1
|
Shi Z, Liu J, Qin J, Liang X, Ou X, Zhang T, Yan X, Hu Q, Huang W, Hu K. Astilbin Alleviates Radiation-Induced Pulmonary Fibrosis via circPRKCE Targeting the TGF-β/Smad7 Pathway to Inhibit Epithelial-Mesenchymal Transition. Biomedicines 2025; 13:689. [PMID: 40149664 PMCID: PMC11939908 DOI: 10.3390/biomedicines13030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Purpose: This study aimed to clarify the protective effect of astilbin (AST) on radiation-induced pulmonary fibrosis (RIPF) and explore its underlying molecular mechanism, focusing on non-coding RNAs. Methods: Mouse lung epithelial cells (MLE-12 and TC-1) and C57BL/6J mice were used to establish in vitro radiation injury models and in vivo RIPF models, respectively. Cell viability, apoptosis, the epithelial-to-mesenchymal transition (EMT), and fibrosis-related markers were assessed using cell-counting kit-8 assays, Western blotting, immunohistochemistry, and histological staining. High-throughput sequencing identified differentially expressed circRNAs. The mechanistic studies included RNA-FISH, a dual-luciferase reporter assay, an RNA immunoprecipitation (RIP) assay, and loss-of-function experiments. Results: AST significantly alleviated radiation-induced apoptosis and EMT in vitro, as well as RIPF in vivo. AST treatment reduced collagen deposition, fibrosis-related protein expression, and EMT marker changes. High-throughput sequencing revealed that AST upregulated circPRKCE, a non-coding RNA that functions through a ceRNA mechanism by binding to miR-15b-5p, thereby promoting Smad7 expression and suppressing the TGF-β/Smad7 pathway. Knockdown of circPRKCE abolished AST's protective effects, confirming its pivotal role in mediating AST's anti-fibrotic activity. Conclusions: This study demonstrates that Astilbin alleviates radiation-induced pulmonary fibrosis via circPRKCE targeting the TGF-β/Smad7 pathway to inhibit EMT, suggesting AST as a potential therapeutic agent for managing this severe complication of radiotherapy.
Collapse
Affiliation(s)
- Zhiling Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Jing Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Jing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Xian Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Xue Ou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Xueting Yan
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Qianxin Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Weimei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
2
|
Espín R, Medina-Jover F, Sigüenza-Andrade J, Farran-Matas S, Mateo F, Figueras A, Sanz R, Vicent G, Shabbir A, Ruiz-Auladell L, Racionero-Andrés E, García I, Baiges A, Franco-Luzón L, Martínez-Tebar A, Pardo-Cea M, Martínez-Iniesta M, Wang X, Cuyàs E, Menendez J, Lopez-Cerda M, Muñoz P, Richaud I, Raya A, Fabregat I, Villanueva A, Serrat X, Cerón J, Alemany M, Guix I, Herencia-Ropero A, Serra V, Krishnan R, Mekhail K, Hakem R, Bruna J, Barcellos-Hoff M, Viñals F, Aytes Á, Pujana M. Harnessing transcriptional regulation of alternative end-joining to predict cancer treatment. NAR Cancer 2025; 7:zcaf007. [PMID: 40061566 PMCID: PMC11886861 DOI: 10.1093/narcan/zcaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Alternative end-joining (alt-EJ) is an error-prone DNA repair pathway that cancer cells deficient in homologous recombination rely on, making them vulnerable to synthetic lethality via inhibition of poly(ADP-ribose) polymerase (PARP). Targeting alt-EJ effector DNA polymerase theta (POLθ), which synergizes with PARP inhibitors and can overcome resistance, is of significant preclinical and clinical interest. However, the transcriptional regulation of alt-EJ and its interactions with processes driving cancer progression remain poorly understood. Here, we show that alt-EJ is suppressed by hypoxia while positively associated with MYC (myelocytomatosis oncogene) transcriptional activity. Hypoxia reduces PARP1 and POLQ expression, decreases MYC binding at their promoters, and lowers PARylation and alt-EJ-mediated DNA repair in cancer cells. Tumors with HIF1A mutations overexpress the alt-EJ gene signature. Inhibition of hypoxia-inducible factor 1α or HIF1A expression depletion, combined with PARP or POLθ inhibition, synergistically reduces the colony-forming capacity of cancer cells. Deep learning reveals the anticorrelation between alt-EJ and hypoxia across regions in tumor images, and the predictions for these and MYC activity achieve area under the curve values between 0.70 and 0.86. These findings further highlight the critical role of hypoxia in modulating DNA repair and present a strategy for predicting and improving outcomes centered on targeting alt-EJ.
Collapse
Affiliation(s)
- Roderic Espín
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Ferran Medina-Jover
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Department of Physiological Sciences, University of Barcelona, L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Javier Sigüenza-Andrade
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Sònia Farran-Matas
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Agnes Figueras
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Rosario T Sanz
- Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona 08028, Spain
| | - Guillermo Pablo Vicent
- Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona 08028, Spain
| | - Arzoo Shabbir
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Lara Ruiz-Auladell
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | | | - Irene García
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Lídia Franco-Luzón
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Adrián Martínez-Tebar
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miguel Angel Pardo-Cea
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - María Martínez-Iniesta
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Xieng Chen Wang
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Elisabet Cuyàs
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| | - Javier A Menendez
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| | - Marta Lopez-Cerda
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Purificacion Muñoz
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Ivonne Richaud
- Regenerative Medicine Program and Program for Clinical Translation of Regenerative Medicine in Catalonia—P-CMR[C], Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Network Centre in Bioengineering, Nanomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Angel Raya
- Regenerative Medicine Program and Program for Clinical Translation of Regenerative Medicine in Catalonia—P-CMR[C], Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Network Centre in Bioengineering, Nanomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Isabel Fabregat
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Networking Centre in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alberto Villanueva
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Xènia Serrat
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Julián Cerón
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Montserrat Alemany
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Neuro-Oncology Unit, University Hospital of Bellvitge, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Inés Guix
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, San Francisco, CA 94115, United States
| | - Andrea Herencia-Ropero
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona 08193, Spain
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jordi Bruna
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Neuro-Oncology Unit, University Hospital of Bellvitge, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, San Francisco, CA 94115, United States
| | - Francesc Viñals
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Department of Physiological Sciences, University of Barcelona, L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Álvaro Aytes
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| |
Collapse
|
3
|
Huang X, Tang Y. Unveiling the complex double-edged sword role of exosomes in nasopharyngeal carcinoma. PeerJ 2025; 13:e18783. [PMID: 39822977 PMCID: PMC11737332 DOI: 10.7717/peerj.18783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelium of the nasopharynx. Given its late diagnosis, NPC raises serious considerations in Southeast Asia. In addition to resistance to conventional treatment that combines chemotherapy and radiation, NPC has high rates of metastasis and frequent recurrence. Exosomes are small membrane vesicles at the nanoscale that transport physiologically active compounds from their source cell and have a crucial function in signal transmission and intercellular message exchange. The exosomes detected in the tissues of NPC patients have recently emerged as a potential non-invasive liquid biopsy biomarker that plays a role in controlling the tumor pathophysiology. Here, we take a look back at what we know so far about the complex double-edged sword role of exosomes in NPC. Exosomes could serve as biomarkers and therapeutic agents, as well as the molecular mechanisms by which they promote cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance, and chemotherapy resistance in NPC. Furthermore, we go over some of the difficulties and restrictions associated with exosome use. It is anticipated that this article would provide the reference for the apply of exosomes in clinical practice.
Collapse
Affiliation(s)
- Xueyan Huang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yuedi Tang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Nakamura N. An examination of the dose rate effect in mice assuming that the carcinogenic effect of radiation is life shortening resulting from a tissue reaction. Int J Radiat Biol 2025; 101:225-231. [PMID: 39746147 DOI: 10.1080/09553002.2024.2442690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Radiation exposures do not seem to increase the proportion of mice dying from tumors, but rather cause a shift in the appearance of spontaneous cancers, allowing them to appear earlier, and hence produce a life shortening effect. Then, it was possible to estimate the effect of the dose rate on the carcinogenic effects of radiation using life shortening effects as a measure. CONCLUSION The dose response for the induction of life shortening was linear under acute exposure conditions, which indicates that the response under chronic exposure conditions is also likely to be linear, and hence the dose rate factor (DRF) would be constant throughout the dose. Furthermore, the life shortening effect decreased sharply with an increase in age at exposure. To separate the dose rate effect from the effects of age under long-term exposure conditions, a thought experiment was designed which consisted of 8 repeated exposures to an acute 1 Gy dose at intervals of 50 days with an assumption that the effect is additive, and the results were compared with those observed in a chronic continuous exposure experiment (20 mGy per day for 400 days, for a total of 8 Gy: Tanaka et al. 2003). The results showed 211 days of life shortening in the former and 120 days in the latter, which provided a DRF of 1.8 (211/120). If one assumes that a tissue reaction is the primary cause of radiation carcinogenesis, the contrasting two concepts, radiation hormesis and linear-non-threshold model at low doses, would become compatible.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Radiation Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
5
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
6
|
Sun L, Wei P, Ge S, Zheng J, Ye S, Zhang Y. A nomogram based on hematological markers to predict radiosensitivity in patients with esophageal squamous cell carcinoma. Medicine (Baltimore) 2023; 102:e33282. [PMID: 36930089 PMCID: PMC10019115 DOI: 10.1097/md.0000000000033282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
This study aimed to determine the predictive value of pretreatment levels of hematological markers on the radiosensitivity of patients with esophageal squamous cell carcinoma (ESCC). The specific hematological markers assessed included total lymphocyte count (TLC), neutrophil count, platelet count, monocyte count, neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and lymphocyte-monocyte ratio (LMR). A total of 353 ESCC patients who received radiotherapy (RT) alone or concurrent RT between 2015 and 2019 were reviewed. Pretreatment levels of hematological markers (NLR, PLR, LMR, and TLC) were used to assess the radiosensitivity of individual patients. Receiver operating characteristics curves were used to determine optimal cutoff values. Multivariate logistic models with radiosensitivity were established with meaningful results used for univariate analyses. Finally, a nomogram was developed and validated from the calibration curve and concordance index. One month after RT, 121 (34.3%) cases were shown to have low levels of radiosensitivity based on hematological markers. Univariate analyses showed that NLR, PLR, LMR, and TLC were associated with high levels of radiosensitivity (all markers, P < .05). Due to the collinearity between NLR, PLR, and LMR, these markers were separately evaluated by multivariate analysis. Multivariate analysis showed that high pretreatment NLP and PLR were independently associated with high radiosensitivity. In contrast, high pretreatment LMR and TLC were independent biomarkers associated with lower radiosensitivity. The concordance index of the nomogram was 0.737, and the calibration curves predicted by the nomogram were highly consistent with the observed experimental findings. Pretreatment hematologic markers (NLR, PLR, LMR, and TLC) can be used to predict the radiosensitivity of patients with ESCC accurately.
Collapse
Affiliation(s)
- Lijun Sun
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Peng Wei
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuang Ge
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jie Zheng
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Shucheng Ye
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanhui Zhang
- Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
7
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
8
|
Promny T, Kutz CS, Jost T, Distel LV, Kadam S, Schmid R, Arkudas A, Horch RE, Kengelbach-Weigand A. An In Vitro Approach for Investigating the Safety of Lipotransfer after Breast-Conserving Therapy. J Pers Med 2022; 12:1284. [PMID: 36013233 PMCID: PMC9409821 DOI: 10.3390/jpm12081284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The application of lipotransfer after breast-conserving therapy (BCT) and irradiation in breast cancer patients is an already widespread procedure for reconstructing volume deficits of the diseased breast. Nevertheless, the safety of lipotransfer has still not been clarified yet due to contradictory data. The goal of this in vitro study was to further elucidate the potential effects of lipotransfer on the irradiated remaining breast tissue. The mammary epithelial cell line MCF-10A was co-cultured with the fibroblast cell line MRC-5 and irradiated with 2 and 5 Gy. Afterwards, cells were treated with conditioned medium (CM) from adipose-derived stem cells (ADSC), and the effects on the cellular functions of MCF-10A cells and on gene expression at the mRNA level in MCF-10A and MRC-5 cells were analyzed. Treatment with ADSC CM stimulated transmigration and invasion and decreased the surviving fraction of MCF-10A cells. Further, the expression of cytokines, extracellular, and mesenchymal markers was enhanced in mammary epithelial cells. Only an effect of ADSC CM on irradiated fibroblasts could be observed. The present data suggest epithelial-mesenchymal transition-like changes in the epithelial mammary breast cell line. Thus, the benefits of lipotransfer after BCT should be critically weighed against its possible risks for the affected patients.
Collapse
Affiliation(s)
- Theresa Promny
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Chiara-Sophia Kutz
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tina Jost
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sheetal Kadam
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Rafael Schmid
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Zhu M, Chen C, Foster NR, Hartley C, Mounajjed T, Salomao MA, Fruth BF, Beamer SE, Kim Y, Harrington SM, Pitot HC, Sanhueza CT, Feng Y, Herrmann J, McWilliams RR, Lucien F, Huang BQ, Ma WW, Bekaii-Saab TS, Dong H, Wigle D, Ahn DH, Hallemeier CL, Blackmon S, Yoon HH. Pembrolizumab in Combination with Neoadjuvant Chemoradiotherapy for Patients with Resectable Adenocarcinoma of the Gastroesophageal Junction. Clin Cancer Res 2022; 28:3021-3031. [PMID: 35552651 PMCID: PMC10853040 DOI: 10.1158/1078-0432.ccr-22-0413] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE This phase Ib/2 trial investigated pembrolizumab-containing trimodality therapy in patients with gastroesophageal junction (GEJ) adenocarcinoma. PATIENTS AND METHODS Patients with GEJ adenocarcinoma (cT1-3NanyM0) received neoadjuvant pembrolizumab-containing chemoradiation (CROSS regimen) followed by surgical resection and adjuvant pembrolizumab. The primary endpoints were tolerability in the first 16 patients and pathologic complete response [pCR (ypT0N0)]. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). An independent propensity-score-matched cohort (treated with CROSS without immunotherapy) was used for comparison. Exploratory analyses included immune biomarkers in the tumor microenvironment (TME) and plasma. RESULTS We enrolled 31 eligible patients, of whom 29 received all expected doses of neoadjuvant pembrolizumab and 28 underwent R0 resection. Safety endpoints were met. The primary efficacy endpoint was not met [7/31 (22.6%) achieved pCR]. Patients with high [i.e., combined positive score (CPS) ≥ 10] baseline expression of programmed death (PD)-L1 in the TME had a significantly higher pCR rate than those with low expression [50.0% (4/8) vs. 13.6% (3/22); P = 0.046]. Patients with high PD-L1 expression also experienced longer PFS and OS than propensity-score-matched patients. Among trial patients with PD-L1 CPS < 10, unprespecified analysis explored whether extracellular vesicles (EV) could identify further responders: an elevated plasma level of PD-L1-expressing EVs was significantly associated with higher pCR. CONCLUSIONS Adding pembrolizumab to trimodality therapy showed acceptable tolerability but did not meet the pre-specified pCR endpoint. Exploratory analyses suggested that high PD-L1 expression in the TME and/or on EVs may identify patients most likely to achieve tumor response.
Collapse
Affiliation(s)
- Mojun Zhu
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Chunhua Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Nathan R. Foster
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Christopher Hartley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Marcela A. Salomao
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona
| | - Briant F. Fruth
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Staci E. Beamer
- Department of Cardiovascular Surgery, Mayo Clinic, Phoenix, Arizona
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | | | - Henry C. Pitot
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Cristobal T. Sanhueza
- Medical Oncology, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Concepción, Chile
| | - Yening Feng
- Internal Medicine Residency Program, Department of Medicine, BronxCare Health System, Bronx, New York
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Bing Q. Huang
- Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota
| | - Wen Wee Ma
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Tanios S. Bekaii-Saab
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Dennis Wigle
- Department of Thoracic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Daniel H. Ahn
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | | | - Shanda Blackmon
- Department of Thoracic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Harry H. Yoon
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Guix I, Liu Q, Pujuana MA, Ha P, Piulats J, Linares I, Guedea F, Mao JH, Lazar A, Chapman J, Yom SS, Ashworth A, Barcellos-Hoff MH. Validation of Anticorrelated TGFβ Signaling and Alternative End-Joining DNA Repair Signatures that Predict Response to Genotoxic Cancer Therapy. Clin Cancer Res 2022; 28:1372-1382. [PMID: 35022323 PMCID: PMC8976728 DOI: 10.1158/1078-0432.ccr-21-2846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/13/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Loss of TGFβ signaling increases error-prone alternative end-joining (alt-EJ) DNA repair. We previously translated this mechanistic relationship as TGFβ and alt-EJ gene expression signatures, which we showed are anticorrelated across cancer types. A score representing anticorrelation, βAlt, predicts patient outcome in response to genotoxic therapy. Here we sought to verify this biology in live specimens and additional datasets. EXPERIMENTAL DESIGN Human head and neck squamous carcinoma (HNSC) explants were treated in vitro to test whether the signatures report TGFβ signaling, indicated by SMAD2 phosphorylation, and unrepaired DNA damage, indicated by persistent 53BP1 foci after irradiation or olaparib. A custom NanoString assay was implemented to analyze the signatures' expression in explants. Each signature gene was then weighted by its association with functional responses to define a modified score, βAltw, that was retested for association with response to genotoxic therapies in independent datasets. RESULTS Most genes in each signature were positively correlated with the expected biological response in tumor explants. Anticorrelation of TGFβ and alt-EJ signatures measured by NanoString was confirmed in explants. βAltw was significantly (P < 0.001) better than βAlt in predicting overall survival in response to genotoxic therapy in The Cancer Genome Atlas (TCGA) pancancer patients and in independent HNSC and ovarian cancer patient datasets. CONCLUSIONS Association of the TGFβ and alt-EJ signatures with their biological response validates TGFβ competency as a key mediator of DNA repair that can be readily assayed by gene expression. The predictive value of βAltw supports its development to assist in clinical decision making.
Collapse
Affiliation(s)
- Ines Guix
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Radiobiology and Cancer Group, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Qi Liu
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Current address: Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Miquel Angel Pujuana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Josep Piulats
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Isabel Linares
- Radiobiology and Cancer Group, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Ferran Guedea
- Radiobiology and Cancer Group, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ann Lazar
- Division of Oral Epidemiology and Dental Public Health, University of California, San Francisco, CA, USA
- Division of Biostatistics, University of California, San Francisco, CA, USA
| | - Jocelyn Chapman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Sue S. Yom
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Qiao L, Chen Y, Liang N, Xie J, Deng G, Chen F, Wang X, Liu F, Li Y, Zhang J. Targeting Epithelial-to-Mesenchymal Transition in Radioresistance: Crosslinked Mechanisms and Strategies. Front Oncol 2022; 12:775238. [PMID: 35251963 PMCID: PMC8888452 DOI: 10.3389/fonc.2022.775238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy exerts a crucial role in curing cancer, however, its treatment efficiency is mostly limited due to the presence of radioresistance. Epithelial-to-mesenchymal transition (EMT) is a biological process that endows the cancer cells with invasive and metastatic properties, as well as radioresistance. Many potential mechanisms of EMT-related radioresistance being reported have broaden our cognition, and hint us the importance of an overall understanding of the relationship between EMT and radioresistance. This review focuses on the recent progresses involved in EMT-related mechanisms in regulating radioresistance, irradiation-mediated EMT program, and the intervention strategies to increase tumor radiosensitivity, in order to improve radiotherapy efficiency and clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yanfei Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fangjie Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Xiaojuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fengjun Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yupeng Li
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Xiao C, Wang X, Shen J, Xia Y, Qiu S, Liang X, Gu W. Luteolin-Loading Her-2 Nanospheres Enhances Targeting and Therapeutic Effects of Breast Cancer. J Biomed Nanotechnol 2021; 17:1545-1553. [PMID: 34544532 DOI: 10.1166/jbn.2021.3137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the broad anticancer activity, whereas the clinical application of luteolin is hindered by unsatisfactory water solubility and non-targeting. Herein, targeted inhibitory effects of luteolin-loading HER2 nanospheres (Her-2-NPs) were successfully prepared by thin film ultrasonic method. In comparison with the non-targeted nanospheres, Her-2 nanospheres could significantly boost the intake of luteolin in SK-BR-3 cells. The proliferation and apoptosis of breast cancer cells were detected by MTT testing and flow cytometry examination, respectively. Consequently, the expressions of FOXO1 mRNA level was detected using qPCR assay and protein level was detected using Westernblot. We discovered that Luteolin-loading Her-2 nanospheres could significantly hinder the proliferation of breast cancer cells, down-regulation their migration, and up-regulation FOXO1 expression at mRNA and protein levels, reveal a mechanism whereby luteolin interferes with breast cancer. Collectively, these results suggest Her-2-modified nanospheres increases the efficiency of luteolin uptake and thus improves the treatment benefit of breast cancer.
Collapse
Affiliation(s)
- Chuanguang Xiao
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, Shandong 255036, P. R. China
| | - Xiaohong Wang
- Qilu Medical University, Zibo, Shandong 255300, P. R. China
| | - Jiacheng Shen
- Department of General Surgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu 224001, P. R. China
| | - Yanjie Xia
- Department of Laboratory, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157000, P. R. China
| | - Shusheng Qiu
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, Shandong 255036, P. R. China
| | - Xiaodong Liang
- Department of Pathology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University,Yancheng, Jiangsu 224000, P. R. China
| | - Wenyue Gu
- Department of Pathology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University,Yancheng, Jiangsu 224000, P. R. China
| |
Collapse
|
13
|
Jabbour SK, Williams TM, Sayan M, Miller ED, Ajani JA, Chang AC, Coleman N, El-Rifai W, Haddock M, Ilson D, Jamorabo D, Kunos C, Lin S, Liu G, Prasanna PG, Rustgi AK, Wong R, Vikram B, Ahmed MM. Potential Molecular Targets in the Setting of Chemoradiation for Esophageal Malignancies. J Natl Cancer Inst 2021; 113:665-679. [PMID: 33351071 PMCID: PMC8600025 DOI: 10.1093/jnci/djaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Although the development of effective combined chemoradiation regimens for esophageal cancers has resulted in statistically significant survival benefits, the majority of patients treated with curative intent develop locoregional and/or distant relapse. Further improvements in disease control and survival will require the development of individualized therapy based on the knowledge of host and tumor genomics and potentially harnessing the host immune system. Although there are a number of gene targets that are amplified and proteins that are overexpressed in esophageal cancers, attempts to target several of these have not proven successful in unselected patients. Herein, we review our current state of knowledge regarding the molecular pathways implicated in esophageal carcinoma, and the available agents for targeting these pathways that may rationally be combined with standard chemoradiation, with the hope that this commentary will guide future efforts of novel combinations of therapy.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew C Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Norman Coleman
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Michael Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Ilson
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Charles Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Steven Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey Liu
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Rosemary Wong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
14
|
Liu Q, Palomero L, Moore J, Guix I, Espín R, Aytés A, Mao JH, Paulovich AG, Whiteaker JR, Ivey RG, Iliakis G, Luo D, Chalmers AJ, Murnane J, Pujana MA, Barcellos-Hoff MH. Loss of TGFβ signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Sci Transl Med 2021; 13:eabc4465. [PMID: 33568520 PMCID: PMC8208885 DOI: 10.1126/scitranslmed.abc4465] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Among the pleotropic roles of transforming growth factor-β (TGFβ) signaling in cancer, its impact on genomic stability is least understood. Inhibition of TGFβ signaling increases use of alternative end joining (alt-EJ), an error-prone DNA repair process that typically functions as a "backup" pathway if double-strand break repair by homologous recombination or nonhomologous end joining is compromised. However, the consequences of this functional relationship on therapeutic vulnerability in human cancer remain unknown. Here, we show that TGFβ broadly controls the DNA damage response and suppresses alt-EJ genes that are associated with genomic instability. Mechanistically based TGFβ and alt-EJ gene expression signatures were anticorrelated in glioblastoma, squamous cell lung cancer, and serous ovarian cancer. Consistent with error-prone repair, more of the genome was altered in tumors classified as low TGFβ and high alt-EJ, and the corresponding patients had better outcomes. Pan-cancer analysis of solid neoplasms revealed that alt-EJ genes were coordinately expressed and anticorrelated with TGFβ competency in 16 of 17 cancer types tested. Moreover, regardless of cancer type, tumors classified as low TGFβ and high alt-EJ were characterized by an insertion-deletion mutation signature containing short microhomologies and were more sensitive to genotoxic therapy. Collectively, experimental studies revealed that loss or inhibition of TGFβ signaling compromises the DNA damage response, resulting in ineffective repair by alt-EJ. Translation of this mechanistic relationship into gene expression signatures identified a robust anticorrelation that predicts response to genotoxic therapies, thereby expanding the potential therapeutic scope of TGFβ biology.
Collapse
Affiliation(s)
- Qi Liu
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Jade Moore
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ines Guix
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Roderic Espín
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Alvaro Aytés
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen, University Hospital Essen, Essen 45147, Germany
| | - Daxian Luo
- Institute of Medical Radiation Biology, University of Duisburg-Essen, University Hospital Essen, Essen 45147, Germany
| | - Anthony J Chalmers
- Institute of Cancer Sciences and Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - John Murnane
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Shao L, Zhang Y, Shi W, Ma L, Xu T, Chang P, Dong L. Mesenchymal stromal cells can repair radiation-induced pulmonary fibrosis via a DKK-1-mediated Wnt/β-catenin pathway. Cell Tissue Res 2021; 384:87-97. [PMID: 33496879 DOI: 10.1007/s00441-020-03325-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
Pulmonary injury occurring after thoracic radiotherapy is a main factor limiting the curative effect of radiotherapy. Robust activation of the Wnt signalling pathway induced by ionizing radiation stress plays a critical role in epithelial-mesenchymal transition (EMT) in irradiated type II alveolar epithelial cells and in the proliferation of pulmonary fibroblasts, which contributes to the formation of fibrotic lesions in irradiated lungs. The pathogenesis of radiation-induced pulmonary fibrosis could be restricted by systemic delivery of human adipose-derived mesenchymal stromal cells (Ad-MSCs), as evidenced by the inhibitory effects of Ad-MSCs on EMT in irradiated type II alveolar epithelial cells. The purpose of this study is to observe the effects of mesenchymal stromal cells (MSCs) on repairing fibrosis caused by radiation. We used western blotting and real-time PCR to observe the expression of DKK-1 in MSCs of different origins and passages. After the successful establishment of a radiation-induced lung injury model, we investigated the potency of the supernatant from stromal cells to reduce pro-fibrotic events, including EMT and fibroblast activation. To study the mechanism, we evaluated the levels of active β-catenin, TCF4 and the target genes Snail, Twist and c-Myc. After the injection of Ad-MSCs into mice via the tail vein, proteins related to EMT, fibroblasts and Wnt/β-catenin signalling were investigated. The TGF-β and IL-10 protein concentrations in peripheral blood were measured by ELISA. Ad-MSC-derived supernatant effectively reversed the decrease in E-cadherin expression and inhibited the increase in vimentin expression induced by ionizing radiation in epithelial cells and suppressed the expression of α-SMA, a mediator of fibroblast proliferation. The canonical Wnt pathway may be activated by irradiation but the nuclear localization of active β-catenin was reduced in the presence of the supernatant from Ad-MSCs. In addition, the expression of target genes involved in EMT was downregulated. Additionally, when DKK-1 in the supernatant was neutralized, all these effects were reversed. Changes in the levels of proteins related to EMT and fibroblast activation, as well as those of active β-catenin and TCF4, were similar in vivo and in vitro. The serum level of the immunosuppressive factor IL-10 was increased after radiation and was further enhanced after Ad-MSC interference for one month. In conclusion, Ad-MSCs medium can contain DKK-1 and inhibit the induction of EMT via Wnt/β-catenin signalling in vitro and in vivo.
Collapse
Affiliation(s)
- Lihong Shao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuyu Zhang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lixin Ma
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Tiankai Xu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Pengyu Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China. .,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
16
|
Sato M, Hirose K, Ichise K, Yoshino H, Harada T, Hatayama Y, Kawaguchi H, Tanaka M, Fujioka I, Takai Y, Aoki M. Not Only Hypoxia- but Radiation-Induced Epithelial-Mesenchymal Transition Is Modulated by Hypoxia-Inducible Factor 1 in A549 Lung Cancer Cells. Folia Biol (Praha) 2021; 67:62-69. [PMID: 34624938 DOI: 10.14712/fb2021067020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hypoxia leads to post-treatment metastasis and recurrences of cancer via the epithelial-mesenchymal transition (EMT). Radiotherapy itself may also contribute to the acquisition of EMT phenotypes. Despite extensive studies on the EMT driven by either hypoxia or radiation stimuli, the molecular mechanisms characterizing these EMT events remain unclear. Thus, we aimed to evaluate the differences in the molecular pathways between hypoxia-induced EMT (Hypo-EMT) and radiation-induced EMT (R-EMT). Further, we investigated the therapeutic effects of HIF-1α inhibitor (LW6) on Hypo-EMT and R-EMT cells. A549 cells, lung adenocarcinoma cell line, acquired enhanced wound-healing activity under both hypoxia and irradiation. Localization of E-cadherin was altered from the cell membrane to the cytoplasm in both hypoxia and irradiated conditions. Of note, the expression levels of vimentin, one of the major EMT markers, was enhanced in irradiated cells, while it decreased under hypoxia condition. Importantly, LW6 significantly blocked EMT-related malignant phenotypes in both Hypo-EMT cells and R-EMT cells with concomitant re-location of E-cadherin onto the cell membrane. Moreover, LW6 deflected stress responsive signalling, JNK, activated sustainably under hypoxic condition, and the blockage of JNK impaired EMT phenotypes. Together, this work demonstrated the molecular events underlying Hypo-EMT and R-EMT, and highlighted HIF-1α as a therapeutic target not only in Hypo- EMT, but also in R-EMT.
Collapse
Affiliation(s)
- M Sato
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
- Southern Tohoku BNCT Research Center, Yatsuyamada, Koriyama, Japan
- Department of Radiation Oncology, Southern Tohoku General Hospital, Yatsuyamada, Koriyama, Japan
| | - K Hirose
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
- Southern Tohoku BNCT Research Center, Yatsuyamada, Koriyama, Japan
- Department of Radiation Oncology, Southern Tohoku General Hospital, Yatsuyamada, Koriyama, Japan
| | - K Ichise
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
| | - H Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hon-cho, Hirosaki, Japan
| | - T Harada
- Southern Tohoku BNCT Research Center, Yatsuyamada, Koriyama, Japan
| | - Y Hatayama
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
| | - H Kawaguchi
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
| | - M Tanaka
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
| | - I Fujioka
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
| | - Y Takai
- Southern Tohoku BNCT Research Center, Yatsuyamada, Koriyama, Japan
- Department of Radiation Oncology, Southern Tohoku General Hospital, Yatsuyamada, Koriyama, Japan
| | - M Aoki
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
| |
Collapse
|
17
|
Ardalan Khales S, Abbaszadegan MR, Majd A, Forghanifard MM. TWIST1 upregulates matrix metalloproteinase (MMP) genes family in esophageal squamous carcinoma cells. Gene Expr Patterns 2020; 37:119127. [PMID: 32711119 DOI: 10.1016/j.gep.2020.119127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
Twist-related protein 1 (TWIST1), a highly conserved basic helix-loop-helix transcription factor, stimulates epithelial-mesenchymal transition (EMT) and plays a crucial role in the regulation of the extracellular matrix (ECM) and cell-cell adhesion. Our aim in this study was to evaluate the functional correlation between TWIST1 and MMP genes in human ESCC cell lines, KYSE-30 and YM-1. To generate recombinant retroviral particles, the Pruf-IRES-GFP-hTWIST1 was co-transfected into HEK293T along with pGP and pMD2. G as well as Pruf-IRES-GFP control plasmid. Stably transduced high-expressing GFP-hTWIST1 and GFP-control KYSE-30 cells were generated. The produced retroviral particles were transduced into the KYSE-30 and YM-1 ESCC cells. Ectopic expression of TWIST1 mRNA and expression of the MMP genes (MMP-2, MMP-3, MMP-7, MMP-9, and MMP-10) were examined by relative comparative real-time PCR. In silico analysis of the MMP markers and their promoter elements was explored. Moreover, the scratch wound assay was used to evaluate the migration of TWIST1-induced cells. TWIST1 level was up-regulated by nearly 5-fold and 7.4-fold in GFP-hTWIST1 KYSE-30 and YM-1 cells compared to GFP control cells, respectively. Interestingly, this enforced expression of TWIST1 subsequently caused significant overexpression of transcripts for selected MMP genes in GFP-hTWIST1 in comparison with GFP control cells in both ESCC cell lines. Also, the scratch assay indicated that TWIST1 expression effectively increased the migration of GFP-TWIST1 KYSE-30 cells against GFP KYSE-30 control cells in vitro. The present findings illuminate that TWIST1 may contribute broadly to ESCC development in concert with up-regulation of MMPs expression and further suggest the potential advantage of exerting TWIST1/MMPs signaling axis as a framework from which to expand our understanding about the mechanisms of ESCC tumorigenesis.
Collapse
Affiliation(s)
- Sima Ardalan Khales
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | | | - Ahmad Majd
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
18
|
Hacker BC, Rafat M. Organoids as Complex In Vitro Models for Studying Radiation-Induced Cell Recruitment. Cell Mol Bioeng 2020; 13:341-357. [PMID: 32952734 PMCID: PMC7479086 DOI: 10.1007/s12195-020-00625-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) typically receive chemotherapy, surgery, and radiation therapy. Although this treatment improves prognosis for most patients, some patients continue to experience recurrence within 5 years. Preclinical studies have shown that immune cell infiltration at the irradiated site may play a significant role in tumor cell recruitment; however, little is known about the mechanisms that govern this process. This lack of knowledge highlights the need to evaluate radiation-induced cell infiltration with models that have controllable variables and maintain biological integrity. Mammary organoids are multicellular three-dimensional (3D) in vitro models, and they have been used to examine many aspects of mammary development and tumorigenesis. Organoids are also emerging as a powerful tool to investigate normal tissue radiation damage. In this review, we evaluate recent advances in mammary organoid technology, consider the advantages of using organoids to study radiation response, and discuss future directions for the applications of this technique.
Collapse
Affiliation(s)
- Benjamin C. Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
19
|
Gray M, Turnbull AK, Meehan J, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. Comparative Analysis of the Development of Acquired Radioresistance in Canine and Human Mammary Cancer Cell Lines. Front Vet Sci 2020; 7:439. [PMID: 32851022 PMCID: PMC7396503 DOI: 10.3389/fvets.2020.00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Research using in vitro canine mammary cancer cell lines and naturally-occurring canine mammary tumors are not only fundamental models used to advance the understanding of cancer in veterinary patients, but are also regarded as excellent translational models of human breast cancer. Human breast cancer is commonly treated with radiotherapy; however, tumor response depends on both innate radiosensitivity and on tumor repopulation by cells that develop radioresistance. Comparative canine and human studies investigating the mechanisms of radioresistance may lead to novel cancer treatments that benefit both species. In this study, we developed a canine mammary cancer (REM-134) radioresistant (RR) cell line and investigated the cellular mechanisms related to the development of acquired radioresistance. We performed a comparative analysis of this resistant model with our previously developed human breast cancer radioresistant cell lines (MCF-7 RR, ZR-751 RR, and MDA-MB-231 RR), characterizing inherent differences through genetic, molecular, and cell biology approaches. RR cells demonstrated enhanced invasion/migration capabilities, with phenotypic evidence suggestive of epithelial-to-mesenchymal transition. Similarities were identified between the REM-134 RR, MCF-7 RR, and ZR-751 RR cell lines in relation to the pattern of expression of both epithelial and mesenchymal genes, in addition to WNT, PI3K, and MAPK pathway activation. Following the development of radioresistance, transcriptomic data indicated that parental MCF-7 and ZR-751 cell lines changed from a luminal A classification to basal/HER2-overexpressing (MCF-7 RR) and normal-like/HER2-overexpressing (ZR-751 RR). These radioresistant subtypes were similar to the REM-134 and REM-134 RR cell lines, which were classified as HER2-overexpressing. To our knowledge, our study is the first to generate a canine mammary cancer RR cell line model and provide a comparative genetic and phenotypic analysis of the mechanisms of acquired radioresistance between canine and human cancer cell lines. We demonstrate that the cellular processes that occur with the development of acquired radioresistance are similar between the human and canine cell lines; our results therefore suggest that the canine model is appropriate to study both human and canine radioresistant mammary cancers, and that treatment strategies used in human medicine may also be applicable to veterinary patients.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
21
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
22
|
Omene C, Ma L, Moore J, Ouyang H, Illa-Bochaca I, Chou W, Patel MS, Sebastiano C, Demaria S, Mao JH, Karagoz K, Gatza ML, Barcellos-Hoff MH. Aggressive Mammary Cancers Lacking Lymphocytic Infiltration Arise in Irradiated Mice and Can Be Prevented by Dietary Intervention. Cancer Immunol Res 2020; 8:217-229. [PMID: 31831632 PMCID: PMC7002223 DOI: 10.1158/2326-6066.cir-19-0253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/26/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023]
Abstract
Because the incidence of breast cancer increases decades after ionizing radiation exposure, aging has been implicated in the evolution of the tumor microenvironment and tumor progression. Here, we investigated radiation-induced carcinogenesis using a model in which the mammary glands of 10-month-old BALB/c mice were transplanted with Trp53-null mammary tissue 3 days after exposure to low doses of sparsely ionizing γ-radiation or densely ionizing particle radiation. Mammary transplants in aged, irradiated hosts gave rise to significantly more tumors that grew more rapidly than those in sham-irradiated mice, with the most pronounced effects seen in mice irradiated with densely ionizing particle radiation. Tumor transcriptomes identified a characteristic immune signature of these aggressive cancers. Consistent with this, fast-growing tumors exhibited an immunosuppressive tumor microenvironment with few infiltrating lymphocytes, abundant immunosuppressive myeloid cells, and high COX-2 and TGFβ. Only irradiated hosts gave rise to tumors lacking cytotoxic CD8+ lymphocytes (defined here as immune desert), which also occurred in younger irradiated hosts. These data suggest that host irradiation may promote immunosuppression. To test this, young chimera mice were fed chow containing a honeybee-derived compound with anti-inflammatory and immunomodulatory properties, caffeic acid phenethyl ester (CAPE). CAPE prevented the detrimental effects of host irradiation on tumor growth rate, immune signature, and immunosuppression. These data indicated that low-dose radiation, particularly densely ionizing exposure of aged mice, promoted more aggressive cancers by suppressing antitumor immunity. Dietary intervention with a nontoxic immunomodulatory agent could prevent systemic effects of radiation that fuel carcinogenesis, supporting the potential of this strategy for cancer prevention.
Collapse
MESH Headings
- Age Factors
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/radiation effects
- Diet
- Dose-Response Relationship, Radiation
- Female
- Inflammation/diet therapy
- Inflammation/etiology
- Inflammation/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/radiation effects
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Radiation-Induced/immunology
- Neoplasms, Radiation-Induced/prevention & control
- Transcriptome
- Tumor Microenvironment/immunology
- Tumor Microenvironment/radiation effects
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/immunology
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Coral Omene
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Lin Ma
- University of California, San Francisco, San Francisco, California
| | - Jade Moore
- University of California, San Francisco, San Francisco, California
| | - Haoxu Ouyang
- New York University School of Medicine, New York, New York
| | | | - William Chou
- University of California, San Francisco, San Francisco, California
| | - Manan S Patel
- New York University School of Medicine, New York, New York
| | | | - Sandra Demaria
- New York University School of Medicine, New York, New York
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Kubra Karagoz
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | | |
Collapse
|
23
|
Tripathy J, Chowdhury AR, Prusty M, Muduli K, Priyadarshini N, Reddy KS, Banerjee B, Elangovan S. α-Lipoic acid prevents the ionizing radiation-induced epithelial-mesenchymal transition and enhances the radiosensitivity in breast cancer cells. Eur J Pharmacol 2020; 871:172938. [PMID: 31958458 DOI: 10.1016/j.ejphar.2020.172938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Radiotherapy is routinely used in the treatment of breast cancer. However, its efficiency is often limited by the development of radioresistance and metastasis. The cancer cells surviving irradiation show epithelial-mesenchymal transition (EMT) along with increased migration, invasion and metastasis. In this study, we have evaluated the role of α-lipoic acid in preventing the radiation-induced EMT and in sensitizing the breast cancer cells to radiation. The breast cancer cell lines, MCF-7 and MDA-MB-231 were pretreated with lipoic acid, irradiated and the changes associated with cell growth, clonogenicity, migration, matrix metalloproteinases (MMPs), EMT and TGFβ signaling were measured. Our data showed that lipoic acid pretreatment sensitized the breast cancer cells to the ionizing radiation and inhibited the radiation-induced migration and the release of MMP2 and MMP9. Lipoic acid also prevented the TGFβ1 release and inhibited the radiation-induced EMT in breast cancer cells. The inhibition of TGFβ signaling by lipoic acid is associated with the inhibition of radiation-induced activation and translocation of NF-κB. These results suggest that α-lipoic acid inhibits the radiation-induced TGFβ signaling and nuclear translocation of NF-κB, thereby inhibiting the radiation-induced EMT and sensitizing the breast cancer cells to ionizing radiation.
Collapse
Affiliation(s)
- Joytirmay Tripathy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Amit Roy Chowdhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Monica Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Kartik Muduli
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Nilima Priyadarshini
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Birendranath Banerjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
24
|
Xie C, Wu Y, Fei Z, Fang Y, Xiao S, Su H. MicroRNA-1275 induces radiosensitization in oesophageal cancer by regulating epithelial-to-mesenchymal transition via Wnt/β-catenin pathway. J Cell Mol Med 2019; 24:747-759. [PMID: 31733028 PMCID: PMC6933350 DOI: 10.1111/jcmm.14784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Acquired radioresistance is one of the main obstacles for the anti-tumour efficacy of radiotherapy in oesophageal cancer (EC). Recent studies have proposed microRNAs (miRNAs) as important participators in the development of radioresistance in various cancers. Here, we investigated the role of miR-1275 in acquired radioresistance and epithelial-mesenchymal transition (EMT) in EC. Firstly, a radioresistant cell line KYSE-150R was established, with an interesting discovery was observed that miR-1275 was down-regulated in KYSE-150R cells compared to the parental cells. Functionally, miR-1275 inhibition elevated radioresistance in KYSE-150 cells via promoting EMT, whereas enforced expression of miR-1275 increased radiosensitivity in KYSE-150R cells by inhibiting EMT. Mechanically, we demonstrated that miR-1275 directly targeted WNT1 and therefore inactivated Wnt/β-catenin signalling pathway in EC cells. Furthermore, WNT1 depletion countervailed the promoting effect of miR-1275 suppression on KYSE-150 cell radioresistance through hampering EMT, whereas WNT1 overexpression rescued miR-1275 up-regulation-impaired EMT to reduce the sensitivity of KYSE-150R cells to radiation. Collectively, our findings suggested that miR-1275 suppressed EMT to encourage radiosensitivity in EC cells via targeting WNT1-activated Wnt/β-catenin signalling, providing a new therapeutic outlet for overcoming radioresistance of patients with EC.
Collapse
Affiliation(s)
- Congying Xie
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youyi Wu
- Departments of Radiation Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Zhenghua Fei
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya Fang
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenlan Xiao
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Su
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Presence of Stromal Cells Enhances Epithelial-to-Mesenchymal Transition (EMT) Induction in Lung Bronchial Epithelium after Protracted Exposure to Oxidative Stress of Gamma Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4120379. [PMID: 31583039 PMCID: PMC6754954 DOI: 10.1155/2019/4120379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 02/03/2023]
Abstract
The aim of the study was to investigate the role of a microenvironment in the induction of epithelial-to-mesenchymal transition (EMT) as a sign of early stages of carcinogenesis in human lung epithelial cell lines after protracted low-dose rate γ-radiation exposures. BEAS-2B and HBEC-3KT lung cell lines were irradiated with low-dose rate γ-rays (137Cs, 1.4 or 14 mGy/h) to 0.1 or 1 Gy with or without adding TGF-β. TGF-β-treated samples were applied as positive EMT controls and tested in parallel to find out if the radiation has a potentiating effect on the EMT induction. To evaluate the effect of the stromal component, the epithelial cells were irradiated in cocultures with stromal MRC-9 lung fibroblasts. On day 3 post treatment, the EMT markers: α-SMA, vimentin, fibronectin, and E-cadherin, were analyzed. The oxidative stress levels were evaluated by 8-oxo-dG analysis in both epithelial and fibroblast cells. The protracted exposure to low Linear Energy Transfer (LET) radiation at the total absorbed dose of 1 Gy was able to induce changes suggestive of EMT. The results show that the presence of the stromal component and its signaling (TGF-β) in the cocultures enhances the EMT. Radiation had a minor cumulative effect on the TGF-β-induced EMT with both doses. The oxidative stress levels were higher than the background in both epithelial and stromal cells post chronic irradiation (0.1 and 1 Gy); as for the BEAS-2B cell line, the increase was statistically significant. We suggest that the induction of EMT in bronchial epithelial cells by radiation requires more than single acute exposure and the presence of stromal component might enhance the effect through free radical production and accumulation.
Collapse
|
26
|
Liu Q, Lopez K, Murnane J, Humphrey T, Barcellos-Hoff MH. Misrepair in Context: TGFβ Regulation of DNA Repair. Front Oncol 2019; 9:799. [PMID: 31552165 PMCID: PMC6736563 DOI: 10.3389/fonc.2019.00799] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Repair of DNA damage protects genomic integrity, which is key to tissue functional integrity. In cancer, the type and fidelity of DNA damage response is the fundamental basis for clinical response to cytotoxic therapy. Here we consider the contribution of transforming growth factor-beta (TGFβ), a ubiquitous, pleotropic cytokine that is abundant in the tumor microenvironment, to therapeutic response. The action of TGFβ is best illustrated in head and neck squamous cell carcinoma (HNSCC). Survival of HNSCC patients with human papilloma virus (HPV) positive cancer is more than double compared to those with HPV-negative HNSCC. Notably, HPV infection profoundly impairs TGFβ signaling. HPV blockade of TGFβ signaling, or pharmaceutical TGFβ inhibition that phenocopies HPV infection, shifts cancer cells from error-free homologous-recombination DNA double-strand-break (DSB) repair to error-prone alternative end-joining (altEJ). Cells using altEJ are more sensitive to standard of care radiotherapy and cisplatin, and are sensitized to PARP inhibitors. Hence, HPV-positive HNSCC is an experiment of nature that provides a strong rationale for the use of TGFβ inhibitors for optimal therapeutic combinations that improve patient outcome.
Collapse
Affiliation(s)
- Qi Liu
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States.,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China.,Shenzhen Bay Laboratory (SZBL), Shenzhen, China
| | - Kirsten Lopez
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - John Murnane
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Timothy Humphrey
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
27
|
Gray M, Turnbull AK, Ward C, Meehan J, Martínez-Pérez C, Bonello M, Pang LY, Langdon SP, Kunkler IH, Murray A, Argyle D. Development and characterisation of acquired radioresistant breast cancer cell lines. Radiat Oncol 2019; 14:64. [PMID: 30987655 PMCID: PMC6466735 DOI: 10.1186/s13014-019-1268-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Radiotherapy plays an important role in the multimodal treatment of breast cancer. The response of a breast tumour to radiation depends not only on its innate radiosensitivity but also on tumour repopulation by cells that have developed radioresistance. Development of effective cancer treatments will require further molecular dissection of the processes that contribute to resistance. METHODS Radioresistant cell lines were established by exposing MDA-MB-231, MCF-7 and ZR-751 parental cells to increasing weekly doses of radiation. The development of radioresistance was evaluated through proliferation and colony formation assays. Phenotypic characterisation included migration and invasion assays and immunohistochemistry. Transcriptomic data were also generated for preliminary hypothesis generation involving pathway-focused analyses. RESULTS Proliferation and colony formation assays confirmed radioresistance. Radioresistant cells exhibited enhanced migration and invasion, with evidence of epithelial-to-mesenchymal-transition. Significantly, acquisition of radioresistance in MCF-7 and ZR-751 cell lines resulted in a loss of expression of both ERα and PgR and an increase in EGFR expression; based on transcriptomic data they changed subtype classification from their parental luminal A to HER2-overexpressing (MCF-7 RR) and normal-like (ZR-751 RR) subtypes, indicating the extent of phenotypic changes and cellular plasticity involved in this process. Radioresistant cell lines derived from ER+ cells also showed a shift from ER to EGFR signalling pathways with increased MAPK and PI3K activity. CONCLUSIONS This is the first study to date that extensively describes the development and characterisation of three novel radioresistant breast cancer cell lines through both genetic and phenotypic analysis. More changes were identified between parental cells and their radioresistant derivatives in the ER+ (MCF-7 and ZR-751) compared with the ER- cell line (MDA-MB-231) model; however, multiple and likely interrelated mechanisms were identified that may contribute to the development of acquired resistance to radiotherapy.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland. .,Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.
| | - Arran K Turnbull
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland.,Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland
| | - Carlos Martínez-Pérez
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Maria Bonello
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Alan Murray
- School of Engineering, Faraday Building, The King's Buildings, University of Edinburgh, Edinburgh, Scotland
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
28
|
Sunil Gowda SN, Rajasowmiya S, Vadivel V, Banu Devi S, Celestin Jerald A, Marimuthu S, Devipriya N. Gallic acid-coated sliver nanoparticle alters the expression of radiation-induced epithelial-mesenchymal transition in non-small lung cancer cells. Toxicol In Vitro 2018; 52:170-177. [PMID: 29928970 DOI: 10.1016/j.tiv.2018.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Radiotherapy is the most widely used treatment method for treating cancer with or without surgery and chemotherapy. In lung cancer, it is one of the important treatment steps in excising the tumor from the lung tissue; unfortunately, radiation can induce epithelial- mesenchymal transition (EMT), a typical physiological process in which cuboidal shaped epithelial cell loses its phenotype and acquires mesenchymal-like phenotype thus, increases the metastasis progression in the body. To prevent EMT mediated metastasis, we aimed to 1) synthesize silver nanoparticles by using Gallic acid, a potential antioxidant which acts as stabilizing and reducing agent in the form of silver nanoparticle (GA-AgNPs) 2) to analyze its effect on EMT markers during radiation-induced EMT in A549 cells. METHODS A549 cells were irradiated with 8Gy (X-ray) and treated with GA-AgNPs at a fixed concentration under in vitro condition. GA-AgNPs were prepared and characterized for absorption, potential stability, size and morphology by UV-Visible spectrophotometer, Zeta potential and Transmission electron microscopy respectively. After irradiation, the morphology changes were observed using an inverted microscope, the gene and protein expression of EMT markers were analyzed by RT-PCR and western blotting. RESULTS/CONCLUSION GA-AgNPs are in nano size with fair stability. The synthesized nanoparticles suppressed the EMT markers including Vimentin, N-cadherin, Snail-1 and increased E-cadherin expression which might inhibit cancer cells to acquire radio resistant metastasis potential.
Collapse
Affiliation(s)
- S N Sunil Gowda
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Rajasowmiya
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Vellingiri Vadivel
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Banu Devi
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - A Celestin Jerald
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - S Marimuthu
- Vishnu Cancer Center, Thanjavur, Tamil Nadu, India
| | - N Devipriya
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
29
|
Zheng H, Zhan Y, Liu S, Lu J, Luo J, Feng J, Fan S. The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:226. [PMID: 30217217 PMCID: PMC6137883 DOI: 10.1186/s13046-018-0901-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases, and it is one of the leading causes of cancer death in both men and women worldwide due to diagnosis in the advanced stage, rapid metastasis, and recurrence. At present, precision molecular targeted therapeutics directed toward NSCLC driven genes has made great progress and significantly improved the overall survival of patients with NSCLC, but can easily lead to acquired drug resistance. New methods are needed to develop real-time monitoring of drug efficacy and drug resistance, such as new molecular markers for more effective early detection and prediction of prognosis. Exosomes are nano-sized extracellular vesicles, containing proteins, nucleic acids and lipids, which are secreted by various cells, and they play an important role in the development of lung cancer by controlling a wide range of pathways. Tumor-derived exosomes are of great significance for guiding the targeted therapy of NSCLC and exosomes themselves can be a target for treatment. In this review, we describe the potential roles of tumor-derived exosomes and their clinical significance in NSCLC.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Junmi Lu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Juan Feng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
30
|
Liao S, Gan L, Qin W, Liu C, Mei Z. Inhibition of GSK3 and MEK induced cancer stem cell generation via the Wnt and MEK signaling pathways. Oncol Rep 2018; 40:2005-2013. [PMID: 30066938 PMCID: PMC6111576 DOI: 10.3892/or.2018.6600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be tumor-initiating cells, responsible for tumor invasive growth and dissemination to distant organ sites. Typically, radiation treatment and chemotherapy should target CSCs. However, current research investigating CSCs is impeded by the difficulty of isolating pure CSCs and maintaining them in vitro. In the present study, the synergistic inhibition of glycogen synthase kinase 3 and mitogen-activated protein kinase kinase using small molecules, CHIR99021 and PD184352, efficiently generated CSCs from immortalized human mammary epithelial cells (HMLEs) and resulted in the acquisition of mesenchymal traits and the expression of epithelial-mesenchymal transition markers. The cell proliferation, invasion and migration of HMLE cells were significantly promoted by CHIR99021 and PD184352 (P<0.05). Furthermore, the cell cycle was shifted from the G0/G1 phase to the G2/M phase, and the apoptotic rate was suppressed in HMLE cells following treatment with CHIR99021 and PD184352. Compared with control group, the stimulated cells exhibited an increased ability to form mammospheres and regenerate a tumor. In addition to these properties, the induced cells also exhibited notable chemotherapy resistance. In vivo, the treatment of cells with CHIR99021 and PD184352 promoted the growth of HMLE-engrafted tumor types. These results provide a practical strategy for the generation of CSCs using small molecules in vitro, which provides a cell resource that may be used for drug screening. Additionally, the present results additionally highlighted the synergistic functions of Wnt and mitogen-activated protein kinase kinase signaling pathways in tumorigenesis.
Collapse
Affiliation(s)
- Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Li Gan
- Teaching and Research Section of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wanxiang Qin
- Department of Pain Management, Southwest Hospital, The First Affiliated Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Chang Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
31
|
Zhang X, Wang X, Xu R, Ji J, Xu Y, Han M, Wei Y, Huang B, Chen A, Zhang Q, Li W, Wang J, Li X, Qiu C. YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J Transl Med 2018; 16:79. [PMID: 29571296 PMCID: PMC5865331 DOI: 10.1186/s12967-018-1451-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Background Radiotherapy constitutes a standard arm of therapy in the multimodal treatment of patients with glioblastoma (GBM). Ironically, studies have recently revealed that radiation can augment malignant progression, by promoting migration and invasion, which make the disease especially difficult to cure. Here, we investigated the anticancer effects of YM155, a purported radiosensitizer, in GBM cell lines. Methods GBM cell lines U251 and U87 were treated with YM155 to assess cytotoxicity and activity of the molecule in vitro. Nude mice were implanted with cells to generate orthotopic xenografts for in vivo studies. Response of cells to treatment was examined using cell viability, immunofluorescence, wound healing, and the Transwell invasion assay. Molecules potentially mediating response were examined through western blot analysis, phospho-kinase arrays, and qPCR. Cells were transfected with siRNA knockdown and gene expression constructs to identify molecular mediators of response. Results YM155 reduced viability of U251 and U87 cells and enhanced radiosensitivity through inhibition of homologous recombination. Besides, YM155 decreased invasion caused by radiation and led to expression changes in molecular markers associated with EMT. STAT3 was one of 10 molecules identified on a phosphokinase array exhibiting significant change in phosphorylation under YM155 treatment. Transfection with STAT3 siRNAs or expression constructs demonstrated that EMT changes were achieved by inhibiting the phosphorylation of STAT3 and were survivin-independent. Finally, combining YM155 and radiation in orthotopic xenografts reduced growth and prolonged overall survival of animals. Conclusions YM155 decreased radiation-induced invasion in GBM cell lines in vitro and in vivo through inhibition of STAT3. Electronic supplementary material The online version of this article (10.1186/s12967-018-1451-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Xuehai Wang
- Department of Otolaryngology, Weihai Municipal Hospital, Weihai, 264200, Shandong, People's Republic of China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.,Department of Neurosurgery, Jining No. 1, People's Hospital, Jining, 272011, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
32
|
Zhou Y, Xia L, Lin J, Wang H, Oyang L, Tan S, Tian Y, Su M, Wang H, Cao D, Liao Q. Exosomes in Nasopharyngeal Carcinoma. J Cancer 2018; 9:767-777. [PMID: 29581754 PMCID: PMC5868140 DOI: 10.7150/jca.22505] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanosized (30-100nm) membrane microvesicles secreted through a complex cellular process. Exosomes contain a variety of bioactive molecules, such as proteins, microRNAs(miRNAs or miRs) and long non-coding RNAs (lncRNAs), playing an important role in the cell-to-cell substance transportation and signal transduction. Nasopharyngeal carcinoma-related exosomes (NPC-Exo) have been identified in circulating blood and contribute to tumor cell proliferation, angiopoiesis, and immune tolerance through remodeling of tumor microenvironment (TME). Nasopharyngeal carcinoma-related exosomes may also induce epithelial-mesenchymal transition (EMT), thus promoting tumor metastasis and chemoradioresistance. Clinically, the exosomes may serve as novel biomarkers for diagnosis and targeted therapies of nasopharyngeal carcinoma. This review article updates the understanding of exosomes in nasopharyngeal carcinoma(NPC).
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
33
|
Kim RK, Kaushik N, Suh Y, Yoo KC, Cui YH, Kim MJ, Lee HJ, Kim IG, Lee SJ. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget 2018; 7:53430-53442. [PMID: 27462787 PMCID: PMC5288197 DOI: 10.18632/oncotarget.10802] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is developmental process associated with cancer metastasis. Here, we found that breast carcinoma cells adopt epithelial-to-mesenchymal transition (EMT) in response to fractionated-radiation. Importantly, we show that Notch signaling is highly activated in fractionally-irradiated tumors as compared to non-irradiated tumors that are accompanied by an EMT. Moreover, we uncovered the mechanism of Notch-driven EMT, in which Notch enhanced EMT through IL-6/JAK/STAT3 signaling axis in mammary tumor cells. Collectively, we present converging evidence from our studies that Notch2 is a critical mediator of radiation-induced EMT and responsible for induced malignant tumor growth.
Collapse
Affiliation(s)
- Rae-Kwon Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Neha Kaushik
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Yongjoon Suh
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Ki-Chun Yoo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Yan-Hong Cui
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hae-June Lee
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
34
|
Song J, Shi W. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochim Biophys Sin (Shanghai) 2018; 50:91-97. [PMID: 29069287 DOI: 10.1093/abbs/gmx117] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023] Open
Abstract
TGF-β's multipotent cellular effects and their relations are critical for TGF-β's pathophysiological functions. However, these effects may appear to be paradoxical in understanding TGF-β's functions. Apoptosis and epithelial-mesenchymal transition (EMT) are two fundamental events that are deeply linked to various physiological and disease-related processes. These two major cellular fates are subtly regulated and can be potently stimulated by TGF-β, which profoundly contribute to the biological roles of TGF-β. Moreover, these two events are also indirectly and directly correlated with TGF-β-mediated growth inhibition and are relevant to the current understanding of the roles of TGF-β in tumorigenesis and cancer progression. Although TGF-β-induced apoptosis and EMT can be singly independent cellular events, they can also be mutually exclusive but interrelated concomitant events in various cases. Thus, the modulation of apoptosis and EMT is essential for the seemingly paradoxical functions of TGF-β. However, the concomitant effect of TGF-β on apoptosis and EMT, the balance and regulated alterations of them are still been ignored or underestimated. This review focuses on the TGF-β-induced concomitant apoptosis and EMT. We aim to provide an insight in understanding their significance, balance, and modulation in TGF-β-mediated biological functions.
Collapse
Affiliation(s)
- Jianguo Song
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiwei Shi
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
35
|
Kim S, Yang JW, Kim C, Kim MG. Impact of suppression of tumorigenicity 14 (ST14)/serine protease 14 (Prss14) expression analysis on the prognosis and management of estrogen receptor negative breast cancer. Oncotarget 2017; 7:34643-63. [PMID: 27167193 PMCID: PMC5085182 DOI: 10.18632/oncotarget.9155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/16/2016] [Indexed: 01/06/2023] Open
Abstract
To elucidate the role of a type II transmembrane serine protease, ST14/Prss14, during breast cancer progression, we utilized publically accessible databases including TCGA, GEO, NCI-60, and CCLE. Survival of breast cancer patients with high ST14/Prss14 expression is significantly poor in estrogen receptor (ER) negative populations regardless of the ratios of ST14/Prss14 to its inhibitors, SPINT1 or SPINT2. In a clustering of 1085 selected EMT signature genes, ST14/Prss14 is located in the same cluster with CDH3, and closer to post-EMT markers, CDH2, VIM, and FN1 than to the pre-EMT marker, CDH1. Coexpression analyses of known ST14/Prss14 substrates and transcription factors revealed context dependent action. In cell lines, paradoxically, ST14/Prss14 expression is higher in the ER positive group and located closer to CDH1 in clustering. This apparent contradiction is not likely due to ST14/Prss14 expression in a cancer microenvironment, nor due to negative regulation by ER. Genes consistently coexpressed with ST14/Prss14 include transcription factors, ELF5, GRHL1, VGLL1, suggesting currently unknown mechanisms for regulation. Here, we report that ST14/Prss14 is an emerging therapeutic target for breast cancer where HER2 is not applicable. In addition we suggest that careful conclusions should be drawn not exclusively from the cell line studies for target development.
Collapse
Affiliation(s)
- Sauryang Kim
- Inha University, Department of Biological Sciences, Incheon, Republic of Korea
| | - Jae Woong Yang
- Inha University, Department of Biological Sciences, Incheon, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Moon Gyo Kim
- Inha University, Department of Biological Sciences, Incheon, Republic of Korea.,Convergent Research Institute for Metabolism and Immunoregulation, Incheon, Republic of Korea
| |
Collapse
|
36
|
Li D, Chen R, Wang YW, Fornace AJ, Li HH. Prior irradiation results in elevated programmed cell death protein 1 (PD-1) in T cells. Int J Radiat Biol 2017; 94:488-494. [PMID: 29108460 DOI: 10.1080/09553002.2017.1400192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE In this study we addressed the question whether radiation-induced adverse effects on T cell activation are associated with alterations of T cell checkpoint receptors. MATERIALS AND METHODS Expression levels of checkpoint receptors on T cell subpopulations were analyzed at multiple post-radiation time points ranging from one to four weeks in mice receiving a single fraction of 1 or 4 Gy of γ-ray. T cell activation associated metabolic changes were assessed. RESULTS Our results showed that prior irradiation resulted in significant elevated expression of programmed cell death protein 1 (PD-1) in both CD4+ and CD8+ populations, at all three post-radiation time points. T cells with elevated PD-1 mostly were either central memory or naïve cells. In addition, the feedback induction of PD-1 expression in activated T cells declined after radiation. CONCLUSION Taken together, the elevated PD-1 level observed at weeks after radiation exposure is connected to T cell dysfunction. Recent preclinical and clinical studies have showed that a combination of radiotherapy and T cell checkpoint blockade immunotherapy including targeting the programmed death-ligand 1 (PD-L1)/PD-1 axis may potentiate the antitumor response. Understanding the dynamic changes in PD-1 levels in T cells after radiation should help in the development of a more effective therapeutic strategy.
Collapse
Affiliation(s)
- Deguan Li
- a Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , China
| | - Renxiang Chen
- b Department of Biochemistry and Molecular & Cellular Biology , Georgetown University , Washington , DC , USA
| | - Yi-Wen Wang
- b Department of Biochemistry and Molecular & Cellular Biology , Georgetown University , Washington , DC , USA
| | - Albert J Fornace
- b Department of Biochemistry and Molecular & Cellular Biology , Georgetown University , Washington , DC , USA.,c Department of Oncology , Georgetown University , Washington , DC , USA
| | - Heng-Hong Li
- b Department of Biochemistry and Molecular & Cellular Biology , Georgetown University , Washington , DC , USA.,c Department of Oncology , Georgetown University , Washington , DC , USA
| |
Collapse
|
37
|
Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: the role of TGF-β. Aging (Albany NY) 2017; 8:1650-69. [PMID: 27434331 PMCID: PMC5032688 DOI: 10.18632/aging.100989] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
The cell surface proteoglycan syndecan 1 (SDC1) is overexpressed in the malignant breast stromal fibroblasts, creating a favorable milieu for tumor cell growth. In the present study, we found that ionizing radiation, a well-established treatment in human breast cancer, provokes premature senescence of human breast stromal fibroblasts in vitro, as well as in the breast tissue in vivo. These senescent cells were found to overexpress SDC1 both in vitro and in vivo. By using a series of specific inhibitors and siRNA approaches, we showed that this SDC1 overexpression in senescent cells is the result of an autocrine action of Transforming Growth Factor-β (TGF-β) through the Smad pathway and the transcription factor Sp1, while the classical senescence pathways of p53 or p38 MAPK - NF-kB are not involved. In addition, the highly invasive human breast cancer cells MDA-MB-231 (in contrast to the low-invasive MCF-7) can also enhance SDC1 expression, both in early-passage and senescent fibroblasts via a paracrine action of TGF-β. The above suggest that radiation-mediated premature senescence and invasive tumor cells, alone or in combination, enhance SDC1 expression in breast stromal fibroblasts, a poor prognostic factor for cancer growth, and that TGF-β plays a crucial role in this process.
Collapse
|
38
|
Piotrowski I, Kulcenty K, Suchorska WM, Skrobała A, Skórska M, Kruszyna-Mochalska M, Kowalik A, Jackowiak W, Malicki J. Carcinogenesis Induced by Low-dose Radiation. Radiol Oncol 2017; 51:369-377. [PMID: 29333114 PMCID: PMC5765312 DOI: 10.1515/raon-2017-0044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 01/10/2023] Open
Abstract
Background Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure. Conclusions Understanding the molecular mechanisms of response to low dose radiation is crucial for the proper evaluation of risks and benefits that stem from these exposures and should be considered in the radiotherapy treatment planning and in determining the allowed occupational exposures.
Collapse
Affiliation(s)
- Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, Poznań, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, Poznań, Poland.,Department of Electroradiology, University of Medical Sciences, Poznań, Poland
| | - Wiktoria Maria Suchorska
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, Poznań, Poland.,Department of Electroradiology, University of Medical Sciences, Poznań, Poland
| | - Agnieszka Skrobała
- Department of Electroradiology, University of Medical Sciences, Poznań, Poland.,Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Małgorzata Skórska
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Marta Kruszyna-Mochalska
- Department of Electroradiology, University of Medical Sciences, Poznań, Poland.,Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Anna Kowalik
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | | | - Julian Malicki
- Department of Electroradiology, University of Medical Sciences, Poznań, Poland.,Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| |
Collapse
|
39
|
Parsana P, Amend SR, Hernandez J, Pienta KJ, Battle A. Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration. BMC Cancer 2017. [PMID: 28651527 PMCID: PMC5485747 DOI: 10.1186/s12885-017-3413-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial to mesenchymal transition (EMT) is the process by which stationary epithelial cells transdifferentiate to mesenchymal cells with increased motility. EMT is integral in early stages of development and wound healing. Studies have shown that EMT could be a critical early event in tumor metastasis that is involved in acquisition of migratory and invasive properties in multiple carcinomas. Methods In this study, we used 15 published gene expression microarray datasets from Gene Expression Omnibus (GEO) that represent 12 cell lines from 6 cancer types across 95 observations (45 unique samples and 50 replicates) with different modes of induction of EMT or the reverse transition, mesenchymal to epithelial transition (MET). We integrated multiple gene expression datasets while considering study differences, batch effects, and noise in gene expression measurements. A universal differential EMT gene list was obtained by normalizing and correcting the data using four approaches, computing differential expression from each, and identifying a consensus ranking. We confirmed our discovery of novel EMT genes at mRNA and protein levels in an in vitro EMT model of prostate cancer – PC3 epi, EMT and Taxol resistant cell lines. We validate our discovery of C1orf116 as a novel EMT regulator by siRNA knockdown of C1orf116 in PC3 epithelial cells. Results Among differentially expressed genes, we found known epithelial and mesenchymal marker genes such as CDH1 and ZEB1. Additionally, we discovered genes known in a subset of carcinomas that were unknown in prostate cancer. This included epithelial specific LSR and S100A14 and mesenchymal specific DPYSL3. Furthermore, we also discovered novel EMT genes including a poorly-characterized gene C1orf116. We show that decreased expression of C1orf116 is associated with poor prognosis in lung and prostate cancer patients. We demonstrate that knockdown of C1orf116 expression induced expression of mesenchymal genes in epithelial prostate cancer cell line PC3-epi cells, suggesting it as a candidate driver of the epithelial phenotype. Conclusions This comprehensive approach of statistical analysis and functional validation identified global expression patterns in EMT and candidate regulatory genes, thereby both extending current knowledge and identifying novel drivers of EMT. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3413-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah R Amend
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - James Hernandez
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alexis Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
40
|
Zhu Y, Shi LY, Lei YM, Bao YH, Li ZY, Ding F, Zhu GT, Wang QQ, Huang CX. Radiosensitization effect of hsa-miR-138-2-3p on human laryngeal cancer stem cells. PeerJ 2017; 5:e3233. [PMID: 28533948 PMCID: PMC5436573 DOI: 10.7717/peerj.3233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Treatments that target cancer stem cells play an important role in the controlling and eliminating of tumor initiation as well as in development, progression, and chemotherapy/radiotherapy resistance. In our previous study, we cultured and harvested human laryngeal cancer stem cells (CSCs) and applied microRNA biochips to screen differentially expressed miRNAs that were related to radiation tolerance in irradiated human laryngeal CSCs. According to the predicted genes and pathways of differential miRNAs target, down-regulated expression of hsa-miR-138-2-3p under radiation was thought to play a key role in enhancing the radio-sensitivity in human laryngeal squamous cancer stem cells. METHOD To investigate the radiational enhancement of hsa-miR-138-2-3p, we transfected hsa-miR-138-2-3p mimics that were synthesized based on the sequences of hsa-miR-138-2-3p in vitrointo human laryngeal CSCs (Hep-2, M2e, and TU212 cell lines) to make hsa-miR-138-2-3p overexpressed, and the tumorous specialities of CSCs, like cell proliferation, invasion, apoptosis, cell cycle arrest, and DNA damage were evaluated by CCK-8 assay, clone formation assay, invasion assay, flow cytometry, and comet assay. Furthermore, we explored the signal transduction pathways that regulated the cancer stem cell initiation, development, invasion, apoptosis and cell cycle arrest, which were controlled by hsa-miR-138-2-3p. RESULT Overexpressed hsa-miR-138-2-3p played a key role in many anti-cancer biological processes in human laryngeal CSCs: (1) it decreased laryngeal CSCs proliferation and invasion in response to radiotherapy; (2) it increased the proportion of early and late apoptosis in laryngeal CSCs after radiation, raised G1 phase arrest in laryngeal CSCs after radiation, and decreased the proportion of S stage cells of cell cycle that were related to radio-resistance in laryngeal CSCs; (3) it down-regulated the expression of β-catenin in Wnt signal pathway that was related to the tolerance of laryngeal CSCs to radiotherapy; (4) it down-regulated the expression of YAP1 in Hippo signal pathway that regulated cell proliferation, invasion and apoptosis; (5) it up-regulated the expression of p38 and JNK1 in MAPK signal pathway that was concerned to radio-sensitivity. CONCLUSION In the present study, it was found that hsa-miR-138-2-3p regulated the Wnt/β-catenin pathways, the Hippo/YAP1 pathways, and the MAPK/p38/JNK1 pathways that were involved in cell proliferation, invasion, apoptosis, cell cycle arrest, radio-resistance and radio-sensitivity in laryngeal CSCs. These results will be useful for a better understanding of the cell biology of hsa-miR-138-2-3p in laryngeal CSCs, and for serving hsa-miR-138-2-3p as a promising biomarker and as a target for diagnosis and for novel anti-cancer therapies for laryngeal cancers.
Collapse
Affiliation(s)
- Ying Zhu
- First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li-Yun Shi
- Department of Immunology, School of Medical and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Min Lei
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan-Hong Bao
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhao-Yang Li
- Department of Oncology, Affiliated Hospital with Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Fei Ding
- Department of Oncology, Affiliated Hospital with Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Gui-Ting Zhu
- Department of Oncology, Affiliated Hospital with Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Qing-Qing Wang
- Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Chang-Xin Huang
- Department of Oncology, Affiliated Hospital with Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Sun J, Yang X, Zhang R, Liu S, Gan X, Xi X, Zhang Z, Feng Y, Sun Y. GOLPH3 induces epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in epithelial ovarian cancer. Cancer Med 2017; 6:834-844. [PMID: 28332316 PMCID: PMC5387163 DOI: 10.1002/cam4.1040] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/15/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3), a newly recognized oncogene, is associated with tumor growth, metastasis, and poor prognosis in several types of cancer. However, its biological role and underlying mechanism in epithelial ovarian cancer (EOC) remain poorly understood. Here, we found that GOLPH3 was overexpressed in EOC tissues and cell lines. This overexpression promoted the migration and invasion of EOC cells. Moreover, GOLPH3 upregulated the expression of epithelial–mesenchymal transition (EMT) markers, such as N‐cadherin and Snail, and the Wnt/β‐catenin‐related genes cyclin‐D1 and c‐Myc, which were restored via silencing of GOLPH3 expression. Furthermore, the inhibitor and activator of the Wnt/β‐catenin pathway, XAV939 and LiCl, enhanced or decreased, respectively, the effect of GOLPH3 on EMT, which further confirmed that GOLPH3 promoted EMT progression via activation of Wnt/β‐catenin signaling. In addition, we found that EDD, the human hyperplastic discs gene, was consistent with GOLPH3 expression and also promoted the EMT process and activated Wnt/β‐catenin signaling. These findings demonstrate that EDD might be a downstream factor of GOLPH3. Taken together, our findings demonstrate the existence of a GOLPH3–Wnt/β‐catenin–EMT axis in EOC and provide a new therapeutic target to treat EOC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suqing Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupei Gan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16:10. [PMID: 28137309 PMCID: PMC5282724 DOI: 10.1186/s12943-016-0577-4] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Young Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Pusan, 619-953, Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.,DNA Identification Center, National Forensic Service, Seoul, 158-707, Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan, 609-735, Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, 501-759, Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.
| |
Collapse
|
43
|
Herrera FG, Bourhis J, Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin 2017; 67:65-85. [PMID: 27570942 DOI: 10.3322/caac.21358] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Approximately one-half of patients with newly diagnosed cancer and many patients with persistent or recurrent tumors receive radiotherapy (RT), with the explicit goal of eliminating tumors through direct killing. The current RT dose and schedule regimens have been empirically developed. Although early clinical studies revealed that RT could provoke important responses not only at the site of treatment but also on remote, nonirradiated tumor deposits-the so-called "abscopal effect"- the underlying mechanisms were poorly understood and were not therapeutically exploited. Recent work has elucidated the immune mechanisms underlying these effects and has paved the way for developing combinations of RT with immune therapy. In the wake of recent therapeutic breakthroughs in the field of immunotherapy, rational combinations of immunotherapy with RT could profoundly change the standard of care for many tumor types in the next decade. Thus, a deep understanding of the immunologic effects of RT is urgently needed to design the next generation of therapeutic combinations. Here, the authors review the immune mechanisms of tumor radiation and summarize the preclinical and clinical evidence on immunotherapy-RT combinations. Furthermore, a framework is provided for the practicing clinician and the clinician investigator to guide the development of novel combinations to more rapidly advance this important field. CA Cancer J Clin 2017;67:65-85. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Fernanda G Herrera
- Radiation Oncologist, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Instructor, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Jean Bourhis
- Professor, Chief of Radiation Oncology Service, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Professor, Director, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Director, Ludwig Institute for Cancer Research, University of Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
44
|
Martinez-Ruiz H, Illa-Bochaca I, Omene C, Hanniford D, Liu Q, Hernando E, Barcellos-Hoff MH. A TGFβ-miR-182-BRCA1 axis controls the mammary differentiation hierarchy. Sci Signal 2016; 9:ra118. [PMID: 27923913 DOI: 10.1126/scisignal.aaf5402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Maintenance of mammary functional capacity during cycles of proliferation and regression depends on appropriate cell fate decisions of mammary progenitor cells to populate an epithelium consisting of secretory luminal cells and contractile myoepithelial cells. It is well established that transforming growth factor-β (TGFβ) restricts mammary epithelial cell proliferation and that sensitivity to TGFβ is decreased in breast cancer. We show that TGFβ also exerts control of mammary progenitor self-renewal and lineage commitment decisions by stringent regulation of breast cancer associated 1 (BRCA1), which controls stem cell self-renewal and lineage commitment. Either genetic depletion of Tgfb1 or transient blockade of TGFβ increased self-renewal of mammary progenitor cells in mice, cultured primary mammary epithelial cells, and also skewed lineage commitment toward the myoepithelial fate. TGFβ stabilized the abundance of BRCA1 by reducing the abundance of microRNA-182 (miR-182). Ectopic expression of BRCA1 or antagonism of miR-182 in cultured TGFβ-deficient mammary epithelial cells restored luminal lineage commitment. These findings reveal that TGFβ modulation of BRCA1 directs mammary epithelial cell fate and, because stem or progenitor cells are thought to be the cell of origin for aggressive breast cancer subtypes, suggest that TGFβ dysregulation during tumorigenesis may promote distinct breast cancer subtypes.
Collapse
Affiliation(s)
- Haydeliz Martinez-Ruiz
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA
| | - Irineu Illa-Bochaca
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA
| | - Coral Omene
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Douglas Hanniford
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Qi Liu
- Department of Radiation Oncology, University of California, San Francisco, 2840 Sutter Street, San Francisco, CA 94143, USA
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA. .,Department of Radiation Oncology, University of California, San Francisco, 2840 Sutter Street, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
46
|
TGF-β1 Is Present at High Levels in Wound Fluid from Breast Cancer Patients Immediately Post-Surgery, and Is Not Increased by Intraoperative Radiation Therapy (IORT). PLoS One 2016; 11:e0162221. [PMID: 27589056 PMCID: PMC5010202 DOI: 10.1371/journal.pone.0162221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
In patients with low-risk breast cancer, intraoperative radiotherapy (IORT) during breast-conserving surgery is a novel and convenient treatment option for delivering a single high dose of irradiation directly to the tumour bed. However, edema and fibrosis can develop after surgery and radiotherapy, which can subsequently impair quality of life. TGF- β is a strong inducer of the extracellular matrix component hyaluronan (HA). TGF-β expression and HA metabolism can be modulated by irradiation experimentally, and are involved in edema and fibrosis. We therefore hypothesized that IORT may regulate these factors.Wound fluid (WF) draining from breast lumpectomy sites was collected and levels of TGF-β1 and HA were determined by ELISA. Proliferation and marker expression was analyzed in primary lymphatic endothelial cells (LECs) treated with recombinant TGF-β or WF. Our results show that IORT does not change TGF-β1 or HA levels in wound fluid draining from breast lumpectomy sites, and does not lead to accumulation of sHA oligosaccharides. Nevertheless, concentrations of TGF-β1 were high in WF from patients regardless of IORT, at concentrations well above those associated with fibrosis and the suppression of LEC identity. Consistently, we found that TGF-β in WF is active and inhibits LEC proliferation. Furthermore, all three TGF-β isoforms inhibited LEC proliferation and suppressed LEC marker expression at pathophysiologically relevant concentrations. Given that TGF-β contributes to edema and plays a role in the regulation of LEC identity, we suggest that inhibition of TGF-β directly after surgery might prevent the development of side effects such as edema and fibrosis.
Collapse
|
47
|
Abstract
Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model.
Collapse
|
48
|
Martin OA, Anderson RL, Narayan K, MacManus MP. Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat Rev Clin Oncol 2016; 14:32-44. [PMID: 27550857 DOI: 10.1038/nrclinonc.2016.128] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite progressive improvements in the management of patients with locoregionally confined, advanced-stage solid tumours, distant metastasis remains a very common - and usually fatal - mode of failure after attempted curative treatment. Surgery and radiotherapy are the primary curative modalities for these patients, often combined with each other and/or with chemotherapy. Distant metastasis occurring after treatment can arise from previously undetected micrometastases or, alternatively, from persistent locoregional disease. Another possibility is that treatment itself might sometimes cause or promote metastasis. Surgical interventions in patients with cancer, including biopsies, are commonly associated with increased concentrations of circulating tumour cells (CTCs). High CTC numbers are associated with an unfavourable prognosis in many cancers. Radiotherapy and systemic antitumour therapies might also mobilize CTCs. We review the preclinical and clinical data concerning cancer treatments, CTC mobilization and other factors that might promote metastasis. Contemporary treatment regimens represent the best available curative options for patients who might otherwise die from locally confined, advanced-stage cancers; however, if such treatments can promote metastasis, this process must be understood and addressed therapeutically to improve patient survival.
Collapse
Affiliation(s)
- Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Robin L Anderson
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Kailash Narayan
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
49
|
Moustakas A, Heldin CH. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J Clin Med 2016; 5:jcm5070063. [PMID: 27367735 PMCID: PMC4961994 DOI: 10.3390/jcm5070063] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Transitory phenotypic changes such as the epithelial–mesenchymal transition (EMT) help embryonic cells to generate migratory descendants that populate new sites and establish the distinct tissues in the developing embryo. The mesenchymal descendants of diverse epithelia also participate in the wound healing response of adult tissues, and facilitate the progression of cancer. EMT can be induced by several extracellular cues in the microenvironment of a given epithelial tissue. One such cue, transforming growth factor β (TGFβ), prominently induces EMT via a group of specific transcription factors. The potency of TGFβ is partly based on its ability to perform two parallel molecular functions, i.e. to induce the expression of growth factors, cytokines and chemokines, which sequentially and in a complementary manner help to establish and maintain the EMT, and to mediate signaling crosstalk with other developmental signaling pathways, thus promoting changes in cell differentiation. The molecules that are activated by TGFβ signaling or act as cooperating partners of this pathway are impossible to exhaust within a single coherent and contemporary report. Here, we present selected examples to illustrate the key principles of the circuits that control EMT under the influence of TGFβ.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE 751 23 Uppsala, Sweden.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
50
|
Kwon OS, Kim KT, Lee E, Kim M, Choi SH, Li H, Fornace AJ, Cho JH, Lee YS, Lee JS, Lee YJ, Cha HJ. Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response. PLoS One 2016; 11:e0154942. [PMID: 27171163 PMCID: PMC4865046 DOI: 10.1371/journal.pone.0154942] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/21/2016] [Indexed: 02/06/2023] Open
Abstract
Radiation-induced lung fibrosis, the most serious effect of lung cancer radiotherapy on normal tissue, remains a major technical obstacle to the broader application of radiotherapy to patients with lung cancer. This study describes the use of an image-guided irradiation system in mice mimicking stereotactic body radiotherapy (SBRT) to examine the molecular features of chronic fibrotic response after radiation injury. MicroRNA (miR) array analysis of injured pulmonary tissue identified a set of miRs whose expression was significantly increased in damaged lung tissue. In particular, miR-21 expression was increased at the radiation injury site, concurrent with collagen deposition. Although the inhibition of miR-21 by its specific inhibitor anti-miR-21 only marginally affected endothelial-mesenchymal transition (EndMT) in lung endothelial cells, this inhibition significantly reduced collagen synthesis in lung fibroblasts. Furthermore, ectopic expression of miR-21 was sufficient to promote a fibrotic response in lung fibroblasts, enhancing Smad2 phosphorylation concurrent with Smad7 downregulation. These findings indicate that the induction of miR-21 expression is responsible for fibrotic responses observed in mesenchymal cells at the injury site through the potentiation of TGF-β signaling. Local targeting of miR-21 at the injured area could have potential therapeutic utility in mitigating radiation-induced lung fibrosis.
Collapse
Affiliation(s)
- Ok-Seon Kwon
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Keun-Tae Kim
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Eunioo Lee
- College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Jeonbuk, Korea
| | - Myoungjae Kim
- College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Jeonbuk, Korea
| | - Seo-Hyun Choi
- Laboratory of Radiation Effect, Division of Radiation effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Henghong Li
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Jae-Ho Cho
- Department of Radiation Oncology, Severance Hospital, Yonsei University, Seoul, Korea
| | - Yun-Sil Lee
- School of Pharmacy, Ewha University Seoul, Korea
| | - Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
- * E-mail: (HJC); (YJL); (JSL)
| | - Yoon-Jin Lee
- Laboratory of Radiation Effect, Division of Radiation effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
- * E-mail: (HJC); (YJL); (JSL)
| | - Hyuk-Jin Cha
- Department of Life Sciences, Sogang University, Seoul, Korea
- * E-mail: (HJC); (YJL); (JSL)
| |
Collapse
|