1
|
Zhang X, Guo G, Liu R, Wu T, Wang Z, Zhang Z. CircLDLRAD3 inhibits Oral squamous cell carcinoma progression by regulating miR-558/Smad4/TGF-β. J Cell Mol Med 2023; 27:3271-3285. [PMID: 37563869 PMCID: PMC10623532 DOI: 10.1111/jcmm.17898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant neoplasm with high mortality and morbidity. The role of circRNA and its molecular mechanism in OSCC remains largely unknown. The study aims to explore the role of a novel circular RNA (circLDLRAD3) in OSCC and its underlying mechanism. PCR and fluorescence in situ hybridization were used to explore the expression features of circLDLRAD3 in OSCC. The effects of circLDLRAD3 on the behaviour of OSCC were investigated using CCK-8, colony formation assay, transwell and animal experiments. Bioinformatics analysis along with dual luciferase reporter assay and RIP assay were used to reveal the interaction between circLDLRAD3, miR-558 and Smad4. It was revealed that circLDLRAD3 exhibited low expression status in OSCC. CircLDLRAD3 inhibits proliferation, migration, and invasion of OSCC cells both in vitro and in vivo. Mechanistically, circLDLRAD3 could bind with miR-558 to positively regulate its target gene Smad4 expression. Rescue experiments further confirmed both miR-558 overexpression and Smad4 knockdown could reverse the influence of circLDLRAD3 on OSCC phenotypes. Moreover, circLDLRAD3 regulate the TGF-β signalling pathways to influence EMT through miR-558/Smad4 axis. Our study found that circLDLRAD3 is downregulated in OSCC and verified its tumour suppressor function and mechanism in OSCC through sponging miR-558 to regulate miR-558/Smad4/TGF-β axis. The characterization of such regulating network uncovers an important mechanism underlying OSCC progression, which could provide promising targets targeted therapy strategies for OSCC in the future.
Collapse
Affiliation(s)
- Xue Zhang
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours (China Medical University)ShenyangChina
| | - Guang‐Yu Guo
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours (China Medical University)ShenyangChina
| | - Ru‐Yue Liu
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours (China Medical University)ShenyangChina
| | - Ting Wu
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours (China Medical University)ShenyangChina
| | - Zhen‐Hua Wang
- Department of Physiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Zhong‐Ti Zhang
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
| |
Collapse
|
2
|
Gürsel Ürün Y, Budak M, Usturalı Keskin E. Methylation status, mRNA and protein expression of the SMAD4 gene in patients with non-melanocytic skin cancers. Mol Biol Rep 2023; 50:7295-7304. [PMID: 37428273 DOI: 10.1007/s11033-023-08656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND SMAD4 is a potent tumor suppressor. SMAD4 loss increases genomic instability and plays a critical role in the DNA damage response that leads to skin cancer development. We aimed to investigate SMAD4 methylation effects on mRNA and protein expression of SMAD4 in cancer and healthy tissues from patients with basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and basosquamous skin cancer (BSC). METHODS AND RESULTS The study included 17 BCC, 24 cSCC and nine BSC patients. DNA and RNA were isolated from cancerous and healthy tissues following punch biopsy. Methylation-specific polymerase chain reaction (PCR) and real-time quantitative PCR methods were used to examine SMAD4 promoter methylation and SMAD4 mRNA levels, respectively. The percentage and intensity of staining of the SMAD4 protein were determined by immunohistochemistry. The percentage of SMAD4 methylation was increased in the patients with BCC (p = 0.007), cSCC (p = 0.004), and BSC (p = 0.018) compared to the healthy tissue. SMAD4 mRNA expression was decreased in the patients with BCC (p˂0.001), cSCC (p˂0.001), and BSC (p = 0.008). The staining characteristic of SMAD4 protein was negative in the cancer tissues of the patients with cSCC (p = 0.00). Lower SMAD4 mRNA levels were observed in the poorly differentiated cSCC patients (p = 0.001). The staining characteristics of the SMAD4 protein were related to age and chronic sun exposure. CONCLUSIONS Hypermethylation of SMAD4 and reduced SMAD4 mRNA expression were found to play a role in the pathogenesis of BCC, cSCC, and BSC. A decrease in SMAD4 protein expression level was observed only in cSCC patients. This suggests that epigenetic alterations to the SMAD4 gene are associated with cSCC. TRIAL REGISTRATION The name of the trial register: SMAD4 Methylation and Expression Levels in Non-melanocytic Skin Cancers; SMAD4 Protein Positivity. The registration number: NCT04759261 ( https://clinicaltrials.gov/ct2/results?term=NCT04759261 ).
Collapse
Affiliation(s)
- Yıldız Gürsel Ürün
- Department of Dermatology and Venereology, Faculty of Medicine, Trakya University, Edirne, Turkey.
| | - Metin Budak
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | | |
Collapse
|
3
|
Ye Z, Kilic G, Dabelsteen S, Marinova IN, Thøfner JF, Song M, Rudjord-Levann AM, Bagdonaite I, Vakhrushev SY, Brakebusch CH, Olsen JV, Wandall HH. Characterization of TGF-β signaling in a human organotypic skin model reveals that loss of TGF-βRII induces invasive tissue growth. Sci Signal 2022; 15:eabo2206. [DOI: 10.1126/scisignal.abo2206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transforming growth factor–β (TGF-β) signaling regulates various aspects of cell growth and differentiation and is often dysregulated in human cancers. We combined genetic engineering of a human organotypic three-dimensional (3D) skin model with global quantitative proteomics and phosphoproteomics to dissect the importance of essential components of the TGF-β signaling pathway, including the ligands TGF-β1, TGF-β2, and TGF-β3, the receptor TGF-βRII, and the intracellular effector SMAD4. Consistent with the antiproliferative effects of TGF-β signaling, the loss of TGF-β1 or SMAD4 promoted cell cycling and delayed epidermal differentiation. The loss of TGF-βRII, which abrogates both SMAD4-dependent and SMAD4-independent downstream signaling, more strongly affected cell proliferation and differentiation than did loss of SMAD4, and it induced invasive growth. TGF-βRII knockout reduced cell-matrix interactions, and the production of matrix proteins increased the production of cancer-associated cell-cell adhesion proteins and proinflammatory mediators and increased mitogen-activated protein kinase (MAPK) signaling. Inhibiting the activation of the ERK and p38 MAPK pathways blocked the development of the invasive phenotype upon the loss of TGF-βRII. This study provides a framework for exploring TGF-β signaling pathways in human epithelial tissue homeostasis and transformation using genetic engineering, 3D tissue models, and high-throughput quantitative proteomics and phosphoproteomics.
Collapse
Affiliation(s)
- Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülcan Kilic
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section of Oral Biology and Immunopathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Section of Oral Biology and Immunopathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Irina N. Marinova
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. B. Thøfner
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ming Song
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asha M. Rudjord-Levann
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cord H. Brakebusch
- Biotech Research and Innovation Centre, Biomedical Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Wang X, Liu Y, He J, Wang J, Chen X, Yang R. Regulation of signaling pathways in hair follicle stem cells. BURNS & TRAUMA 2022; 10:tkac022. [PMID: 35795256 PMCID: PMC9250793 DOI: 10.1093/burnst/tkac022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Hair follicle stem cells (HFSCs) reside in the bulge region of the outer root sheath of the hair follicle. They are considered slow-cycling cells that are endowed with multilineage differentiation potential and superior proliferative capacity. The normal morphology and periodic growth of HFSCs play a significant role in normal skin functions, wound repair and skin regeneration. The HFSCs involved in these pathophysiological processes are regulated by a series of cell signal transduction pathways, such as lymphoid enhancer factor/T-cell factor, Wnt/β-catenin, transforming growth factor-β/bone morphogenetic protein, Notch and Hedgehog. The mechanisms of the interactions among these signaling pathways and their regulatory effects on HFSCs have been previously studied, but many mechanisms are still unclear. This article reviews the regulation of hair follicles, HFSCs and related signaling pathways, with the aims of summarizing previous research results, revealing the regulatory mechanisms of HFSC proliferation and differentiation and providing important references and new ideas for treating clinical diseases.
Collapse
Affiliation(s)
| | | | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Xiaodong Chen
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| | - Ronghua Yang
- Correspondence. Xiaodong Chen, E-mail: ; Ronghua Yang,
| |
Collapse
|
5
|
Citro S, Miccolo C, Medda A, Ghiani L, Tagliabue M, Ansarin M, Chiocca S. HPV-mediated regulation of SMAD4 modulates the DNA damage response in head and neck cancer. J Exp Clin Cancer Res 2022; 41:59. [PMID: 35144669 PMCID: PMC8830113 DOI: 10.1186/s13046-022-02258-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/17/2022] [Indexed: 01/17/2023] Open
Abstract
Background Head and Neck cancer (HNC) is a fatal malignancy with poor prognosis. Human Papillomavirus (HPV) infection is becoming the prominent cause of HNC in the western world, and studying the molecular mechanisms underlying its action in cancers is key towards targeted therapy. To replicate, HPV regulates the host DNA damage repair (DDR) pathway. SMAD4 is also involved in the regulation of the DDR machinery and likely plays important role in maintaining cell viability upon genotoxic stress. In this study, we investigated the role of HPV in the upregulation of SMAD4 to control the DDR response and facilitate its lifecycle. Methods SMAD4, Rad51 and CHK1 expression was assessed in HPV-positive and HPV-negative HNC using TCGA data, a panel of 14 HNC cell lines and 8 fresh tumour tissue samples from HNC patients. HPV16 expression was modulated by E6/E7 siRNA knock-down or transduction in HPV-positive HNC cell lines and Human Primary keratinocytes respectively. SMAD4 half-life was assessed by cycloheximide treatment in HNC cell lines, together with βTRCP1-dependent SMAD4 ubiquitination. SMAD4 siRNA knock-down was used to determine its role in HPV-mediated regulation of DDR machinery and to assess cisplatin sensitivity in HPV-positive HNC cell lines. Results We found that HPV increases SMAD4 expression is both HPV-positive HNC tumours and cell lines, impairing its degradation which is mediated by the E3 ubiquitin ligase βTRCP1. SMAD4 expression highly correlates with the expression of two main players of the DDR pathway, CHK1 and Rad51, which expression is also upregulated by the presence of HPV. In particular, we demonstrate that HPV stabilizes SMAD4 to increase CHK1 and Rad51 expression. In addition, SMAD4-deficient HPV-positive cells have increased sensitivity to cisplatin treatment. Conclusions Our results give a clear molecular mechanism at the basis of HPV regulation of the DDR pathway. In particular, we show how HPV stabilizes SMAD4 to promote DDR protein expression, which may be used to facilitate viral replication and HNC onset. Moreover, we found that SMAD4 silencing in HPV-positive HNC cell lines increases sensitivity to cisplatin treatment, suggesting that HPV-positive HNC with low SMAD4 expression may be preferentially susceptible to similar treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02258-9.
Collapse
Affiliation(s)
- Simona Citro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy.
| | - Claudia Miccolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Alessandro Medda
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Lavinia Ghiani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Marta Tagliabue
- Division of Otolaryngology Head & Neck Surgery, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy, University of Sassari, Sassari, Italy
| | - Mohssen Ansarin
- Division of Otolaryngology Head & Neck Surgery, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
6
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Qiu W, Gu PR, Chuong CM, Lei M. Skin Cyst: A Pathological Dead-End With a New Twist of Morphogenetic Potentials in Organoid Cultures. Front Cell Dev Biol 2021; 8:628114. [PMID: 33511139 PMCID: PMC7835531 DOI: 10.3389/fcell.2020.628114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
A cyst is a closed sac-like structure in which cyst walls wrap certain contents typically including air, fluid, lipid, mucous, or keratin. Cyst cells can retain multipotency to regenerate complex tissue architectures, or to differentiate. Cysts can form in and outside the skin due to genetic problems, errors in embryonic development, cellular defects, chronic inflammation, infections, blockages of ducts, parasites, and injuries. Multiple types of skin cysts have been identified with different cellular origins, with a common structure including the outside cyst wall engulfs differentiated suprabasal layers and keratins. The skin cyst is usually used as a sign in pathological diagnosis. Large or surfaced skin cysts affect patients' appearance and may cause the dysfunction or accompanying diseases of adjacent tissues. Skin cysts form as a result of the degradation of skin epithelium and appendages, retaining certain characteristics of multipotency. Surprisingly, recent organoid cultures show the formation of cyst configuration as a transient state toward more morphogenetic possibility. These results suggest, if we can learn more about the molecular circuits controlling upstream and downstream cellular events in cyst formation, we may be able to engineer stem cell cultures toward the phenotypes we wish to achieve. For pathological conditions in patients, we speculate it may also be possible to guide the cyst to differentiate or de-differentiate to generate structures more akin to normal architecture and compatible with skin homeostasis.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, China
| | - Pei-Rong Gu
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- “111” Project Laboratory of Biomechanics and Tissue Repair, Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nat Commun 2020; 11:5067. [PMID: 33082341 PMCID: PMC7575575 DOI: 10.1038/s41467-020-18784-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Although acne is the most common human inflammatory skin disease, its pathogenic mechanisms remain incompletely understood. Here we show that GATA6, which is expressed in the upper pilosebaceous unit of normal human skin, is down-regulated in acne. GATA6 controls keratinocyte proliferation and differentiation to prevent hyperkeratinisation of the infundibulum, which is the primary pathological event in acne. When overexpressed in immortalised human sebocytes, GATA6 triggers a junctional zone and sebaceous differentiation program whilst limiting lipid production and cell proliferation. It modulates the immunological repertoire of sebocytes, notably by upregulating PD-L1 and IL10. GATA6 expression contributes to the therapeutic effect of retinoic acid, the main treatment for acne. In a human sebaceous organoid model GATA6-mediated down-regulation of the infundibular differentiation program is mediated by induction of TGFβ signalling. We conclude that GATA6 is involved in regulation of the upper pilosebaceous unit and may be an actionable target in the treatment of acne.
Collapse
|
9
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|
10
|
Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression. Front Med 2019; 14:305-317. [DOI: 10.1007/s11684-019-0722-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/07/2019] [Indexed: 10/25/2022]
|
11
|
Lin LH, Chang KW, Cheng HW, Liu CJ. SMAD4 Somatic Mutations in Head and Neck Carcinoma Are Associated With Tumor Progression. Front Oncol 2019; 9:1379. [PMID: 31867281 PMCID: PMC6909744 DOI: 10.3389/fonc.2019.01379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
As the incidence and the mortality rate of head and neck squamous cell carcinoma (HNSCC) is increasing worldwide, gaining knowledge about the genomic changes which happen in the carcinogenesis of HNSCC is essential for the diagnosis and therapy of the disease. SMAD4 (DPC4) is a tumor suppressor gene. It is located at chromosome 18q21.1 and a member of the SMAD family. Which mediates the TGF-β signaling pathway, thereby controlling the growth of epithelial cells. In the study presented here, we analyzed tumor samples by multiplex PCR-based next-generation sequencing (NGS) and found deleterious mutations of SMAD4 in 4.1% of the tumors. Knock-down experiments of endogenous and exogenous SMAD4 expression demonstrated that SMAD4 is involved in the migration and invasion of HNSCC cells. Functional analysis of a missense mutation in the MH1 domain of SMAD4 may be responsible for the loss of function in suppressing tumor progression. Missense SMAD4 mutations, therefore, could be useful prognostic determinants for patients affected by HNSCCs. This report is the first study where NGS analysis based on multiplex-PCR is used to demonstrate the imminent occurrence of missense SMAD4 mutations in HNSCC cells. The gene analysis that we performed may support the identification of SMAD4 mutations as a diagnostic marker or even as a potential therapeutic target in head and neck cancer. Moreover, the analytic strategy proposed for the detection of mutations in the SMAD4 gene may be validated as a platform to assist mutation screening.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Abstract
TGF-β superfamily signaling is responsible for many critical cellular functions including control of cell growth, cell proliferation, cell differentiation, and apoptosis. TGF-β appears to be critical in gastrulation, embryonic development, and morphogenesis, and it retains pleiotropic roles in many adult tissues and cell types in a highly context-dependent manner. While TGF-β signaling within leukocytes is known to have an immunosuppressive role, its immunomodulatory effects within epithelial cells and epithelial cancers is less well understood. Recent data has emerged that suggests TGF-β pathway signaling within epithelial cells may directly modulate pro-inflammatory chemokine/cytokine production and resultant leukocyte recruitment. This immunomodulation by epithelial TGF-β pathway signaling may directly impact tumorigenesis and tumor progression through modulation of the epithelial microenvironment, although causal pathways responsible for such an observation remain incompletely investigated. This review presents the published literature as it relates to the immunomodulatory effects of TGF-β family signaling within intestinal epithelial cells and carcinomas.
Collapse
|
13
|
Hernandez AL, Young CD, Wang JH, Wang XJ. Lessons learned from SMAD4 loss in squamous cell carcinomas. Mol Carcinog 2019; 58:1648-1655. [PMID: 31140647 DOI: 10.1002/mc.23049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
SMAD4 is a potent tumor suppressor and a central mediator of the TGFß signaling pathway. SMAD4 genetic loss is frequent in squamous cell carcinomas (SCCs). Reports of SMAD4 expression in SCCs vary significantly possibly due to inter-tumor heterogeneity or technical reasons. SMAD4 loss is an initiation event for SCCs. In tumor epithelial cells, SMAD4 loss causes increased proliferation, decreased apoptosis, and "Brca-like" genomic instability associated with DNA repair defects. SMAD4 loss also plays a role in the expansion of cancer stem cells. Epithelial SMAD4 loss causes overexpression of TGFß that is released into the tumor microenvironment and contributes to SCC progression through proinflammatory and immune evasive mechanisms. SMAD4 loss, while not a direct therapeutic target, is associated with multiple targetable pathways that require further therapeutic studies. Altogether, SMAD4 loss is a potential biomarker in SCCs that should be further studied for its values in prognostic and therapeutic predictions. Such information will potentially guide future biomarker-driven clinical trial designs and improve SCC patient outcomes.
Collapse
Affiliation(s)
- Ariel L Hernandez
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Christian D Young
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado.,Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado.,Research Service, Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
14
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
15
|
Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci 2018; 14:111-123. [PMID: 29483830 PMCID: PMC5821033 DOI: 10.7150/ijbs.23230] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling pathway plays important roles in many biological processes, including cell growth, differentiation, apoptosis, migration, as well as cancer initiation and progression. SMAD4, which serves as the central mediator of TGF-β signaling, is specifically inactivated in over half of pancreatic duct adenocarcinoma, and varying degrees in many other types of cancers. In the past two decades, multiple studies have revealed that SMAD4 loss on its own does not initiate tumor formation, but can promote tumor progression initiated by other genes, such as KRAS activation in pancreatic duct adenocarcinoma and APC inactivation in colorectal cancer. In other cases, such as skin cancer, loss of SMAD4 plays an important initiating role by disrupting DNA damage response and repair mechanisms and enhance genomic instability, suggesting its distinct roles in different types of tumors. This review lists SMAD4 mutations in various types of cancer and summarizes recent advances on SMAD4 with focuses on the function, signaling pathway, and the possibility of SMAD4 as a prognostic indicator.
Collapse
Affiliation(s)
- Ming Zhao
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lopa Mishra
- Center for Translational Research, Department of Surgery and GW Cancer Center, George Washington University, Washington DC, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
16
|
Kahata K, Dadras MS, Moustakas A. TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022194. [PMID: 28246184 DOI: 10.1101/cshperspect.a022194] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelia exist in the animal body since the onset of embryonic development; they generate tissue barriers and specify organs and glands. Through epithelial-mesenchymal transitions (EMTs), epithelia generate mesenchymal cells that form new tissues and promote healing or disease manifestation when epithelial homeostasis is challenged physiologically or pathologically. Transforming growth factor-βs (TGF-βs), activins, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs) have been implicated in the regulation of epithelial differentiation. These TGF-β family ligands are expressed and secreted at sites where the epithelium interacts with the mesenchyme and provide paracrine queues from the mesenchyme to the neighboring epithelium, helping the specification of differentiated epithelial cell types within an organ. TGF-β ligands signal via Smads and cooperating kinase pathways and control the expression or activities of key transcription factors that promote either epithelial differentiation or mesenchymal transitions. In this review, we discuss evidence that illustrates how TGF-β family ligands contribute to epithelial differentiation and induce mesenchymal transitions, by focusing on the embryonic ectoderm and tissues that form the external mammalian body lining.
Collapse
Affiliation(s)
- Kaoru Kahata
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Mahsa Shahidi Dadras
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
17
|
Wu F, Weigel KJ, Zhou H, Wang XJ. Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2018; 50:98-105. [PMID: 29206939 PMCID: PMC5846704 DOI: 10.1093/abbs/gmx127] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling either promotes or inhibits tumor formation and/or progression of many cancer types including squamous cell carcinoma (SCC). Canonical TGF-β signaling is mediated by a number of downstream proteins including Smad family proteins. Alterations in either TGF-β or Smad signaling can impact cancer. For instance, defects in TGF-β type I and type II receptors (TGF-βRI and TGF-βRII) and in Smad2/3/4 could promote tumor development. Conversely, increased TGF-β1 and activated TGF-βRI and Smad3 have all been shown to have tumor-promoting effects in experimental systems of human and mouse SCCs. Among TGF-β/Smad signaling, only TGF-βRII or Smad4 deletion in mouse epithelium causes spontaneous SCC in the mouse model, highlighting the critical roles of TGF-βRII and Smad4 in tumor suppression. Herein, we review the dual roles of the TGF-β/Smad signaling pathway and related mechanisms in SCC, highlighting the potential benefits and challenges of TGF-β/Smad-targeted therapies.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelsey J Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
19
|
Secretory phospholipase A 2-IIA overexpressing mice exhibit cyclic alopecia mediated through aberrant hair shaft differentiation and impaired wound healing response. Sci Rep 2017; 7:11619. [PMID: 28912581 PMCID: PMC5599634 DOI: 10.1038/s41598-017-11830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Secretory phospholipase A2 Group-IIA (sPLA2-IIA) is involved in lipid catabolism and growth promoting activity. sPLA2-IIA is deregulated in many pathological conditions including various cancers. Here, we have studied the role of sPLA2-IIA in the development of cyclic alopecia and wound healing response in relation to complete loss of hair follicle stem cells (HFSCs). Our data showed that overexpression of sPLA2-IIA in homozygous mice results in hyperproliferation and terminal epidermal differentiation followed by hair follicle cycle being halted at anagen like stage. In addition, sPLA2-IIA induced hyperproliferation leads to complete exhaustion of hair follicle stem cell pool at PD28 (Postnatal day). Importantly, sPLA2-IIA overexpression affects the hair shaft differentiation leading to development of cyclic alopecia. Molecular investigation study showed aberrant expression of Sox21, Msx2 and signalling modulators necessary for proper differentiation of inner root sheath (IRS) and hair shaft formation. Further, full-thickness skin wounding on dorsal skin of K14-sPLA2-IIA homozygous mice displayed impaired initial healing response. Our results showed the involvement of sPLA2-IIA in regulation of matrix cells differentiation, hair shaft formation and complete loss of HFSCs mediated impaired wound healing response. These novel functions of sPLA2-IIA may have clinical implications in alopecia, cancer development and ageing.
Collapse
|
20
|
Wu Y, Zhong JL, Hou N, Sun Y, Ma B, Nisar MF, Teng Y, Tan Z, Chen K, Wang Y, Yang X. MicroRNA Let-7b inhibits keratinocyte migration in cutaneous wound healing by targeting IGF2BP2. Exp Dermatol 2017; 26:116-123. [DOI: 10.1111/exd.13164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Wu
- State Key Laboratory of Proteomics; Genetic Laboratory of Development and Diseases; Institute of Biotechnology; Beijing China
- 111 Project Laboratory of Biomechanics and Tissue Repair; College of Bioengineering & Key Laboratory of Biorheological Science and Technology; Ministry of Education Chongqing University; Chongqing China
- College of Life Sciences; Jiangsu University; Zhenjiang China
| | - Julia Li Zhong
- 111 Project Laboratory of Biomechanics and Tissue Repair; College of Bioengineering & Key Laboratory of Biorheological Science and Technology; Ministry of Education Chongqing University; Chongqing China
| | - Ning Hou
- State Key Laboratory of Proteomics; Genetic Laboratory of Development and Diseases; Institute of Biotechnology; Beijing China
| | - Yaolan Sun
- State Key Laboratory of Proteomics; Genetic Laboratory of Development and Diseases; Institute of Biotechnology; Beijing China
| | - Benting Ma
- State Key Laboratory of Proteomics; Genetic Laboratory of Development and Diseases; Institute of Biotechnology; Beijing China
| | - Muhammad Farrukh Nisar
- 111 Project Laboratory of Biomechanics and Tissue Repair; College of Bioengineering & Key Laboratory of Biorheological Science and Technology; Ministry of Education Chongqing University; Chongqing China
| | - Yan Teng
- State Key Laboratory of Proteomics; Genetic Laboratory of Development and Diseases; Institute of Biotechnology; Beijing China
| | - Zhaoli Tan
- State Key Laboratory of Proteomics; Genetic Laboratory of Development and Diseases; Institute of Biotechnology; Beijing China
| | - Keping Chen
- College of Life Sciences; Jiangsu University; Zhenjiang China
| | - Youliang Wang
- State Key Laboratory of Proteomics; Genetic Laboratory of Development and Diseases; Institute of Biotechnology; Beijing China
| | - Xiao Yang
- State Key Laboratory of Proteomics; Genetic Laboratory of Development and Diseases; Institute of Biotechnology; Beijing China
| |
Collapse
|
21
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
22
|
Quigley DA, Kandyba E, Huang P, Halliwill KD, Sjölund J, Pelorosso F, Wong CE, Hirst GL, Wu D, Delrosario R, Kumar A, Balmain A. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer. Cell Rep 2016; 16:1153-1165. [PMID: 27425619 DOI: 10.1016/j.celrep.2016.06.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/16/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.
Collapse
Affiliation(s)
- David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo 0310, Norway; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0313, Norway; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Phillips Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Kyle D Halliwill
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonas Sjölund
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
| | - Facundo Pelorosso
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 9(th) Floor, Ciudad Autónoma de Buenos Aires 1121, Argentina
| | - Christine E Wong
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Gillian L Hirst
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Reyno Delrosario
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul Kumar
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Chen LH, Hsu WL, Tseng YJ, Liu DW, Weng CF. Involvement of DNMT 3B promotes epithelial-mesenchymal transition and gene expression profile of invasive head and neck squamous cell carcinomas cell lines. BMC Cancer 2016; 16:431. [PMID: 27391030 PMCID: PMC4938990 DOI: 10.1186/s12885-016-2468-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The 5-year overall survival rates for head and neck cancer (HNC) relies on distant metastasis. Importantly, the epithelial-mesenchymal transition (EMT) is believed to be an initial step of metastasis. However, the relationship of epigenetic with EMT formation is still unexplored in HNC. This study focuses on invasive subclones of HNC cell lines through the simulation of invasion in vitro; and underlying mechanisms were analyzed including DNA methylation and gene expression profile. METHODS Invasive subclones of NHC cell lines were successfully obtained using transwell coated with Matrixgel. Cells invaded through 8 μm pore several times were subcultured and examined with EMT features including morphology, EMT marker genes expression, and invasive ability. Moreover, compared the profile of genes expression in parental and invasive cells was analyzed using mRNA expression array. RESULTS DNA methyltransferase 3B (DNMT 3B) was upregulated in invasive subclones and might control the 5' region of E-cadherin (E-cad) methylation and further inhibited E-cad protein expression. Interference of DNMT 3B by siRNA or miRNA 29b could reduce EMT and cell invasion. Expression array analysis revealed the most possible involved pathways in cell invasion including arginine and proline metabolism, TGF-beta, and focal adhesion. CONCLUSIONS DNMT 3B might control EMT by DNA methylation manner in invasive HNC cell lines. Moreover, miR-29b mimic downregulated DNMT 3B and inhibited EMT and cell invasion indicated the role of therapeutic agent for invasive HNC. Genes identified from array data and new molecules are involved in metastasis of HNC need further validation.
Collapse
Affiliation(s)
- Li-Hsuen Chen
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Wen-Lin Hsu
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- />School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Ju Tseng
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dai-Wei Liu
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- />School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ching-Feng Weng
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
24
|
Li XB, Yang G, Zhu L, Tang YL, Zhang C, Ju Z, Yang X, Teng Y. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Res 2016; 26:838-49. [PMID: 27091432 DOI: 10.1038/cr.2016.47] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 01/10/2023] Open
Abstract
The cellular origin of gastric cancer remains elusive. Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is the first identified marker of gastric stem cells. However, the role of Lgr5(+) stem cells in driving malignant gastric cancer is not fully validated. Here, we deleted Smad4 and PTEN in murine gastric Lgr5(+) stem cells by the inducible Cre-LoxP system and marked mutant Lgr5(+) stem cells and their progeny with Cre-reporter Rosa26(tdTomato). Rapid onset and progression from microadenoma and macroscopic adenoma to invasive intestinal-type gastric cancer (IGC) were found in the gastric antrum with the loss of Smad4 and PTEN. In addition, invasive IGC developed at the murine gastro-forestomach junction, where a few Lgr5(+) stem cells reside. In contrast, Smad4 and PTEN deletions in differentiated cells, including antral parietal cells, pit cells and corpus Lgr5(+) chief cells, failed to initiate tumor growth. Furthermore, mutant Lgr5(+) cells were involved in IGC growth and progression. In the TCGA (The Cancer Genome Atlas) database, an increase in LGR5 expression was manifested in the human IGC that occurred at the gastric antrum and gastro-esophageal junction. In addition, the concurrent deletion of SMAD4 and PTEN, as well as their reduced expression and deregulated downstream pathways, were associated with human IGC. Thus, we demonstrated that gastric Lgr5(+) stem cells were cancer-initiating cells and might act as cancer-propagating cells to contribute to malignant progression.
Collapse
Affiliation(s)
- Xiu-Bin Li
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| | - Liang Zhu
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| | - Yu-Ling Tang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| | - Chong Zhang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| | - Zhenyu Ju
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| |
Collapse
|
25
|
Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quiescence. Cell Rep 2015; 13:561-572. [PMID: 26456821 DOI: 10.1016/j.celrep.2015.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022] Open
Abstract
Gab1 is a scaffold protein that acts downstream of receptor tyrosine kinases. Here, we produced conditional Gab1 mutant mice (by K14- and Krox20-cre) and show that Gab1 mediates crucial signals in the control of both the hair cycle and the self-renewal of hair follicle stem cells. Remarkably, mutant hair follicles do not enter catagen, the destructive phase of the hair cycle. Instead, hair follicle stem cells lose quiescence and become exhausted, and thus no stem cell niches are established in the bulges. Moreover, conditional sustained activation of Mapk signaling by expression of a gain-of-function Mek1(DD) allele (by Krox20-cre) rescues hair cycle deficits and restores quiescence of the stem cells. Our data thus demonstrate an essential role of Gab1 downstream of receptor tyrosine kinases and upstream of Shp2 and Mapk in the regulation of the hair cycle and the self-renewal of hair follicle stem cells.
Collapse
|
26
|
Jiang W, Yang G, Chen F, Yang X, Li T. Disruption of Smad4 in odontoblasts and dental epithelial cells influences the phenotype of multiple keratocystic odontogenic tumors. Biochem Biophys Res Commun 2015; 463:280-4. [PMID: 26002469 DOI: 10.1016/j.bbrc.2015.05.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/27/2022]
Abstract
Keratocystic odontogenic tumors (KCOTs) are cystic epithelial neoplasms with a high recurrence rate. The molecular mechanisms underlying the initiation and progression of KCOTs are still largely unknown. Previous research showed that specific ablation of Smad4 in odontoblasts and dental epithelia resulted in spontaneous KCOTs in mice, and that constitutively activated Hedgehog (Hh) signaling was detected in the cyst epithelia of both Smad4(Co/Co) OC-Cre and Smad4(Co/Co) K5-Cre mice. Here, we ablated Smad4 in mouse odontoblasts and dental epithelia and compared the sizes and numbers of KCOTs. Both the number and size of KCOTs in Smad4(Co/Co) OC-Cre mice were larger than those in Smad4(Co/Co) K5-Cre mice, suggesting that paracrine signals from root odontoblasts play a more important role than those from Hertwig's epithelial root sheath (HERS) cells.
Collapse
Affiliation(s)
- Weipeng Jiang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, PR China; State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, 20 Dongdajie Avenue, Fengtai District, Beijing 100071, PR China; Department of The Third Dental Center, Peking University School and Hospital of Stomatology, 10 East Huayuan Avenue, Haidian District, Beijing 100083, PR China
| | - Guan Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, 20 Dongdajie Avenue, Fengtai District, Beijing 100071, PR China.
| | - Feng Chen
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, PR China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, 20 Dongdajie Avenue, Fengtai District, Beijing 100071, PR China
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
27
|
Liu N, Yu C, Shi Y, Jiang J, Liu Y. SMAD4 expression in breast ductal carcinoma correlates with prognosis. Oncol Lett 2015; 10:1709-1715. [PMID: 26622737 DOI: 10.3892/ol.2015.3442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/11/2015] [Indexed: 11/06/2022] Open
Abstract
The present study examined SMAD4 expression in fine-needle aspiration cell blocks from patients with breast ductal carcinoma, in order to assess its viability as a prognostic marker. Using immunohistochemistry, the SMAD4 protein status of 86 breast ductal carcinoma fine-needle biopsies, from patients who underwent tumor resection at Beihua University Affiliated Hospital (Jilin, China) between 2002 and 2008, was characterized. The association between SMAD4 expression and clinicopathological parameters, as well as prognosis was assessed using the Mantel-Haenszel method and Cox proportional hazards regression. SMAD4 staining was observed in the cytoplasm and nucleus, and its expression was found to be decreased in ductal breast carcinoma as compared with adjacent normal breast epithelia. Patients with reduced SMAD4 expression levels tended to exhibit more poorly differentiated tumors, a higher risk of recurrence and shorter overall survival. These results demonstrated that the evaluation of SMAD4 protein status in fine-needle biopsy specimens of breast ductal carcinoma may provide additional prognostic information.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Pathology, College of Basic Medicine, Beihua University, Jilin City, Jilin 132013, P.R. China
| | - Chunyan Yu
- Department of Pathology, College of Basic Medicine, Beihua University, Jilin City, Jilin 132013, P.R. China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jing Jiang
- Department of Pathology, Beihua University Affiliated Hospital, Jilin City, Jilin 132011, P.R. China
| | - Yuhe Liu
- Department of Pathology, College of Basic Medicine, Beihua University, Jilin City, Jilin 132013, P.R. China
| |
Collapse
|
28
|
Pio G, Ceci M, Malerba D, D'Elia D. ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks. BMC Bioinformatics 2015; 16 Suppl 9:S7. [PMID: 26051695 PMCID: PMC4464030 DOI: 10.1186/1471-2105-16-s9-s7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The understanding of mechanisms and functions of microRNAs (miRNAs) is fundamental for the study of many biological processes and for the elucidation of the pathogenesis of many human diseases. Technological advances represented by high-throughput technologies, such as microarray and next-generation sequencing, have significantly aided miRNA research in the last decade. Nevertheless, the identification of true miRNA targets and the complete elucidation of the rules governing their functional targeting remain nebulous. Computational tools have been proven to be fundamental for guiding experimental validations for the discovery of new miRNAs, for the identification of their targets and for the elucidation of their regulatory mechanisms. Description ComiRNet (Co-clustered miRNA Regulatory Networks) is a web-based database specifically designed to provide biologists and clinicians with user-friendly and effective tools for the study of miRNA-gene target interaction data and for the discovery of miRNA functions and mechanisms. Data in ComiRNet are produced by a combined computational approach based on: 1) a semi-supervised ensemble-based classifier, which learns to combine miRNA-gene target interactions (MTIs) from several prediction algorithms, and 2) the biclustering algorithm HOCCLUS2, which exploits the large set of produced predictions, with the associated probabilities, to identify overlapping and hierarchically organized biclusters that represent miRNA-gene regulatory networks (MGRNs). Conclusions ComiRNet represents a valuable resource for elucidating the miRNAs' role in complex biological processes by exploiting data on their putative function in the context of MGRNs. ComiRnet currently stores about 5 million predicted MTIs between 934 human miRNAs and 30,875 mRNAs, as well as 15 bicluster hierarchies, each of which represents MGRNs at different levels of granularity. The database can be freely accessed at: http://comirnet.di.uniba.it.
Collapse
|
29
|
Haeger SM, Thompson JJ, Kalra S, Cleaver TG, Merrick D, Wang XJ, Malkoski SP. Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors. Oncogene 2015; 35:577-586. [PMID: 25893305 PMCID: PMC4615192 DOI: 10.1038/onc.2015.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/21/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy with a poor prognosis. Despite progress targeting oncogenic drivers, there are no therapies targeting tumor suppressor loss. Smad4 is an established tumor suppressor in pancreatic and colon cancer, however, the consequences of Smad4 loss in lung cancer are largely unknown. We evaluated Smad4 expression in human NSCLC samples and examined Smad4 alterations in large NSCLC datasets and found that reduced Smad4 expression is common in human NSCLC and occurs through a variety of mechanisms including mutation, homozygous deletion, and heterozygous loss. We modeled Smad4 loss in lung cancer by deleting Smad4 in airway epithelial cells and found that Smad4 deletion both initiates and promotes lung tumor development. Interestingly, both Smad4−/− mouse tumors and human NSCLC samples with reduced Smad4 expression demonstrated increased DNA damage while Smad4 knockdown in lung cancer cells reduced DNA repair and increased apoptosis after DNA damage. In addition, Smad4 deficient NSCLC cells demonstrated increased sensitivity to both chemotherapeutics that inhibit DNA topoisomerase and drugs that block double strand DNA break repair by non-homologous end joining. In sum, these studies establish Smad4 as a lung tumor suppressor and suggest that the defective DNA repair phenotype of Smad4 deficient tumors can be exploited by specific therapeutic strategies.
Collapse
Affiliation(s)
- Sarah M Haeger
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Joshua J Thompson
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Sean Kalra
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Timothy G Cleaver
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Daniel Merrick
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO.,Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
30
|
Leilei Y, Bing L, Yang L, Shaoxia W, Yuan X, Dongping W, Huahu Y, Shichen S, Guangzhou Z, Ruiyun P, Lin Z, Wenlong L. iRhom2 mutation leads to aberrant hair follicle differentiation in mice. PLoS One 2014; 9:e115114. [PMID: 25546423 PMCID: PMC4278852 DOI: 10.1371/journal.pone.0115114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/18/2014] [Indexed: 11/24/2022] Open
Abstract
iRhom1 and iRhom2 are inactive homologues of rhomboid intramembrane serine proteases lacking essential catalytic residues, which are necessary for the maturation of TNFα-converting enzyme (TACE). In addition, iRhoms regulate epidermal growth factor family secretion. The functional significance of iRhom2 during mammalian development is largely unclear. We have identified a spontaneous single gene deletion mutation of iRhom2 in Uncv mice. The iRhom2Uncv/Uncv mice exhibit hairless phenotype in a BALB/c genetic background. In this study, we observed dysplasia hair follicles in iRhom2Uncv/Uncv mice from postnatal day 3. Further examination found decreased hair matrix proliferation and aberrant hair shaft and inner root sheath differentiation in iRhom2Uncv/Uncv mutant hair follicles. iRhom2 is required for the maturation of TACE. Our data demonstrate that iRhom2Uncv cannot induce the maturation of TACE in vitro and the level of mature TACE is also significantly reduced in the skin of iRhom2Uncv/Uncv mice. The activation of Notch1, a substrate of TACE, is disturbed, associated with dramatically down-regulation of Lef1 in iRhom2Uncv/Uncv hair follicle matrix. This study identifies iRhom2 as a novel regulator of hair shaft and inner root sheath differentiation.
Collapse
Affiliation(s)
- Yang Leilei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- * E-mail: (YL); (WL)
| | - Liu Bing
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Li Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wang Shaoxia
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xu Yuan
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Wang Dongping
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Ye Huahu
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Shang Shichen
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Zhang Guangzhou
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Peng Ruiyun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zeng Lin
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Li Wenlong
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
- * E-mail: (YL); (WL)
| |
Collapse
|
31
|
Abstract
In 2007, three scientists, Drs. Mario R. Capecchi, Martin J. Evans, and Oliver Smithies, received the Nobel Prize in Physiology or Medicine for their contributions of introducing specific gene modifications into mice. This technology, commonly referred to as gene targeting or knockout, has proven to be a powerful means for precisely manipulating the mammalian genome and has generated great impacts on virtually all phases of mammalian biology and basic biomedical research. Of note, germline mutations of many genes, especially tumor suppressors, often result in lethality during embryonic development or at developmental stages before tumor formation. This obstacle has been effectively overcome by the use of conditional knockout technology in conjunction with Cre-LoxP- or Flp-Frt-mediated temporal and/or spatial systems to generate genetic switches for precise DNA recombination. Currently, numerous conditional knockout mouse models have been successfully generated and applied in studying tumor initiation, progression, and metastasis. This review summarizes some conditional mutant mouse models that are widely used in cancer research and our understanding of the possible mechanisms underlying tumorigenesis.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
32
|
Moutasim KA, Mellows T, Mellone M, Lopez MA, Tod J, Kiely PC, Sapienza K, Greco A, Neill GW, Violette S, Weinreb PH, Marshall JF, Ottensmeier CH, Sayan AE, Jenei V, Thomas GJ. Suppression of Hedgehog signalling promotes pro-tumourigenic integrin expression and function. J Pathol 2014; 233:196-208. [PMID: 24573955 DOI: 10.1002/path.4342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/21/2014] [Accepted: 02/13/2014] [Indexed: 12/17/2022]
Abstract
Aberrant Hedgehog (Hh) signalling has been reported in a number of malignancies, particularly basal cell carcinoma (BCC) of the skin. Clinical trials of Hh inhibitors are underway in many cancers, and these have produced significant clinical benefit in BCC patients, although regrowth of new, or clinically aggressive, variants, as well as development of secondary malignancies, has been reported. αvβ6 integrin is expressed in many cancers, where it has been shown to correlate with an aggressive tumour phenotype and poor prognosis. We have previously reported αvβ6 up-regulation in aggressive, morphoeic BCC variants, where it modulates the stromal response and induces invasion. To examine a possible link between Hh and αvβ6 function, we generated BCC models, overexpressing Gli1 in immortalized keratinocytes (NTert1, HaCaT). Unexpectedly, we found that suppressing Gli1 significantly increased αvβ6 expression. This promoted tumour cell motility and also stromal myofibroblast differentiation through integrin-dependent TGF-β1 activation. Gli1 inhibited αvβ6 expression by suppressing TGF-β1-induced Smad2/3 activation, blocking a positive feedback loop maintaining high αvβ6 levels. A similar mechanism was observed in AsPC1 pancreatic cancer cells expressing endogenous Gli1, suggesting a common mechanism across tumour types. In vitro findings were supported using human clinical samples, where we showed an inverse correlation between αvβ6 and Gli1 expression in different BCC subtypes and pancreatic cancers. In summary, we show that expression of Gli1 and αvβ6 inversely correlates in tumours in vivo, and Hh targeting up-regulates TGF-β1/Smad2/3-dependent αvβ6 expression, promoting pro-tumourigenic cell functions in vitro. These results have potential clinical significance, given the reported recurrence of BCC variants and secondary malignancies in patients treated by Hh targeting.
Collapse
Affiliation(s)
- Karwan A Moutasim
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Salazar VS, Zarkadis N, Huang L, Watkins M, Kading J, Bonar S, Norris J, Mbalaviele G, Civitelli R. Postnatal ablation of osteoblast Smad4 enhances proliferative responses to canonical Wnt signaling through interactions with β-catenin. J Cell Sci 2013; 126:5598-609. [PMID: 24101723 DOI: 10.1242/jcs.132233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Canonical Wnt (cWnt) signaling through β-catenin regulates osteoblast proliferation and differentiation to enhance bone formation. We previously reported that osteogenic action of β-catenin is dependent on BMP signaling. Here, we further examined interactions between cWnt and BMP in bone. In osteoprogenitors stimulated with BMP2, β-catenin localizes to the nucleus, physically interacts with Smad4, and is recruited to DNA-binding transcription complexes containing Smad4, R-Smad1/5 and TCF4. Furthermore, Tcf/Lef-dependent transcription, Ccnd1 expression and proliferation all increase when Smad4, 1 or 5 levels are low, whereas TCF/Lef activities decrease when Smad4 expression is high. The ability of Smad4 to antagonize transcription of Ccnd1 is dependent on DNA-binding activity but Smad4-dependent transcription is not required. In mice, conditional deletion of Smad4 in osterix(+) cells increases mitosis of cells on trabecular bone surfaces as well as in primary osteoblast cultures from adult bone marrow and neonatal calvaria. By contrast, ablation of Smad4 delays differentiation and matrix mineralization by primary osteoblasts in response to Wnt3a, indicating that loss of Smad4 perturbs the balance between proliferation and differentiation in osteoprogenitors. We propose that Smad4 and Tcf/Lef transcription complexes compete for β-catenin, thus restraining cWnt-dependent proliferative signals while favoring the matrix synthesizing activity of osteoblasts.
Collapse
Affiliation(s)
- Valerie S Salazar
- Department of Internal Medicine, Division of Bone and Mineral Disease, Washington University School of Medicine, 660 South Euclid, Campus Box 8301, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
White RA, Neiman JM, Reddi A, Han G, Birlea S, Mitra D, Dionne L, Fernandez P, Murao K, Bian L, Keysar SB, Goldstein NB, Song N, Bornstein S, Han Z, Lu X, Wisell J, Li F, Song J, Lu SL, Jimeno A, Roop DR, Wang XJ. Epithelial stem cell mutations that promote squamous cell carcinoma metastasis. J Clin Invest 2013; 123:4390-404. [PMID: 23999427 DOI: 10.1172/jci65856] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/11/2013] [Indexed: 12/15/2022] Open
Abstract
Squamous cell carcinomas (SCCs) originate in stratified epithelia, with a small subset becoming metastatic. Epithelial stem cells are targets for driver mutations that give rise to SCCs, but it is unknown whether they contribute to oncogenic multipotency and metastasis. We developed a mouse model of SCC by targeting two frequent genetic mutations in human SCCs, oncogene Kras(G12D) activation and Smad4 deletion, to mouse keratin 15-expressing (K15+) stem cells. We show that transgenic mice developed multilineage tumors, including metastatic SCCs. Among cancer stem cell-enriched (CSC-enriched) populations, those with increased side population (SP) cells correlated with epithelial-mesenchymal transition (EMT) and lung metastasis. We show that microRNA-9 (miR-9) contributed to SP expansion and metastasis, and miR-9 inhibition reduced the number of SP cells and metastasis. Increased miR-9 was detected in metastatic human primary SCCs and SCC metastases, and miR-9-transduced human SCC cells exhibited increased invasion. We identified α-catenin as a predominant miR-9 target. Increased miR-9 in human SCC metastases correlated with α-catenin loss but not E-cadherin loss. Our results demonstrate that stem cells with Kras(G12D) activation and Smad4 depletion can produce tumors that are multipotent and susceptible to EMT and metastasis. Additionally, tumor initiation and metastatic properties of CSCs can be uncoupled, with miR-9 regulating the expansion of metastatic CSCs.
Collapse
|
35
|
Finnson KW, Arany PR, Philip A. Transforming Growth Factor Beta Signaling in Cutaneous Wound Healing: Lessons Learned from Animal Studies. Adv Wound Care (New Rochelle) 2013; 2:225-237. [PMID: 24761336 DOI: 10.1089/wound.2012.0419] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
SIGNIFICANCE Wound healing is a complex physiological process involving a multitude of growth factors, among which transforming growth factor beta (TGF-β) has the broadest spectrum of effects. Animal studies have provided key information on the mechanisms of TGF-β action in wound healing and have guided the development of therapeutic strategies targeting the TGF-β pathway to improve wound healing and scarring outcome. RECENT ADVANCES Development of tissue-specific expression systems for overexpression or knockout of TGF-β signaling pathway components has led to novel insight into the role of TGF-β signaling in wound healing. This work has also identified molecules that might serve as molecular targets for the treatment of pathological skin conditions such as chronic wounds and excessive scarring (fibrosis). CRITICAL ISSUES Many of the mouse models with genetic alterations in the TGF-β signaling pathway develop an underlying skin abnormality, which may pose some limitations on the interpretation of wound-healing results obtained in these animals. Also, TGF-β's pleiotropic effects on many cell types throughout all phases of wound healing present a challenge in designing specific strategies for targeting the TGF-β signaling pathway to promote wound healing or reduce scarring. FUTURE DIRECTIONS Further characterization of TGF-β signaling pathway components using inducible tissue-specific overexpression or knockout technology will be needed to corroborate results obtained in mouse models that display a skin phenotype, and to better understand the role of TGF-β signaling during distinct phases of the wound-healing process. Such studies will also provide a better understanding of how TGF-β mediates its autocrine, paracrine, and double paracrine effects on cellular responses in vivo during wound healing.
Collapse
Affiliation(s)
- Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal General Hospital, Montreal, Canada
| | - Praveen R. Arany
- Cell Regulation and Control Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal General Hospital, Montreal, Canada
| |
Collapse
|
36
|
Park JH, Lee C, Suh JH, Chae JY, Moon KC. Nuclear expression of Smad proteins and its prognostic significance in clear cell renal cell carcinoma. Hum Pathol 2013; 44:2047-54. [PMID: 23668999 DOI: 10.1016/j.humpath.2013.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 11/28/2022]
Abstract
Smad2, Smad3, and Smad4 are components of the transforming growth factor β signaling pathway associated with tumorigenesis. The expression of these proteins is associated with tumor progression and prognosis of many cancers. This study aimed to evaluate the nuclear expression of Smad2, Smad3, and Smad4 in clear cell renal cell carcinoma and to assess the clinical significance and prognostic value of their expression patterns. The nuclear expression levels of Smads were evaluated in 637 cases of clear cell renal cell carcinomas using immunohistochemistry. To determine the statistical significance of Smad expression in clear cell renal cell carcinoma, each of the cases were divided into 2 groups (low and high expression groups) according to the extent of nuclear staining. Nuclear expressions of Smad3 and Smad4 were inversely correlated with the patient's age, the nuclear grade, the tumor size, and the pTNM stage. The Smad3-low and Smad4-low groups showed significantly shorter cancer-specific and progression-free survival times. Furthermore, multivariate analysis showed that both Smad3 and Smad4 were independent predictors for progression-free survival (P = .008 and P = .022, respectively). However, Smad2 expression was not related to clinicopathologic parameters and patients' survival. These results suggest that nuclear expressions of Smad3 and Smad4 were related to prognosis of clear cell renal cell carcinoma patients and may serve as novel prognostic markers in clear cell renal cell carcinoma patients.
Collapse
Affiliation(s)
- Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | | | | | | | | |
Collapse
|
37
|
Smad4 loss in mouse keratinocytes leads to increased susceptibility to UV carcinogenesis with reduced Ercc1-mediated DNA repair. J Invest Dermatol 2013; 133:2609-2616. [PMID: 23648546 PMCID: PMC3783584 DOI: 10.1038/jid.2013.213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 11/08/2022]
Abstract
Smad4 loss occurs frequently in human skin squamous cell carcinoma (SCC), but it is unknown if this loss increases ultraviolet-induced (UV) carcinogenesis, a major etiological factor in skin cancer. In the present study, mice with keratinocyte-specific Smad4 deletion (K14.Smad4−/−) and wildtype (WT) littermates were chronically UV-irradiated. Compared to WT, K14.Smad4−/− mice exhibited increased DNA damage and increased susceptibility to UV-induced skin cancer. Among genes involved in repairing UV-induced DNA damage, Excision repair cross-complementation group1 (Ercc1) mRNA was significantly reduced in UV treated K14.Smad4−/− skin compared to WT skin. Further analysis revealed that Smad4 loss confers reduced Snail binding to the Ercc1 regulatory elements, resulting in reduced Ercc1 transcription. Consistently, transient transfection of Snai1 into Smad4−/− keratinocytes led to increased repair of UV-induced DNA lesions. Transfection of Ercc1 into Smad4−/− keratinocytes restored repair of UV-induced DNA damage. Further, immunostaining revealed that the presence of Smad4 protein is associated with the presence of Snail and Ercc1 proteins in human skin SCC and precancerous actinic keratoses (AK). Collectively, Smad4 loss associated Snail reduction compromises Ercc1-mediated DNA repair, contributing to increased UV-induced skin carcinogenesis. Thus we identified a role for Snail in UV-induced DNA repair.
Collapse
|
38
|
Identification and analysis of epidermal stem cells from primary mouse keratinocytes. Methods Mol Biol 2013. [PMID: 23483388 DOI: 10.1007/978-1-62703-330-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The skin, one of the largest organs of the body, is a dynamic tissue in which terminally differentiated keratinocytes are replaced by the proliferation and differentiation of epidermal stem cells. Epidermal stem cells are relatively undifferentiated, retain a high capacity for self-renewal throughout their lifetime, and normally have a slow cell division cycle in vivo. Furthermore, they have a high proliferation potential in vitro, and it is often desirable to isolate and culture them from adult mice to use in conjunction with in vivo studies. However, the isolation of these cells has been problematic. Here, we describe reliable methods for identifying a population of isolated bulge stem cells by flow cytometry and for measuring the growth and differentiation potential of primary mouse keratinocytes by clonal analysis.
Collapse
|
39
|
Context is everything for dependence receptors in colorectal cancer. Proc Natl Acad Sci U S A 2013; 110:2697-8. [PMID: 23396845 DOI: 10.1073/pnas.1300758110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
40
|
Lopez-Pajares V, Yan K, Zarnegar BJ, Jameson KL, Khavari PA. Genetic pathways in disorders of epidermal differentiation. Trends Genet 2013; 29:31-40. [PMID: 23141808 PMCID: PMC5477429 DOI: 10.1016/j.tig.2012.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
More than 100 human genetic skin diseases, impacting over 20% of the population, are characterized by disrupted epidermal differentiation. A significant proportion of the 90 genes identified in these disorders to date are concentrated within several functional pathways, suggesting the emergence of organizing themes in epidermal differentiation. Among these are the Notch, transforming growth factor β (TGFβ), IκB kinase (IKK), Ras/mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), p63, and Wnt signaling pathways, as well as core biological processes mediating calcium homeostasis, tissue integrity, cornification, and lipid biogenesis. Here, we review recent results supporting the central role of these pathways in epidermal differentiation, highlighting the integration of genetic information with functional studies to illuminate the biological actions of these pathways in humans as well as to guide development of future therapeutics to correct their dysfunction.
Collapse
Affiliation(s)
| | - Karen Yan
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305
| | - Brian J. Zarnegar
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305
| | | | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
41
|
Glick AB. The Role of TGFβ Signaling in Squamous Cell Cancer: Lessons from Mouse Models. J Skin Cancer 2012; 2012:249063. [PMID: 23326666 PMCID: PMC3541634 DOI: 10.1155/2012/249063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 12/31/2022] Open
Abstract
TGFβ1 is a member of a large growth factor family including activins/inhibins and bone morphogenic proteins (BMPs) that have a potent growth regulatory and immunomodulatory functions in normal skin homeostasis, regulation of epidermal stem cells, extracellular matrix production, angiogenesis, and inflammation. TGFβ signaling is tightly regulated in normal tissues and becomes deregulated during cancer development in cutaneous SCC and many other solid tumors. Because of these diverse biological processes regulated by TGFβ1, this cytokine and its signaling pathway appear to function at multiple points during carcinogenesis with distinct effects. The mouse skin carcinogenesis model has been a useful tool to dissect the function of this pathway in cancer pathogenesis, with transgenic and null mice as well as small molecule inhibitors to alter the function of the TGFβ1 pathway and assess the effects on cancer development. This paper will review data on changes in TGFβ1 signaling in human SCC primarily HNSCC and cutaneous SCC and different mouse models that have been generated to investigate the relevance of these changes to cancer. A better understanding of the mechanisms underlying the duality of TGFβ1 action in carcinogenesis will inform potential use of this signaling pathway for targeted therapies.
Collapse
Affiliation(s)
- Adam B. Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
42
|
Lin HY, Yang LT. Differential response of epithelial stem cell populations in hair follicles to TGF-β signaling. Dev Biol 2012; 373:394-406. [PMID: 23103542 DOI: 10.1016/j.ydbio.2012.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/04/2012] [Accepted: 10/19/2012] [Indexed: 12/17/2022]
Abstract
Epidermal stem cells residing in different locations in the skin continuously self-renew and differentiate into distinct cell lineages to maintain skin homeostasis during postnatal life. Murine epidermal stem cells located at the bulge region are responsible for replenishing the hair lineage, while the stem cells at the isthmus regenerate interfollicular epidermis and sebaceous glands. In vitro cell culture and in vivo animal studies have implicated TGF-β signaling in the maintenance of epidermal and hair cycle homeostasis. Here, we employed a triple transgenic animal model that utilizes a combined Cre/loxP and rtTA/TRE system to allow inducible and reversible inhibition of TGF-β signaling in hair follicle lineages and suprabasal layer of the epidermis. Using this animal model, we have analyzed the role of TGF-β signaling in distinct phases of the hair cycle. Transient abrogation of TGF-β signaling does not prevent catagen progression; however, it induces aberrant proliferation and differentiation of isthmus stem cells to epidermis and sebocyte lineages and a blockade in anagen re-entry as well as results in an incomplete hair shaft development. Moreover, ablation of TGF-β signaling during anagen leads to increased apoptosis in the secondary hair germ and bulb matrix cells. Blocking of TGF-β signaling in bulge stem cell cultures abolishes their colony-forming ability, suggesting that TGF-β signaling is required for the maintenance of bulge stem cells. At the molecular level, inhibition of TGF-β signaling results in a decrease in both Lrig1-expressing isthmus stem cells and Lrg5-expressing bulge stem cells, which may account for the phenotypes seen in our animal model. These data strongly suggest that TGF-β signaling plays an important role in regulating the proliferation, differentiation, and apoptosis of distinct epithelial stem cell populations in hair follicles.
Collapse
Affiliation(s)
- Hsien-Yi Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan, ROC
| | | |
Collapse
|
43
|
Gerhart J, Hayes C, Scheinfeld V, Chernick M, Gilmour S, George-Weinstein M. Myo/Nog cells in normal, wounded and tumor-bearing skin. Exp Dermatol 2012; 21:466-8. [PMID: 22621191 DOI: 10.1111/j.1600-0625.2012.01503.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Murine and human skin were examined for the presence of Myo/Nog cells that were originally discovered in the chick embryo by their expression of MyoD mRNA, noggin and the G8 antigen. Myo/Nog cells are the primary source of noggin in telogen hair follicles. They are scarce within the interfollicular dermis and absent in the epidermis. Within 24 h following epidermal abrasion, Myo/Nog cells increase in number in the follicles and appear in the wound. Myo/Nog cells are also recruited to the stroma of tumors formed from v-Ras-transformed keratinocytes (Ker/Ras). Human squamous cell carcinomas and malignant melanomas contain significantly more Myo/Nog cells than basal cell carcinomas. Myo/Nog cells are distinct from macrophages, granulocytes and cells expressing alpha smooth muscle actin in the tumor stroma. Myo/Nog cells may be modulators of skin homoeostasis and wound healing, and potential diagnostic and therapeutic targets in skin cancer.
Collapse
|
44
|
Zhang Y, Fan KJ, Sun Q, Chen AZ, Shen WL, Zhao ZH, Zheng XF, Yang X. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res 2012; 40:9286-97. [PMID: 22821565 PMCID: PMC3467063 DOI: 10.1093/nar/gks667] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway participates in various biological processes. Dysregulation of Smad4, a central cellular transducer of TGF-β signalling, is implicated in a wide range of human diseases and developmental disorders. However, the mechanisms underlying Smad4 dysregulation are not fully understood. Using a functional screening approach based on luciferase reporter assays, we identified 39 microRNAs (miRNAs) as potential regulators of Smad4 from an expression library of 388 human miRNAs. The screening was supported by bioinformatic analysis, as 24 of 39 identified miRNAs were also predicted to target Smad4. MiR-199a, one of the identified miRNAs, was inversely correlated with Smad4 expression in various human cancer cell lines and gastric cancer tissues, and repressed Smad4 expression and blocked canonical TGF-β transcriptional responses in cell lines. These effects were dependent on the presence of a conserved, but not perfect seed paired, miR-199a-binding site in the Smad4 3'-untranslated region (UTR). Overexpression of miR-199a significantly inhibited the ability of TGF-β to induce gastric cancer cell growth arrest and apoptosis in vitro, and promoted anchorage-independent growth in soft agar, suggesting that miR-199a plays an oncogenic role in human gastric tumourigenesis. In conclusion, our functional screening uncovers multiple miRNAs that regulate the cellular responsiveness to TGF-β signalling and reveals important roles of miR-199a in gastric cancer by directly targeting Smad4.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, Fengtai District, Beijing 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Han R, Beppu H, Lee YK, Georgopoulos K, Larue L, Li E, Weiner L, Brissette JL. A pair of transmembrane receptors essential for the retention and pigmentation of hair. Genesis 2012; 50:783-800. [PMID: 22611050 DOI: 10.1002/dvg.22039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 05/03/2011] [Accepted: 05/12/2011] [Indexed: 01/07/2023]
Abstract
Hair follicles are simple, accessible models for many developmental processes. Here, using mutant mice, we show that Bmpr2, a known receptor for bone morphogenetic proteins (Bmps), and Acvr2a, a known receptor for Bmps and activins, are individually redundant but together essential for multiple follicular traits. When Bmpr2/Acvr2a function is reduced in cutaneous epithelium, hair follicles undergo rapid cycles of hair generation and loss. Alopecia results from a failure to terminate hair development properly, as hair clubs never form, and follicular retraction is slowed. Hair regeneration is rapid due to premature activation of new hair-production programs. Hair shafts differentiate aberrantly due to impaired arrest of medullary-cell proliferation. When Bmpr2/Acvr2a function is reduced in melanocytes, gray hair develops, as melanosomes differentiate but fail to grow, resulting in organelle miniaturization. We conclude that Bmpr2 and Acvr2a normally play cell-type-specific, necessary roles in organelle biogenesis and the shutdown of developmental programs and cell division.
Collapse
Affiliation(s)
- Rong Han
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang L, Li W, Wang S, Wang L, Li Y, Yang X, Peng R. Smad4 disruption accelerates keratinocyte reepithelialization in murine cutaneous wound repair. Histochem Cell Biol 2012; 138:573-82. [PMID: 22644379 DOI: 10.1007/s00418-012-0974-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2012] [Indexed: 12/28/2022]
Abstract
Keratinocyte reepithelialization is a rate-limiting event in cutaneous wound repair, which involves the migration and proliferation of keratinocytes to cover the denuded dermal surface. Transforming growth factor-β1 (TGF-β1) has the ability to induce epithelial cell migration while inhibiting proliferation, and controversial results have been generated regarding the effect of TGF-β signaling on reepithelialization. In this study, full-thickness skin wounds were made in keratinocyte-specific Smad4 knockout and the control mice. The wound closure, reepithelialization, keratinocyte proliferation, myofibroblast numbers and collagen deposition of were assessed. The results showed that the proliferation of keratinocytes increased, which accelerated the reepithelialization, and led to faster wound repair in the epidermis of Smad4 mutant mice. Upregulation of keratin 17, 14-3-3 sigma and phosphorylated AKT in the hyperproliferative epidermis may be correlated with the accelerated reepithelialization. We conclude that Smad4 plays an inhibitory role in the keratinocyte-mediated reepithelialization of wound healing.
Collapse
Affiliation(s)
- Leilei Yang
- Beijing Institute of Radiation Medicine, 27 Tai-Ping Road, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Shao Y, Zhang J, Zhang R, Wan J, Zhang W, Yu B. Examination of Smad2 and Smad4 copy-number variations in skin cancers. Clin Transl Oncol 2012; 14:138-42. [DOI: 10.1007/s12094-012-0773-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Malkoski SP, Wang XJ. Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Lett 2012; 586:1984-92. [PMID: 22321641 DOI: 10.1016/j.febslet.2012.01.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
Abstract
TGFβ signaling Smads (Smad2, 3, and 4) were suspected tumor suppressors soon after their discovery. Nearly two decades of research confirmed this role and revealed other divergent and cancer-specific functions including paradoxical tumor promotion effects. Although Smad4 is the most potent tumor suppressor, its functions are highly context-specific as exemplified by pancreatic cancer and head-and-neck cancer: in pancreatic cancer, Smad4 loss cannot initiate tumor formation but promotes metastases while in head-and-neck cancer Smad4 loss promotes cancer progression but also initiates tumor formation, likely through effects on genomic instability. The differing consequences of impaired Smad signaling in human cancers and the molecular mechanisms that underpin these differences will have important implications for the design and application of novel targeted therapies.
Collapse
Affiliation(s)
- Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
49
|
Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR. The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. Subcell Biochem 2012; 58:281-336. [PMID: 22403079 DOI: 10.1007/978-94-007-3012-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.
Collapse
Affiliation(s)
- Elizabeth M Davies
- Division of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, United Kingdom,
| | | | | | | | | | | |
Collapse
|
50
|
Han G, Wang XJ. Roles of TGFβ signaling Smads in squamous cell carcinoma. Cell Biosci 2011; 1:41. [PMID: 22204491 PMCID: PMC3285038 DOI: 10.1186/2045-3701-1-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023] Open
Abstract
Smad proteins are classified in different groups based on their functions in mediating transforming growth factor β (TGFβ) superfamily components. Smad1/5/8 mainly mediate bone morphogenetic proteins (BMP) pathway and Smad2/3 mainly mediate TGFβ pathway. Smad4 functions as common Smad to mediate both pathways. Previous studies showed many members of TGFβ superfamily play a role in carcinogenesis. The current review focuses on the role of TGFβ signaling Smads in squamous cell carcinomas (SCCs). TGFβ signaling inhibits early tumor development, but promotes tumor progression in the late stage. Although Smad2, Smad3 and Smad4 are all TGFβ signaling Smads, they play different roles in SCCs. Genetically, Smad2 and Smad4 are frequently mutated or deleted in certain human cancers whereas Smad3 mutation or deletion is infrequent. Genetically engineered mouse models with these individual Smad deletions have provided important tools to identify their diversified roles in cancer. Using these models, we have shown that Smad4 functions as a potent tumor suppressor and its loss causes spontaneous SCCs development; Smad2 functions as a tumor suppressor and its loss promotes SCC formation initiated by other genetic insults but is insufficient to initiate tumor formation. In contrast, Smad3 primarily mediates TGFβ-induced inflammation. The functions of each Smad also depends on the presence/absence of its Smad partner, thus need to be interpreted in a context-specific manner.
Collapse
Affiliation(s)
- Gangwen Han
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|