1
|
Zheng D, Deng Y, Deng L, He Z, Sun X, Gong Y, Shi B, Lu D, Yu C. CDCA7 enhances STAT3 transcriptional activity to regulate aerobic glycolysis and promote pancreatic cancer progression and gemcitabine resistance. Cell Death Dis 2025; 16:68. [PMID: 39905019 PMCID: PMC11794584 DOI: 10.1038/s41419-025-07399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Cell division cycle associated 7 (CDCA7) plays a role in various malignancies, especially pancreatic cancer (PC). However, its expression pattern and functional significance in PC require further research. Therefore, this study aimed to investigate CDCA7 expression levels and biological functions in PC using in vitro and in vivo experiments. Western blotting, immunohistochemistry, and real-time polymerase chain reaction were performed to detect CDCA7 expression in PC cells and tissues. Additionally, the biological functions of CDCA7 were assessed using cell proliferation, wound healing, and Transwell assays. CDCA7 overexpression promoted PC cell proliferation, migration, and invasion, and increased resistance to the chemotherapy drug gemcitabine, possibly through enhanced aerobic glycolysis. Additionally, immunoprecipitation assay showed that CDCA7 interacted with STAT3 protein and affected the transcriptional regulation of hexokinase 2. Conclusively, targeting CDCA7 might be a promising therapeutic strategy to increase gemcitabine sensitivity by inhibiting glycolysis in PC cells.
Collapse
Affiliation(s)
- Dijie Zheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| | - Yazhu Deng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
- Department of Vascular Surgery, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
| | - Lu Deng
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Xinghao Sun
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Yanyu Gong
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Binbin Shi
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Deqin Lu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| | - Chao Yu
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China.
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China.
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
2
|
Park J, Kim DY, Gee HY, Yu HC, Yang JD, Hwang S, Choi Y, Lee JG, Rhu J, Choi D, You YK, Ryu JH, Nah YW, Kim BW, Kim DS, Cho JY, Group TKOTR(KOTRYS. Genome-Wide Association Study to Identify Genetic Factors Linked to HBV Reactivation Following Liver Transplantation in HBV-Infected Patients. Int J Mol Sci 2024; 26:259. [PMID: 39796114 PMCID: PMC11719695 DOI: 10.3390/ijms26010259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
This study utilized a genome-wide association study (GWAS) to investigate the genetic variations linked to the risk of hepatitis B virus (HBV) reactivation in patients who have undergone liver transplantation (LT), aiming to enhance understanding and improve clinical outcomes. Genotyping performed on a selected patients from the Korean Organ Transplantation Registry (KOTRY) data using high-throughput platforms with the Axiom Korea Biobank array 1.1. The discovery cohort included 21 patients who experienced HBV reactivation (cases) and 888 patients without HBV reactivation (controls) following LT. The replication cohort consisted of 5 patients with HBV reactivation (cases) and 312 patients without HBV reactivation (controls) after LT. Additive logistic regression analysis was conducted using PLINK software ver 1.9, with adjustments for age and gender. The GWAS findings from the discovery cohort were validated using the replication cohort. The GWAS identified several single-nucleotide polymorphisms (SNPs) in the RGL1, CDCA7L, and AQP9 genes that were significantly linked to HBV reactivation after LT, with genome-wide significance thresholds set at p < 10-7. Down-regulation of RGL1 cDNAs was observed in primary duck hepatocytes infected with duck HBV. Overexpression of CDCA7L was found to promote hepatocellular carcinoma cell proliferation and colony formation, whereas knocking down CDCA7L inhibited these processes. Additionally, the absence of AQP9 triggered immune and inflammatory responses, leading to mild and scattered liver cell pyroptosis, accompanied by compensatory liver cell proliferation. This study provides critical insights into the genetic factors influencing HBV reactivation after LT, identifying significant associations with SNPs in RGL1, CDCA7L, and AQP9. These findings hold promise for developing predictive biomarkers and personalized management strategies to improve outcomes for HBV-infected LT recipients.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University College of Medicine and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Dong Yun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Chul Yu
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Surgery, Jeonbuk National University College of Medicine and Hospital, Jeonju 54907, Republic of Korea
| | - Jae Do Yang
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Surgery, Jeonbuk National University College of Medicine and Hospital, Jeonju 54907, Republic of Korea
| | - Shin Hwang
- Department of Surgery, Asan Medical Center, College of Medicine University of Ulsan, Seoul 05505, Republic of Korea;
| | - YoungRok Choi
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Jae Geun Lee
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jinsoo Rhu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Donglak Choi
- Department of Surgery, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea;
| | - Young Kyoung You
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Je Ho Ryu
- Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Yang Won Nah
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea;
| | - Bong-Wan Kim
- Department of Hepato-Biliary-Pancreatic Surgery, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Dong-Sik Kim
- Department of Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Jai Young Cho
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea;
| | | |
Collapse
|
3
|
Bakhtiari M, Jordan SC, Mumme HL, Sharma R, Shanmugam M, Bhasin SS, Bhasin M. ARMH1 is a novel marker associated with poor pediatric AML outcomes that affect the fatty acid synthesis and cell cycle pathways. Front Oncol 2024; 14:1445173. [PMID: 39703843 PMCID: PMC11655347 DOI: 10.3389/fonc.2024.1445173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Despite remarkable progress in Pediatric Acute Myeloid Leukemia (pAML) treatments, the relapsed disease remains difficult to treat, making it pertinent to identify novel biomarkers of prognostic/therapeutic significance. Material and methods Bone marrow samples from 21 pAML patients were analyzed using single cell RNA sequencing, functional assays with ARMH1 knockdown and overexpression were performed in leukemia cell lines to evaluate impact on proliferation and migration, and chemotherapy sensitivity. Mitochondrial function was assessed via Seahorse assay, ARMH1 interacting proteins were studied using co-immunoprecipitation. Bulk RNA-seq was performed on ARMH1knockdown and over expressing cell lines to evaluate the pathways and networks impacted by ARMH1. Results Our data shows that ARMH1, a novel cancer-associated gene, is highly expressed in the malignant blast cells of multiple pediatric hematologic malignancies, including AML, T/B-ALL, and T/B-MPAL. Notably, ARMH1 expression is significantly elevated in blast cells of patients who relapsed or have a high-risk cytogenetic profile (MLL) compared to standard-risk (RUNX1, inv (16)). ARMH1 expression is also significantly correlated with the pediatric leukemia stem cell score of 6 genes (LSC6) associated with poor outcomes. Perturbation of ARMH1 (knockdown and overexpression) in leukemia cell lines significantly impacted cell proliferation and migration. The RNA-sequencing analysis on multiple ARMH1 knockdown and overexpressing cell lines established an association with mitochondrial fatty acid synthesis and cell cycle pathways.The investigation of the mitochondrial matrix shows that pharmacological inhibition of a key enzyme in fatty acid synthesis regulation, CPT1A, resulted in ARMH1 downregulation. ARMH1 knockdown also led to a significant reduction in CPT1A and ATP production as well as Oxygen Consumption Rate. Our data indicates that downregulating ARMH1 impacts cell proliferation by reducing key cell cycle regulators such as CDCA7 and EZH2. Further, we also established that ARMH1 is a key physical interactant of EZH2, associated with multiple cancers. Conclusion Our findings underscore further evaluation of ARMH1 as a potential candidate for targeted therapies and stratification of aggressive pAML to improve outcomes.
Collapse
Affiliation(s)
- Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
| | - Sean C. Jordan
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Hope L. Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Richa Sharma
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Swati S. Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Tian Y, Han W, Fu L, Lv K, Wu S. CDCA7 serves as a novel prognostic marker in human hepatocellular carcinoma. Biotechnol Genet Eng Rev 2024; 40:4696-4712. [PMID: 37248764 DOI: 10.1080/02648725.2023.2216072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
c-Myc oncogene plays an important role in tumorigenesis, cell division cycle associated 7 (CDCA7), recently found that it is a direct target gene of c-Myc, is upregulated in many tumors, but its role in tumor progression is still poorly understood. CDCA7 expression and prognosis were analyzed in hepatocellular carcinoma using TIMER2.0 and Kaplan-Meier databases, while genomic changes were studied using cbioportal. LinkedOmics identified relevant genes and WebGestalt analyzed the associated pathways. Protein interaction networks were explored using the STRING database, and the core PPI network was analyzed with the MCODE plugin of Cytoscape. CDCA7 expression was detected in 30 paired HCC specimens by real-time PCR, and its effect on HCC cell proliferation was determined in vitro. CDCA7 expression was frequently up-regulated in human hepatocellular carcinoma (HCC), and its expression was positively correlated with prognosis. The TIMER2.0 database showed that CDCA7 was differentially expressed in hepatocellular carcinoma, with high expression in tumor tissues and low expression in normal tissues. The Kaplan-Meier database shows that high CDCA7 expression has a worse prognosis. The cBioportal database showed that the genomic change rate of CDCA7 in hepatocellular carcinoma was 2.15%, including mutations, amplifications, and deep deletions. Pathway analysis of related genes showed that CDCA7-related genes were mainly focused on cell division-related pathways. The experimental results also validate our study. CDCA7 could contribute to HCC progression and raise the possibility that CDCA7 is a potential new therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Yuan Tian
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Han
- Emergency Department, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Long Fu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaiji Lv
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shugeng Wu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Shinkai A, Hashimoto H, Shimura C, Fujimoto H, Fukuda K, Horikoshi N, Okano M, Niwa H, Debler E, Kurumizaka H, Shinkai Y. The C-terminal 4CXXC-type zinc finger domain of CDCA7 recognizes hemimethylated DNA and modulates activities of chromatin remodeling enzyme HELLS. Nucleic Acids Res 2024; 52:10194-10219. [PMID: 39142653 PMCID: PMC11417364 DOI: 10.1093/nar/gkae677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
The chromatin-remodeling enzyme helicase lymphoid-specific (HELLS) interacts with cell division cycle-associated 7 (CDCA7) on nucleosomes and is involved in the regulation of DNA methylation in higher organisms. Mutations in these genes cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, which also results in DNA hypomethylation of satellite repeat regions. We investigated the functional domains of human CDCA7 in HELLS using several mutant CDCA7 proteins. The central region is critical for binding to HELLS, activation of ATPase, and nucleosome sliding activities of HELLS-CDCA7. The N-terminal region tends to inhibit ATPase activity. The C-terminal 4CXXC-type zinc finger domain contributes to CpG and hemimethylated CpG DNA preference for DNA-dependent HELLS-CDCA7 ATPase activity. Furthermore, CDCA7 showed a binding preference to DNA containing hemimethylated CpG, and replication-dependent pericentromeric heterochromatin foci formation of CDCA7 with HELLS was observed in mouse embryonic stem cells; however, all these phenotypes were lost in the case of an ICF syndrome mutant of CDCA7 mutated in the zinc finger domain. Thus, CDCA7 most likely plays a role in the recruitment of HELLS, activates its chromatin remodeling function, and efficiently induces DNA methylation, especially at hemimethylated replication sites.
Collapse
Affiliation(s)
- Akeo Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
| | - Hideharu Hashimoto
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
| | - Hiroaki Fujimoto
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
- Division of Life Science, Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura Ward, Saitama City, Saitama 338-8570, Japan
| | - Kei Fukuda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto 860-0811, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto 860-0811, Japan
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
- Division of Life Science, Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura Ward, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
6
|
Wang Z, Ren M, Liu W, Wu J, Tang P. Role of cell division cycle-associated proteins in regulating cell cycle and promoting tumor progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189147. [PMID: 38955314 DOI: 10.1016/j.bbcan.2024.189147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Minshijing Ren
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Hardikar S, Ren R, Ying Z, Zhou J, Horton JR, Bramble MD, Liu B, Lu Y, Liu B, Coletta LD, Shen J, Dan J, Zhang X, Cheng X, Chen T. The ICF syndrome protein CDCA7 harbors a unique DNA binding domain that recognizes a CpG dyad in the context of a non-B DNA. SCIENCE ADVANCES 2024; 10:eadr0036. [PMID: 39178265 PMCID: PMC11343032 DOI: 10.1126/sciadv.adr0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/18/2024] [Indexed: 08/25/2024]
Abstract
CDCA7, encoding a protein with a carboxyl-terminal cysteine-rich domain (CRD), is mutated in immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, a disease related to hypomethylation of juxtacentromeric satellite DNA. How CDCA7 directs DNA methylation to juxtacentromeric regions is unknown. Here, we show that the CDCA7 CRD adopts a unique zinc-binding structure that recognizes a CpG dyad in a non-B DNA formed by two sequence motifs. CDCA7, but not ICF mutants, preferentially binds the non-B DNA with strand-specific CpG hemi-methylation. The unmethylated sequence motif is highly enriched at centromeres of human chromosomes, whereas the methylated motif is distributed throughout the genome. At S phase, CDCA7, but not ICF mutants, is concentrated in constitutive heterochromatin foci, and the formation of such foci can be inhibited by exogenous hemi-methylated non-B DNA bound by the CRD. Binding of the non-B DNA formed in juxtacentromeric regions during DNA replication provides a mechanism by which CDCA7 controls the specificity of DNA methylation.
Collapse
Affiliation(s)
- Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengzhou Ying
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R. Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew D. Bramble
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luis Della Coletta
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiameng Dan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Hua M, Zhai X, Chen Y, Yin D. METTL3-mediated m6A modification of CDCA7 mRNA promotes COAD progression. Pathol Res Pract 2024; 260:155437. [PMID: 38959625 DOI: 10.1016/j.prp.2024.155437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) represents a frequent malignant tumor of the digestive system with high mortality and poor prognosis. As a prevalent internal mRNA modification in eukaryotic cells, N6-methyladenosine (m6A) has been reported to participate in tumor malignancy. This study is designed to explore the role and mechanism of Methyltransferase-like 3 (METTL3) in the progression of COAD. METHODS In this research, the GEPIA database was applied to analyze the relationship between COAD and cell division cycle-associated protein 7 (CDCA7) or METTL3. Cell viability, cell cycle progression, apoptosis, migration, and invasion were detected by Cell Counting Kit-8 (CCK-8), flow cytometry, transwell assays. The glycolysis level was detected via specific kits. CDCA7, E-cadherin, N-cadherin, and METTL3 protein levels were determined by western blot assay. The biological role of CDCA7 on COAD tumor growth was examined by the xenograft tumor model in vivo. After RBPsuite analysis, the interaction between METTL3 and CDCA7 was verified by methylated RNA immunoprecipitation (MeRIP). RESULTS METTL3 and CDCA7 were highly expressed in COAD tissues and cells. Furthermore, the silencing of CDCA7 hindered COAD cell proliferation, migration, invasion, glycolysis, EMT, and promoted apoptosis in vitro, as well as retarded tumor growth in vivo. At the molecular level, METTL3 might enhance the stability of CDCA7 mRNA via m6A methylation. CONCLUSION METTL3 contributes to the malignant progression of COAD cells partly by regulating the stability of CDCA7 mRNA, providing a promising therapeutic target for COAD treatment.
Collapse
Affiliation(s)
- Mei Hua
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Xiaolu Zhai
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Ying Chen
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Dian Yin
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China.
| |
Collapse
|
9
|
Hardikar S, Ren R, Ying Z, Horton JR, Bramble MD, Liu B, Lu Y, Liu B, Dan J, Zhang X, Cheng X, Chen T. The ICF syndrome protein CDCA7 harbors a unique DNA-binding domain that recognizes a CpG dyad in the context of a non-B DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571946. [PMID: 38168392 PMCID: PMC10760177 DOI: 10.1101/2023.12.15.571946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
CDCA7 , encoding a protein with a C-terminal cysteine-rich domain (CRD), is mutated in immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome, a disease related to hypomethylation of juxtacentromeric satellite DNA. How CDCA7 directs DNA methylation to juxtacentromeric regions is unknown. Here, we show that the CDCA7 CRD adopts a unique zinc-binding structure that recognizes a CpG dyad in a non-B DNA formed by two sequence motifs. CDCA7, but not ICF mutants, preferentially binds the non-B DNA with strand-specific CpG hemi-methylation. The unmethylated sequence motif is highly enriched at centromeres of human chromosomes, whereas the methylated motif is distributed throughout the genome. At S phase, CDCA7, but not ICF mutants, is concentrated in constitutive heterochromatin foci, and the formation of such foci can be inhibited by exogenous hemi-methylated non-B DNA bound by the CRD. Binding of the non-B DNA formed in juxtacentromeric regions during DNA replication provides a mechanism by which CDCA7 controls the specificity of DNA methylation.
Collapse
|
10
|
Chuang TD, Ton N, Rysling S, Quintanilla D, Boos D, Gao J, McSwiggin H, Yan W, Khorram O. The Influence of Race/Ethnicity on the Transcriptomic Landscape of Uterine Fibroids. Int J Mol Sci 2023; 24:13441. [PMID: 37686244 PMCID: PMC10487975 DOI: 10.3390/ijms241713441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The objective of this study was to determine if the aberrant expression of select genes could form the basis for the racial disparity in fibroid characteristics. The next-generation RNA sequencing results were analyzed as fold change [leiomyomas/paired myometrium, also known as differential expression (DF)], comparing specimens from White (n = 7) and Black (n = 12) patients. The analysis indicated that 95 genes were minimally changed in tumors from White (DF ≈ 1) but were significantly altered by more than 1.5-fold (up or down) in Black patients. Twenty-one novel genes were selected for confirmation in 69 paired fibroids by qRT-PCR. Among these 21, coding of transcripts for the differential expression of FRAT2, SOX4, TNFRSF19, ACP7, GRIP1, IRS4, PLEKHG4B, PGR, COL24A1, KRT17, MMP17, SLN, CCDC177, FUT2, MYO5B, MYOG, ZNF703, CDC25A, and CDCA7 was significantly higher, while the expression of DAB2 and CAV2 was significantly lower in tumors from Black or Hispanic patients compared with tumors from White patients. Western blot analysis revealed a greater differential expression of PGR-A and total progesterone (PGR-A and PGR-B) in tumors from Black compared with tumors from White patients. Collectively, we identified a set of genes uniquely expressed in a race/ethnicity-dependent manner, which could form the underlying mechanisms for the racial disparity in fibroids and their associated symptoms.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
SoRelle ED, Reinoso-Vizcaino NM, Dai J, Barry AP, Chan C, Luftig MA. Epstein-Barr virus evades restrictive host chromatin closure by subverting B cell activation and germinal center regulatory loci. Cell Rep 2023; 42:112958. [PMID: 37561629 PMCID: PMC10559315 DOI: 10.1016/j.celrep.2023.112958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Chromatin accessibility fundamentally governs gene expression and biological response programs that can be manipulated by pathogens. Here we capture dynamic chromatin landscapes of individual B cells during Epstein-Barr virus (EBV) infection. EBV+ cells that exhibit arrest via antiviral sensing and proliferation-linked DNA damage experience global accessibility reduction. Proliferative EBV+ cells develop expression-linked architectures and motif accessibility profiles resembling in vivo germinal center (GC) phenotypes. Remarkably, EBV elicits dark zone (DZ), light zone (LZ), and post-GC B cell chromatin features despite BCL6 downregulation. Integration of single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data enables genome-wide cis-regulatory predictions implicating EBV nuclear antigens (EBNAs) in phenotype-specific control of GC B cell activation, survival, and immune evasion. Knockouts validate bioinformatically identified regulators (MEF2C and NFE2L2) of EBV-induced GC phenotypes and EBNA-associated loci that regulate gene expression (CD274/PD-L1). These data and methods can inform high-resolution investigations of EBV-host interactions, B cell fates, and virus-mediated lymphomagenesis.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Wang Y, Zhao Y, Zhang Z, Zhang J, Xu Q, Zhou X, Mao L. High Expression of CDCA7 in the Prognosis of Glioma and Its Relationship with Ferroptosis and Immunity. Genes (Basel) 2023; 14:1406. [PMID: 37510310 PMCID: PMC10380011 DOI: 10.3390/genes14071406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
CDCA7 is a copy number amplification gene that promotes tumorigenesis. However, the clinical relevance and potential mechanisms of CDCA7 in glioma are unclear. CDCA7 expression level data were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, and the enriched genes and related signaling pathways were explored. Data on genes in CDCA7-related signaling pathways and nine marker genes of ferroptosis were retrieved and a protein-protein interaction (PPI) network analysis was performed. The correlation of CDCA7 to ferroptosis and tumor infiltration of 22 kinds of human immune cells and the association between CDCA7 and immune checkpoint molecules were analyzed. CDCA7 was significantly increased in gliomas in comparison to healthy tissues. Gene Ontology (GO) and gene set enrichment analysis (GSEA) revealed the impact of CDCA7 expression on multiple biological processes and signaling pathways. CDCA7 may affect ferroptosis by interacting with genes in the cell cycle pathway and P53 pathway. The increase in CDCA7 was positively correlated with multiple ferroptosis suppressor genes and genes involved in tumor-infiltrating immune cells and immune checkpoint molecules in glioma. CDCA7 can be a new prognostic factor for glioma, which is closely related to ferroptosis, tumor immune cell infiltration, and immune checkpoint.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yu Zhao
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
13
|
Chen J, Jin H, Zhou H, Hei X, Liu K. Research into the characteristic molecules significantly affecting liver cancer immunotherapy. Front Immunol 2023; 14:1029427. [PMID: 36860864 PMCID: PMC9968832 DOI: 10.3389/fimmu.2023.1029427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Background The past decade has witnessed unprecedented scientific breakthroughs, including immunotherapy, which has great potential in clinical applications for liver cancer. Methods Public data were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases and analyzed with R software. Results The LASSO and SVM-RFE machine learning algorithms identified 16 differentially expressed genes (DEGs) related to immunotherapy, namely, GNG8, MYH1, CHRNA3, DPEP1, PRSS35, CKMT1B, CNKSR1, C14orf180, POU3F1, SAG, POU2AF1, IGFBPL1, CDCA7, ZNF492, ZDHHC22, and SFRP2. Moreover, a logistic model (CombinedScore) was established based on these DEGs, showing an excellent prediction performance for liver cancer immunotherapy. Patients with a low CombinedScore might respond better to immunotherapy. Gene Set Enrichment Analysis showed that many metabolism pathways were activated in patients with a high CombinedScore, including butanoate metabolism, bile acid metabolism, fatty acid metabolism, glycine serine and threonine metabolism, and propanoate metabolism. Our comprehensive analysis showed that the CombinedScore was negatively correlated with the levels of most tumor-infiltrating immune cells and the activities of key steps of cancer immunity cycles. Continually, the CombinedScore was negatively associated with the expression of most immune checkpoints and immunotherapy response-related pathways. Moreover, patients with a high and a low CombinedScore exhibited diverse genomic features. Furthermore, we found that CDCA7 was significantly correlated with patient survival. Further analysis showed that CDCA7 was positively associated with M0 macrophages and negatively associated with M2 macrophages, suggesting that CDCA7 could influence the progression of liver cancer cells by affecting macrophage polarization. Next, single-cell analysis showed that CDCA7 was mainly expressed in prolif T cells. Immunohistochemical results confirmed that the staining intensity of CDCA7 was prominently increased in the nucleus in primary liver cancer tissues compared to adjacent non-tumor tissues. Conclusions Our results provide novel insights into the DEGs and factors affecting liver cancer immunotherapy. Meanwhile, CDCA7 was identified as a potential therapeutic target in this patient population.
Collapse
Affiliation(s)
- Junhong Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Hengwei Jin
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Zhou
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xufei Hei
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
15
|
Sato W, Ikeda K, Gotoh N, Inoue S, Horie K. Efp promotes growth of triple-negative breast cancer cells. Biochem Biophys Res Commun 2022; 624:81-88. [DOI: 10.1016/j.bbrc.2022.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
|
16
|
In silico recognition of a prognostic signature in basal-like breast cancer patients. PLoS One 2022; 17:e0264024. [PMID: 35167614 PMCID: PMC8846521 DOI: 10.1371/journal.pone.0264024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/31/2022] [Indexed: 01/22/2023] Open
Abstract
Background Triple-negative breast cancers (TNBCs) display poor prognosis, have a high risk of tumour recurrence, and exhibit high resistance to drug treatments. Based on their gene expression profiles, the majority of TNBCs are classified as basal-like breast cancers. Currently, there are not available widely-accepted prognostic markers to predict outcomes in basal-like subtype, so the selection of new prognostic indicators for this BC phenotype represents an unmet clinical challenge. Results Here, we attempted to address this challenging issue by exploiting a bioinformatics pipeline able to integrate transcriptomic, genomic, epigenomic, and clinical data freely accessible from public repositories. This pipeline starts from the application of the well-established network-based SWIM methodology on the transcriptomic data to unveil important (switch) genes in relation with a complex disease of interest. Then, survival and linear regression analyses are performed to associate the gene expression profiles of the switch genes with both the patients’ clinical outcome and the disease aggressiveness. This allows us to identify a prognostic gene signature that in turn is fed to the last step of the pipeline consisting of an analysis at DNA level, to investigate whether variations in the expression of identified prognostic switch genes could be related to genetic (copy number variations) or epigenetic (DNA methylation differences) alterations in their gene loci, or to the activities of transcription factors binding to their promoter regions. Finally, changes in the protein expression levels corresponding to the so far identified prognostic switch genes are evaluated by immunohistochemical staining results taking advantage of the Human Protein Atlas. Conclusion The application of the proposed pipeline on the dataset of The Cancer Genome Atlas (TCGA)-Breast Invasive Carcinoma (BRCA) patients affected by basal-like subtype led to an in silico recognition of a basal-like specific gene signature composed of 11 potential prognostic biomarkers to be further investigated.
Collapse
|
17
|
Li H, Weng Y, Wang S, Wang F, Wang Y, Kong P, Zhang L, Cheng C, Cui H, Xu E, Wei S, Guo D, Chen F, Bi Y, Meng Y, Cheng X, Cui Y. CDCA7 Facilitates Tumor Progression by Directly Regulating CCNA2 Expression in Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:734655. [PMID: 34737951 PMCID: PMC8561731 DOI: 10.3389/fonc.2021.734655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023] Open
Abstract
Background CDCA7 is a copy number amplified gene identified not only in esophageal squamous cell carcinoma (ESCC) but also in various cancer types. Its clinical relevance and underlying mechanisms in ESCC have remained unknown. Methods Tissue microarray data was used to analyze its expression in 179 ESCC samples. The effects of CDCA7 on proliferation, colony formation, and cell cycle were tested in ESCC cells. Real-time PCR and Western blot were used to detect the expression of its target genes. Correlation of CDCA7 with its target genes in ESCC and various SCC types was analyzed using GSE53625 and TCGA data. The mechanism of CDCA7 was studied by chromatin immunoprecipitation (ChIP), luciferase reporter assays, and rescue assay. Results The overexpression of CDCA7 promoted proliferation, colony formation, and cell cycle in ESCC cells. CDCA7 affected the expression of cyclins in different cell phases. GSE53625 and TCGA data showed CCNA2 expression was positively correlated with CDCA7. The knockdown of CCNA2 reversed the malignant phenotype induced by CDCA7 overexpression. Furthermore, CDCA7 was found to directly bind to CCNA2, thus promoting its expression. Conclusions Our results reveal a novel mechanism of CDCA7 that it may act as an oncogene by directly upregulating CCNA2 to facilitate tumor progression in ESCC.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yongjia Weng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shaojie Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Fang Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yanqiang Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Caixia Cheng
- Department of Pathology, the First Hospital, Shanxi Medical University, Taiyuan, China
| | - Heyang Cui
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Enwei Xu
- Department of Pathology, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Shuqing Wei
- Department of Thoracic Surgery (Ⅰ), Shanxi Province Cancer Hospital, Taiyuan, China
| | - Dinghe Guo
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Fei Chen
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yanghui Bi
- The Science Research Center, Shanxi Bethone Hospital, Taiyuan, China
| | - Yongsheng Meng
- Tumor Biobank, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Xiaolong Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yongping Cui
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
18
|
Cai C, Peng X, Zhang Y. Downregulation of cell division cycle-associated protein 7 (CDCA7) suppresses cell proliferation, arrests cell cycle of ovarian cancer, and restrains angiogenesis by modulating enhancer of zeste homolog 2 (EZH2) expression. Bioengineered 2021; 12:7007-7019. [PMID: 34551671 PMCID: PMC8806772 DOI: 10.1080/21655979.2021.1965441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The purpose of the current study was to investigate the biological function of cell division cycle-associated protein 7 (CDCA7) on ovarian cancer (OC) progression and analyze the molecular mechanism of CDCA7 on OC cellular processes and angiogenesis. CDCA7 expression in OC tissues and adjacent normal tissues was obtained from Gene Expression Profiling Interactive Analysis (GEPIA) and in various cancer cell lines was obtained from Cancer Cell Line Encyclopedia (CCLE). Moreover, CDCA7 expression in adjacent normal tissues and tumor tissues of OC patients as well as in normal ovarian epithelial cells (NOEC) and ovarian cancer cells (OVCAR3, SKOV3, CAOV-3, A2780) was further confirmed via Western blot assay and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, Immunohistochemistry (IHC) was also applied for determination of CDCA7 expression in tissues of OC patients. Then, SKOV3 cells were introduced with shRNA-CDCA7 for functional experiments. GeneMANIA database analysis and coimmunoprecipitation (Co-IP) assay verified the interaction between CDCA7 and enhancer of zeste homolog 2 (EZH2) to probe the potential mechanism. CDCA7 expression was elevated in tumor tissues of OC patients and OC cell lines. CDCA7 silencing restrained the proliferative, migrative and invasive capacities and arrested cell cycle of OC cells. In addition, CDCA7 knockdown induced a weaker in vitro angiogenesis of HUVECs. Mechanistically, CDCA7 interacted with EZH2. Downregulation of CDCA7 arrested angiogenesis by suppressing EZH2 expression. To sum up, the current study revealed the impact and potential mechanism of CDCA7 on OC cellular processes, developing a promising molecular target for OC therapies.
Collapse
Affiliation(s)
- Chunyan Cai
- Department Of Gynaecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xing Peng
- Department Of Gynaecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yumei Zhang
- Department Of Gynaecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
19
|
High expression of CDCA7 predicts poor prognosis for clear cell renal cell carcinoma and explores its associations with immunity. Cancer Cell Int 2021; 21:140. [PMID: 33648519 PMCID: PMC7923626 DOI: 10.1186/s12935-021-01834-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cell division cycle-associated 7 (CDCA7), as a member of the cell division cycle associated family, was reported to be aberrantly expressed in both solid tumors and hematological tumors, suggesting its essential role in promoting tumorigenesis. Hence, we aimed to explore its comprehensive roles of overall survival (OS) in clear cell renal cell carcinoma (ccRCC) and emphasize its associations with immunity. METHODS The RNA sequencing data and corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was adopted to explore CDCA7 associated signaling pathways. Univariate and multivariate Cox regression analyses were carried out to assess independent prognostic factors. Furthermore, roles of CDCA7 in human immunity were also investigated. RESULTS Our results suggested that CDCA7 was overexpressed in ccRCC and its elevated expression was related to shorter OS (P < 0.01). Univariate and multivariate Cox regression analyses identified CDCA7 as an independent prognostic factor (both P < 0.05). The prognostic nomogram integrating CDCA7 expression level and clinicopathologic variables was constructed to predict 1-, 3- and 5-year OS. GSEA indicated that high CDCA7 expression was related to the apoptosis pathway, cell cycle pathway, JAK-STAT pathway, NOD like receptor pathway, P53 pathway, T cell receptor pathway and toll like receptor pathway, etc. Moreover, CDCA7 was significantly related to microsatellite instability (MSI, P < 0.001) and tumor mutational burden (TMB, P < 0.001). As for immunity, CDCA7 was remarkably associated with immune infiltration, tumor microenvironment, immune checkpoint molecules and immune pathways. CONCLUSIONS CDCA7 could serve as an independent prognostic factor for ccRCC and it was closely related to MSI, TMB, and immunity.
Collapse
|
20
|
Baietti MF, Zhao P, Crowther J, Sewduth RN, De Troyer L, Debiec-Rychter M, Sablina AA. Loss of 9p21 Regulatory Hub Promotes Kidney Cancer Progression by Upregulating HOXB13. Mol Cancer Res 2021; 19:979-990. [PMID: 33619226 DOI: 10.1158/1541-7786.mcr-20-0705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/24/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Loss of chromosome 9p21 is observed in one-thirds of clear-cell renal cell carcinoma (ccRCC) and is associated with poorer patient survival. Unexpectedly, 9p21 LOH does not lead to decreased expression of the 9p21 tumor suppressor genes, CDKN2A and CDKN2B, suggesting alternative mechanisms of 9p-mediated tumorigenesis. Concordantly, CRISPR-mediated 9p21 deletion promotes growth of immortalized human embryonic kidney epithelial cells independently of the CDKN2A/B pathway inactivation. The 9p21 locus has a highly accessible chromatin structure, suggesting that 9p21 loss might contribute to kidney cancer progression by dysregulating genes distal to the 9p21 locus. We identified several 9p21 regulatory hubs by assessing which of the 9p21-interacting genes are dysregulated in 9p21-deleted kidney cells and ccRCCs. By focusing on the analysis of the homeobox gene 13 (HOXB13) locus, we found that 9p21 loss relieves the HOXB13 locus, decreasing HOXB13 methylation and promoting its expression. Upregulation of HOXB13 facilitates cell growth and is associated with poorer survival of patients with ccRCC. IMPLICATIONS: The results of our study propose a novel tumor suppressive mechanism on the basis of coordinated expression of physically associated genes, providing a better understanding of the role of chromosomal deletions in cancer.
Collapse
Affiliation(s)
- Maria Francesca Baietti
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peihua Zhao
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonathan Crowther
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Linde De Troyer
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Chhatriya B, Mukherjee M, Ray S, Saha B, Lahiri S, Halder S, Ghosh I, Khamrui S, Das K, Bhattacharjee S, Mohapatra SK, Goswami S. Transcriptome analysis identifies putative multi-gene signature distinguishing benign and malignant pancreatic head mass. J Transl Med 2020; 18:420. [PMID: 33160365 PMCID: PMC7648960 DOI: 10.1186/s12967-020-02597-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Most often, the patients with pancreatic diseases are presented with a mass in pancreatic head region and existing methods of diagnosis fail to confirm whether the head mass is malignant or benign. As subsequent management of the disease hugely depends on the correct diagnosis, we wanted to explore possible biomarkers which could distinguish benign and malignant pancreatic head masses. Methods In order to address that gap, we performed a case–control study to identify genome-wide differentially expressed coding and noncoding genes between pancreatic tissues collected from benign and malignant head masses. These genes were next shortlisted using stringent criteria followed by selection of top malignancy specific genes. They subsequently got validated by quantitative RT-PCR and also in other patient cohorts. Survival analysis and ROC analysis were also performed. Results We identified 55 coding and 13 noncoding genes specific for malignant pancreatic head masses. Further shortlisting and validation, however, resulted in 5 coding genes as part of malignancy specific multi-gene signature, which was validated in three independent patient cohorts of 145 normal and 153 PDAC patients. We also found that overexpression of these genes resulted in survival disadvantage in the patients and ROC analysis identified that combination of 5 coding genes had the AUROC of 0.94, making them potential biomarker. Conclusions Our study identified a multi-gene signature comprising of 5 coding genes (CDCA7, DLGAP5, FOXM1, TPX2 and OSBPL3) to distinguish malignant head masses from benign ones.
Collapse
Affiliation(s)
- Bishnupriya Chhatriya
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Moumita Mukherjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Sukanta Ray
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Barsha Saha
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Somdatta Lahiri
- Department of Surgery, R G Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Sandip Halder
- Department of Surgery, R G Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Indranil Ghosh
- Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sujan Khamrui
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Kshaunish Das
- School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Samsiddhi Bhattacharjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Saroj Kant Mohapatra
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India
| | - Srikanta Goswami
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, 741251, West Bengal, India.
| |
Collapse
|
22
|
Gene Expression Comparison between Sézary Syndrome and Lymphocytic-Variant Hypereosinophilic Syndrome Refines Biomarkers for Sézary Syndrome. Cells 2020; 9:cells9091992. [PMID: 32872487 PMCID: PMC7563155 DOI: 10.3390/cells9091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Sézary syndrome (SS), an aggressive cutaneous T-cell lymphoma (CTCL) with poor prognosis, is characterized by the clinical hallmarks of circulating malignant T cells, erythroderma and lymphadenopathy. However, highly variable clinical skin manifestations and similarities with benign mimickers can lead to significant diagnostic delay and inappropriate therapy that can lead to disease progression and mortality. SS has been the focus of numerous transcriptomic-profiling studies to identify sensitive and specific diagnostic and prognostic biomarkers. Benign inflammatory disease controls (e.g., psoriasis, atopic dermatitis) have served to identify chronic inflammatory phenotypes in gene expression profiles, but provide limited insight into the lymphoproliferative and oncogenic roles of abnormal gene expression in SS. This perspective was recently clarified by a transcriptome meta-analysis comparing SS and lymphocytic-variant hypereosinophilic syndrome, a benign yet often clonal T-cell lymphoproliferation, with clinical features similar to SS. Here we review the rationale for selecting lymphocytic-variant hypereosinophilic syndrome (L-HES) as a disease control for SS, and discuss differentially expressed genes that may distinguish benign from malignant lymphoproliferative phenotypes, including additional context from prior gene expression studies to improve understanding of genes important in SS.
Collapse
|
23
|
Li S, Huang J, Qin M, Zhang J, Liao C. High expression of CDCA7 predicts tumor progression and poor prognosis in human colorectal cancer. Mol Med Rep 2020; 22:57-66. [PMID: 32319649 PMCID: PMC7248471 DOI: 10.3892/mmr.2020.11089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most fatal types of cancer worldwide. This study aimed to determine the predictive and prognostic values of cell division cycle associated protein 7 (CDCA7) in CRC. Firstly, the relationship between CDCA7 and CRC was assessed through bioinformatics analysis. Subsequently, CDCA7 expression levels were detected in various CRC cell lines, as well as 15 fresh human CRC tissues and their paired adjacent normal colorectal tissues using reverse transcription‑quantitative PCR and western blotting. Additionally, immunohistochemical staining was used to determine the levels of CDCA7 in 104 CRC tissues and their paired adjacent normal colorectal tissues. The present study revealed that CDCA7 expression was upregulated in CRC tissues and cell lines. The positive expression rates of CDCA7 in normal and CRC tissues were 26.92 and 75.96%, respectively. The intensities of CDCA7 immunostaining were significantly associated with CRC invasion depth, lymph node metastasis, tumor‑node‑metastasis stage and distant metastasis. However, no significant differences in sex, age, tumor size and CRC differentiation were found between high and low CDCA7 expression groups. Furthermore, patients with low CDCA7 expression exhibited a greater overall survival rate of CRC compared to those with high CDCA7 expression. The findings of this study indicated that CDCA7 may serve a significant role in CRC prognosis and progression, and may be considered a novel biomarker for the prediction of patient survival after colectomy.
Collapse
Affiliation(s)
- Siman Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Jinxiu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Cun Liao
- Department of Colorectal-Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
24
|
Identification of cancer stem cell-related biomarkers in lung adenocarcinoma by stemness index and weighted correlation network analysis. J Cancer Res Clin Oncol 2020; 146:1463-1472. [PMID: 32221746 DOI: 10.1007/s00432-020-03194-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accounting for tumor heterogeneity, cancer stem cells (CSC) are involved in tumor metastasis, relapse, and drug resistance. Genes regulating CSC characteristics in lung adenocarcinoma (LUAD) were explored and validated in this study. METHODS The mRNA stemness index (mRNAsi) of more than 500 LUAD cases from The Cancer Genome Atlas database were calculated using a one-class logistic regression machine learning algorithm based on the mRNA expression of pluripotent stem cells and their differentiated progeny. mRNAsi-related key genes were identified by weighted correlation network analysis. The expression levels and prognostic roles of key genes were analyzed in Oncomine, PrognoScan, and Kaplan-Meier plotter databases, and validated using data from our center. RESULTS The mRNAsi was significantly higher in LUAD compared with normal lung tissues. LUAD patients of advanced stage exhibited a higher mRNAsi and worse overall survival (OS). Eight key genes were identified: heat shock 70 kDa protein 4 (HSPA4), cell division cycle associated 7 (CDCA7), cell division cycle 20 (CDC20), cyclin-dependent kinase 1 (CDK1), CAP-GLY domain containing linker protein 1 (CLIP1), cyclin B1 (CCNB1), H2A histone family, member X (H2AFX), and Bloom syndrome, RecQ helicase-like (BLM). These genes were differentially expressed in various types of malignancies and validated in the LUAD cases. LUAD patients with low expression of CDC20, CDK1, CCNB1, H2AFX, or BLM had a significantly better OS, whereas OS was reduced for patients with low expression of CLIP1. In addition, the expression of CDCA7 did not significantly impact the OS of LUAD patients. The protein-protein interaction networks evaluated by STRING demonstrated strong relationships between these key genes, which were validated in our cases. CONCLUSIONS The mRNAsi was significantly higher in LUAD compared with normal samples. Eight mRNAsi-related key genes were associated with prognosis and the cell cycle, and were strongly correlated with each other and differentially expressed in tumor and normal samples. We provide a new strategy for exploring stemness-related genes in LUAD cases.
Collapse
|
25
|
Gao J, Dai C, Yu X, Yin XB, Zhou F. LncRNA LEF1-AS1 silencing diminishes EZH2 expression to delay hepatocellular carcinoma development by impairing CEBPB-interaction with CDCA7. Cell Cycle 2020; 19:870-883. [PMID: 32178558 DOI: 10.1080/15384101.2020.1731052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is recognized for its high mortality rate worldwide. Based on intensive studies, long non-coding RNA (lncRNA) expression exerts significant effects on tumor suppression. Herein, we investigated the molecular mechanism of lymphoid enhancer-binding factor-1 antisense RNA 1 (LEF1-AS1) in HCC cells. Microarray-based gene expression analysis was adopted to predict and verify the differentially expressed genes in HCC, which predicted cell division cycle-associated 7 (CDCA7) and LEF1-AS1 to be highly expressed in HCC. The expression of LEF1-AS1, CDCA7, CCAAT/enhancer-binding protein beta (CEBPB) and enhancer of zeste homolog 2 (EZH2) was determined by means of reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. LncMap was used to predict the lncRNA-transcription factor-gene interaction in HCC. ChIP, RIP assay and dual luciferase reporter gene assay were employed to verify the relationship between the transcription factor and gene. Silencing of LEF1-AS1 could downregulate CDCA7 expression through CEBPB. Overexpression of LEF1-AS1, EZH2 and CDCA7 promoted proliferation and invasion in HCC cells. LEF1-AS1 promoted CDCA7 expression to further upregulate EZH2. Tumor formation in nude mice was assessed to verify the experimental results. Silencing of LEF1-AS1 inhibited the growth of tumors in vivo. Collectively, silencing LEF1-AS1 inhibited the proliferation and invasion of HCC cells by down-regulating EZH2 through the CEBPB-CDCA7 signaling pathway, which provides scientific evidence for the treatment of HCC.Abbreviations: HCC: Hepatocellular carcinoma; lncRNA: long non-coding RNA; LEF1-AS1: lymphoid enhancer-binding factor-1 antisense RNA 1; EZH2: enhancer of zeste homolog 2; CDCA7: cell division cycle-associated 7; GEO: Gene Expression Omnibus; NC: negative control; oe: overexpressed; RT-qPCR: reverse transcription quantitative polymerase chain reaction; PBS: phosphate buffered saline; HRP: horseradish peroxidase; OD: optical density; RIP: Radioimmunoprecipitation; ChIP: Chromatin immunoprecipitation; WT: wild type.
Collapse
Affiliation(s)
- Jun Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Chao Dai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xiang-Bao Yin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Fan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
26
|
Yao R, Chen X, Wang L, Wang Y, Chi S, Li N, Tian X, Li N, Liu J. Identification of key protein-coding genes in lung adenocarcinomas based on bioinformatic analysis. Transl Cancer Res 2019; 8:2829-2840. [PMID: 35117040 PMCID: PMC8799172 DOI: 10.21037/tcr.2019.10.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/11/2019] [Indexed: 11/06/2022]
Abstract
Background Lung cancer is one of the most common cancers and the primary cause of cancer-related deaths in the world. The 5-year survival of lung cancer patients is lower than 15%. As a common subtype of lung cancer, lung adenocarcinoma still has a high morbidity and mortality, although many strategies have been made, such as surgical operation, chemotherapy, targeted therapy. The use of gene expression microarray has provided a feasible and effective approach for the study on lung cancer. However, the biomarkers and potential therapeutic targets of lung adenocarcinomas are still not completely identified. Our study is aimed to find biomarkers and therapeutic targets of lung adenocarcinomas by identifying the key protein-coding gene in lung adenocarcinomas by bioinformatical approaches. Methods We selected and obtained messenger RNA microarray datasets from Gene Expression Omnibus database to identify differentially expressed genes between lung adenocarcinomas and normal lung tissue. The differentially expressed genes were clarified by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the protein-protein interaction (PPI) network and statistical analyses. Subsequently, quantitative real-time PCR was used to verify the results of bioinformatic analysis. Results We obtained 1,264, 896 and 408 differentially expressed genes from GSE32863, GSE43458 and GSE63459, respectively. The 242 common differentially expressed genes in three datasets were related to cell adhesion molecules, ECM-receptor interaction, leukocyte transendothelial migration according to KEGG analysis. GO analysis showed that these common differentially expressed genes were enriched in tumor-related functions. ASPM, CCNB2, CDC20, CDC45, MELK, TOP2A and UBE2T and KIAA0101 have the strongest protein-protein interaction relationships based on protein-protein interaction networks. Survival analysis showed that these nine genes were closely related to the survival of lung adenocarcinomas. The further qRT-PCR assays indicated that seven key genes (ASPM, CCNB2, CDC20, CDC45, MELK, TOP2A and UBE2T) display differential profile between clinical lung adenocarcinoma specimens and their matched normal tissues. Conclusions ASPM, CCNB2, CDC20, CDC45, MELK, TOP2A and UBE2T may be key protein coding genes in lung adenocarcinoma, and deserve further study to verify their feasibility and effectiveness as biomarkers and therapeutic targets for lung adenocarcinomas.
Collapse
Affiliation(s)
- Ruixue Yao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266000, China
| | - Xiaoming Chen
- The Third Department of Cadre's Ward, Navy 971 Hospital, Qingdao 266071, China
| | - Luyao Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266000, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoli Chi
- The Third Department of Cadre's Ward, Navy 971 Hospital, Qingdao 266071, China
| | - Na Li
- The Department of Nuclear Medicine, Navy 971 Hospital, Qingdao 266071, China
| | - Xuejun Tian
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Nan Li
- The Third Department of Cadre's Ward, Navy 971 Hospital, Qingdao 266071, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266000, China
| |
Collapse
|
27
|
Moerman-Herzog AM, Acheampong DA, Brooks AG, Blair SM, Hsu PC, Wong HK. Transcriptome analysis of Sézary syndrome and lymphocytic-variant hypereosinophilic syndrome T cells reveals common and divergent genes. Oncotarget 2019; 10:5052-5069. [PMID: 31489115 PMCID: PMC6707948 DOI: 10.18632/oncotarget.27120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
Sézary syndrome (SS) is an aggressive cutaneous T cell lymphoma with pruritic skin inflammation and immune dysfunction, driven by neoplastic, clonal memory T cells in both peripheral blood and skin. To gain insight into abnormal gene expression promoting T cell dysfunction, lymphoproliferation and transformation in SS, we first compared functional transcriptomic profiles of both resting and activated CD4+CD45RO+ T cells from SS patients and normal donors to identified differential expressed genes. Next, a meta-analysis was performed to compare our SS data to public microarray data from a novel benign disease control, lymphocytic-variant hypereosinophilic syndrome (L-HES). L-HES is a rare, clonal lymphoproliferation of abnormal memory T cells that produces similar clinical symptoms as SS, including severe pruritus and eosinophilia. Comparison revealed gene sets specific for either SS (370 genes) or L-HES (519 genes), and a subset of 163 genes that were dysregulated in both SS and L-HES T cells compared to normal donor T cells. Genes confirmed by RT-qPCR included elevated expression of PLS3, TWIST1 and TOX only in SS, while IL17RB mRNA was increased only in L-HES. CDCA7 was increased in both diseases. In an L-HES patient who progressed to peripheral T cell lymphoma, the malignant transformation identified increases in the expression of CDCA7, TIGIT, and TOX, which are highly expressed in SS, suggesting that these genes contribute to neoplastic transformation. In summary, we have identified gene expression biomarkers that implicate a common transformative mechanism and others that are unique to differentiate SS from L-HES.
Collapse
Affiliation(s)
- Andrea M Moerman-Herzog
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Daniel A Acheampong
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amanda G Brooks
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Suzan M Blair
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ping-Ching Hsu
- Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Henry K Wong
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
28
|
Wang H, Ye L, Xing Z, Li H, Lv T, Liu H, Zhang F, Song Y. CDCA7 promotes lung adenocarcinoma proliferation via regulating the cell cycle. Pathol Res Pract 2019; 215:152559. [PMID: 31570276 DOI: 10.1016/j.prp.2019.152559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
CDCA7 is overexpressed in several malignant cancers and is predicted by bioinformatics to be a candidate oncogene in lung adenocarcinoma (LUAD). However, the clinical and biological function of CDCA7 in LUAD has never been investigated. In this study, we used quantitative real-time RT-PCR and immunohistochemistry to determine the expression level and clinical significance of CDCA7. As a result, CDCA7 was significantly overexpressed in LUAD compared to adjacent normal tissues. Furthermore, overexpression of CDCA7 was positively associated with more advanced clinical features. Silencing CDCA7 inhibited cell proliferation in LUAD through G1 phase arrest and induction of apoptosis. In conclusion, CDCA7 can be used as a potential therapeutic target for new biomarkers and LUAD.
Collapse
Affiliation(s)
- Hongying Wang
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University. Nanjing 210002, Jiangsu Provence, China
| | - Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medicine University, Nanjing, Jiangsu Provence, China
| | - Ze Xing
- Department of Oncology Medicine, Inner Mongolia Medicine University Affiliated Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hanqing Li
- Department of Hematology, Jinling Hospital, Southern Medical University. Nanjing 210002, Jiangsu Provence, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University. Nanjing 210002, Jiangsu Provence, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University. Nanjing 210002, Jiangsu Provence, China
| | - Fang Zhang
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University. Nanjing 210002, Jiangsu Provence, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University. Nanjing 210002, Jiangsu Provence, China.
| |
Collapse
|
29
|
Long noncoding RNA FGD5-AS1 promotes colorectal cancer cell proliferation, migration, and invasion through upregulating CDCA7 via sponging miR-302e. In Vitro Cell Dev Biol Anim 2019; 55:577-585. [DOI: 10.1007/s11626-019-00376-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
|
30
|
Martín-Cortázar C, Chiodo Y, Jiménez RP, Bernabé M, Cayuela ML, Iglesias T, Campanero MR. CDCA7 finely tunes cytoskeleton dynamics to promote lymphoma migration and invasion. Haematologica 2019; 105:730-740. [PMID: 31221787 PMCID: PMC7049348 DOI: 10.3324/haematol.2018.215459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
Metastases, the major cause of death from cancer, require cells' acquisition of the ability to migrate and involve multiple steps, including local tumor cell invasion and basement membrane penetration. Certain lymphoid tumors are highly metastatic, but the mechanisms of invasion by lymphoma cells are poorly understood. We recently showed that CDCA7, a protein induced by MYC, is overexpressed in lymphoid tumors and that its knockdown decreases lymphoid tumor growth without inhibiting the proliferation of normal cells. Here we show that CDCA7 is critical for invasion and migration of lymphoma cells. Indeed, CDCA7 knockdown in lymphoma cells limited tumor cell invasion in matrigel-coated transwell plates and tumor invasion of neighboring tissues in a mouse xenograft model and in a zebrafish model of cell invasion. CDCA7 silencing markedly inhibited lymphoma cell migration on fibronectin without modifying cell adhesion to this protein. Instead, CDCA7 knockdown markedly disrupted the precise dynamic reorganization of actomyosin and tubulin cytoskeletons required for efficient migration. In particular, CDCA7 silencing impaired tubulin and actomyosin cytoskeleton polarization, increased filamentous actin formation, and induced myosin activation. Of note, inhibitors of actin polymerization, myosin II, or ROCK reestablished the migration capacity of CDCA7-silenced lymphoma cells. Given the critical role of CDCA7 in lymphoma-genesis and invasion, therapies aimed at inhibiting its expression or activity might provide significant control of lymphoma growth, invasion, and metastatic dissemination.
Collapse
Affiliation(s)
- Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid
| | - Raul P Jiménez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid
| | - Manuel Bernabé
- Telomerase, Aging and Cancer Group, Research Unit, Department of Surgery, CIBERehd, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia
| | - María Luisa Cayuela
- Telomerase, Aging and Cancer Group, Research Unit, Department of Surgery, CIBERehd, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid .,Centro de Investigaciones Biomédicas en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
31
|
Ye L, Li F, Song Y, Yu D, Xiong Z, Li Y, Shi T, Yuan Z, Lin C, Wu X, Ren L, Li X, Song L. Overexpression of CDCA7 predicts poor prognosis and induces EZH2-mediated progression of triple-negative breast cancer. Int J Cancer 2018; 143:2602-2613. [PMID: 30151890 DOI: 10.1002/ijc.31766] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with high proliferative and metastatic phenotypes. CDCA7, a new member of the cell division cycle associated family of genes, is involved in embryonic development and dysregulated in various types of human cancer. However, the biological role and molecular mechanism of CDCA7 in TNBC have not been defined. Herein, we found that CDCA7 was preferentially and markedly expressed in TNBC cell lines and tissues. High expression of CDCA7 was associated with metastatic relapse status and predicted poorer disease-free survival in patients with TNBC. We observed that CDCA7 silencing in TNBC cell lines effectively impaired cell proliferation, invasion and migration in vitro. Importantly, depletion of CDCA7 strongly reduced the tumorigenicity and distant colonization capacities of TNBC cells in vivo. Furthermore, CDCA7 increased the expression of EZH2, a marker of aggressive breast cancer that is involved in tumor progression, by enhancing the transcriptional activity of its promoter. This increase in EZH2 expression was essential for the CDCA7-mediated effects on TNBC progression. Finally, our immunohistochemical analysis revealed that the CDCA7/EZH2 axis was clinical relevant. These findings suggest CDCA7 plays a crucial role in TNBC progression by transcriptionally upregulating EZH2 and might be a potential prognostic factor and therapeutic target in TNBC.
Collapse
Affiliation(s)
- Liping Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fengyan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yipeng Song
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Donglin Yu
- Binzhou Medical University, Yantai, China
| | - Zhenchong Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianyi Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongyu Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuyong Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xianqiu Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangliang Ren
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinghua Li
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Inhibition of cIAP1 as a strategy for targeting c-MYC-driven oncogenic activity. Proc Natl Acad Sci U S A 2018; 115:E9317-E9324. [PMID: 30181285 DOI: 10.1073/pnas.1807711115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protooncogene c-MYC, a master transcription factor, is a major driver of human tumorigenesis. Development of pharmacological agents for inhibiting c-MYC as an anticancer therapy has been a longstanding but elusive goal in the cancer field. E3 ubiquitin ligase cIAP1 has been shown to mediate the activation of c-MYC by destabilizing MAD1, a key antagonist of c-MYC. Here we developed a high-throughput assay for cIAP1 ubiquitination and identified D19, a small-molecule inhibitor of E3 ligase activity of cIAP1. We show that D19 binds to the RING domain of cIAP1 and inhibits the E3 ligase activity of cIAP1 by interfering with the dynamics of its interaction with E2. Blocking cIAP1 with D19 antagonizes c-MYC by stabilizing MAD1 protein in cells. Furthermore, we show that D19 and an improved analog (D19-14) promote c-MYC degradation and inhibit the oncogenic function of c-MYC in cells and xenograft animal models. In contrast, we show that activating E3 ubiquitin ligase activity of cIAP1 by Smac mimetics destabilizes MAD1, the antagonist of MYC, and increases the protein levels of c-MYC. Our study provides an interesting example using chemical biological approaches for determining distinct biological consequences from inhibiting vs. activating an E3 ubiquitin ligase and suggests a potential broad therapeutic strategy for targeting c-MYC in cancer treatment by pharmacologically modulating cIAP1 E3 ligase activity.
Collapse
|
33
|
Jiménez-P R, Martín-Cortázar C, Kourani O, Chiodo Y, Cordoba R, Domínguez-Franjo MP, Redondo JM, Iglesias T, Campanero MR. CDCA7 is a critical mediator of lymphomagenesis that selectively regulates anchorage-independent growth. Haematologica 2018; 103:1669-1678. [PMID: 29880607 PMCID: PMC6165795 DOI: 10.3324/haematol.2018.188961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tumor formation involves the acquisition of numerous capacities along the progression from a normal cell into a malignant cell, including limitless proliferation (immortalization) and anchorage-independent growth, a capacity that correlates extremely well with tumorigenesis. Great efforts have been made to uncover genes involved in tumor formation, but most genes identified participate in processes related to cell proliferation. Accordingly, therapies targeting these genes also affect the proliferation of normal cells. To identify potential targets for therapeutic intervention more specific to tumor cells, we looked for genes implicated in the acquisition of anchorage-independent growth and in vivo tumorigenesis capacity. A transcriptomic analysis identified CDCA7 as a candidate gene. Indeed, CDCA7 protein was upregulated in Burkitt's lymphoma cell lines and human tumor biopsy specimens relative to control cell lines and tissues, respectively. CDCA7 levels were also markedly elevated in numerous T and B-lymphoid tumor cell lines. While CDCA7 was not required for anchorage-dependent growth of normal fibroblasts or non-malignant lymphocytes, it was essential but not sufficient for anchorage-independent growth of lymphoid tumor cells and for lymphomagenesis. These data suggest that therapies aimed at inhibiting CDCA7 expression or function might significantly decrease the growth of lymphoid tumors.
Collapse
Affiliation(s)
- Raúl Jiménez-P
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Raul Cordoba
- Department of Hematology, University Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | | | - Juan Miguel Redondo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, (CNIC), Madrid, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain .,CIBERCV, Spain
| |
Collapse
|
34
|
Jenness C, Giunta S, Müller MM, Kimura H, Muir TW, Funabiki H. HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proc Natl Acad Sci U S A 2018; 115:E876-E885. [PMID: 29339483 PMCID: PMC5798369 DOI: 10.1073/pnas.1717509115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in CDCA7, the SNF2 family protein HELLS (LSH), or the DNA methyltransferase DNMT3b cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. While it has been speculated that DNA methylation defects cause this disease, little is known about the molecular function of CDCA7 and its functional relationship to HELLS and DNMT3b. Systematic analysis of how the cell cycle, H3K9 methylation, and the mitotic kinase Aurora B affect proteomic profiles of chromatin in Xenopus egg extracts revealed that HELLS and CDCA7 form a stoichiometric complex on chromatin, in a manner sensitive to Aurora B. Although HELLS alone fails to remodel nucleosomes, we demonstrate that the HELLS-CDCA7 complex possesses nucleosome remodeling activity. Furthermore, CDCA7 is essential for loading HELLS onto chromatin, and CDCA7 harboring patient ICF mutations fails to recruit the complex to chromatin. Together, our study identifies a unique bipartite nucleosome remodeling complex where the functional remodeling activity is split between two proteins and thus delineates the defective pathway in ICF syndrome.
Collapse
Affiliation(s)
- Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Manuel M Müller
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065;
| |
Collapse
|
35
|
Huang YT, Mason JO, Price DJ. Lateral cortical Cdca7 expression levels are regulated by Pax6 and influence the production of intermediate progenitors. BMC Neurosci 2017; 18:47. [PMID: 28583079 PMCID: PMC5460507 DOI: 10.1186/s12868-017-0365-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/27/2017] [Indexed: 11/16/2022] Open
Abstract
Background We studied whether regulation of Cdca7 (Cell division cycle associated 7) expression by transcription factor Pax6 contributes to Pax6’s cellular actions during corticogenesis. The function of Cdca7 in mediating Pax6’s effects during corticogenesis has not been explored. Pax6 is expressed by radial glial progenitors in the ventricular zone of the embryonic cortical neuroepithelium, where it is required for the development of a normal complement of Tbr2-expressing intermediate progenitor cells in the subventricular zone. Pax6’s expression levels are graded across the ventricular zone, with highest levels laterally where Tbr2-expressing progenitors are generated in greatest numbers at early stages of corticogenesis. Methods We used in situ hybridization and immunohistochemistry to analyse patterns of Cdca7 and Pax6 expression in cortical tissue from wild-type and Pax6−/− embryos. In each genotype we compared the graded expression of the two genes quantitatively at several ages. To test whether defects in Cdca7 expression in lateral cortical cells might contribute to the cellular defects in this region caused by Pax6 loss, we electroporated a Cdca7 expression vector into wild-type lateral cortex and examined the effect on the production of Tbr2-expressing cells. Results We found that Cdca7 is co-expressed with Pax6 in cortical progenitors, at levels opposite to those of Pax6. Lowest levels of Cdca7 are found in the radial glial progenitors of lateral cortex, where Pax6 levels are highest. Higher levels of Cdca7 are found in ventral telencephalon, where Pax6 levels are low. Loss of Pax6 causes Cdca7 expression to increase in the lateral cortex. Elevating Cdca7 in normal lateral cortical progenitors to levels close to those normally found in ventral telencephalon reduces their production of Tbr2-expressing cells early in lateral cortical formation. Conclusion Our results suggest that Pax6 normally represses Cdca7 expression in the lateral cortex and that repression of Cdca7 in cells of this region is required for their production of a normal complement of Tbr2-expressing intermediate progenitors.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
36
|
Heng YJ, Lester SC, Tse GM, Factor RE, Allison KH, Collins LC, Chen YY, Jensen KC, Johnson NB, Jeong JC, Punjabi R, Shin SJ, Singh K, Krings G, Eberhard DA, Tan PH, Korski K, Waldman FM, Gutman DA, Sanders M, Reis-Filho JS, Flanagan SR, Gendoo DM, Chen GM, Haibe-Kains B, Ciriello G, Hoadley KA, Perou CM, Beck AH. The molecular basis of breast cancer pathological phenotypes. J Pathol 2016; 241:375-391. [PMID: 27861902 DOI: 10.1002/path.4847] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
The histopathological evaluation of morphological features in breast tumours provides prognostic information to guide therapy. Adjunct molecular analyses provide further diagnostic, prognostic and predictive information. However, there is limited knowledge of the molecular basis of morphological phenotypes in invasive breast cancer. This study integrated genomic, transcriptomic and protein data to provide a comprehensive molecular profiling of morphological features in breast cancer. Fifteen pathologists assessed 850 invasive breast cancer cases from The Cancer Genome Atlas (TCGA). Morphological features were significantly associated with genomic alteration, DNA methylation subtype, PAM50 and microRNA subtypes, proliferation scores, gene expression and/or reverse-phase protein assay subtype. Marked nuclear pleomorphism, necrosis, inflammation and a high mitotic count were associated with the basal-like subtype, and had a similar molecular basis. Omics-based signatures were constructed to predict morphological features. The association of morphology transcriptome signatures with overall survival in oestrogen receptor (ER)-positive and ER-negative breast cancer was first assessed by use of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset; signatures that remained prognostic in the METABRIC multivariate analysis were further evaluated in five additional datasets. The transcriptomic signature of poorly differentiated epithelial tubules was prognostic in ER-positive breast cancer. No signature was prognostic in ER-negative breast cancer. This study provided new insights into the molecular basis of breast cancer morphological phenotypes. The integration of morphological with molecular data has the potential to refine breast cancer classification, predict response to therapy, enhance our understanding of breast cancer biology, and improve clinical management. This work is publicly accessible at www.dx.ai/tcga_breast. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yujing J Heng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Susan C Lester
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Gary Mk Tse
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | - Rachel E Factor
- Department of Pathology, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kimberly H Allison
- Department of Pathology, School of Medicine, Stanford Medical Center, Stanford University, Stanford, CA, USA
| | - Laura C Collins
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yunn-Yi Chen
- Department of Pathology, School of Medicine, University of California, San Francisco, CA, USA
| | - Kristin C Jensen
- Department of Pathology, School of Medicine, Stanford Medical Center, Stanford University, Stanford, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Nicole B Johnson
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jong Cheol Jeong
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rahi Punjabi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandra J Shin
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kamaljeet Singh
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, USA
| | - Gregor Krings
- Department of Pathology, School of Medicine, University of California, San Francisco, CA, USA
| | - David A Eberhard
- Department of Pathology & Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore
| | - Konstanty Korski
- Department of Pathology, Greater Poland Cancer Centre, Poznan, Poland
| | - Frederic M Waldman
- Department of Laboratory Medicine, School of Medicine, University of California, San Francisco, CA, USA
| | - David A Gutman
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Melinda Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sydney R Flanagan
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deena Ma Gendoo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - Gregory M Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - Giovanni Ciriello
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Katherine A Hoadley
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Pathology & Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew H Beck
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
37
|
Hartl M. The Quest for Targets Executing MYC-Dependent Cell Transformation. Front Oncol 2016; 6:132. [PMID: 27313991 PMCID: PMC4889588 DOI: 10.3389/fonc.2016.00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022] Open
Abstract
MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of synthetic lethality using MYC-overexpressing cancer cells and chemical or RNAi libraries have been employed to search for novel anticancer drugs, also leading to the identification of several druggable targets. Targeting oncogenic MYC effector genes instead of MYC may lead to compounds with higher specificities and less side effects. This class of drugs could also display a wider pharmaceutical window because physiological functions of MYC, which are important for normal cell growth, proliferation, and differentiation would be less impaired.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry and Center of Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
38
|
Chan TSY, Hawkins C, Krieger JR, McGlade CJ, Huang A. JPO2/CDCA7L and LEDGF/p75 Are Novel Mediators of PI3K/AKT Signaling and Aggressive Phenotypes in Medulloblastoma. Cancer Res 2016; 76:2802-12. [PMID: 27013196 DOI: 10.1158/0008-5472.can-15-2194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
Abstract
Substantial evidence links Myc-PI3K/AKT signaling to the most aggressive subtype of medulloblastoma and this axis in medulloblastoma therapy. In this study, we advance understanding of how Myc-PI3K/AKT signaling contributes to this malignancy, specifically, in identifying the Myc-interacting protein JPO2 and its partner binding protein LEDGF/p75 as critical modulators of PI3K/AKT signaling and metastasis in medulloblastoma. JPO2 overexpression induced metastatic medulloblastoma in vivo through two synergistic feed-forward regulatory circuits involving LEDGF/p75 and AKT that promote metastatic phenotypes in this setting. Overall, our findings highlight two novel prometastatic loci in medulloblastoma and point to the JPO2:LEDGF/p75 protein complex as a potentially new targetable component of PI3K/AKT signaling in medulloblastoma. Cancer Res; 76(9); 2802-12. ©2016 AACR.
Collapse
Affiliation(s)
- Tiffany Sin Yu Chan
- Department of Paediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan R Krieger
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Paediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma. Am J Hum Genet 2016; 98:256-74. [PMID: 26833333 PMCID: PMC4746371 DOI: 10.1016/j.ajhg.2015.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023] Open
Abstract
Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs.
Collapse
|
40
|
Cho HK, Kim J, Moon JY, Nam BH, Kim YO, Kim WJ, Park JY, An CM, Cheong J, Kong HJ. Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2016; 49:66-78. [PMID: 26631808 DOI: 10.1016/j.fsi.2015.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/04/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The most fatal viral pathogen in olive flounder Paralichthys olivaceus, is viral hemorrhagic septicemia virus, which afflicts over 48 species of freshwater and marine fish. Here, we performed gene expression profiling on transcripts isolated from VHSV-infected olive flounder livers using a 13 K cDNA microarray chip. A total of 1832 and 1647 genes were upregulated and down-regulated over two-fold, respectively, after infection. A variety of immune-related genes showing significant changes in gene expression were identified in upregulated genes through gene ontology annotation. These genes were grouped into categories such as antibacterial peptide, antigen-recognition and adhesion molecules, apoptosis, cytokine-related pathway, immune system, stress response, and transcription factor and regulatory factors. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to the microarray data. In conclusion, these results may be useful for the identification of specific genes or for the diagnosis of VHSV infection in flounder.
Collapse
Affiliation(s)
- Hyun Kook Cho
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Julan Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Ji Young Moon
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 46083, Republic of Korea.
| |
Collapse
|
41
|
Guiu J, Bergen DJM, De Pater E, Islam ABMMK, Ayllón V, Gama-Norton L, Ruiz-Herguido C, González J, López-Bigas N, Menendez P, Dzierzak E, Espinosa L, Bigas A. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. ACTA ACUST UNITED AC 2014; 211:2411-23. [PMID: 25385755 PMCID: PMC4235648 DOI: 10.1084/jem.20131857] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guiu et al. use ChIP-on-chip analysis for the Notch partner RBPj, using embryonic tissue from the aorta-gonad-mesonephros region to identify potential novel Notch target genes involved in HSC emergence. They show that c-MYC–responsive gene Cdca7 is expressed in different HSC and progenitor subpopulations and that CDCA7 is important for maintaining the undifferentiated phenotype. Cdca7 acts downstream of Notch in HSCs in zebrafish, mouse, and human, indicating a highly conserved Notch/RBPj/Cdca7 axis in hematopoietic development. Hematopoietic stem cell (HSC) specification occurs in the embryonic aorta and requires Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 701 promoter regions that were candidates to be regulated by Notch in the AGM. One of the most enriched regions corresponded to the Cdca7 gene, which was subsequently confirmed to recruit the RBPj factor but also Notch1 in AGM cells. We found that during embryonic hematopoietic development, expression of Cdca7 is restricted to the hematopoietic clusters of the aorta, and it is strongly up-regulated in the hemogenic population during human embryonic stem cell hematopoietic differentiation in a Notch-dependent manner. Down-regulation of Cdca7 mRNA in cultured AGM cells significantly induces hematopoietic differentiation and loss of the progenitor population. Finally, using loss-of-function experiments in zebrafish, we demonstrate that CDCA7 contributes to HSC emergence in vivo during embryonic development. Thus, our study identifies Cdca7 as an evolutionary conserved Notch target involved in HSC emergence.
Collapse
Affiliation(s)
- Jordi Guiu
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Dylan J M Bergen
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Emma De Pater
- Erasmus MC Stem Cell and Regenerative Medicine Institute, Erasmus Medical Center, 3000 CA Rotterdam, Netherlands
| | - Abul B M M K Islam
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Verónica Ayllón
- Centre for Genomics and Oncological Research (Genyo), Pfizer-University of Granada-Andalusian Government, 18016 Granada, Spain
| | - Leonor Gama-Norton
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Cristina Ruiz-Herguido
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Jessica González
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Nuria López-Bigas
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Pablo Menendez
- José Carreras Leukaemia Research Institute, Cell Therapy Program, School of Medicine, University of Barcelona, 08036 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Elaine Dzierzak
- Erasmus MC Stem Cell and Regenerative Medicine Institute, Erasmus Medical Center, 3000 CA Rotterdam, Netherlands
| | - Lluis Espinosa
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Anna Bigas
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| |
Collapse
|
42
|
TIAN YUAN, HUANG CHANGJUN, ZHANG HAI, NI QINGFENG, HAN SHENG, WANG DONG, HAN ZEGUANG, LI XIANGCHENG. CDCA7L promotes hepatocellular carcinoma progression by regulating the cell cycle. Int J Oncol 2013; 43:2082-90. [PMID: 24141559 DOI: 10.3892/ijo.2013.2142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/30/2013] [Indexed: 11/05/2022] Open
|
43
|
Sandholm N, McKnight AJ, Salem RM, Brennan EP, Forsblom C, Harjutsalo V, Mäkinen VP, McKay GJ, Sadlier DM, Williams WW, Martin F, Panduru NM, Tarnow L, Tuomilehto J, Tryggvason K, Zerbini G, Comeau ME, Langefeld CD, Godson C, Hirschhorn JN, Maxwell AP, Florez JC, Groop PH. Chromosome 2q31.1 associates with ESRD in women with type 1 diabetes. J Am Soc Nephrol 2013; 24:1537-43. [PMID: 24029427 DOI: 10.1681/asn.2012111122] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sex and genetic variation influence the risk of developing diabetic nephropathy and ESRD in patients with type 1 diabetes. We performed a genome-wide association study in a cohort of 3652 patients from the Finnish Diabetic Nephropathy (FinnDiane) Study with type 1 diabetes to determine whether sex-specific genetic risk factors for ESRD exist. A common variant, rs4972593 on chromosome 2q31.1, was associated with ESRD in women (P<5×10(-8)) but not in men (P=0.77). This association was replicated in the meta-analysis of three independent type 1 diabetes cohorts (P=0.02) and remained significant for women (P<5×10(-8); odds ratio, 1.81 [95% confidence interval, 1.47 to 2.24]) upon combined meta-analysis of the discovery and replication cohorts. rs4972593 is located between the genes that code for the Sp3 transcription factor, which interacts directly with estrogen receptor α and regulates the expression of genes linked to glomerular function and the pathogenesis of nephropathy, and the CDCA7 transcription factor, which regulates cell proliferation. Further examination revealed potential transcription factor-binding sites within rs4972593 and predicted eight estrogen-responsive elements within 5 kb of this locus. Moreover, we found sex-specific differences in the glomerular expression levels of SP3 (P=0.004). Overall, these results suggest that rs4972593 is a sex-specific genetic variant associated with ESRD in patients with type 1 diabetes and may underlie the sex-specific protection against ESRD.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bidkhori G, Narimani Z, Hosseini Ashtiani S, Moeini A, Nowzari-Dalini A, Masoudi-Nejad A. Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma. PLoS One 2013; 8:e67552. [PMID: 23874428 PMCID: PMC3708931 DOI: 10.1371/journal.pone.0067552] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 05/18/2013] [Indexed: 02/04/2023] Open
Abstract
Our goal of this study was to reconstruct a “genome-scale co-expression network” and find important modules in lung adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation, GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed network was named “genome-scale co-expression network”. As the next step, 23 key modules were disclosed through clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP, FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A, PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2, PSMD2, DOK2, FUS and etc.) in the modules.
Collapse
Affiliation(s)
- Gholamreza Bidkhori
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Narimani
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Saman Hosseini Ashtiani
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Moeini
- Department of Algorithms and Computation, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- * E-mail:
| |
Collapse
|
45
|
Shubbar E, Kovács A, Hajizadeh S, Parris TZ, Nemes S, Gunnarsdóttir K, Einbeigi Z, Karlsson P, Helou K. Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome. BMC Cancer 2013; 13:1. [PMID: 23282137 PMCID: PMC3545739 DOI: 10.1186/1471-2407-13-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/17/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer is a potentially fatal malignancy in females despite the improvement in therapeutic techniques. The identification of novel molecular signatures is needed for earlier detection, monitoring effects of treatment, and predicting prognosis. We have previously used microarray analysis to identify differentially expressed genes in aggressive breast tumors. The purpose of the present study was to investigate the prognostic value of the candidate biomarkers CCNB2, ASPM, CDCA7, KIAA0101, and SLC27A2 in breast cancer. METHODS The expression levels and subcellular localization of the CCNB2, ASPM, CDCA7, KIAA0101, and SLC27A2 proteins were measured using immunohistochemistry (IHC) on a panel of 80 primary invasive breast tumors. Furthermore, the mRNA levels of CCNB2, KIAA0101, and SLC27A2 were subsequently examined by qRT-PCR to validate IHC results. Patient disease-specific survival (DSS) was evaluated in correlation to protein levels using the Kaplan-Meier method. Multivariate Cox regression analysis was used to determine the impact of aberrant protein expression of the candidate biomarkers on patient DSS and to estimate the hazard ratio at 8-year follow-up. RESULTS Elevated cytoplasmic CCNB2 protein levels were strongly associated with short-term disease-specific survival of breast cancer patients (≤ 8 years; P<0.001) and with histological tumor type (P= 0.04). However, no association with other clinicopathological parameters was observed. Multivariate Cox regression analysis specified that CCNB2 protein expression is an independent prognostic marker of DSS in breast cancer. The predictive ability of several classical clinicopathological parameters was improved when used in conjunction with CCNB2 protein expression (C-index = 0.795) in comparison with a model without CCNB2 expression (C-index = 0.698). The protein levels of ASPM, CDCA7, KIAA0101, and SLC27A2 did not correlate with any clinicopathological parameter and had no influence on DSS. However, a significant correlation between the expression of the CCNB2 and ASPM proteins was detected (P = 0.03). CONCLUSION These findings suggest that cytoplasmic CCNB2 may function as an oncogene and could serve as a potential biomarker of unfavorable prognosis over short-term follow-up in breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Breast Neoplasms/chemistry
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/chemistry
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Carcinoma, Lobular/chemistry
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/mortality
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/therapy
- Chi-Square Distribution
- Cyclin B2/analysis
- Cyclin B2/genetics
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Kaplan-Meier Estimate
- Middle Aged
- Multivariate Analysis
- Prognosis
- Proportional Hazards Models
- Real-Time Polymerase Chain Reaction
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- Emman Shubbar
- Sahlgrenska Cancer Center, Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg SE-41345, Sweden
| | - Anikó Kovács
- Pathology section, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, SE-41345, Sweden
| | - Shahin Hajizadeh
- Pathology section, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, SE-41345, Sweden
| | - Toshima Z Parris
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, SE-41345, Sweden
| | - Szilárd Nemes
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, SE-41345, Sweden
| | - Katrin Gunnarsdóttir
- Regional Cancer Centre (West), Western Sweden Health Care Region, Sahlgrenska University Hospital, Gothenburg, SE-41345, Sweden
| | - Zakaria Einbeigi
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, SE-41345, Sweden
| | - Per Karlsson
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, SE-41345, Sweden
| | - Khalil Helou
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, SE-41345, Sweden
| |
Collapse
|
46
|
Foxn1 maintains thymic epithelial cells to support T-cell development via mcm2 in zebrafish. Proc Natl Acad Sci U S A 2012; 109:21040-5. [PMID: 23213226 DOI: 10.1073/pnas.1217021110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thymus is mainly comprised of thymic epithelial cells (TECs), which form the unique thymic epithelial microenvironment essential for intrathymic T-cell development. Foxn1, a member of the forkhead transcription factor family, is required for establishing a functional thymic rudiment. However, the molecular mechanisms underlying the function of Foxn1 are still largely unclear. Here, we show that Foxn1 functions in thymus development through Mcm2 in the zebrafish. We demonstrate that, in foxn1 knockdown embryos, the thymic rudiment is reduced and T-cell development is impaired. Genome-wide expression profiling shows that a number of genes, including some known thymopoiesis genes, are dysregulated during the initiation of the thymus primordium and immigration of T-cell progenitors to the thymus. Functional and epistatic studies show that mcm2 and cdca7 are downstream of Foxn1, and mcm2 is a direct target gene of Foxn1 in TECs. Finally, we find that the thymus defects in foxn1 and mcm2 morphants might be attributed to reduced cell proliferation rather than apoptosis. Our results reveal that the foxn1-mcm2 axis plays a central role in the genetic regulatory network controlling thymus development in zebrafish.
Collapse
|
47
|
The MYC-associated protein CDCA7 is phosphorylated by AKT to regulate MYC-dependent apoptosis and transformation. Mol Cell Biol 2012; 33:498-513. [PMID: 23166294 DOI: 10.1128/mcb.00276-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell division control protein A7 (CDCA7) is a recently identified target of MYC-dependent transcriptional regulation. We have discovered that CDCA7 associates with MYC and that this association is modulated in a phosphorylation-dependent manner. The prosurvival kinase AKT phosphorylates CDCA7 at threonine 163, promoting binding to 14-3-3, dissociation from MYC, and sequestration to the cytoplasm. Upon serum withdrawal, induction of CDCA7 expression in the presence of MYC sensitized cells to apoptosis, whereas CDCA7 knockdown reduced MYC-dependent apoptosis. The transformation of fibroblasts by MYC was reduced by coexpression of CDCA7, while the non-MYC-interacting protein Δ(156-187)-CDCA7 largely inhibited MYC-induced transformation. These studies provide insight into a new mechanism by which AKT signaling to CDCA7 could alter MYC-dependent growth and transformation, contributing to tumorigenesis.
Collapse
|
48
|
Amplification of c-MYC and MLL Genes as a Marker of Clonal Cell Progression in Patients with Myeloid Malignancy and Trisomy of Chromosomes 8 or 11. Balkan J Med Genet 2011; 14:17-24. [PMID: 24052708 PMCID: PMC3776705 DOI: 10.2478/v10034-011-0043-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gene amplification (amp) is one of the basic mechanisms connected with overexpression of oncogenes. The c-MYC (located in 8q24) and MLL (located in 11q23) are the most often over represented genes that lead to a rapid proliferation of the affected cell clone in patients with myeloid neoplasms. Assessment of the level of amp c-MYC or amp MLL in the cases with trisomy 8 (+8) or trisomy 11 (+11) and myeloid malignances is necessary for a more precise estimation of the disease progression. A total of 26 patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) were included in the study: 18 with +8, six with +11 and two with complex karyotypes suspected of the partial trisomy. Routine cytogenetic analysis and fluorescent in situ hybridization (FISH) were applied to indicate the chromosome alterations and genes amp in the bone marrow cells. Amp c-MYC was observed in 12 from 18 (66.7%) patients with +8. All the patients with +11 demonstrated a different level of amp MLL. In most of the cases with MDS (9/10), the coincidence of the +8 or +11 with amp c-MYC or amp MLL, respectively, leads to transformation to AML and/or short overall survival. Our data suggest that amp c-MYC and amp MLL develop in conformity with +8 and +11, especially in cases with progressive deviations in the karyotype as an aggressive expansion of an aberrant cell clone and appearance of additional chromosome anomalies.
Collapse
|
49
|
Abstract
Pituitary somatotrophs secrete growth hormone (GH) into the bloodstream, to act as a hormone at receptor sites in most, if not all, tissues. These endocrine actions of circulating GH are abolished after pituitary ablation or hypophysectomy, indicating its pituitary source. GH gene expression is, however, not confined to the pituitary gland, as it occurs in neural, immune, reproductive, alimentary, and respiratory tissues and in the integumentary, muscular, skeletal, and cardiovascular systems, in which GH may act locally rather than as an endocrine. These actions are likely to be involved in the proliferation and differentiation of cells and tissues prior to the ontogeny of the pituitary gland. They are also likely to complement the endocrine actions of GH and are likely to maintain them after pituitary senescence and the somatopause. Autocrine or paracrine actions of GH are, however, sometimes mediated through different signaling mechanisms to those mediating its endocrine actions and these may promote oncogenesis. Extrapituitary GH may thus be of physiological and pathophysiological significance.
Collapse
Affiliation(s)
- S Harvey
- Department of Physiology, University of Alberta, 7-41 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada,
| |
Collapse
|
50
|
Lim S, Janzer A, Becker A, Zimmer A, Schüle R, Buettner R, Kirfel J. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 2009; 31:512-20. [PMID: 20042638 DOI: 10.1093/carcin/bgp324] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast carcinogenesis is a multistep process involving both genetic and epigenetic changes. Since epigenetic changes like histone modifications are potentially reversible processes, much effort has been directed toward understanding this mechanism with the goal of finding novel therapies as well as more refined diagnostic and prognostic tools in breast cancer. Lysine-specific demethylase 1 (LSD1) plays a key role in the regulation of gene expression by removing the methyl groups from methylated lysine 4 of histone H3 and lysine 9 of histone H3. LSD1 is essential for mammalian development and involved in many biological processes. Considering recent evidence that LSD1 is involved in carcinogenesis, we investigated the role of LSD1 in breast cancer. Therefore, we developed an enzyme-linked immunosorbent assay to determine LSD1 protein levels in tissue specimens of breast cancer and measured very high LSD1 levels in estrogen receptor (ER)-negative tumors. Pharmacological LSD1 inhibition resulted in growth inhibition of breast cancer cells. Knockdown of LSD1 using small interfering RNA approach induced regulation of several proliferation-associated genes like p21, ERBB2 and CCNA2. Additionally, we found that LSD1 is recruited to the promoters of these genes. In summary, our data indicate that LSD1 may provide a predictive marker for aggressive biology and a novel attractive therapeutic target for treatment of ER-negative breast cancers.
Collapse
Affiliation(s)
- Soyoung Lim
- Institute of Pathology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|