID: PMC11908774 DOI: 10.1002/cbdv.202401728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
The present study aimed to assess the antioxidant and anti-inflammatory activities of polyphenol-rich extracts of seedless variety of Ziziphus mauritiana (SZM). Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis of SZM leaves and fruit extracts in ethanol revealed the presence of sixteen phenolics including chlorogenic acid, p-coumeric acid, gallic acid, kaempferol, rutin and quercetin. Leaf extract showed higher total phenolic and total flavonoid contents (177.6 mg/100 g and 46.2 mg/100 g) than in fruit extract (137.8 mg/100 g and 14.1 mg/100 g). The leaf extract exhibited higher DPPH radical-scavenging activity (63.5 %) than the fruit extract (58.2 %). The anti-inflammatory activity was evaluated on carrageenan-induced rat model and suppression of inflammatory biomarkers (Interleukin-6, Tumor necrosis factor-α and CRP) were studied. The fruit extract exhibited remarkable inhibition (98.1 %) at the dose level of 500 mg/kg body weight (BW), comparable to the standard drug indomethacin (98.4 %). Both extracts suppressed the inflammatory biomarkers and more pronounced results showed by the fruit extract including CRP, IL-6, and TNF-α. The leaf extract demonstrated the higher antioxidant potential as evident from the superoxide dismutase, catalase, malondialdehyde, glutathione peroxidase and glutathione levels. These findings suggest that SZM leaf and fruit extracts possess potential antioxidant and remarkable anti-inflammatory properties and can play a significant role in mitigating oxidative stress.
Collapse
Affiliation(s)
- Arifa Khanam
- Department of ChemistryGovernment College University FaisalabadFaisalabad38000Pakistan
| | - Abdullah Ijaz Hussain
- Department of ChemistryGovernment College University FaisalabadFaisalabad38000Pakistan
| | - Esraa Haji Mohammed
- Department of Pharmaceutical ChemistryCollege of PharmacyUniversity of Hafr Al BatinHafr Al Batin39524Saudi Arabia
| | - Lutfun Nahar
- Laboratory of Growth RegulatorsPalacký University and Institute of Experimental BotanyThe Czech Academy of SciencesŠlechtitelů 27Olomouc78371Czech Republic
| | - Hassaan A. Rathore
- Department of Pharmaceutical SciencesCollege of PharmacyQU HealthQatar UniversityDohaQatar
| |
Collapse
|
3
|
Revankar AA, Patil AS, Karishetti R, Chougule KR, Patil P, Salokhe A. Enhanced bioavailability of Quercetin-loaded niosomal in situ gel for the management of Parkinson's disease. Front Pharmacol 2025; 15:1519649. [PMID: 39931515 PMCID: PMC11808128 DOI: 10.3389/fphar.2024.1519649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 02/13/2025] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurological disorder, characterized by motor symptoms such as tremor and rigidity due to the degeneration of dopaminergic neurons in the substantia nigra. This study investigates the formulation of quercetin, a natural bioflavonoid with potent antioxidant and anti-inflammatory properties, as niosomes for intranasal delivery to enhance its bioavailability and therapeutic potential for PD. Methods The niosomal formulation was optimized for critical parameters including particle size, entrapment efficiency, and zeta potential. Male Wistar rats were utilized to assess the effects of quercetin-loaded niosomes on motor function, dopaminergic neuron protection, and oxidative stress alleviation. Results The optimized niosomal formulation exhibited a particle size of 195 nm, a polydispersity index (PDI) of 0.29, a zeta potential (ZP) of -30.63 mV, and an entrapment efficiency (EE) of 82.77%. In vivo evaluations conducted using the haloperidol-induced PD model revealed significant enhancements in behavioural, biochemical, and histopathological outcomes when compared to both disease controls and the standard treatment group. Additionally, short-term stability tests confirmed the robustness of the formulation. Conclusion The findings suggest that the quercetin-loaded niosomal formulation offers improved drug delivery and efficacy, indicating its potential as a superior treatment option for PD compared to conventional dosage forms. This approach may pave the way for enhanced therapeutic strategies targeting the neurodegenerative processes underlying Parkinson's disease.
Collapse
Affiliation(s)
- Abhishek A. Revankar
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Archana S. Patil
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Reshma Karishetti
- Department of pathology, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Krutuja R. Chougule
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Priyanka Patil
- Department of Pharmacology, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Abhijit Salokhe
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| |
Collapse
|
4
|
Umer H, Sharif A, Khan HM, Anjum SMM, Akhtar B, Ali S, Ali M, Hanif MA. Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. Inflammation 2025:10.1007/s10753-025-02237-0. [PMID: 39836283 DOI: 10.1007/s10753-025-02237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration. 30 mice were divided into 5 equal groups: Group I (mice receiving normal saline), Group II (rotenone was administered to mice), Group III (standard CoQ10 was given to mice), Group IV (mice were treated with non-encapsulated CoQ10) and Group V (mice were treated with CoQ10 Liposomes). Motor performance, the preservation of dopaminergic neurons, levels of neuroinflammation, oxidative stress, neurotransmitter levels, RT-qPCR analysis of PD-linked genes and histopathology were evaluated. The Liposomal CoQ10 group exhibited superior outcomes in behavioral tests such as reduced anxiety in the open field test, enhanced balance and coordination in beam balance test and improved cognitive performance in Y-maze test. Liposomal Coenzyme Q10 displayed pronounced antioxidative effects, evidenced by a significant (p < 0.001) increase in superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities. In contrast, the non-encapsulated CoQ10 group showed a delayed response in mitigating the inflammation and oxidative stress. CoQ10 Liposomes demonstrated superior efficacy (p < 0.0001) in restoring dopamine and noradrenaline levels, reducing acetylcholinesterase activity, and downregulating Synuclein Alpha (SNCA) gene expression (0.722-fold change) compared to oral CoQ10, highlighting its potential in suppressing PD symptoms. The results of this study indicated that the liposomal CoQ10 effectively averted motor impairments, memory lapses, oxidative stress, as well as neuroinflammation triggered by rotenone.
Collapse
Affiliation(s)
- Hajira Umer
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan.
| | - Humaira Majeed Khan
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | | | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Sajid Ali
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala, Sweden
| | - Muhammad Ali
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif Hanif
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
Rahul R, Harish K, Neetu S, Aakash D, Balasubramanian N, Surender SY, Sanjiv K. Comprehensive review on ethnomedicinal, phytochemistry and pharmacological profile of. J TRADIT CHIN MED 2024; 44:1052-1057. [PMID: 39380237 PMCID: PMC11462526 DOI: 10.19852/j.cnki.jtcm.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/06/2023] [Indexed: 10/10/2024]
Abstract
Ficus religiosa L. (F. religiosa) or sacred fig is a large perennial tree belonging to the family Moraceae or mulberry family. Though the tree has pan-tropical distribution but originally it is indigenous to the Indian subcontinent and Indochina region. Popularly the tree is named "Pepal or bodhi tree". Traditionally, it is practiced for the treatment of asthma, nose bleeding, heart disorders, diabetes, wound healing, ear problems, constipation, hyperlipidemia, gonorrhea, ulcers and infectious disorders. Chemical analysis demonstrated the presence of numerous bioactives including tannins, phenols, saponins, sugars, alkaloids, methionine, terpenoids, flavonoids, glycosides, proteins, separated amino acids, essential and volatile oils and steroids etc., which are probably responsible for its diverse pharmacological actions. The present work is an attempt to compile up-to-date comprehensive information on F. religiosa that covers its taxonomy, ethnomedicinal importance, phytochemistry, pharmacological attributes and clinical trials. Keeping in mind the various health attributes of F. religiosa, future research can be aimed at in-depth elucidation of the structure-function relationship and multifactorial signalings pathways.
Collapse
Affiliation(s)
- Rawat Rahul
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Kumar Harish
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Singh Neetu
- 2 Department of Botany, Maharshi Dayanand University, Rohtak 124001, India
| | - Deep Aakash
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | | | | | - Kumar Sanjiv
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| |
Collapse
|
6
|
Massand AB, Rai AR, Blossom V, Pai MM, Jiji PJ, Rai R. Ethanolic extract of Ficus religiosa leaves alleviates aluminum-induced oxidative stress, lipid peroxidation, and neuroinflammation in rat brain. Vet World 2024; 17:2088-2095. [PMID: 39507794 PMCID: PMC11536729 DOI: 10.14202/vetworld.2024.2088-2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Aluminum (Al)-induced neurotoxicity is known to play a pivotal role in the development of various neurodegenerative diseases, and this is alleged to occur through neuroinflammation and oxidative stress in the brain. This study aimed to determine the effect of Ficus religiosa (FR) leaf extract on oxidative stress and neuroinflammation induced by Al exposure in the rat brain by estimating malondialdehyde (MDA), interleukin-6 (IL6), and total antioxidant (TAO) levels along with the degree of neurodegeneration in the brain of AlCl3-administered and FR leaf extract-treated rats. Materials and Methods Two- to three-month-old male albino Wistar rats weighing 250-280 g were used in the present study. The animals were randomly divided into seven groups, with 12 rats in each group. The groups were categorized as control, Al-intoxicated, FR treatment groups of two dosages, FR control rats of two dosages, and FR pre-treatment group. Results We observed a substantial increase in the levels of MDA and IL6 along with a decline in the TAO level in Al-intoxicated rats, suggesting increased lipid peroxidation (LPO), neuroinflammation, and oxidative stress, respectively. In the FR-treated animals, MDA as well as IL6 levels was decreased, and TAO was enhanced in addition to improved neuronal architecture, demonstrating the ameliorative effect of FR. Conclusion The present study observed a decline in LPO and neuroinflammation in FR-treated rats, demonstrating the protective effect of FR leaves against Al-induced neurotoxicity. The level of TAO also improved along with improvement in neuronal mass in FR-treated rats, adding to its ameliorative effect. However, further elaborate research is needed to confirm its therapeutic potential against inflammation-driven neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit B. Massand
- Department of Anatomy, Smt. B. K. Shah Medical Institute and Research Centre, Sumandeep Vidhyapeeth, Pipariya, Vadodara, Gujarat, India
| | - Ashwin R. Rai
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vandana Blossom
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mangala M. Pai
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P. J. Jiji
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Jambi EJ, Alamri A, Afzal M, Al-Abbasi FA, Al-Qahtani SD, Almalki NAR, Bawadood AS, Alzarea SI, Sayyed N, Kazmi I. 6-shogaol against 3-Nitropropionic acid-induced Huntington's disease in rodents: Based on molecular docking/targeting pro-inflammatory cytokines/NF-κB-BDNF-Nrf2 pathway. PLoS One 2024; 19:e0305358. [PMID: 39008492 PMCID: PMC11249262 DOI: 10.1371/journal.pone.0305358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is an extremely harmful autosomal inherited neurodegenerative disease. Motor dysfunction, mental disorder, and cognitive deficits are the characteristic features of this disease. The current study examined whether 6-shogaol has a protective effect against 3-Nitropropionic Acid (3-NPA)-induced HD in rats. METHODS A total of thirty male Wistar rats received 6-shogaol (10 and 20 mg/kg, per oral) an hour before injection of 3-NPA (10 mg/kg i.p.) for 15 days. Behavioral tests were performed, including narrow beam walk, rotarod test, and grip strength test. Biochemical tests promoting oxidative stress were evaluated [superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and malondialdehyde (MDA)], including changes to neurotransmitters serotonin (5-HT), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), (3,4-dihydroxyphenylacetic acid (DOPAC), γ-aminobutyric acid (GABA), and 5-hydroxy indole acetic acid (5-HIAA), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukins-1β (IL-1β), IL-6, brain-derived neurotrophic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2). The 6-shogaol was docked to the active site of TNF-α (2AZ5), NF-κB (1SVC), BDNF) [1B8M], and Nrf2 [5FZN] proteins using AutoDock tools. RESULTS The 6-shogaol group significantly improved behavioral activity over the 3-NPA-injected control rats. Moreover, 3-NPA-induced significantly altered neurotransmitters, biochemical and neuroinflammatory indices, which could efficiently be reversed by 6-shogaol. The 6-shogaol showed favorable negative binding energies at -9.271 (BDNF) kcal/mol. CONCLUSIONS The present investigation demonstrated the neuroprotective effects of 6-shogaol in an experimental animal paradigm against 3-NPA-induced HD in rats. The suggested mechanism is supported by immunohistochemical analysis and western blots, although more research is necessary for definite confirmation.
Collapse
Affiliation(s)
- Ebtihaj J. Jambi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa D. Al-Qahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Naif A. R. Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah Salim Bawadood
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, India
| | - Imran Kazmi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Moazzam A, Saleem A, Shah S, Hussain L, Baig MMFA, Alshammari A, Albekairi NA, Akhtar MF. A combination of gliclazide and metformin attenuates obesity-induced polycystic ovary syndrome in female Wistar rats. Heliyon 2024; 10:e29015. [PMID: 38596120 PMCID: PMC11002689 DOI: 10.1016/j.heliyon.2024.e29015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Presently, it is known that the progression of obesity concomitantly leads to polycystic ovary syndrome and infertility. This study aimed to evaluate the potential effects of metformin (M; insulin secretagogues) and gliclazide (G; insulin sensitizer) alone and their combination at different doses to treat obesity-induced PCOS. High high-fat diet was given to all female Wistar rats for nine weeks to induce obesity except for the normal control group which received a normal chow diet. Estradiol valerate (0.8 mg/kg) was also given to all obese rats to induce polycystic ovarian syndrome. After the induction, M (100, 300 mg/kg) and G (5, 10 mg/kg) were given orally either individually or in combination for 28 days. The notable (p < 0.0001) reduction in body weight and blood glucose level was observed in treatment groups in contrast to disease control (DCG). The marked (p < 0.05-0.0001) decrease in hemocylated hemoglobin, serum insulin, cholesterol, triglycerides, and testosterone was observed in treated groups, notably in combination groups (M100+G10 mg/kg) in contrast to DCG. There was a considerable (p < 0.01-0.0001) increase in progesterone E2, estradiol, luteinizing, and follicle-stimulating hormones in treated groups as compared to DCG. Treatment with M and G treated groups also exhibited marked (p < 0.05-0.0001) increases in SOD, CAT, and GSH while decreased in NO and MDA levels in ovary tissue as evidenced by the histological study of the ovary. Treatment with M and G alone and in combination significantly (p < 0.0001) restored the serum IL-6, NrF2, and NF-κB levels as compared to DCG. The results inveterate that the M and G combination (M100+G10, and M300+G10) was useful in treating obesity-induced infertility due to antioxidant properties, hypolipidemic effects, and modulation of inflammatory markers.
Collapse
Affiliation(s)
- Anam Moazzam
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 5400, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Government College University, Faisalabad, 38000, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | | | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 5400, Pakistan
| |
Collapse
|
9
|
Kazmi I, Afzal M, Imam F, Alzarea SI, Patil S, Mhaiskar A, Shah U, Almalki WH. Barbaloin's Chemical Intervention in Aluminum Chloride Induced Cognitive Deficits and Changes in Rats through Modulation of Oxidative Stress, Cytokines, and BDNF Expression. ACS OMEGA 2024; 9:6976-6985. [PMID: 38371830 PMCID: PMC10870395 DOI: 10.1021/acsomega.3c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl3)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression. Thirty male Wistar rats were subjected to AlCl3 at a dosage of 100 mg/kg via the per oral route (p.o.), which induced cognitive decline. Morris water maze (MWM) is used to assess behavioral metrics. Assays for catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), interleukins-1β (IL-1β), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukins-6 (IL-6), BDNF, and neurotransmitter levels [dopamine (DA), acetylcholine (Ach), and γ-aminobutyric acid (GABA)] were performed. Results: The transfer latency time was notably decreased, and substantial modifications in the concentrations of GSH, MDA, CAT, SOD, AChE, ChAT and observed modulations in the formation of interleukins-6 (IL-6), TNF-α, IL-1β, BDNF, and NF-κB were also evidenced after the treatment of rats with barbaloin in comparison to AlCl3-induced control groups. Significant alterations in neurotransmitter levels (DA, Ach, and GABA) were also seen in barbaloin-treated groups in comparison to AlCl3-induced groups. The current investigation has provided evidence that the administration of barbaloin yielded notable enhancements in cognitive function in rats through the inhibition of MDA, enhancing endogenous antioxidant enzymes, reduction of cytokine levels, and enhancement of neurotransmitter contents in the brain. These effects were observed in comparison to a control group treated with AlCl3 and can be attributable to barbaloin's strong anti-inflammatory and antioxidant properties, and metal chelating properties may contribute to its neuroprotective effects. Barbaloin may also promote neuronal survival and enhance learning and memory by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department
of Pharmaceutical Sciences, Pharmacy Program,
Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Faisal Imam
- Department
of Pharmacology and Toxicology, College
of Pharmacy, King Saud University, P.O.
Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Shaktipal Patil
- Department
of Pharmacology, H. R. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Amrapali Mhaiskar
- Department
of Pharmacology, R. C. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
| | - Ujashkumar Shah
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
10
|
Sola P, Garikapati KK, Krishnamurthy PT, Kumari M. Polysorbate 80 surface modified SLNs of formoterol suppress SNCA gene and mitochondrial oxidative stress in mice model of Parkinson's disease. Sci Rep 2023; 13:19942. [PMID: 37968340 PMCID: PMC10651909 DOI: 10.1038/s41598-023-46511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
The present study hypothesises that the selective brain β2 receptor activation through β2-adrenoreceptor agonist (β2ARA), Formoterol (FMT), suppresses SNCA gene expression, a pathological hallmark of Parkinson's disease (PD) in brain. Further, it is also hypothesized that brain targeted delivery of Formoterol via polysorbate-80 surface modified solid lipid nanoparticles of Formoterol (FMT-SLNs-PS80) can improve its stability, therapeutic efficacy and avoid/reduce peripheral off-target side effects. FMT-SLNs-PS80 was prepared by solvent injection method, the formulation was optimized by using Box-Behnken design and characterized by measuring drug content, entrapment efficacy, particle size, zeta potentials and poly dispersibility. The FMT-SLNs-PS80, significantly decreases the SNCA expression, mitochondrial membrane damage and rotenone induced changes in oxidative (SOD, CAT, GSH and ROS) stress markers in SH-SY5Y cell lines. The ex vivo permeation study of the formulation using everted chicken ileum exhibited a steady state flux. The pharmacokinetic and tissue distribution studies of the formulation in rats showed a significant improvement in the kinetic parameters when compared to naïve FMT, further the formulation also improved the brain bioavailability of FMT. The anti-Parkinson's efficacy studies of the formulation in mice showed a significant neuroprotection against rotenone-induced changes in behavioural and biochemical parameters. Further, the histopathological analysis of mice brain confirms a significant neuroprotective benefit. The present study successfully establishes the brain targeted delivery and anti-Parkinson's therapeutic efficacy of FMT-SLNs-PS80.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Tamil Nadu, India
| | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Tamil Nadu, India
| | | | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Tamil Nadu, India
| |
Collapse
|
11
|
Karim A, Anwar F, Saleem U, Fatima S, Ismail T, Obaidullah AJ, Khayat RO, Alqahtani MJ, Alsharif I, Khan H, Vargas-De-La-Cruz C, Shah MA. Administration of α-lipoic acid and silymarin attenuates aggression by modulating endocrine, oxidative stress and inflammatory pathways in mice. Metab Brain Dis 2023; 38:2255-2267. [PMID: 37458892 DOI: 10.1007/s11011-023-01258-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/23/2023] [Indexed: 09/16/2023]
Abstract
Aggression, a highly prevalent behavior among all the psychological disorders having strong association with psychiatric imbalance, neuroendocrine changes and neurological disturbances (including oxidative stress & neuroinflammation) require both pharmacological and non-pharmacological treatments. Focusing the preclinical neuroendocrine determinants of aggression, this interventional study was designed to elucidate the curative effect of antioxidants on aggression in male mice. Adult albino male mice (n = 140) randomly divided into two main treatment groups for α-lipoic acid (ALA) and silymarin with 5 subgroups (n = 10) for each curative study, namely control, disease (aggression-induced), standard (diazepam, 2.5 mg/kg), low dose (100 mg/kg) and high dose (200 mg/kg) treatment groups of selected antioxidants. Resident-intruder paradigm and levodopa (L-dopa 375 mg/kg, p.o.) induced models were used for aggression. Effect of antioxidant treatment (i.e., 21 days bid) on aggression was assessed by evaluating the changes in aggressive behavior, oxidative stress biomarkers superoxide dismutase, catalase, glutathione, nitrite and malondialdehyde (SOD, CAT, GSH, nitrite & MDA), neurotransmitters (dopamine, nor-adrenaline and serotonin), pro-inflammatory cytokines tumor necrosis factor-α and interleukin- 6 (TNF-α & IL-6) along with serum testosterone examination. This study showed potential ameliorative effect on aggressive behavior with both low (100 mg/kg) and high (200 mg/kg) doses of antioxidants (ALA & silymarin). Resident-intruder or L-dopa induced aggression in male mice was more significantly tuned with ALA treatment than silymarin via down regulating both oxidative stress and inflammatory biomarkers. ALA also exhibited notable effects in managing aggression-induced disturbances on plasma testosterone levels. In conclusion, ALA is more effective than silymarin in attenuating aggression in mice.
Collapse
Affiliation(s)
- Adnan Karim
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Saniya Fatima
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSAT University, Abbottabad, Pakistan
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rana O Khayat
- Department of Biology, College of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Moneerah J Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima, 15001, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, Lima, 15001, Peru
| | | |
Collapse
|
12
|
Islam A, Mishra A, Ahsan R, Fareha S. Phytopharmaceuticals and Herbal Approaches to Target Neurodegenerative Disorders. Drug Res (Stuttg) 2023; 73:388-407. [PMID: 37308092 DOI: 10.1055/a-2076-7939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurodegeneration is characterized as the continuous functional and structural loss of neurons, resulting in various clinical and pathological manifestations and loss of functional anatomy. Medicinal plants have been oppressed from ancient years and are highly considered throughout the world as a rich source of therapeutic means for the prevention, treatment of various ailments. Plant-derived medicinal products are becoming popular in India and other nations. Further herbal therapies shows good impact on chronic long term illnesses including degenerative conditions of neurons and brain. The use of herbal medicines continues to expand rapidly across the world. The active phytochemical constituents of individual plants are sometimes insufficient to achieve the desirable therapeutic effects. Combining the multiple herbs in a particular ratio (polyherbalism) will give a better therapeutic effect and reduce toxicity. Herbal-based nanosystems are also being studied as a way to enhance the delivery and bioavailability of phytochemical compounds for the treatment of neurodegenerative diseases. This review mainly focuses on the importance of the herbal medicines, polyherbalism and herbal-based nanosystems and its clinical significance for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anas Islam
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Rabia Ahsan
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Syed Fareha
- Department of Bioengineering, Integral University,, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Javed M, Saleem A, Akhtar MF. Diosgenin, a steroidal sapogenin, arrests arthritis through modulation of inflammatory cytokines and oxidative stress biomarkers in Wistar rats. Inflammopharmacology 2023; 31:1951-1966. [PMID: 37188832 DOI: 10.1007/s10787-023-01244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Diosgenin (DGN) is a well-known steroidal sapogenin that is obtained from the hydrolysis of dioscin. The current research aimed to explore the anti-inflammatory and anti-arthritic potential of DGN alone and in combination with methotrexate (MTX). The in-vitro antioxidant, and anti-arthritic potential was assessed by protein denaturation and Human red blood cell membrane stabilization assays. The in-vivo anti-inflammatory effect was examined by carrageenan-induced paw edema and xylene-induced ear edema methods. The arthritis was induced in Wistar rats by inoculation of 0.1 ml Complete Freund's adjuvant in the left hind paw at day 1. The arthritic animals received MTX 1 mg/kg as standard, DGN at 5, 10, 20 mg/kg, and a combination treatment (DGN 20 mg/kg + MTX) was administered orally from 8 to 28th day while normal and disease control received normal saline. DGN at 1600 μg/ml exhibited the highest in-vitro activities in contrast to other tested concentrations. DGN at 20 mg/kg exhibited the maximum (p < 0.05-0.0001) inhibition of inflammation in carrageenan and xyleneinduced edema models. Treatment with DGN and MTX alone and in combination significantly reduced the paw diameter, body weight, arthritic index, and pain. It restored altered blood parameters and oxidative stress biomarkers in contrast to the diseased control rats. DGN profoundly (P < 0.0001) downregulated mRNA expression of TNF-α, IL-1β, NF-ĸβ, and COX-2 while upregulated IL-4 and -10 in treated rats. The combination of DGN with MTX showed the highest therapeutic efficacy than individual therapy, so it can be used as an adjunct for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Maira Javed
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan.
| |
Collapse
|
14
|
Shoaib M, Saleem A, Zeb A, Khan MI, Akhtar MF. Chemical Characterization and Ameliorating Effect of Centratherum anthelminticum Extract against Polycystic Ovary Syndrome in Wistar Rats. Int J Endocrinol 2023; 2023:4978562. [PMID: 37483646 PMCID: PMC10359138 DOI: 10.1155/2023/4978562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) in females is an endocrine pathological condition of reproductive age which is usually caused by insulin resistance, hyperlipidemia, and oxidative stress. This research was aimed at evaluating the therapeutic effect of the Centratherum anthelminticum seed extract (CA) against PCOS in rodents as it is traditionally used to treat diabetes, inflammation, and gynecological problems. The CA was chemically characterized by high-performance liquid chromatography-diode array detection (HPLC-DAD). For the induction of PCOS, a high-fat diet (HFD) was given to all female Wistar rats for nine weeks except the normal control group, which was given a normal chow diet. Estradiol valerate was given to all rats except normal control. After the induction of PCOS, oral metformin (300 mg/kg) was given to the standard group, while CA was orally administered to diseased rats at 250, 500, and 750 mg/kg/day for 28 days. HPLC-DAD analysis revealed that kaempferol-3-pcoumaroylglucoside was present in the highest amount (146.8 ± 1.8 mg/g) of the extract followed by ferulic acid and malvidin-3-(6-caffeoyl)-glucoside. The in vivo results revealed a marked reduction in cholesterol and triglyceride levels in CA treatment groups. A significant rise was observed in progesterone and follicle stimulating hormone with a decrease in luteinizing hormone in the treatment groups as compared to disease control, which indicated normalization of the estrus cycle. The decrease in insulin resistance was characterized by low serum insulin levels in treatment groups. Treatment with CA also reduced inflammatory markers, such as IL-6 and NF-κB in PCOS rats. NrF2 and oxidative stress markers such as catalase, superoxide dismutase, malondialdehyde, and reduced glutathione were also improved by CA in the ovary of diseased rats. Histopathological examination showed the different developmental stages of normal follicles in CA-treated diseased rats which were indicative of a normal fertile estrous cycle. Overall, the results confirmed the efficacy of CA against PCOS in treating estradiol-HFD-induced PCOS due to its antidiabetic, anti-inflammatory, antihyperlipidemic, and antioxidant properties.
Collapse
Affiliation(s)
- Moonis Shoaib
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Lower Dir, Khyber Pakhtunkhwa 18800, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| |
Collapse
|
15
|
Elganzoury SS, Abdelfattah MS, Habotta OA, El-Khadragy M, Abdel Moneim AE, Abdalla MS. Neuro-amelioration of Ficus lyrata (fiddle-leaf fig) extract conjugated with selenium nanoparticles against aluminium toxicity in rat brain: relevance to neurotransmitters, oxidative, inflammatory, and apoptotic events. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65822-65834. [PMID: 37093386 DOI: 10.1007/s11356-023-26935-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Aluminium is a non-essential metal, and its accumulation in the brain is linked with potent neurotoxic action and the development of many neurological diseases. This investigation, therefore, intended to examine the antagonistic efficacy of Ficus lyrata (fiddle-leaf fig) extract (FLE) conjugated with selenium nanoparticles (FLE-SeNPs) against aluminium chloride (AlCl3)-induced hippocampal injury in rats. Rats were allocated to five groups: control, FLE, AlCl3 (100 mg/kg), AlCl3 + FLE (100 mg/kg), and AlCl3 + FLE-SeNPs (0.5 mg/kg). All agents were administered orally every day for 42 days. The result revealed that pre-treated rats with FLE-SeNPs showed markedly lower acetylcholinesterase and Na+/K+-ATPase activities in the hippocampus than those in AlCl3 group. Additionally, FLE-SeNPs counteracted the oxidant stress-mediated by AlCl3 by increasing superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents in rat hippocampus. Besides, the formulated nanoparticles decreased the hippocampal malondialdehyde, carbonyl protein, and nitric oxide levels of AlCl3-exposed animals. Furthermore, FLE-SeNPs attenuated neural tissue inflammation, as demonstrated by decreased interleukin-1 beta, interleukin-6, nuclear factor kappa B, and glial fibrillary acidic protein. Remarkable anti-apoptotic action was exerted by FLE-SeNPs by increasing B cell lymphoma 2 and decreasing caspase-3 and Bcl-2-associated-X protein in AlCl3-exposed rats. The abovementioned results correlated well with the hippocampal histopathological findings. Given these results, SeNPs synthesized with FLE imparted a remarkable neuroprotective action against AlCl3-induced neurotoxicity by reversing oxidative damage, neuronal inflammation, and apoptosis in exposed rats.
Collapse
Affiliation(s)
- Sara S Elganzoury
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Manal El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Mohga S Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
16
|
Saeed A, Akhtar MF, Saleem A, Akhtar B, Sharif A. Reproductive and metabolic toxic effects of polystyrene microplastics in adult female Wistar rats: a mechanistic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63185-63199. [PMID: 36961641 DOI: 10.1007/s11356-023-26565-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Microplastics, such as polystyrene microplastics (PS-MPs), have become an emerging environmental hazard for animals and humans. Long-term exposure to PS-MPs has led to neurotoxicity, reproductive dysfunction, and carcinogenesis. The goal of this study was to evaluate the effect of sub-chronic exposure of PS-MPs on metabolic and reproductive functions in female rats. The PS-MPs were prepared by cryogenic technique. The PS-MPs were given orally to female Wistar rats for 45 days at 2.5, 5, and 10 mg/kg/day. The average PS-MPs' size diameter was 876 nm. The PS-MPs administration resulted in a significant decrease in the activity of superoxide dismutase and catalase in the liver and ovary. The effect of PS-MPs on reduced glutathione and lipid peroxidation in the liver and ovarian tissues of rats was statistically insignificant. The PS-MP exposure exhibited an increase in the levels of triglycerides, total cholesterol, and low-density lipoprotein and decrease in high-density lipoprotein. The PS-MPs caused glucose intolerance and increase in insulin. Moreover, the PS-MP exposure increased follicle stimulating hormone, estradiol, and testosterone. Serum level of interleukin-6 and nuclear factor kappa B (NF-κB) was elevated in animals treated with PS-MPs. The PS-MP exposed rats showed normal ovarian histology, but activated hepatic stellate cells and liver fibrosis. It is concluded that the sub-chronic exposure to PS-MPs resulted in metabolic and endocrine disruption in female rats through oxidative damage, hormonal imbalance, and chronic inflammation.
Collapse
Affiliation(s)
- Anam Saeed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
17
|
Qazi AI, Ahmad B, Sahibzada MUK, Anwar F, Khusro A, Alhumaydhi FA, Mohamed AAR, Mostafa-Hedeab G, Emran TB. Evaluation of Antidiabetic Activity of Oxadiazole Derivative in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1141554. [PMID: 37143509 PMCID: PMC10154101 DOI: 10.1155/2023/1141554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/09/2022] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
The oxadiazole ring has long been used for the treatment of several diseases. This study aimed to analyze the antihyperglycemic and antioxidant roles of the 1,3,4-oxadiazole derivative with its toxicity. Diabetes was induced through intraperitoneal administration of alloxan monohydrate at 150 mg/kg in rats. Glimepiride and acarbose were used as standards. Rats were divided into groups of normal control, disease control, standard, and diabetic rats (treated with 5, 10, and 15 mg/kg of 1,3,4-oxadiazole derivative). After 14 days of oral administration of 1,3,4-oxadiazole derivatives (5, 10, and 15 mg/kg) to the diabetic group, the blood glucose level, body weight, glycated hemoglobin (HbA1c), insulin level, antioxidant effect, and histopathology of the pancreas were performed. The toxicity was measured by estimating liver enzyme, renal function, lipid profile, antioxidative effect, and liver and kidney histopathological study. The blood glucose and body weight were measured before and after treatment. Alloxan significantly increased blood glucose levels, HbA1c, alanine transaminase, aspartate aminotransferase, urea, cholesterol, triglycerides, and creatinine. In contrast, body weight, insulin level, and antioxidant factors were reduced compared to the normal control group. Treatment with oxadiazole derivatives showed a significant reduction in blood glucose levels, HbA1c, alanine transaminase, aspartate aminotransferase, urea, cholesterol, triglycerides, and creatinine as compared to the disease control group. The 1,3,4-oxadiazole derivative significantly improved body weight, insulin level, and antioxidant factors compared to the disease control group. In conclusion, the oxadiazole derivative showed potential antidiabetic activity and indicated its potential as a therapeutic.
Collapse
Affiliation(s)
- Adil Iqbal Qazi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Punjab, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Punjab, Pakistan
| | | | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Punjab, Pakistan
| | - Ameer Khusro
- Centre for Research and Development, Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai 603103, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | | | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
18
|
Shahid Nadeem M, Khan JA, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sayyed N, Gupta G, Kazmi I. Protective Effect of Hirsutidin against Rotenone-Induced Parkinsonism via Inhibition of Caspase-3/Interleukins-6 and 1β. ACS OMEGA 2023; 8:13016-13025. [PMID: 37065035 PMCID: PMC10099452 DOI: 10.1021/acsomega.3c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
A participant of the chemical family recognized as anthocyanins, hirsutidin is an O-methylated anthocyanidin. It is a natural substance, i.e., existing in Catharanthus roseus (Madagascar periwinkle), the predominant component in petals, as well as callus cultures. The literature review indicated a lack of scientifically verified findings on hirsutidin's biological activities, particularly its anti-Parkinson's capabilities. Using the information from the previous section as a reference, a present study has been assessed to evaluate the anti-Parkinson properties of hirsutidin against rotenone-activated Parkinson's in experimental animals. For 28 days, rats received hirsutidin at a dose of 10 mg/kg and rotenone at a dose of 0.5 mg/kg s.c. to test the neuroprotective effects. The hirsutidin was given 1 h before the rotenone. Behavioral tests, including the rotarod test, catalepsy, Kondziela's inverted screen activity, and open-field analysis, were performed. The levels of neurotransmitters (5-HT, DOPAC, 5-HIAA, dopamine, and HVA), neuroinflammatory markers (TNF-α, IL-6, IL-1β, caspase-3), an endogenous antioxidant, nitrite content, and acetylcholine were measured in all the rats on the 29th day. Hirsutidin exhibited substantial behavioral improvement in the rotarod test, catalepsy, Kondziela's inverted screen activity, and open-field test. Furthermore, hirsutidin restored neuroinflammatory markers, cholinergic function, nitrite content, neurotransmitters, and endogenous antioxidant levels. According to the study, hirsutidin has anti-inflammatory and antioxidant characteristics. As a result, it implies that hirsutidin may have anti-Parkinsonian effects in rats.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental
Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School
of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Gaurav Gupta
- School
of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Saleem A, Hameed I, Akhtar MF, Ashraf GM, Alghamdi BS, Rahman MH, Almashjary MN. Exploration of acute and chronic anti-inflammatory potential of Quercus leucotrichophora A. Camus extracts in Wistar rats: A mechanistic insight. Front Pharmacol 2023; 14:1002999. [PMID: 37113751 PMCID: PMC10126476 DOI: 10.3389/fphar.2023.1002999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: This research was conducted to validate the folkloric use of Quercus leucotrichophora (QL) leaf extracts against inflammation and arthritis and to determine the chemical composition using HPLC. Method: The aqueous and methanolic extracts of QL were evaluated by in vitro anti-oxidant, anti-inflammatory (inhibition of protein denaturation and membrane stabilization) assays, and in vivo anti-inflammatory (carrageenan and xylene-induced edema) and anti-arthritic models. For anti-arthritic potential, 0.1 mL Complete Freund's Adjuvant (CFA) was inoculated into the left hind paw of a Wistar rat on day 1, and oral dosing with QL methanolic extract (QLME) at 150, 300, and 600 mg/kg was begun at day 8 till the 28th day in all groups, except disease control that was given distilled water, while methotrexate was given as standard treatment. Results and discussion: There was a noteworthy (p < 0.05-0.0001) restoration in body weight, paw edema, arthritic index, altered blood parameters, and oxidative stress biomarkers in treated rats as compared to the diseased group. Moreover, QLME treatment significantly (p < 0.0001) downregulated TNF-α, IL-6, IL-1β, COX-2, and NF-κB, while significantly (p < 0.0001) upregulating IL-10, I-κB, and IL-4 in contrast to the diseased group. The QLME exhibited no mortality in the acute toxicity study. It was concluded that QLME possessed substantial anti-oxidant, anti-inflammatory, and anti-arthritic potential at all dosage levels prominently at 600 mg/kg might be due to the presence of quercetin, gallic, sinapic, and ferulic acids.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Izza Hameed
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Alharthy KM, Althurwi HN, Albaqami FF, Altharawi A, Alzarea SI, Al-Abbasi FA, Nadeem MS, Kazmi I. Barbigerone Potentially Alleviates Rotenone-Activated Parkinson's Disease in a Rodent Model by Reducing Oxidative Stress and Neuroinflammatory Cytokines. ACS OMEGA 2023; 8:4608-4615. [PMID: 36777578 PMCID: PMC9910078 DOI: 10.1021/acsomega.2c05837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common age-related and slowly progressive neurodegenerative disease that affects approximately 1% of the elderly population. In recent years, phytocomponents have aroused considerable interest in the research for PD treatment as they provide a plethora of active compounds including antioxidant and anti-inflammatory compounds. Herein, we aimed to investigate the anti-Parkinson's effect of barbigerone, a natural pyranoisoflavone possessing antioxidant activity in a rotenone-induced rat model of PD. METHODS To evaluate antioxidant activity, a 0.5 mg/kg dose of rotenone was injected subcutaneously into rats. Barbigerone (10 and 20 mg/kg) was administered to rats for 28 days 1 h prior to rotenone. All behavioral parameters were assessed before sacrificing the rats. On the 29th day, all of the rats were humanely killed and assessed for biochemical changes in antioxidant enzymes (superoxide dismutase, glutathione, malondialdehyde, and catalase), neurotransmitter levels (dopamine, 5-hydroxyindoleacetic acid, serotonin, dihydroxyphenylacetic acid, and homovanillic acid levels), and neuroinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α, nuclear factor kappa B, and IL-6]. RESULTS The data presented in this study has shown that barbigerone attenuated rotenone-induced motor deficits including the rotarod test, catalepsy, akinesia, and open-field test. Additionally, barbigerone has shown improvements in the biochemical and neuroinflammatory parameters in the rotenone-induced rat model of PD. CONCLUSION The results demonstrated that barbigerone exhibits antioxidant and anti-inflammatory actions via reducing oxidative stress and inflammatory cytokines. Altogether, these findings suggest that barbigerone could potentially be utilized as a therapeutic agent against PD.
Collapse
Affiliation(s)
- Khalid M. Alharthy
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Ain QU, Saleem U, Ahmad B, Khalid I. Pharmacological screening of silibinin for antischizophrenic activity along with its acute toxicity evaluation in experimental animals. Front Pharmacol 2023; 14:1111915. [PMID: 36817163 PMCID: PMC9936411 DOI: 10.3389/fphar.2023.1111915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Silibinin (SIL), a flavolignan extracted from the medicinal plant "silybum marianum (milk thistle)", has traditionally been used to treat liver disease. This phytochemical has displayed neuroprotective properties, its activity against schizophrenia is not elucidated. The present study was designed to evaluate the antipsychotic potential of silibinin and probe its toxic potential. The acute oral toxicity study was assessed as per OECD 425 guidelines. Animals were divided into two groups of female rats (n = 6): one group served as the normal control and the other group received a 2,000 mg/kg dose of SIL. We also evaluated the antipsychotic potential of SIL. To this end, animals were divided into six groups (n = 10) of mice for both the preventive and curative protocols. Group I (CMC 1 mL/kg) served as the normal control and received CMC 1 mL/kg; group II was the diseased group treated with ketamine (10 mg/kg) i.p; group III was the standard group treated with clozapine 1 mg/kg; groups IV, V, and VI served as the treatment groups, receiving SIL 50, 100, and 200 mg/kg, respectively, orally for both protocols. Improvement in positive symptoms of the disease was evaluated by stereotypy and hyperlocomotion, while negative symptoms (behavioral despair) were determined by a forced swim test and a tail suspension test in the mice models. The results suggested that the LD50 of SIL was greater than 2,000 mg/kg. Moreover, SIL prevented and reversed ketamine-induced increase in stereotypy (p < 0.001) and behavioral despair in the forced swim and tail suspension tests (p < 0.001). Taken together, the findings suggest that silibinin is a safe drug with low toxicity which demonstrates significant antipsychotic activity against the positive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan,*Correspondence: Qurat Ul Ain, ; Uzma Saleem,
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan,*Correspondence: Qurat Ul Ain, ; Uzma Saleem,
| | - Bashir Ahmad
- Hamza College of Pharmaceutical and Allied Health Sciences, Lahore, Pakistan
| | - Iqra Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
22
|
Saleem U, Chauhdary Z, Islam S, Zafar A, Khayat RO, Althobaiti NA, Shah GM, Alqarni M, Shah MA. Sarcococca saligna ameliorated D-galactose induced neurodegeneration through repression of neurodegenerative and oxidative stress biomarkers. Metab Brain Dis 2023; 38:717-734. [PMID: 35881299 DOI: 10.1007/s11011-022-01046-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023]
Abstract
Sarcococca saligna is a valuable source of bioactive secondary metabolites exhibiting antioxidant, anti-inflammatory and acetylcholinesterase inhibitory activities. The study was intended to explore the therapeutic pursuits of S. saligna in amelioration of cognitive and motor dysfunctions induced by D-galactose and linked mechanistic pathways. Alzheimer's disease model was prepared by administration of D-galactose subcutaneous injection100 mg/kg and it was treated with rivastigmine (100 mg/kg, orally) and plant extract for 42 days. Cognitive and motor functions were evaluated by behavioral tasks and oxidative stress biomarkers. Level of acetylcholinesterase, reduced level of glutathione, protein and nitrite level, and brain neurotransmitters were analyzed in brain homogenate. The level of apoptosis regulator Bcl-2, Caspases 3 and heat shock protein HSP-70 in brain homogenates were analyzed by ELISA and colorimetric method, respectively. AChE, IL-1β, TNF-α, IL-1α and β secretase expressions were analyzed by RT-PCR. S. saligna dose dependently suppressed the neurodegenerative effects of D-galactose induced behavioral and biochemical impairments through modulation of antioxidant enzymes and acetylcholinesterase inhibition. S. saligna markedly (P < 0.05) ameliorated the level of brain neurotransmitters, Bcl-2, HSP-70 and Caspases-3 level. S. saligna at 500-1000 mg/kg considerably recovered the mRNA expression of neurodegenerative and neuro-inflammatory biomarkers, also evident from histopathological analysis. These findings suggest that S. saligna could be applicable in cure of Alzheimer's disease.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sumera Islam
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Aimen Zafar
- University Institute of Food Science & Technology, University of Lahore, Lahore, Pakistan
| | - Rana O Khayat
- Department of Biology, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ghulam Mujtaba Shah
- Department of Botany, Hazara University, Mansehra, Pakistan
- Department of Pharmacy, Hazara University, Mansehra, Pakistan
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | | |
Collapse
|
23
|
Iqbal A, Anwar F, Saleem U, Khan SS, Karim A, Ahmad B, Gul M, Iqbal Z, Ismail T. Inhibition of Oxidative Stress and the NF-κB Pathway by a Vitamin E Derivative: Pharmacological Approach against Parkinson's Disease. ACS OMEGA 2022; 7:45088-45095. [PMID: 36530334 PMCID: PMC9753179 DOI: 10.1021/acsomega.2c05500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. In this study, PD was induced via (ip) injection of haloperidol (1 mg/kg/day). Animals were divided into seven groups (n = 70). Group I received the vehicle carboxymethylcellulose (CMC; 0.5%), group II was treated with designated 1 mg/kg haloperidol, and group III received the standard drug Sinemet (100 mg/kg), while groups IV-VII received a tocopherol derivative (Toco-D) at dose levels of 5, 10, 20, and 40 mg/kg, respectively, via the oral route. All groups received haloperidol for 23 consecutive days after their treatments except the control group. The improvement in locomotor activity and motor coordination was evaluated by using behavioral tests. Oxidative stress markers, neurotransmitters, and monoamine oxidase B (MAO-B) as well as NF-κB levels in the whole brain were measured. mRNA expression analysis of α-synuclein was carried out using the PCR technique. Toco-D at 20 mg/kg showed the maximum improvement in locomotor activity. The levels of antioxidant enzymes and neurotransmitters were also increased by the treatment with Toco-D. Inflammatory cytokine levels and mRNA expression of α-synuclein were decreased by Toco-D in treated animals. This study concluded that Toco-D might be effective in the improvement of locomotor activity and motor coordination in haloperidol-induced PD.
Collapse
Affiliation(s)
- Afshan Iqbal
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Fareeha Anwar
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan
| | - Saira Sami Khan
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Adnan Karim
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Mubashra Gul
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Zafer Iqbal
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Tariq Ismail
- Department
of Pharmacy, COMSATS University, Abbottabad 22060, Pakistan
| |
Collapse
|
24
|
Fatima N, Anwar F, Saleem U, Khan A, Ahmad B, Shahzadi I, Ahmad H, Ismail T. Antidiabetic effects of Brugmansia aurea leaf extract by modulating the glucose levels, insulin resistance, and oxidative stress mechanism. Front Nutr 2022; 9:1005341. [PMID: 36304231 PMCID: PMC9592987 DOI: 10.3389/fnut.2022.1005341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background Ethnopharmacological relevance: Brugmansia, a genus of the Solanaceae family, has historically been utilized in many different parts of the world as an anti-inflammatory for treating skin infections, wounds, and bodily aches and pains. The current study aimed to investigate the potential benefits of a methanolic extract of Brugmansia aurea in the management of diabetes and underlying complications in alloxanized-induced diabetic rats. Materials and methods Animals were divided into nine groups (n = 6). Four groups received different standard oral hypoglycemic agents; three groups received 100, 200, and 400 mg/kg of B. aurea leaf extract for six consecutive weeks, and the remaining two were normal and disease control groups. All groups received alloxan (150 mg/kg) except for the normal control. Only those animals whose glucose levels were raised to 200 mg/dl were selected for the study. After a 6-week dosage period, various biochemical parameters, as well as HbA1c, antioxidant profile, oral glucose tolerance test (OGTT), insulin sensitivity, histopathology, and insulin resistance, were measured and compared with the untreated diabetic group. Results Brugmansia aurea leaf extract at a dose of 400 mg/kg showed potent antidiabetic activity by reducing blood glucose levels (p < 0.001) after 6 weeks of treatment. OGTT data showed that B. aurea exhibited significant (p < 0.001) glucose tolerance by significantly reducing blood glucose levels in just 2 h post-treatment. Other tests showed that plant extract significantly increased (p < 0.001) insulin sensitivity and decreased (p < 0.001) insulin resistance. The biochemical profile showed reduced triglyceride and cholesterol, while the antioxidant profile showed restoration of antioxidant enzymes in the pancreas, kidney, and liver tissues of treated rats. Conclusion The present study indicated that crude extracts of B. aurea increase insulin sensitivity and reduce hyperlipidemia in diabetic rats, which rationalizes the traditional medicinal use of this plant as an antidiabetic agent.
Collapse
Affiliation(s)
- Nisar Fatima
- Faculty of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Fareeha Anwar
- Faculty of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Aslam Khan
- Faculty of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Bashir Ahmad
- Hamza College of Pharmaceutical and Allied Health Sciences, Lahore, Pakistan
| | - Irum Shahzadi
- Department of Biotechnology, Comsat University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Hammad Ahmad
- Bashir Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, Comsat University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
25
|
Ayaz M, Anwar F, Saleem U, Shahzadi I, Ahmad B, Mir A, Ismail T. Parkinsonism Attenuation by Antihistamines via Downregulating the Oxidative Stress, Histamine, and Inflammation. ACS OMEGA 2022; 7:14772-14783. [PMID: 35557705 PMCID: PMC9088957 DOI: 10.1021/acsomega.2c00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/07/2022] [Indexed: 05/17/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder of the motor activity of the brain, regulated by dopaminergic neurons of substantia nigra, resulting in an increased density of histaminergic fibers. This study was aimed to evaluate the effects of H1 antagonist's ebastine and levocetirizine in PD per se and in combination. Animals were divided into 9 groups (n = 10). Group 1 received carboxymethyl cellulose CMC (1 mL/kg). Group II was treated with haloperidol (1 mg/kg) (diseased group). Group III was treated with levodopa/carbidopa (levo 20 mg/kg). Groups IV and V were treated with ebastine at dose levels of 2 and 4 mg/kg, respectively. Groups VI and VII were treated with levocetirizine at dose levels of 0.5 and 1 mg/kg, respectively. Group VIII was treated with ebastine (4 mg/kg) + levo (20 mg/kg) in combination. Group IX was treated with levocetirizine (1 mg/kg) + levo (20 mg/kg). PD was induced with haloperidol (1 mg/kg iv, once daily for 23 days) for a duration of 30 min. Behavioral tests like rotarod, block and triple horizontal bars, actophotometer, and open field were performed. Biochemical markers of oxidative stress, i.e., SOD, CAT, GSH, MDA, dopamine, serotonin, and nor-adrenaline and nitrite, were determined. Histamine, mRNA expression of α-synuclein, and TNF-α level in the serum and brain of mice were analyzed. Endogenous biochemical markers were increased except mRNA expression of α-synuclein, which was reduced. In combination therapy with the standard drug, ebastine (4 mg/kg) significantly improved the cataleptic state and dopamine levels, but no significant difference in the renal and liver functioning tests was observed. This study concluded that ebastine (4 mg/kg) might work in the treatment of PD as it improves the cataleptic state in haloperidol-induced catalepsy.
Collapse
Affiliation(s)
- Maira Ayaz
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Fareeha Anwar
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
- . Tel: +92-3338883251
| | - Uzma Saleem
- Faculty
of Pharmaceutical Sciences, Government College
University, Faisalabad 38000, Pakistan
| | - Irum Shahzadi
- Department
of Biotechnology, COMSAT University, Abbottabad 22060, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Ali Mir
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Tariq Ismail
- Department
of Pharmacy, COMSAT University, Abbottabad 22060, Pakistan
| |
Collapse
|
26
|
Yadav G, Ansari TM, Shamim A, Roy S, Khan MMU, Ahsan F, Shariq M, Parveen S, Wasim R. Herbal Plethora for Management of Neurodegenerative Disorders:
An Invigorating Outlook. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666210913094938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
Oxidative stress, proteasomal impairment, mitochondrial dysfunction,
and accumulation of abnormal protein aggregates have shovelled a major section of the senior
population towards neurodegenerative disorders. Although age, genetic and environmental factors
are thought to play a significant role, drug abuse is considered to be a potent trigger in
Parkinsonism among the young generation. The present study is a critical examination of herbal
resources for attenuation of neurodegeneration.
Materials and Methods:
The following electronic databases have been used to search for literature:
MEDLINE, Scopus, PubMed, and EMBASE
Results :
Paying heed to the prevalence of neurodegenerative disorders such as Alzheimer’s and
Parkinson’s, the current review encompasses the pathogenesis of neurodegeneration at the cellular
level and possible prospects to overcome the challenge sailing through the ocean of herbal
boon. The United States’s Alzheimer’s Association states that deaths attributable to heart disease
in the country fell by 11% between 2000 and 2015, while deaths from neurodegenerative
diseases increased by a staggering 123% making it, the world’s sixth-leading cause of death.
The irreversible pathological damage amounts to cognitive loss, dementia, Amyotrophic lateral
sclerosis (ALS), Parkinson’s disease (PD) Alzheimer’s disease (AD).
Various herbal drugs like Brahmi, Shankhpushpi, and Amla are reported to be rich in phytoconstituents
like flavonoids, glycosides, alkaloids, fatty acids, sterols, tannins, saponins, and
terpenes that have remarkable antioxidant potential and could be explored for the same to prevent
neuronal necrosis.
Conclusion:
It is also believed that herbal medicines are more effective and less toxic than
synthetic drugs.
Collapse
Affiliation(s)
- Garima Yadav
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | | | - Arshiya Shamim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Supriya Roy
- Amity Institute of Pharmacy,
Amity University, Lucknow Campus, Uttar Pradesh 226028, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry &
Pharmacognosy, Unaizah College of Pharmacy, Al-qassim Unaizah, Kingdom of Saudi Arabia
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Mohammad Shariq
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Saba Parveen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Rufaida Wasim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026 , India
| |
Collapse
|
27
|
Murugesu S, Selamat J, Perumal V. Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. PLANTS (BASEL, SWITZERLAND) 2021; 10:2749. [PMID: 34961220 PMCID: PMC8707271 DOI: 10.3390/plants10122749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 05/23/2023]
Abstract
Ficus is one of the largest genera in the plant kingdom that belongs to the Moraceae family. This review aimed to summarize the medicinal uses, phytochemistry, and pharmacological actions of two major species from this genus, namely Ficus benghalensis and Ficus religiosa. These species can be found abundantly in most Asian countries, including Malaysia. The chemical analysis report has shown that Ficus species contained a wide range of phytoconstituents, including phenols, flavonoids, alkaloids, tannins, saponins, terpenoids, glycosides, sugar, protein, essential and volatile oils, and steroids. Existing studies on the pharmacological functions have revealed that the observed Ficus species possessed a broad range of biological properties, including antioxidants, antidiabetic, anti-inflammatory, anticancer, antitumor and antiproliferative, antimutagenic, antimicrobial, anti-helminthic, hepatoprotective, wound healing, anticoagulant, immunomodulatory activities, antistress, toxicity studies, and mosquitocidal effects. Apart from the plant parts and their extracts, the endophytes residing in these host plants were discussed as well. This study also includes the recent applications of the Ficus species and their plant parts, mainly in the nanotechnology field. Various search engines and databases were used to obtain the scientific findings, including Google Scholar, ScienceDirect, PMC, Research Gate, and Scopus. Overall, the review discusses the therapeutic potentials discovered in recent times and highlights the research gaps for prospective research work.
Collapse
Affiliation(s)
- Suganya Murugesu
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Jinap Selamat
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Vikneswari Perumal
- Faculty of Pharmacy & Health Sciences, University of Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| |
Collapse
|
28
|
Saleem U, Bibi S, Shah MA, Ahmad B, Saleem A, Chauhdary Z, Anwar F, Javaid N, Hira S, Akhtar MF, Shah GM, Khan MS, Muhammad H, Qasim M, Alqarni M, Algarni MA, Blundell R, Vargas-De-La-Cruz C, Herrera-Calderon O, Alhasani RH. Anti-Parkinson's evaluation of Brassica juncea leaf extract and underlying mechanism of its phytochemicals. FRONT BIOSCI-LANDMRK 2021; 26:1031-1051. [PMID: 34856751 DOI: 10.52586/5007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Background: Parkinson's disease (PD) is associated with progressive neuronal damage and dysfunction. Oxidative stress helps to regulate neurodegenerative and neuronal dysfunction. Natural compounds could attenuate oxidative stress in a variety of neurological disorders. B. juncea is a rich source of antioxidants. The present study aimed to evaluate the therapeutic potential of B. juncea leaves for the treatment of PD by applying behavioral, in vivo and in silico studies. For in vivo studies rats were divided into six groups (n = 6). Group-I served as normal control (vehicle control). Group-II was disease control (haloperidol 1 mg/kg). Group-III was kept as a standard group (L-Dopa 100 mg/kg + carbidopa 25 mg/kg). Groups (IV-VI) were the treatment groups, receiving extract at 200-, 400- and 600 mg/kg doses respectively, for 21 days orally. Results: In vivo study results showed that the extract was found to improve muscles strength, motor coordination, and balance in PD. These behavioral outcomes were consistent with the recovery of endogenous antioxidant defence in biochemical analysis which was further corroborated with histopathological ameliorations. Dopamine levels increased and monoamine oxidase B (MAO-B) levels decreased dose-dependently in the brain during the study. Herein, we performed molecular docking analysis of the proposed extracted phytochemicals has explained that four putative phytochemicals (sinapic acid, rutin, ferulic acid, and caffeic acid) have presented very good results in terms of protein-ligand binding interactions as well as absorption, distribution, metabolism, excretion & toxicity (ADMET) profile estimations. Conclusion: The undertaken study concluded the anti-Parkinson activity of B. juncea and further suggests developments on its isolated compounds in PD therapeutics.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, 650091 Kunming, Yunnan, China
- International Joint Research Center for Sustainable Utilization of CordycepsBioresouces in China and South-east Asia, Yunnan University, 650091 Kunming, Yunnan, China
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Nimra Javaid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Biological and Health Sciences, Hazara University, 21120 Mansehra, Pakistan
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, 57000 Sahiwal, Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Science & Technology, 75300 Karachi, Pakistan
| | - Muhammad Qasim
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270 Karachi, Pakistan
| | - Mohammad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, 21944 Taif, Saudi Arabia
| | - Majed A Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, 21944 Taif, Saudi Arabia
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001 Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, 15001 Lima, Peru
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001 Lima, Peru
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, 21961 Makkah, Saudi Arabia
| |
Collapse
|
29
|
Saleem U, Shehzad A, Shah S, Raza Z, Shah MA, Bibi S, Chauhdary Z, Ahmad B. Antiparkinsonian activity of Cucurbita pepo seeds along with possible underlying mechanism. Metab Brain Dis 2021; 36:1231-1251. [PMID: 33759084 DOI: 10.1007/s11011-021-00707-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Cucurbita pepo is used as a vegetable in Pakistan and its seeds are also rich in tocopherol. Data showed the pivotal role of tocopherol in the treatment of Parkinson's disease (PD). The current study was designed to probe into the antiparkinson activity of methanolic extract of C. pepo (MECP) seeds in the haloperidol-induced Parkinson rat model. Behavioral studies showed improvement in motor functions. The increase in catalase, superoxide dismutase, glutathione levels whereas the decreases in the malondialdehyde and nitrite levels were noted in a dose-dependent manner. Acetylcholine-esterase (AchE) activity was increased. Molecular docking results revealed significant binding interaction of selected phytoconstituents within an active site of target protein AchE (PDB ID: 4EY7). Furthermore, α-synuclein was up regulated with down regulation of TNF-α and IL-1β in the qRT-PCR study. Subsequently, ADMET results on the basis of structure to activity predictions in terms of pharmacokinetics and toxicity estimations show that selected phytochemicals exhibited moderately acceptable properties. These properties add knowledge towards the structural features which could improve the bioavailability of selected phytochemicals before moving towards the initial phase of the drug development. Our integrated drug discovery scheme concluded that C. pepo seeds could ameliorate symptoms of PD and may prove a lead remedy for the treatment of PD.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Aisha Shehzad
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Zohaib Raza
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shabana Bibi
- Yunnan Herbal Laboratory, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresouces in China and Southeast Asia, Yunnan University, Kunming, 650091, Yunnan, China
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| |
Collapse
|
30
|
Saleem U, Hira S, Anwar F, Shah MA, Bashir S, Baty RS, Badr RH, Blundell R, Batiha GES, Ahmad B. Pharmacological Screening of Viola odorata L . for Memory-Enhancing Effect via Modulation of Oxidative Stress and Inflammatory Biomarkers. Front Pharmacol 2021; 12:664832. [PMID: 34149418 PMCID: PMC8210412 DOI: 10.3389/fphar.2021.664832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: Alzheimer disease (AD) is a progressive neurodegenerative disorder that is caused by neuroinflammation and oxidative stress. The present study aimed to characterize and then investigate the memory-enhancing potential of Viola odorata methanolic extract in lipopolysaccharide (LPS)–treated mice. Methods:V. odorata characterization was done by using the GCMS technique. Neuroinflammation was induced by the intracerebroventricular administration of LPS at a dose of 12 µg. Animals were divided randomly into six groups (n = 10). Group I was normal control, which was given vehicle. Group II was disease control, which received LPS (12 µg) via the intracerebroventricular route. Group III was standard, which was administered with donepezil (3 µg) orally for 21 days. Groups IV–VI were the treatment groups, which were administered with the extract at 100, 200, and 400 mg/kg dose levels orally respectively for 21 days. Groups III–VI received LPS (12 µg) on the first day along with their treatments. During the treatment, the animals were assessed for memory retention by employing different behavioral paradigms namely elevated plus maze, passive avoidance, foot shock and open field. Various mediators [endogenous antioxidants, neurotransmitters, and acetylcholinesterase (AChE)] involved in the pathogenesis of AD were quantified by using the UV spectrophotometric method. Results: Extract-treated groups showed a remarkable improvement in cognitive impairment in all behavioral paradigms. Oxidative stress biomarkers, that is, superoxide dismutase, catalase, and glutathione were raised dose-dependently in the treatment groups with a dose-dependent decrease in the malonaldehyde and AChE levels in the brains of the treated animals. The treatment groups showed decreased levels of inflammatory biomarkers, that is, tumor necrosis factor–alpha, nuclear factor kappa light-chain enhancer of activated β-cells, and cyclo-oxygenase, which supports the therapeutic effectiveness of the treatment. Conclusion: Based on behavioral, oxidative stress biomarker, and neuroinflammatory data, it is concluded that V. odorata possesses memory-enhancing activity and may prove a beneficial role in the management of AD.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Samia Bashir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Reem H Badr
- Department of Plant Physiology Botany and Microbiology, Faculty of Science, Alex University, Alexandria, Egypt
| | - Renald Blundell
- American University of Malta, Triq Dom Mintoff, Bormla, Malta
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| |
Collapse
|
31
|
Bhardwaj K, Silva AS, Atanassova M, Sharma R, Nepovimova E, Musilek K, Sharma R, Alghuthaymi MA, Dhanjal DS, Nicoletti M, Sharma B, Upadhyay NK, Cruz-Martins N, Bhardwaj P, Kuča K. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021; 26:3005. [PMID: 34070179 PMCID: PMC8158490 DOI: 10.3390/molecules26103005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers' phytochemicals and illustrates their potential role as drugs.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Square Aldo Moro, 5, 00185 Rome, Italy;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India;
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| |
Collapse
|
32
|
Nazir S, Anwar F, Saleem U, Ahmad B, Raza Z, Sanawar M, Rehman AU, Ismail T. Drotaverine Inhibitor of PDE4: Reverses the Streptozotocin Induced Alzheimer's Disease in Mice. Neurochem Res 2021; 46:1814-1829. [PMID: 33877499 DOI: 10.1007/s11064-021-03327-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with decline in memory and cognitive impairments. Phosphodiesterase IV (PDE4) protein, an intracellular cAMP levels regulator, when inhibited act as potent neuroprotective agents by virtue of ceasing the activity of Pro-inflammatory mediators. The complexity of AD etiology has ever since compelled the researchers to discover multifunctional compounds to combat the AD and neurodegeneration. The aim of this study was to probe into role of drotaverine a PDE4 inhibitor in the management of AD. Albino mice were divided into seven groups (n = 10). Group 1 control group received carboxy methyl cellulose (CMC 1 mL/kg), group II diseased group treated with streptozotocin (STZ 3 mg/kg) by intracerebroventricular (ICV) route, group III administered standard drug Piracetam 200 mg/kg and groups IV-VII were given drotaverine (10, 20, 40, and 80 mg/kg i/p respectively). Groups II-VII were given STZ (3 mg/kg, ICV) on 1st and 3rd day of treatment to induce AD. All the groups were given their respective treatments for 23 days. Improvement in learning and memory was evaluated by using behavioral tests like open field test, elevated plus maze test, Morris water maze test and passive avoidance test. Furthermore, brain levels of biochemical markers of oxidative stress, neurotransmitters, β-amyloid and tau protein were also measured. Drotaverine showed statistically significant dose dependent improvement in behavioral and biochemical markers of AD: the maximum response was achieved at a dose level of 80 mg/kg. The Study concluded that drotaverine ameliorates cognitive impairment and as well as exhibited modulated the brain levels of neurotransmitters.
Collapse
Affiliation(s)
- Samra Nazir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Zohaib Raza
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Maham Sanawar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Artta Ur Rehman
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College, Lahore, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSAT University, Abottabad, Pakistan
| |
Collapse
|
33
|
Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci 2021; 53:3743-3767. [PMID: 33818841 DOI: 10.1111/ejn.15222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.
Collapse
Affiliation(s)
- Isabelle Waku
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Mylena S Magalhães
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Camila O Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| | - Amanda R de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
34
|
Akhtar MF, Khan K, Saleem A, Baig MMFA, Rasul A, Abdel-Daim MM. Chemical characterization and anti-arthritic appraisal of Monotheca buxifolia methanolic extract in Complete Freund's Adjuvant-induced arthritis in Wistar rats. Inflammopharmacology 2021; 29:393-408. [PMID: 33386491 DOI: 10.1007/s10787-020-00783-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
The current study was designed to evaluate the anti-oxidant and anti-arthritic potential of a traditionally used herb, Monotheca buxifolia. The M. buxifolia methanolic extract (MBME) was prepared from the aerial parts of the plant followed by chemical characterization with GC-MS. The anti-oxidant potential of the MBME was demonstrated by DPPH scavenging activity. The effects of MBME on protein denaturation and membrane stabilization were determined by inhibition of egg albumin denaturation and RBC membrane stabilization assays, respectively. The in vivo anti-arthritic potential of the MBME at 50, 100, and 150 mg/kg/day was evaluated in Complete Freund's Adjuvant-induced polyarthritis in Wistar rats treated for 21 days. Phytochemicals, such as linolenic acid methyl ester, n-hexadecanoic acid, vitamin E, α-amyrin, and β-amyrin were detected in the GC-MS analysis. The plant extract exhibited a 55.20 ± 0.69% scavenging of free radicals at 100 µg/ml concentration. It significantly (p < 0.05) stabilized human RBC membrane (65.06 ± 0.22%) and inhibited protein denaturation (70.53 ± 0.34%) at 100 mg/ml concentration. The diclofenac sodium (DS) and MBME at 150,100, and 50 mg/kg reduced the paw edema, restored the body weight, and altered blood parameters including CRP. The MBME significantly reduced the MDA and increased the SOD, CAT, and GSH levels in liver tissue homogenate in treated rats. The serum concentration of TNF-α and PGE2 was remarkably (p < 0.01-< 0.0001) restored by the DS and MBME dose dependently. The histopathological study showed that MBME 150 mg/kg commendably restored the ankle joint inflammation, bone erosion, and cartilage damage in polyarthritic rats. It was concluded that the anti-oxidant, anti-inflammatory and anti-arthritic effects of MBME might be attributed to phenols, flavonoids, triterpenoids, vitamin E, phytol, and other fatty acids. This study showed the anti-arthritic potential of Monotheca buxifolia and thus validates its traditional claim.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore campus, Lahore, Pakistan.
| | - Khushdil Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Stem Cells Research and Biomedical Engineering for Novel Biofunctional, and Pharmaceutical Nanomaterials, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong, 999077, China
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
35
|
Saleem U, Gull Z, Saleem A, Shah MA, Akhtar MF, Anwar F, Ahmad B, Panichayupakaranant P. Appraisal of anti-Parkinson activity of rhinacanthin-C in haloperidol-induced parkinsonism in mice: A mechanistic approach. J Food Biochem 2021; 45:e13677. [PMID: 33709527 DOI: 10.1111/jfbc.13677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/05/2023]
Abstract
This study aimed to appraise the anti-Parkinson's potential of rhinacanthin-C (RC). RC (5, 10, and 20 mg/kg) was orally administered for 25 days in albino mice to treat haloperidol-induced parkinsonism (1 mg/kg). RC significantly (p < .05) improved the motor symptoms in block, bar, rotarod, and balance beam walking tests in treated mice. RC reduced the cataleptic effect dose-dependently. The RC therapy notably (p < .001) enhanced reduced glutathione, catalase, and superoxide dismutase levels while decreased malondialdehyde and nitrite levels in the tissue homogenates of the treated mice. The RC therapy significantly (p < .01-.001) restored the dopamine, norepinephrine, and serotonin levels in the brain tissue of treated mice as co-evidenced from brain histology. RC did not adversely affect complete blood count, and liver and kidney function tests. Taken together, these results have shown that RC is effective in treating motor and non-motor symptoms of Parkinson's disease. PRACTICAL APPLICATIONS: Rhinacanthus nasutus is a medicinally rich plant that has folklore use in several ailments. The plant possessed multiple pharmacological activities due to the presence of naphthoquinones. The major compound of this plant rhinacanthin-C was used in the present study to evaluate it's anti-Parkinson's activity. The results provide scientific evidence of the anti-Parkinson's potential of rhinacanthin-C that support the use of R. nasutus leaves in the prevention and treatment of Parkinson's disorder.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zujajah Gull
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Pharkphoom Panichayupakaranant
- Faculty of Pharmaceutical Sciences, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
36
|
Guo YL, Duan WJ, Lu DH, Ma XH, Li XX, Li Z, Bi W, Kurihara H, Liu HZ, Li YF, He RR. Autophagy-dependent removal of α-synuclein: a novel mechanism of GM1 ganglioside neuroprotection against Parkinson's disease. Acta Pharmacol Sin 2021; 42:518-528. [PMID: 32724177 PMCID: PMC8115090 DOI: 10.1038/s41401-020-0454-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022]
Abstract
GM1 ganglioside is particularly abundant in the mammalian central nervous system and has shown beneficial effects on neurodegenerative diseases. In this study, we investigated the therapeutic effect of GM1 ganglioside in experimental models of Parkinson's disease (PD) in vivo and in vitro. Mice were injected with MPTP (30 mg·kg-1·d-1, i.p.) for 5 days, resulting in a subacute model of PD. PD mice were treated with GM1 ganglioside (25, 50 mg·kg-1·d-1, i.p.) for 2 weeks. We showed that GM1 ganglioside administration substantially improved the MPTP-induced behavioral disturbance and increased the levels of dopamine and its metabolites in the striatal tissues. In the MPP+-treated SH-SY5Y cells and α-synuclein (α-Syn) A53T-overexpressing PC12 (PC12α-Syn A53T) cells, treatment with GM1 ganglioside (40 μM) significantly decreased α-Syn accumulation and alleviated mitochondrial dysfunction and oxidative stress. We further revealed that treatment with GM1 ganglioside promoted autophagy, evidenced by the autophagosomes that appeared in the substantia nigra of PD mice as well as the changes of autophagy-related proteins (LC3-II and p62) in the MPP+-treated SH-SY5Y cells. Cotreatment with the autophagy inhibitor 3-MA or bafilomycin A1 abrogated the in vivo and in vitro neuroprotective effects of GM1 ganglioside. Using GM1 ganglioside labeled with FITC fluorescent, we observed apparent colocalization of GM1-FITC and α-Syn as well as GM1-FITC and LC3 in PC12α-Syn A53T cells. GM1 ganglioside significantly increased the phosphorylation of autophagy regulatory proteins ATG13 and ULK1 in doxycycline-treated PC12α-Syn A53T cells and the MPP+-treated SH-SY5Y cells, which was inhibited by 3-MA. Taken together, this study demonstrates that the anti-PD role of GM1 ganglioside resulted from activation of autophagy-dependent α-Syn clearance.
Collapse
Affiliation(s)
- Yu-Lin Guo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dan-Hua Lu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Xiao Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhao Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei Bi
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hai-Zhi Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Integrated Chinese and Western Medicine Department, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
37
|
Ali M, Saleem U, Anwar F, Imran M, Nadeem H, Ahmad B, Ali T, Ismail T. Screening of Synthetic Isoxazolone Derivative Role in Alzheimer's Disease: Computational and Pharmacological Approach. Neurochem Res 2021; 46:905-920. [PMID: 33486698 DOI: 10.1007/s11064-021-03229-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is age-dependent neurological disorder with progressive loss of cognition and memory. This multifactorial disease is characterized by intracellular neurofibrillary tangles, beta amyloid plaques, neuroinflammation, and increased oxidative stress. The increased cellular manifestations of these markers play a critical role in neurodegeneration and pathogenesis of AD. Therefore, reducing neurodegeneration by decreasing one or more of these markers may provide a potential therapeutic roadmap for the treatment of AD. AD causes a devastating loss of cognition with no conclusive and effective treatment. Many synthetic compound containing isoxazolone nucleus have been reported as neuroprotective agents. The aim of this study was to explore the anti-Alzheimer's potential of a newly synthesized 3,4,5-trimethoxy isoxazolone derivative (TMI) that attenuated the beta amyloid (Aβ1-42) and tau protein levels in streptozotocin (STZ) induced Alzheimer's disease mouse model. Molecular analysis revealed increased beta amyloid (Aβ1-42) protein levels, increased tau protein levels, increased cellular oxidative stress and reduced antioxidant enzymes in STZ exposed mice brains. Furthermore, ELISA and PCR were used to validate the expression of Aβ1-42. Pre-treatment with TMI significantly improved the memory and cognitive behavior along with ameliorated levels of Aβ1-42 proteins. TMI treated mice further showed marked increase in GSH, CAT, SOD levels while decreased levels of acetylcholinesterase inhibitors (AChEI's) and MDA intermediate. The multidimensional nature of isoxazolone derivatives and its versatile affinity towards various targets highpoint its multistep targeting nature. These results indicated the neuroprotective potential of TMI which may be considered for the treatment of neurodegenerative disease specifically in AD.
Collapse
Affiliation(s)
- Meissam Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan.
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Tahir Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University, Abbottabad, 22060, Pakistan
| |
Collapse
|
38
|
Salehi B, Prakash Mishra A, Nigam M, Karazhan N, Shukla I, Kiełtyka-Dadasiewicz A, Sawicka B, Głowacka A, Abu-Darwish MS, Hussein Tarawneh A, Gadetskaya AV, Cabral C, Salgueiro L, Victoriano M, Martorell M, Docea AO, Abdolshahi A, Calina D, Sharifi-Rad J. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother Res 2020; 35:1187-1217. [PMID: 33025667 DOI: 10.1002/ptr.6884] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Ficus genus is typically tropical plants and is among the earliest fruit trees cultivated by humans. Ficus carica L. is the common fig, Ficus benjamina L. is the weeping fig, and Ficus pumila L. is the creeping fig. These species are commonly used in traditional medicine for a wide range of diseases and contain rich secondary metabolites that have shown diverse applications. This comprehensive review describes for Ficus genus the phytochemical compounds, traditional uses and contemporary pharmacological activities such as antioxidant, cytotoxic, antimicrobial, anti-inflammatory, antidiabetic, antiulcer, and anticonvulsant. An extended survey of the current literature (Science Direct, Scopus, PubMed) has been carried out as part of the current work. The trends in the phytochemistry, pharmacological mechanisms and activities of Ficus genus are overviewed in this manuscript: antimicrobial, antidiabetic, anti-inflammatory and analgesic activity, antiseizure and anti-Parkinson's diseases, cytotoxic and antioxidant. Health-promoting effects, recent human clinical studies, safety and adverse effects of Ficus plants also are covered. The medical potential and long-term pharmacotherapeutic use of the genus Ficus along with no serious reported adverse events, suggests that it can be considered as being safe.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Garhwal, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Garhwal, India
| | - Natallia Karazhan
- Department of Pharmacognosy, Pharmaceutical Faculty of the EE VSMU, Vitebsk, Belarus
| | - Ila Shukla
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anna Kiełtyka-Dadasiewicz
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Barbara Sawicka
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Aleksandra Głowacka
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Mohammad Sanad Abu-Darwish
- Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan.,Departments of Basic and Applied Sciences, Al-Balqa Applied University, Al-Salt, Jordan
| | - Amer Hussein Tarawneh
- Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila, Jordan
| | - Anastassiya V Gadetskaya
- School of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,Chemical Process Engineering and Forest Products Research Centre and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anna Abdolshahi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
39
|
Saleem U, Chauhdary Z, Raza Z, Shah S, Rahman MU, Zaib P, Ahmad B. Anti-Parkinson's Activity of Tribulus terrestris via Modulation of AChE, α-Synuclein, TNF-α, and IL-1β. ACS OMEGA 2020; 5:25216-25227. [PMID: 33043200 PMCID: PMC7542845 DOI: 10.1021/acsomega.0c03375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/09/2020] [Indexed: 05/23/2023]
Abstract
Tribulus terrestris (T.T.) is a rich source of flavonoids and saponins, which have been reported to have neuroprotective and antioxidant potential. The current study was planned to investigate the anti-Parkinson's activity of T. terrestris methanol extract (TTME). It was hypothesized that TTME possessed antioxidant potential and can ameliorate Parkinson's disease (PD) via modulation of α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1β. To test this hypothesis, in silico and in vivo studies were performed. The PD model in rats was prepared by giving haloperidol, 1 mg/kg, i.p. Rats were divided into six groups: control, disease control, standard, and treatment groups receiving TTME orally at 100, 300, and 1000 mg/kg dose levels for 21 days. Behavioral observations and biochemical analyses were done. The TTME modulatory effect on mRNA expression of α-synuclein, AChE, TNF-α, and interleukins in the brain homogenate was estimated by RT-PCR. Compounds detected in HPLC analysis disrupted the catalytic triad of AChE in in silico studies. Behavioral observations showed significant (p < 0.05) improvement in a reversal of catatonia, muscular strength, locomotor functions, stride length, and exploration in a dose-dependent manner (1000 >300 >100 mg/kg) of PD rats. Endogenous antioxidant enzyme levels CAT, SOD, GSH, and GPx were significantly restored at a high dose (p < 0.05) with a notable (p < 0.05) decrease in the MDA level in TTME-treated groups. TTME at a high dose significantly (p < 0.05) decreased the level of acetylcholinesterase. RT-PCR results are showing down-regulation in the mRNA expression levels of IL-1β, α -synuclein, TNF-α, and AChE in TTME-treated groups compared to the disease control group, indicating neuroprotection. It is concluded that TTME has potential to ameliorate the symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Zohaib Raza
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Shahid Shah
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Mahmood-ur Rahman
- Department
of Bioinformatics and Biotechnology, Government
College University, Faisalabad 38000, Pakistan
| | - Parwasha Zaib
- Department
of Bioinformatics and Biotechnology, Government
College University, Faisalabad 38000, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical
Sciences, Riphah International University, Lahore, 54000 Pakistan
| |
Collapse
|
40
|
Kabra A, Baghel US, Hano C, Martins N, Khalid M, Sharma R. Neuroprotective potential of Myrica esulenta in Haloperidol induced Parkinson's disease. J Ayurveda Integr Med 2020; 11:448-454. [PMID: 32912644 PMCID: PMC7772500 DOI: 10.1016/j.jaim.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myrica esculenta is a notable therapeutic plant widely utilized in Indian system of medicine. Ayurvedic literature reported fruit and bark of this plant is used in gulma, jvara, arsa, grahani, pandu roga, hrillasa, mukha roga, kasa, svasa, agnimandhya, aruchi, meha, and kantharoga. OBJECTIVE The present study aimed to investigate the neuroprotective potential of "Himalayan Bayberry" (Myrica esculenta Buch.-Ham. ex D. Don) leaves methanol extract in Parkinson's disease induced by haloperidol. MATERIALS AND METHODS The present investigation was completed in wistar rats, in which Parkinson's disease (PD) was induced with haloperidol 1 mg/kg, intraperitoneally. The rats were randomly divided into six gatherings and the test animals received the methanolic extract of M. esculenta (MEME) at a dose of 50, 100 and 200 mg/kg, orally for one week. Various behavioural, biochemical and histopathological parameters were estimated in haloperidol exposed rats. RESULTS MEME demonstrated significant and dose-dependent increment in behavioural activity and improved muscle coordination. The significant diminution in malonaldehyde level while improved the level of antioxidant enzymes like catalase, superoxide dismutase and reduced glutathione in extract treated group were observed as compared to the control group. Histopathological changes revealed MEME significantly reduced haloperidol-induced damage in the substantia nigra and there was very little neuronal atrophy. CONCLUSION The outcomes showed the defensive role of M. esculenta against PD. The mechanism of protection may be due to an escalation of cellular antioxidants.
Collapse
Affiliation(s)
- Atul Kabra
- IKG Punjab Technical University, Kapurthala, Punjab, India; School of Pharmacy, Raffles University, Neemrana, 301705, Alwar, Rajasthan, India.
| | - Uttam Singh Baghel
- Department of Pharmacy, University of Kota, Kota, 325003, Rajasthan, India
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, 45067 CEDEX 2, Orléans, France; Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, 45067 CEDEX 2, Orléans, France
| | - Natalia Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal; Institute for Research and Innovation in Heath (i3S), University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
41
|
Hira S, Saleem U, Anwar F, Raza Z, Rehman AU, Ahmad B. In Silico Study and Pharmacological Evaluation of Eplerinone as an Anti-Alzheimer's Drug in STZ-Induced Alzheimer's Disease Model. ACS OMEGA 2020; 5:13973-13983. [PMID: 32566864 PMCID: PMC7301577 DOI: 10.1021/acsomega.0c01381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 05/21/2023]
Abstract
UNLABELLED Alzheimer's disease (AD) is the neurodegenerative disorder characterized by impairment of higher intellectual dysfunctions associated with changes in the cognitive, behavioral, and social activities. AIM OF THE STUDY The current study was designed to evaluate the potential of aldosterone antagonist in the treatment of AD. METHODOLOGY The study was conducted on albino mice of either sex (n = 60). Mice were subcategorized into six groups, each group having 10 mice. Group I-normal control (CMC 1 mL/kg), group II-diseased [streptozotocin (STZ), 3 mg/kg, intracerebroventricular (i.c.v.)], group III-standard (piracetam, 200 mg/kg, i.p.), and groups IV-VI designated as the treatment group (eplerinone at dose levels of 4, 8, and 16 mg/kg, orally), respectively. The study was carried out for 14 consecutive days. STZ was administered through the i.c.v. route on first and third days of the study for memory impairment. The molecular docking was performed to investigate the chemical behavior of compounds to inhibit the AChE. Anti-Alzheimer's effect was assessed by using the behavioral paradigms such as passive avoidance, elevated plus maze, Morris water maze, open field, and balance beam. Various endogenous antioxidants such as SOD, GSH, nitrite, MDA, CAT, and AChE were identified in brain tissues of treated mice to assess the oxidative stress index. Biochemical markers for AD such as norepinephrine, dopamine, and serotonin, Aβ 1-40, Aβ 1-42, NF-κB, and tumor necrosis factor alpha were analyzed in brain tissues of mice. Expression of beta amyloid was observed by PCR. RESULTS The in silico study indicated the distinct mechanism of eplerinone to inhibit the AChE. The outcomes of the in vivo study manifested that eplerinone at the highest dose was found to be more effective in the treatment of AD. CONCLUSION It may be concluded from the research work that eplerinone can be effective for cognitive improvement which proposes its therapeutic effect in many neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Sundas Hira
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Uzma Saleem
- Faculty
of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan
| | - Fareeha Anwar
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Zohaib Raza
- Faculty
of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan
| | - Atta Ur Rehman
- Department
of Pharmacy, Faculty of Natural Sciences, Forman Christian College (a Chartered University), Ferozpur Road, Lahore 54600, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
42
|
Saeed M, Saleem U, Anwar F, Ahmad B, Anwar A. Inhibition of Valproic Acid-Induced Prenatal Developmental Abnormalities with Antioxidants in Rats. ACS OMEGA 2020; 5:4953-4961. [PMID: 32201781 PMCID: PMC7081441 DOI: 10.1021/acsomega.9b03792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 05/10/2023]
Abstract
Valproic acid (VP) is a very effective therapy for the management of generalized epilepsy. However, its use during pregnancy leads to increased risk of teratogenesis and cognitive malfunctioning in postnatal growing children. Antioxidants are used commercially as a palliative therapy. This study compares the different antioxidants effects on VP-induced teratogenicity. Pregnant female rats (n = 80) were divided into eight groups (n = 10) as follows: Group I, control group; Group II, disease group valproic acid (500 mg/kg); Groups III and IV, treated with 2000 and 8000 mg/kg vitamin C, respectively; Groups V and VI, treated with selenium 100 and 200 μg/kg dose, respectively; and Groups VII and VIII, administered grape seed extract 300 and 600 mg/kg, respectively. Groups III-VIII received valproic acid (500 mg/kg) along with their respective treatments. All treatments were given via an oral route. The fetuses were double stained, and levels of superoxide dismutase (SOD), catalase (CAT), nitrite, glutathione (GSH), and malondialdehyde (MDA) were estimated. Resorption rate was significantly reduced in Vit. C treated groups at both dose levels. Maternal death rate was decreased remarkably in all treatment groups. Vit. C at a high dose (8000 mg/kg) and grape seed at a high dose (600 mg/kg) significantly reduced the incidence of delayed cervical ossification. The values of MDA were significantly reduced in all groups except the Vit. C group (2000 mg/kg). However, no significant elevation was observed in the values of SOD, CAT, and GSH. The current study concluded that vitamin C at a high dose (8000 mg/kg) and grape seed extract at a high dose (600 mg/kg) had partially protected the fetuses exposed to VP.
Collapse
Affiliation(s)
- Mamoona Saeed
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Uzma Saleem
- Faculty
of Pharmaceutical Sciences, GC University
Faisalabad, Faisalabad 38000, Pakistan
- E-mail: . Phone: +92-333-4904928 (U.S.)
| | - Fareeha Anwar
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
- E-mail: . Phone: +92-333-8883251 (F.A.)
| | - Bashir Ahmad
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Asifa Anwar
- Department
of Pharmacy, IUB, Bahawalpur 63210, Pakistan
| |
Collapse
|
43
|
Zainab R, Akram M, Daniyal M, Riaz M. Awareness and Current Therapeutics of Asthma. Dose Response 2019; 17:1559325819870900. [PMID: 31523203 PMCID: PMC6728691 DOI: 10.1177/1559325819870900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 01/21/2023] Open
Abstract
Introduction: Asthma is a serious allergic disorder of the respiratory system. It affects
about 300 million people worldwide. This has a great burden on medical
treatment. Several medicines are available, but they have many serious side
effects. Therefore, there is a need to search for a new therapeutic agent
with no or minimal side effects while most economical for patients. In folk
medicine, antiasthmatics herbal medicine has been used and showed potential
therapeutic antiasthmatic efficacy due to the presence of potential
bioactive compounds. Methods: Different databases were searched (ie, Embase, PubMed, CBM, AMED, and
CINAHL). We have reviewed the published data of the last 20 years. We used
MeSH terms “asthma” herbal treatment of asthma, allopathic treatment of
asthma, and treatment strategies for asthma. The traditional medicine was
compared with modern medicine and the same pharmacotherapies alone or with
placebo. The methodology was evaluated by using the GRADE summary of Finding
tables and Cochrane Risk of Bias Tool. Results: There have been some clear-cut indications toward the recognition of further
molecular and cellular mechanisms of asthma. Most of them recommend a
further target for treatment. The novel procedures, biologics, and
pharmaceuticals are evaluated. Both allopathic and herbal treatments of
asthma are effective. Due to none or lesser side effects, herbal medicines
are safer than conventional medicine. Conclusion: The preliminary documentation of the plants discussed in the review show the
presence of several secondary metabolites that are responsible for the
management of asthma and its relevant complications. Further research
studies are needed to identify the bioactive compounds from these plants
that have potential efficacy to cure asthma, and clinically based studies
are needed to search for a complete cure for this disease.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
44
|
Mir NT, Saleem U, Anwar F, Ahmad B, Ullah I, Hira S, Ismail T, Ali T, Ayaz M. Lawsonia Inermis Markedly Improves Cognitive Functions in Animal Models and Modulate Oxidative Stress Markers in the Brain. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E192. [PMID: 31121979 PMCID: PMC6571555 DOI: 10.3390/medicina55050192] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023]
Abstract
Background and Objective: Medicinal plants represent an important source of alternative medicine for the management of various diseases. The present study was undertaken to assess the potential of Lawsonia inermis ethanol (Li.Et) and chloroform (Li.Chf) extracts as memory-enhancing agents in experimental animals. Materials and Methods: Li.Et and Li.Chf were phytochemically characterized via gas chromatography-mass spectroscopy (GC-MS). Samples were tested for nootropic potentials at doses of 25, 50, 100, 200 mg/kg (per oral in experimental animals (p.o.)). Swiss albino mice of either sex (n = 210) were divided into 21 × 10 groups for each animal model. Memory-enhancing potentials of the samples were assessed using two methods including "without inducing amnesia" and "induction of amnesia" by administration of diazepam (1 mg/kg, intraperitoneally. Piracetam at 400 mg/kg (i.p.) was used as positive control. Cognitive behavioral models including elevated plus maze (EPM) and the passive shock avoidance (PSA) paradigm were used. Biochemical markers of oxidative stress such as glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) levels were analyzed in the brain tissue of treated mice. Results: In 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals scavenging assay, Li.Et and Li.Chf exhibited 70.98 ± 1.56 and 66.99 ± 1.76% inhibitions respectively at 1.28 mg/mL concentration. GCMS results revealed the presence of important phytochemicals. Both samples (Li.Et and Li.Chf) at 25 mg/kg (p.o.) dose significantly (p < 0.05) improved learning and memory as indicated by decline in transfer latency and increase in step down latency in EPM and PSA models respectively. Li.Et and Li.Chf at 25 mg/kg (p.o.) showed considerable increase in GSH (2.75 ± 0.018 ***), SOD (2.61 ± 0.059 ***) and CAT (2.71 ± 0.049 ***) levels as compared to positive and negative control groups. Conclusions: This study provides the preliminary clue that L. inermis may be a potential source of memory-enhancing and anti-oxidant compounds and thus warrant further studies.
Collapse
Affiliation(s)
- Numra Tariq Mir
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, College of Pharmacy, Government College University, Faisalabad 38000, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Izhar Ullah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot 12420, Pakistan.
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Tariq Ismail
- Department of Pharmacy, Commission on Science and Technology for Sustainable Development in the South (COMSAT), Institute of Information Technology, Abbottabad 22060, Pakistan.
| | - Tahir Ali
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| |
Collapse
|
45
|
Abstract
OBJECTIVE The objective of this paper was to link the phytochemical and metabolic research treating quinolinic acid induced oxidative stress in neurodegenerative disorders. METHODS Quinolinic acid, a metabolite of the kynurenine pathway of tryptophan catabolism, plays a role in the oxidative stress associated with many neurological disorders and is used to simulate disorders such as Parkinson's disease. RESULTS In these models, phytochemicals have been shown to reduce striatal lesion size, reduce inflammation and prevent lipid peroxidation caused by quinolinic acid. CONCLUSION These results suggest that phenolic compounds, a class of phytochemicals, including flavonoids and diarylheptanoids, should be further studied to develop new treatments for oxidative stress related neurological disorders.
Collapse
Affiliation(s)
- K. Parasram
- Department of Biology, University of Windsor, Windsor, Canada
| |
Collapse
|
46
|
Hira S, Saleem U, Anwar F, Ahmad B. Antioxidants Attenuate Isolation- and L-DOPA-Induced Aggression in Mice. Front Pharmacol 2018; 8:945. [PMID: 29379435 PMCID: PMC5775506 DOI: 10.3389/fphar.2017.00945] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Aggression is a major hallmark worldwide attributing negative traits in personality. Wide variety of antioxidants is used for the treatment of many ailments. The present study was conducted to evaluate the role of antioxidants such as ascorbic acid (15.42 and 30.84 mg/kg), beta carotene (1.02 and 2.05 mg/kg), vitamin E (2.5 and 5.0 mg/kg), and N-acetyl cysteine (102.85 and 205.70 mg/kg) in the treatment of aggression. Two aggression models (isolation induced aggression model and L-DOPA induced aggression model) were used in the study. Male albino mice (n = 330) were used in the study which were further subdivided into 11 groups (Group I-control, group II-diseased, group III-standard group, group IV–V treated with ascorbic, group VI–VII treated with beta carotene, group VIII–IX treated with vitamin E, group X–XI treated with N-acetyl cysteine for 14 consecutive days). Different biochemical markers (glutathione, superoxide dismutase, and catalase) were determined to evaluate the antioxidant potential in oxidative stress. High dose of vitamin E (5.0 mg/kg) was more effective to reduce the aggression in isolated animals while all other antioxidants produced dose-dependent anti-aggressive effect except N-acetyl cysteine which had marked anti-aggressive effect at low dose (102.75 mg/kg). Low doses of vitamin E (2.5 mg/kg) and N-acetyl cysteine (102.75 mg/kg) and high dose of beta carotene (2.05 mg/kg) were effective to prevent all aggression parameters in acute anti-aggressive activity against L-DOPA induced aggression. However, all test antioxidants were equally effective in chronic anti-aggressive studies against L-DOPA induced aggression. It may be concluded that selected antioxidants can reverse the aggression which is a key symptom of many neurological disorder.
Collapse
Affiliation(s)
- Sundas Hira
- Department of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Fareeha Anwar
- Department of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Bashir Ahmad
- Department of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| |
Collapse
|
47
|
Li X, Zhang Y, Wang Y, Xu J, Xin P, Meng Y, Wang Q, Kuang H. The Mechanisms of Traditional Chinese Medicine Underlying the Prevention and Treatment of Parkinson's Disease. Front Pharmacol 2017; 8:634. [PMID: 28970800 PMCID: PMC5609571 DOI: 10.3389/fphar.2017.00634] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD), characterized with bradykinesia, static tremor, rigidity and disturbances in balance, is the second most common neurodegenerative disorder. Along with the largely aging population in the world, the incidence is increasing year by year, which imposes the negative impacts on patients, their families and the whole society. Traditional Chinese medicine (TCM) has a positive prospect for the prevention and cure of PD due to its advantages of less side effects and multi-target effects. At present, the pathogenesis of PD is not yet fully discovered. This paper elaborates the mechanisms of TCM underlying the prevention and treatment of PD with regards to the inhibition of oxidative stress, the regulation of mitochondrial dysfunction, the reduction of toxic excitatory amino acids (EAA), the inhibition of neuroinflammation, the inhibition of neuronal apoptosis, and the inhibition of abnormal protein aggregation.
Collapse
Affiliation(s)
- Xiaoliang Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China.,Science of Chinese Materia Medica, Jiamusi College, Heilongjiang University of Chinese MedicineJiamusi, China
| | - YaNan Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Yu Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Jing Xu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Ping Xin
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - YongHai Meng
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Qiuhong Wang
- Science of Processing Chinese Materia Medica, College of Pharmacy, Guangdong Pharmaceutical UniversityGuangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| |
Collapse
|