1
|
Wang M, Liu K, Bao W, Hang B, Chen X, Zhu X, Li G, Liu L, Xiang H, Hu H, Lu Y, Song Z, Chen J, Wang Y. Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9. Dev Cell 2025; 60:1008-1017.e7. [PMID: 39755115 DOI: 10.1016/j.devcel.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025]
Abstract
The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9. Snhg9 promotes tumor growth through inhibition of the tumor suppressor p53. Snhg9 suppresses p53 activity by dissociating the p53 deacetylase sirtuin 1 (SIRT1) from the cell cycle and apoptosis regulator 2 (CCAR2). Consequently, the depletion of the microbiota by antibiotics causes upregulation of Snhg9 and accelerates CRC progression. Moreover, Snhg9 is functionally conserved. Human SNHG9 promotes tumor growth via the same mechanism as mouse Snhg9, despite their low sequence similarity.
Collapse
Affiliation(s)
- Meng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Kailin Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Wu Bao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Bingqing Hang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Xianjiong Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Xinyi Zhu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Guifang Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Haoyi Xiang
- Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Hai Hu
- Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China
| | - Zhangfa Song
- Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Jiaxin Chen
- Department of Breast Surgery and Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.
| | - Yuhao Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China.
| |
Collapse
|
2
|
Golshani M, Taylor JA, Woolbright BL. Understanding the microbiome as a mediator of bladder cancer progression and therapeutic response. Urol Oncol 2025; 43:254-265. [PMID: 39117491 DOI: 10.1016/j.urolonc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Bladder cancer (BCa) remains a significant source of morbidity and mortality. BCa is one of the most expensive tumors to treat, in part because of a lack of nonsurgical options. The recent advent of immunotherapy, alone or in combination with other compounds, has improved therapeutic options. Resistance to immunotherapy remains common, and many patients do not have durable response. Recent advances indicate immunotherapy efficacy may be tied in part to the endogenous bacteria present in our body, more commonly referred to as the microbiome. Laboratory and clinical data now support the idea that a healthy microbiome is critical to effective response to immunotherapy. At the same time, pathogenic interactions between the microbiome and immune cells can also serve to drive formation of tumors, increasing the complexity of these interactions. Given the rising importance of immunotherapy in BCa, understanding how we might be able to alter the microbiome to improve therapeutic efficacy offers a novel route to improved patient care. The goal of this review is to examine our current understanding of microbial interactions with the immune system and cancer with an emphasis on BCa. We will further attempt to define both current gaps in knowledge and future directions that may yield beneficial results to the field.
Collapse
Affiliation(s)
- Mahgol Golshani
- School of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
3
|
Morsli DS, Tbahriti HF, Rahli F, Mahammi FZ, Nagdalian A, Hemeg HA, Imran M, Rauf A, Shariati MA. Probiotics in colorectal cancer prevention and therapy: mechanisms, benefits, and challenges. Discov Oncol 2025; 16:406. [PMID: 40140210 PMCID: PMC11947384 DOI: 10.1007/s12672-025-01996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of morbidity worldwide. In Algeria, it ranks second in mortality-related deaths. Poor lifestyle, characterized by a low-fiber diet, insufficient physical activity, tobacco use, and alcohol consumption, is strongly associated with an increased risk of developing this disease. Probiotics have demonstrated anti-inflammatory and antitumor effects in preclinical and clinical studies. The World Health Organization (WHO) and European Food Safety Authority (EFSA) have recognized their safety and effectiveness, classifying them as Generally Recognized as Safe (GRAS) and Qualified Presumption of Safety (QPS), respectively. Probiotics exhibit immunomodulatory effects and maintain the equilibrium of the gut microbiota. However, the evidence for their clinical efficacy is inadequate, and additional research is requisite to establish them as therapeutic agents rather than simply as dietary supplements. Although probiotics are, in most cases, safe, high-risk patients should exercise caution due to the potential risk of infection. This review examines the current knowledge on probiotic strains, their therapeutic potential for colorectal cancer, limitations, and areas where further research is imperative to improve their efficacy.
Collapse
Affiliation(s)
| | - Hadja Fatima Tbahriti
- Higher School of Biological Sciences of Oran, Oran, Algeria.
- Laboratory of Clinical Nutrition and Metabolism, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1, Oran, Algeria.
| | - Fouzia Rahli
- Higher School of Biological Sciences of Oran, Oran, Algeria
- Laboratory of Microbiology Applied, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1, Oran, Algeria
| | - Fatima Zohra Mahammi
- Higher School of Biological Sciences of Oran, Oran, Algeria
- Laboratory of Molecular and Cellular Genetics, Department of Applied Molecular Genetics, Faculty of Natural and Life Sciences, University of Science and Technology of Oran Mohamed Boudiaf, Oran, Algeria
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - Hassan A Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawara, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, KP, Pakistan.
| | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Gagarin Avenue 238G, Almaty, 050060, Kazakhstan
| |
Collapse
|
4
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
5
|
Chacon J, Faizuddin F, McKee JC, Sheikh A, Vasquez VM, Gadad SS, Mayer G, Siby S, McCabe M, Dhandayuthapani S. Unlocking the Microbial Symphony: The Interplay of Human Microbiota in Cancer Immunotherapy Response. Cancers (Basel) 2025; 17:813. [PMID: 40075661 PMCID: PMC11899421 DOI: 10.3390/cancers17050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION The emergence of cancer immunotherapy has revolutionized cancer treatment, offering remarkable outcomes for patients across various malignancies. However, the heterogeneous response to immunotherapy underscores the necessity of understanding additional factors influencing treatment efficacy. Among these factors, the human microbiota has garnered significant attention for its potential role in modulating immune response. Body: This review explores the intricate relationship between the human microbiota and cancer immunotherapy, highlighting recent advances and potential mechanisms underlying microbial influence on treatment outcomes. CONCLUSION Insights into the microbiome's impact on immunotherapy response not only deepen our understanding of cancer pathogenesis but also hold promise for personalized therapeutic strategies aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Jessica Chacon
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Farah Faizuddin
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Jack C. McKee
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Aadil Sheikh
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Victor M. Vasquez
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Shrikanth S. Gadad
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ghislaine Mayer
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Sharon Siby
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Molly McCabe
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Subramanian Dhandayuthapani
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
6
|
Chen HL, Hu PY, Chen CS, Lin WH, Hsu DK, Liu FT, Meng TC. Gut colonization of Bacteroides plebeius suppresses colitis-associated colon cancer development. Microbiol Spectr 2025; 13:e0259924. [PMID: 39804065 PMCID: PMC11792494 DOI: 10.1128/spectrum.02599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
Colon cancer development may be initiated by multiple factors, including chronic inflammation, genetic disposition, and gut dysbiosis. The loss of beneficial bacteria and increased abundance of detrimental microbes exacerbates disease progression. Bacteroides plebeius (B. plebeius) is a human gut microbe, and its colon colonization is enhanced by a seaweed-supplemented diet. We found that mice orally administered with B. plebeius and fed a diet containing 1% seaweed developed a unique gut microbial composition. By linear discriminant analysis effect size analysis, we found that B. plebeius colonization increased the abundance of Blautia coccoides and reduced the abundance of Akkermansia sp. and Dubosiella sp. We also showed that colonization of B. plebeius suppressed the colon tumor development induced by azoxymethane/dextran sulfate sodium in specific-pathogen-free mice, coinciding with a reduced abundance of Muribaculaceae sp., Closteridale sp., and Bilophila sp. Moreover, B. plebeius colonization in gnotobiotic mice resulted in enhanced production of selected metabolites, including propionic, taurocholic, cholic, alpha-, and beta-muricholic, as well as ursodeoxycholic acids. Importantly, some of these metabolites show anti-inflammatory and tumor-suppressive effects. We conclude that B. plebeius is able to restructure the gut microbial community and produce beneficial metabolites, leading to inhibition of colitis-associated colon cancer development.IMPORTANCEThis work delves into the pivotal role of gut microbiota in suppressing the progression of colitis-associated colon cancer. By investigating the impact of Bacteroides plebeius that can be colonized in mouse gut by feeding the animal with seaweed diet, we unveil a novel mechanism through which this beneficial bacterium reshapes the gut microbial community and produces metabolites with anti-inflammatory and tumor-suppressive properties. Such findings underscore the potential of harnessing specific microbes, like B. plebeius shown in this study, to modulate the gut ecosystem and mitigate the risk of colitis-associated colon cancer.
Collapse
Affiliation(s)
- Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei City, Taiwan
| | - Po-Yuan Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Chang-Shan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Daniel K. Hsu
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, California, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
- Department of Dermatology, Keck School of Medicine USC, University of Southern California, Los Angeles, California, USA
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
7
|
Liu L, Wang Y, Yu S, Liu H, Li Y, Hua S, Chen Y. Transforming Growth Factor Beta Promotes Inflammation and Tumorigenesis in Smad4-Deficient Intestinal Epithelium in a YAP-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300708. [PMID: 37261975 PMCID: PMC10427365 DOI: 10.1002/advs.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Indexed: 06/03/2023]
Abstract
Transforming growth factor beta (TGF-β), a multifunctional cytokine, plays critical roles in immune responses. However, the precise role of TGF-β in colitis and colitis-associated cancer remains poorly defined. Here, it is demonstrated that TGF-β promotes the colonic inflammation and related tumorigenesis in the absence of Smad family member 4 (Smad4). Smad4 loss in intestinal epithelium aggravates colitis and colitis-associated neoplasia induced by dextran sulfate sodium (DSS) and azoxymethane/dextran sulfate sodium (AOM/DSS), leading to over-activated immune responses and increased TGF-β1 levels. In Smad4-deficient organoids, TGF-β1 stimulates spheroid formation and impairs intestinal stem cell proliferation and lineage specification. YAP, whose expression is directly upregulated by TGF-β1 after Smad4 deletion, mediates the effect of TGF-β1 by interacting with Smad2/3. Attenuation of YAP/TAZ prevents TGF-β1-induced spheroid formation in Smad4-/- organoids and alleviates colitis and colitis-associated cancer in Smad4-deficient mice. Collectively, these results highlight an integral role of the TGF-β/Smad4 axis in restraining intestinal inflammation and tumorigenesis and suggest TGF-β or YAP signaling as therapeutic targets for these gastrointestinal diseases intervention.
Collapse
Affiliation(s)
- Liansheng Liu
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Yalong Wang
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Shicheng Yu
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Huidong Liu
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Yehua Li
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Shan Hua
- Guangzhou LaboratoryGuangzhou510700China
- Center for Life SciencesSchool of Life SciencesYunnan UniversityKunming650500China
| | - Ye‐Guang Chen
- Guangzhou LaboratoryGuangzhou510700China
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Jiangxi Medical CollegeNanchang UniversityNanchang330031China
| |
Collapse
|
8
|
Host-microbiota interactions and oncogenesis: Crosstalk and its implications in etiology. Microb Pathog 2023; 178:106063. [PMID: 36893903 DOI: 10.1016/j.micpath.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/03/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
A number of articles have discussed the potential of microbiota in oncogenesis. Several of these have evaluated the modulation of microbiota and its influence on cancer development. Even in recent past, a plethora of studies have gathered in order to understand the difference in microbiota population among different cancer and normal individuals. Although in majority of studies, microbiota mediated oncogenesis has been primarily attributed to the inflammatory mechanisms, there are several other ways through which microbiota can influence oncogenesis. These relatively less discussed aspects including the hormonal modulation through estrobolome and endobolome, production of cyclomodulins, and lateral gene transfer need more attention of scientific community. We prepared this article to discuss the role of microbiota in oncogenesis in order to provide concise information on these relatively less discussed microbiota mediated oncogenesis mechanisms.
Collapse
|
9
|
Mohseni AH, Taghinezhad-S S, Casolaro V, Lv Z, Li D. Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death Dis 2023; 14:154. [PMID: 36828830 PMCID: PMC9958015 DOI: 10.1038/s41419-023-05560-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/26/2023]
Abstract
The central role of the microbiota as a pivotal factor regulating anti-tumor immune responses has recently been appreciated. Increasing evidence has put a spotlight on the connection of microbiota to T cells, by showing impaired effector and/or memory responses in germ-free (GF) mice or in the presence of dysbiotic communities, and association with tumor growth and overall survival (OS). These observations also have significant implications for anti-tumor therapy and vaccination, suggesting that the communication between T cells and the microbiota involves soluble mediators (microbiota-derived metabolites) that influence various functions of T cells. In addition, there is growing appreciation of the role of bacterial translocation into the peritumoral milieu from the intestinal tract, as well as of locally developed tumor microbial communities, spatially separated from the gut microbiota, in shaping the tumor microbiome. Collectively, these findings have added new support to the idea that tonic inputs mirroring the existence of tumor microbiome could regulate the function of tumor-infiltrating T cells and tissue-resident memory T (TRM) cells. In this review, we focus on recent advances and aspects of these active areas of investigation and provide a comprehensive overview of the unique mechanisms that play a pivotal role in the regulation of anti-tumor immunity by the microbiota, some of which could be of particular relevance for addressing problems caused by tumor heterogeneity. It is our hope that this review will provide a theoretical foundation for future investigations in this area.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sedigheh Taghinezhad-S
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China.
- Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China.
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Eribo OA, Naidoo CC, Theron G, Walzl G, du Plessis N, Chegou NN. An Archetypical Model for Engrafting Bacteroides fragilis into Conventional Mice Following Reproducible Antibiotic Conditioning of the Gut Microbiota. Microorganisms 2023; 11:microorganisms11020451. [PMID: 36838416 PMCID: PMC9966493 DOI: 10.3390/microorganisms11020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bacteroides fragilis is a commonly investigated commensal bacterium for its protective role in host diseases. Here, we aimed to develop a reproducible antibiotic-based model for conditioning the gut microbiota and engrafting B. fragilis into a conventional murine host. Initially, we selected different combinations of antibiotics, including metronidazole, imipenem, and clindamycin, and investigated their efficacy in depleting the mouse Bacteroides population. We performed 16S rRNA sequencing of DNA isolated from fecal samples at different time points. The α-diversity was similar in mice treated with metronidazole (MET) and differed only at weeks 1 (p = 0.001) and 3 (p = 0.009) during metronidazole/imipenem (MI) treatment. Bacteroides compositions, during the MET and MI exposures, were similar to the pre-antibiotic exposure states. Clindamycin supplementation added to MET or MI regimens eliminated the Bacteroides population. We next repeated metronidazole/clindamycin (MC) treatment in two additional independent experiments, followed by a B. fragilis transplant. MC consistently and reproducibly eliminated the Bacteroides population. The depleted Bacteroides did not recover in a convalescence period of six weeks post-MC treatment. Finally, B. fragilis was enriched for ten days following engraftment into Bacteroides-depleted mice. Our model has potential use in gut microbiota studies that selectively investigate Bacteroides' role in diseases of interest.
Collapse
Affiliation(s)
- Osagie A. Eribo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Charissa C. Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- Correspondence:
| |
Collapse
|
11
|
Zhang T, Holman J, McKinstry D, Trindade BC, Eaton KA, Mendoza-Castrejon J, Ho S, Wells E, Yuan H, Wen B, Sun D, Chen GY, Li Y. A steamed broccoli sprout diet preparation that reduces colitis via the gut microbiota. J Nutr Biochem 2023; 112:109215. [PMID: 36370930 DOI: 10.1016/j.jnutbio.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Sulforaphane is a bioactive metabolite with anti-inflammatory activity and is derived from the glucosinolate glucoraphanin, which is highly abundant in broccoli sprouts. However, due to its inherent instability its use as a therapeutic against inflammatory diseases has been limited. There are few studies to investigate a whole food approach to increase sulforaphane levels with therapeutic effect and reduce inflammation. In the current study, using a mouse model of inflammatory bowel disease, we investigated the ability of steamed broccoli sprouts to ameliorate colitis and the role of the gut microbiota in mediating any effects. We observed that despite inactivation of the plant myrosinase enzyme responsible for the generation of sulforaphane via steaming, measurable levels of sulforaphane were detectable in the colon tissue and feces of mice after ingestion of steamed broccoli sprouts. In addition, this preparation of broccoli sprouts was also capable of reducing chemically-induced colitis. This protective effect was dependent on the presence of an intact microbiota, highlighting an important role for the gut microbiota in the metabolism of cruciferous vegetables to generate bioactive metabolites and promote their anti-inflammatory effects.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Johanna Holman
- College of Science and Humanities, Husson University, Bangor, Maine, USA
| | - Delaney McKinstry
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruno C Trindade
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonny Mendoza-Castrejon
- Postbac Research Education Program, University of Michigan, Ann Arbor, Michigan, USA; Currently at Department of Pediatrics, Washington University School of Medicine, St. Louis, Mississippi, USA
| | - Sharon Ho
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Wells
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Grace Y Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Yanyan Li
- College of Science and Humanities, Husson University, Bangor, Maine, USA.
| |
Collapse
|
12
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
13
|
Abstract
Reprogrammed metabolism is a hallmark of colorectal cancer (CRC). CRC cells are geared toward rapid proliferation, requiring nutrients and the removal of cellular waste in nutrient-poor environments. Intestinal stem cells (ISCs), the primary cell of origin for CRCs, must adapt their metabolism along the adenoma-carcinoma sequence to the unique features of their complex microenvironment that include interactions with intestinal epithelial cells, immune cells, stromal cells, commensal microbes, and dietary components. Emerging evidence implicates modifiable risk factors related to the environment, such as diet, as important in CRC pathogenesis. Here, we focus on describing the metabolism of ISCs, diets that influence CRC initiation, CRC genetics and metabolism, and the tumor microenvironment. The mechanistic links between environmental factors, metabolic adaptations, and the tumor microenvironment in enhancing or supporting CRC tumorigenesis are becoming better understood. Thus, greater knowledge of CRC metabolism holds promise for improved prevention and treatment.
Collapse
Affiliation(s)
- Joseph C Sedlak
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Massachusetts General Hospital, Department of Pathology, Boston, Massachusetts, USA
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA;
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Sun L, Mu Y, Xu L, Han X, Gu W, Zhang M. Transgenerational inheritance of wing development defects in Drosophila melanogaster induced by cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 231:113224. [PMID: 36587412 DOI: 10.1016/j.ecoenv.2022.113224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 05/26/2023]
Abstract
The transgenerational inheritance of phenotype induced by environmental factors is a new focus in epigenetic research. In this study, Drosophila melanogaster (F0) was cultured in the medium containing cadmium (Cd, 4.5 mg/kg) from eggs to adults, and offspring (F1-F4) were continuously kept in standard medium (without cadmium). The phenotype analysis showed that cadmium induced developmental defects on wings and apoptosis in the wing disc cells of Drosophila (F0). The wing defects were transmitted for at least four generations even without Cd afterwards. And the effect on the mRNA expression of wing development related genes (shg, omb, F-actin, Mekk1) can be maintained for at least two or three generations. More importantly, under cadmium stress, the post-translational modification (PTM) on the histones H3K4me3 in the third instar larvae and ovaries or testes of adult flies increased significantly, while the levels of H3K9me3 and H3K27me3 decreased significantly. The expression of histone methylation related genes (dSet-1, ash1, Lsd1) increased significantly and these changes can be transmitted to offspring from one or two generations in ovaries or testes. These results suggest that the phenotypic defects of wings caused by cadmium can be inherited to the offspring, and this transgenerational inheritance effect may be related to the epigenetic regulation of histone methylation. Therefore, the adaptability of offspring should be considered when evaluating the toxicity and environmental risk of cadmium.
Collapse
Affiliation(s)
- Liran Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yun Mu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaobing Han
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
15
|
High-fat diet and estrogen modulate the gut microbiota in a sex-dependent manner in mice. Commun Biol 2023; 6:20. [PMID: 36624306 PMCID: PMC9829864 DOI: 10.1038/s42003-022-04406-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
A high-fat diet can lead to gut microbiota dysbiosis, chronic intestinal inflammation, and metabolic syndrome. Notably, resulting phenotypes, such as glucose and insulin levels, colonic crypt cell proliferation, and macrophage infiltration, exhibit sex differences, and females are less affected. This is, in part, attributed to sex hormones. To investigate if there are sex differences in the microbiota and if estrogenic ligands can attenuate high-fat diet-induced dysbiosis, we used whole-genome shotgun sequencing to characterize the impact of diet, sex, and estrogenic ligands on the microbial composition of the cecal content of mice. We here report clear host sex differences along with remarkably sex-dependent responses to high-fat diet. Females, specifically, exhibited increased abundance of Blautia hansenii, and its levels correlated negatively with insulin levels in both sexes. Estrogen treatment had a modest impact on the microbiota diversity but altered a few important species in males. This included Collinsella aerofaciens F, which we show correlated with colonic macrophage infiltration. In conclusion, male and female mice exhibit clear differences in their cecal microbial composition and in how diet and estrogens impact the composition. Further, specific microbial strains are significantly correlated with metabolic parameters.
Collapse
|
16
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
17
|
Metzger R, Winter L, Bouznad N, Garzetti D, von Armansperg B, Rokavec M, Lutz K, Schäfer Y, Krebs S, Winheim E, Friedrich V, Matzek D, Öllinger R, Rad R, Stecher B, Hermeking H, Brocker T, Krug AB. CCL17 Promotes Colitis-Associated Tumorigenesis Dependent on the Microbiota. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2227-2238. [PMID: 36426975 DOI: 10.4049/jimmunol.2100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.
Collapse
Affiliation(s)
- Rebecca Metzger
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lis Winter
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikt von Armansperg
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Konstantin Lutz
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yvonne Schäfer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabrina Krebs
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Verena Friedrich
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
18
|
Quazi S. Anti-cancer activity of human gastrointestinal bacteria. Med Oncol 2022; 39:220. [PMID: 36175586 DOI: 10.1007/s12032-022-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Abstract
Malignant neoplasm is one of the most incurable diseases among inflammatory diseases. Researchers have been studying for decades to win over this lethal disease and provide the light of hope to humankind. The gastrointestinal bacteria of human hold a complex ecosystem and maintain homeostasis. One hundred trillion microbes are residing in the gastrointestinal tract of human. Disturbances in the microbiota of human's gastrointestinal tract can create immune response against inflammation and also can develop diseases, including cancer. The bacteria of the gastrointestinal tract of human can secrete a variety of metabolites and bioproducts which aid in the preservation of homeostasis in the host and gut. During pathogenic dysbiosis, on the other hand, numerous microbiota subpopulations may increase and create excessive levels of toxins, which can cause inflammation and cancer. Furthermore, the immune system of host and the epithelium cell can be influenced by gut microbiota. Probiotics, which are bacteria that live in the gut, have been protected against tumor formation. Probiotics are now studied to see if they can help fight dysbiosis in cancer patients undergoing chemotherapy or radiotherapy because of their capacity to maintain gut homeostasis. Countless numbers of gut bacteria have demonstrated anti-cancer efficiency in cancer treatment, prevention, and boosting the efficiency of immunotherapy. The review article has briefly explained the anti-cancer immunity of gut microbes and their application in treating a variety of cancer. This review paper also highlights the pre-clinical studies of probiotics against cancer and the completed and ongoing clinical trials on cancers with the two most common and highly effective probiotics Lactobacillus and Bacillus spp.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, 560043, Karnataka, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
19
|
Lu L, Dong J, Liu Y, Qian Y, Zhang G, Zhou W, Zhao A, Ji G, Xu H. New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Front Pharmacol 2022; 13:964793. [PMID: 36046819 PMCID: PMC9420899 DOI: 10.3389/fphar.2022.964793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant carcinomas. CRC is characterized by asymptomatic onset, and most patients are already in the middle and advanced stages of disease when they are diagnosed. Inflammatory bowel disease (IBD) and the inflammatory-cancer transformation of advanced colorectal adenoma are the main causes of CRC. There is an urgent need for effective prevention and intervention strategies for CRC. In recent years, rapid research progress has increased our understanding of gut microbiota. Meanwhile, with the deepening of research on the pathogenesis of colorectal cancer, gut microbiota has been confirmed to play a direct role in the occurrence and treatment of colorectal cancer. Strategies to regulate the gut microbiota have potential value for application in the prevention and treatment of CRC. Regulation of gut microbiota is one of the important ways for natural products to exert pharmacological effects, especially in the treatment of metabolic diseases and tumours. This review summarizes the role of gut microbiota in colorectal tumorigenesis and the mechanism by which natural products reduce tumorigenesis and improve therapeutic response. We point out that the regulation of gut microbiota by natural products may serve as a potential means of treatment and prevention of CRC.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahuan Dong
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Qian
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
21
|
Dey P, Ray Chaudhuri S. Cancer-Associated Microbiota: From Mechanisms of Disease Causation to Microbiota-Centric Anti-Cancer Approaches. BIOLOGY 2022; 11:757. [PMID: 35625485 PMCID: PMC9138768 DOI: 10.3390/biology11050757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the only well-established bacterial cause of cancer. However, due to the integral role of tissue-resident commensals in maintaining tissue-specific immunometabolic homeostasis, accumulated evidence suggests that an imbalance of tissue-resident microbiota that are otherwise considered as commensals, can also promote various types of cancers. Therefore, the present review discusses compelling evidence linking tissue-resident microbiota (especially gut bacteria) with cancer initiation and progression. Experimental evidence supporting the cancer-causing role of gut commensal through the modulation of host-specific processes (e.g., bile acid metabolism, hormonal effects) or by direct DNA damage and toxicity has been discussed. The opportunistic role of commensal through pathoadaptive mutation and overcoming colonization resistance is discussed, and how chronic inflammation triggered by microbiota could be an intermediate in cancer-causing infections has been discussed. Finally, we discuss microbiota-centric strategies, including fecal microbiota transplantation, proven to be beneficial in preventing and treating cancers. Collectively, this review provides a comprehensive understanding of the role of tissue-resident microbiota, their cancer-promoting potentials, and how beneficial bacteria can be used against cancers.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India;
| |
Collapse
|
22
|
Cholesterol Promotes Colorectal Cancer Growth by Activating the PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2022; 2022:1515416. [PMID: 35528239 PMCID: PMC9076305 DOI: 10.1155/2022/1515416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
Abstract
Globally, the incidence of colorectal cancer (CRC) increases each year, with an unhealthy diet representing one of the major pathogenic risk factors for CRC. Cholesterol is a vital dietary ingredient required to maintain the normal function of the body; however, disturbances in cholesterol levels have been discovered to exert a significant role in tumorigenesis. The present study is aimed at investigating the role of cholesterol in the occurrence of CRC. Briefly, CRC model mice were established through an intraperitoneal injection of azoxyemethane (AOM) and were subsequently either fed a normal diet (ND), high-fat diet (HFD), or high-fat high-cholesterol diet (HFHC). Furthermore, in vitro experiments were performed following the treatment of SW480 and HCT116 cells with cholesterol, and the cell viability and colony formation rate of CRC cells were analyzed. The findings identified that cholesterol levels were increased in CRC tissues compared with adjacent normal tissues. In contrast, the serum levels of cholesterol were decreased in patients with CRC compared with the healthy controls; however, no significant differences were observed in the cholesterol levels between stage I + II and stage III + IV patients with CRC. Notably, CRC model mice fed with an HFD or HFHC recorded a larger body weight compared with those mice fed a ND; however, no significant differences were reported in the number of tumors formed in each group. Furthermore, the tumor size in the HFHC group was discovered to be increased compared with the ND and HFD groups, and HGD and the pathological morphology were the most pronounced in the HFHC group. Moreover, mice in the HFHC group presented the highest ratio of Ki-67-positive staining and the lowest ratio of TUNEL-positive staining compared with those in the two other groups. Cholesterol treatment also increased the cell viability and clonality of SW480 and HCT116 cells. In addition, the protein expression levels of phosphorylated-AKT were upregulated in cholesterol-induced CRC cells and tissues, whereas the treatment with BAY80-6946 attenuated the cholesterol-induced increases in the cell viability, colony formation ability, and tumor size. In conclusion, the findings of the present study suggested that cholesterol may stimulate the progression of CRC by activating the PI3K/AKT signaling pathway; however, cholesterol may not affect the number of tumors formed in CRC. In addition, cholesterol was discovered to mainly affect the advanced stages of CRC rather than the early stages.
Collapse
|
23
|
Bell HN, Rebernick RJ, Goyert J, Singhal R, Kuljanin M, Kerk SA, Huang W, Das NK, Andren A, Solanki S, Miller SL, Todd PK, Fearon ER, Lyssiotis CA, Gygi SP, Mancias JD, Shah YM. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 2022; 40:185-200.e6. [PMID: 34951957 PMCID: PMC8847337 DOI: 10.1016/j.ccell.2021.12.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Microbial dysbiosis is a colorectal cancer (CRC) hallmark and contributes to inflammation, tumor growth, and therapy response. Gut microbes signal via metabolites, but how the metabolites impact CRC is largely unknown. We interrogated fecal metabolites associated with mouse models of colon tumorigenesis with varying mutational load. We find that microbial metabolites from healthy mice or humans are growth-repressive, and this response is attenuated in mice and patients with CRC. Microbial profiling reveals that Lactobacillus reuteri and its metabolite, reuterin, are downregulated in mouse and human CRC. Reuterin alters redox balance, and reduces proliferation and survival in colon cancer cells. Reuterin induces selective protein oxidation and inhibits ribosomal biogenesis and protein translation. Exogenous Lactobacillus reuteri restricts colon tumor growth, increases tumor reactive oxygen species, and decreases protein translation in vivo. Our findings indicate that a healthy microbiome and specifically, Lactobacillus reuteri, is protective against CRC through microbial metabolite exchange.
Collapse
Affiliation(s)
- Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan J Rebernick
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua Goyert
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miljan Kuljanin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel A Kerk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shannon L Miller
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor HealthCare System, Ann Arbor, MI 48109, USA
| | - Eric R Fearon
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Lu Y, Liu H, Yang K, Mao Y, Meng L, Yang L, Ouyang G, Liu W. A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. J Zhejiang Univ Sci B 2022; 23:1-18. [PMID: 35029085 DOI: 10.1631/jzus.b2100182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the recent upsurge of studies in the field of microbiology, we have learned more about the complexity of the gastrointestinal microecosystem. More than 30 genera and 1000 species of gastrointestinal microflora have been found. The structure of the normal microflora is relatively stable, and is in an interdependent and restricted dynamic equilibrium with the body. In recent years, studies have shown that there is a potential relationship between gastrointestinal microflora imbalance and gastric cancer (GC) and precancerous lesions. So, restoring the balance of gastrointestinal microflora is of great significance. Moreover, intervention in gastric premalignant condition (GPC), also known as precancerous lesion of gastric cancer (PLGC), has been the focus of current clinical studies. The holistic view of traditional Chinese medicine (TCM) is consistent with the microecology concept, and oral TCM can play a two-way regulatory role directly with the microflora in the digestive tract, restoring the homeostasis of gastrointestinal microflora to prevent canceration. However, large gaps in knowledge remain to be addressed. This review aims to provide new ideas and a reference for clinical practice.
Collapse
Affiliation(s)
- Yuting Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| | - Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Liu Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Guangze Ouyang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Wenjie Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| |
Collapse
|
25
|
THE INTESTINAL COMMENSAL, Bacteroides fragilis, MODULATES HOST RESPONSES TO VIRAL INFECTION AND THERAPY: LESSONS FOR EXPLORATION DURING Mycobacterium tuberculosis INFECTION. Infect Immun 2021; 90:e0032121. [PMID: 34606367 DOI: 10.1128/iai.00321-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota has emerged as a critical player in host health. Bacteroides fragilis is a prominent member of the gut microbiota within the phyla Bacteroidetes. This commensal bacterium produces unique capsular polysaccharides processed by antigen-presenting cells and activates CD4+ T cells to secrete inflammatory cytokines. Indeed, due to their immunomodulatory functions, B. fragilis and its capsular polysaccharide-A (PSA) are arguably the most explored single commensal microbiota/symbiotic factor. B. fragilis/PSA has been shown to protect against colitis, encephalomyelitis, colorectal cancer, pulmonary inflammation, and asthma. Here, we review (1) recent data on the immunomodulatory role of B. fragilis/PSA during viral infections and therapy, (2) B. fragilis PSA's dual ability to mediate pro-and anti-inflammatory processes, and the potential for exploring this unique characteristic during intracellular bacterial infections such as with Mycobacterium tuberculosis (3) discuss the protective roles of single commensal-derived probiotic species including B. fragilis in lung inflammation and respiratory infections that may provide essential cues for possible exploration of microbiota based/augmented therapies in tuberculosis (TB). Available data on the relationship between B. fragilis/PSA, the immune system, and disease suggest clinical relevance for developing B. fragilis into a next-generation probiotic or, possibly, the engineering of PSA into a potent carbohydrate-based vaccine.
Collapse
|
26
|
Arnesen H, Müller MHB, Aleksandersen M, Østby GC, Carlsen H, Paulsen JE, Boysen P. Induction of colorectal carcinogenesis in the C57BL/6J and A/J mouse strains with a reduced DSS dose in the AOM/DSS model. Lab Anim Res 2021; 37:19. [PMID: 34315530 PMCID: PMC8317392 DOI: 10.1186/s42826-021-00096-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide and thus mouse models of CRC are of significant value to study the pathogenesis. The Azoxymethane/Dextran sulfate sodium (AOM/DSS) model is a widely used, robust initiation-promotion model for chemical induction of colitis-associated CRC in rodents. However, the dosage of chemicals, treatment regimens and outcome measures vary greatly among studies employing this model. Thus, the aim of this study was to examine an AOM/DSS model involving a reduced (1%) dose of DSS for induction of carcinogenesis in A/J and C57BL/6J (B6) mice. Results We show that colonic preneoplastic lesions can be reliably detected in A/J and B6 mice by use of a AOM/DSS model involving a single injection of 10 mg/kg AOM followed by three 7-day cycles of a low-dose (1%) DSS administration. Supporting existing evidence of A/J mice exhibiting higher susceptibility to AOM than B6 mice, our AOM/DSS-treated A/J mice developed the highest number of large colonic lesions. Clinical symptoms in both strains subjected to the AOM/DSS treatment did not persist in-between treatment cycles, demonstrating that the animals tolerated the treatment well. Conclusions Our findings suggest that a reduced dose of DSS in the AOM/DSS model can be considered in future studies of early phase colorectal carcinogenesis in the A/J and B6 mouse strains using preneoplastic lesions as an outcome measure, and that such regimen may reduce the risk of early trial terminations to accommodate human endpoints. Overall, our data emphasize the importance of devoting attention towards choice of protocol, outcome measures and mouse strain in studies of CRC in mice according to the study purpose. Supplementary Information The online version contains supplementary material available at 10.1186/s42826-021-00096-y.
Collapse
Affiliation(s)
- Henriette Arnesen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway. .,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Mette Helen Bjørge Müller
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jan Erik Paulsen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Preben Boysen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
27
|
Herreros-Pomares A, Llorens C, Soriano B, Zhang F, Gallach S, Bagan L, Murillo J, Jantus-Lewintre E, Bagan J. Oral microbiome in Proliferative Verrucous Leukoplakia exhibits loss of diversity and enrichment of pathogens. Oral Oncol 2021; 120:105404. [PMID: 34225130 DOI: 10.1016/j.oraloncology.2021.105404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Oral microbiome plays an important role in oral diseases. Among them, proliferative verrucous leucoplakia (PVL) is an uncommon form of progressive multifocal leukoplakia with a worryingly rate of malignant transformation. Here, we aimed to characterize the oral microbiome of PVL patients and compare it with those of healthy controls. MATERIAL AND METHODS Oral biopsies from ten PVL patients and five healthy individuals were obtained and used to compare their microbial communities. The sequence of the V3-V4 region of 16S rRNA gene was used as the taxonomic basis to estimate and analyze the composition and diversity of bacterial populations present in the samples. RESULTS Our results show that the oral microbial composition and diversity are significantly different among PVL patients and healthy donors. The average number of observed operational taxonomic units (OTUs) was higher for healthy donors than for PVL, proving a loss of diversity in PVL. Several OTUs were found to be more abundant in either group. Among those that were significantly enriched in PVL patients, potential protumorigenic pathogens like Oribacterium sp. oral taxon 108, Campylobacter jejuni, uncultured Eubacterium sp., Tannerella, and Porphyromonas were identified. CONCLUSION Oral microbiome dysbiosis was found in patients suffering from PVL. To the best of our knowledge, this is the first study investigating the oral microbiome alterations in PVL and, due to the limited number of participants, additional studies are needed. Oral microbiota-based biomarkers may be helpful in predicting the risks for the development of PVL.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Feiyu Zhang
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain
| | - Sandra Gallach
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Leticia Bagan
- Medicina Oral Unit, Stomatology Department, Valencia University, Spain
| | - Judith Murillo
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.
| | - José Bagan
- CIBERONC, Valencia, Spain; Medicina Oral Unit, Stomatology Department, Valencia University, Spain; Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
28
|
Ferguson M, Foley E. Microbial recognition regulates intestinal epithelial growth in homeostasis and disease. FEBS J 2021; 289:3666-3691. [PMID: 33977656 DOI: 10.1111/febs.15910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The intestine is constantly exposed to a dynamic community of microbes. Intestinal epithelial cells respond to microbes through evolutionarily conserved recognition pathways, such as the immune deficiency (IMD) pathway of Drosophila, the Toll-like receptor (TLR) response of flies and vertebrates, and the vertebrate nucleotide-binding oligomerization domain (NOD) pathway. Microbial recognition pathways are tightly controlled to respond effectively to pathogens, tolerate the microbiome, and limit intestinal disease. In this review, we focus on contributions of different model organisms to our understanding of how epithelial microbe recognition impacts intestinal proliferation and differentiation in homeostasis and disease. In particular, we compare how microbes and subsequent recognition by the intestine influences barrier integrity, intestinal repair and tumorigenesis in Drosophila, zebrafish, mice, and organoids. In addition, we discuss the importance of microbial recognition in homeostatic intestinal growth and discuss how immune pathways directly impact stem cell and crypt dynamics.
Collapse
Affiliation(s)
- Meghan Ferguson
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Wang F, Song M, Lu X, Zhu X, Deng J. Gut microbes in gastrointestinal cancers. Semin Cancer Biol 2021; 86:967-975. [PMID: 33812983 DOI: 10.1016/j.semcancer.2021.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Gut microbes (GMs), dominated by bacteria, play important roles in many physiological processes. The structures and functions of GMs are closely related to human health, the occurrence and development of diseases and the rapid recovery of the body. Gastrointestinal cancers are the major diseases affecting human health worldwide. With the development of metagenomic technology and the wide application of new generation sequencing technology, a large number of studies suggest that complex GMs are related to the occurrence and development of gastrointestinal cancers. Fecal microbiota transplantation (FMT) and probiotics can treat and prevent the occurrence of gastrointestinal cancers. This article reviews the latest research progress of microbes in gastrointestinal cancers from the perspectives of the correlation, the influence mechanism and the application, so as to provide new directions for the prevention, early diagnosis and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Meiyi Song
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiya Lu
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefeng Zhu
- University of Shanghai for Science and Technology, Shanghai, China.
| | - Jiali Deng
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
30
|
Mishra R, Rajsiglová L, Lukáč P, Tenti P, Šima P, Čaja F, Vannucci L. Spontaneous and Induced Tumors in Germ-Free Animals: A General Review. ACTA ACUST UNITED AC 2021; 57:medicina57030260. [PMID: 33799911 PMCID: PMC8002107 DOI: 10.3390/medicina57030260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Cancer, bacteria, and immunity relationships are much-debated topics in the last decade. Microbiome’s importance for metabolic and immunologic modulation of the organism adaptation and responses has become progressively evident, and models to study these relationships, especially about carcinogenesis, have acquired primary importance. The availability of germ-free (GF) animals, i.e., animals born and maintained under completely sterile conditions avoiding the microbiome development offers a unique tool to investigate the role that bacteria can have in carcinogenesis and tumor development. The comparison between GF animals with the conventional (CV) counterpart with microbiome can help to evidence conditions and mechanisms directly involving bacterial activities in the modulation of carcinogenesis processes. Here, we review the literature about spontaneous cancer and cancer modeling in GF animals since the early studies, trying to offer a practical overview on the argument.
Collapse
Affiliation(s)
- Rajbardhan Mishra
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
| | - Lenka Rajsiglová
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Pavol Lukáč
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Paolo Tenti
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Peter Šima
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
| | - Fabián Čaja
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Correspondence: ; Tel.: +42-024-106-2394
| |
Collapse
|
31
|
Liu Y, Li Z, Wu Y, Jing X, Li L, Fang X. Intestinal Bacteria Encapsulated by Biomaterials Enhance Immunotherapy. Front Immunol 2021; 11:620170. [PMID: 33643302 PMCID: PMC7902919 DOI: 10.3389/fimmu.2020.620170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains thousands of bacterial species essential for optimal health. Aside from their pathogenic effects, these bacteria have been associated with the efficacy of various treatments of diseases. Due to their impact on many human diseases, intestinal bacteria are receiving increasing research attention, and recent studies on intestinal bacteria and their effects on treatments has yielded valuable results. Particularly, intestinal bacteria can affect responses to numerous forms of immunotherapy, especially cancer therapy. With the development of precision medicine, understanding the factors that influence intestinal bacteria and how they can be regulated to enhance immunotherapy effects will improve the application prospects of intestinal bacteria therapy. Further, biomaterials employed for the convenient and efficient delivery of intestinal bacteria to the body have also become a research hotspot. In this review, we discuss the recent findings on the regulatory role of intestinal bacteria in immunotherapy, focusing on immune cells they regulate. We also summarize biomaterials used for their delivery.
Collapse
Affiliation(s)
- Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiabin Jing
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. Int J Mol Sci 2021; 22:ijms22031026. [PMID: 33498529 PMCID: PMC7864170 DOI: 10.3390/ijms22031026] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hematological malignancies, including multiple myeloma, lymphoma, and leukemia, are a heterogeneous group of neoplasms that affect the blood, bone marrow, and lymph nodes. They originate from uncontrolled growth of hematopoietic and lymphoid cells from different stages in their maturation/differentiation and account for 6.5% of all cancers around the world. During the last decade, it has been proven that the gut microbiota, more specifically the gastrointestinal commensal bacteria, is implicated in the genesis and progression of many diseases. The immune-modulating effects of the human microbiota extend well beyond the gut, mostly through the small molecules they produce. This review aims to summarize the current knowledge of the role of the microbiota in modulating the immune system, its role in hematological malignancies, and its influence on different therapies for these diseases, including autologous and allogeneic stem cell transplantation, chemotherapy, and chimeric antigen receptor T cells.
Collapse
|
33
|
De Santis S, Liso M, Vacca M, Verna G, Cavalcanti E, Coletta S, Calabrese FM, Eri R, Lippolis A, Armentano R, Mastronardi M, De Angelis M, Chieppa M. Dysbiosis Triggers ACF Development in Genetically Predisposed Subjects. Cancers (Basel) 2021; 13:cancers13020283. [PMID: 33466665 PMCID: PMC7828790 DOI: 10.3390/cancers13020283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide, characterized by a multifactorial etiology including genetics, lifestyle, and environmental factors including microbiota composition. To address the role of microbial modulation in CRC, we used our recently established mouse model (the Winnie-APCMin/+) combining inflammation and genetics. METHODS Gut microbiota profiling was performed on 8-week-old Winnie-APCMin/+ mice and their littermates by 16S rDNA gene amplicon sequencing. Moreover, to study the impact of dysbiosis induced by the mother's genetics in ACF development, the large intestines of APCMin/+ mice born from wild type mice were investigated by histological analysis at 8 weeks. RESULTS ACF development in 8-week-old Winnie-APCMin/+ mice was triggered by dysbiosis. Specifically, the onset of ACF in genetically predisposed mice may result from dysbiotic signatures in the gastrointestinal tract of the breeders. Additionally, fecal transplant from Winnie donors to APCMin/+ hosts leads to an increased rate of ACF development. CONCLUSIONS The characterization of microbiota profiling supporting CRC development in genetically predisposed mice could help to design therapeutic strategies to prevent dysbiosis. The application of these strategies in mothers during pregnancy and lactation could also reduce the CRC risk in the offspring.
Collapse
Affiliation(s)
- Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Marina Liso
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
| | - Giulio Verna
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Elisabetta Cavalcanti
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Sergio Coletta
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Antonio Lippolis
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Raffaele Armentano
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Mauro Mastronardi
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (M.V.); (F.M.C.)
- Correspondence: (M.D.A.); (M.C.); Tel.: +39-080-544-2949 (M.D.A.); +39-080-499-4628 (M.C.)
| | - Marcello Chieppa
- Research Department, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (E.C.); (S.C.); (A.L.); (R.A.); (M.M.)
- Correspondence: (M.D.A.); (M.C.); Tel.: +39-080-544-2949 (M.D.A.); +39-080-499-4628 (M.C.)
| |
Collapse
|
34
|
Choudhry H. The Microbiome and Its Implications in Cancer Immunotherapy. Molecules 2021; 26:E206. [PMID: 33401586 PMCID: PMC7795182 DOI: 10.3390/molecules26010206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is responsible for ~18 million deaths globally each year, representing a major cause of death. Several types of therapy strategies such as radiotherapy, chemotherapy and more recently immunotherapy, have been implemented in treating various types of cancer. Microbes have recently been found to be both directly and indirectly involved in cancer progression and regulation, and studies have provided novel and clear insights into the microbiome-mediated emergence of cancers. Scientists around the globe are striving hard to identify and characterize these microbes and the underlying mechanisms by which they promote or suppress various kinds of cancer. Microbes may influence immunotherapy by blocking various cell cycle checkpoints and the production of certain metabolites. Hence, there is an urgent need to better understand the role of these microbes in the promotion and suppression of cancer. The identification of microbes may help in the development of future diagnostic tools to cure cancers possibly associated with the microbiome. This review mainly focuses on various microbes and their association with different types of cancer, responses to immunotherapeutic modulation, physiological responses, and prebiotic and postbiotic effects.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Sciences, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
35
|
Janney A, Powrie F, Mann EH. Host–microbiota maladaptation in colorectal cancer. Nature 2020; 585:509-517. [DOI: 10.1038/s41586-020-2729-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
36
|
Cheung MK, Yue GGL, Tsui KY, Gomes AJ, Kwan HS, Chiu PWY, Lau CBS. Discovery of an interplay between the gut microbiota and esophageal squamous cell carcinoma in mice. Am J Cancer Res 2020; 10:2409-2427. [PMID: 32905484 PMCID: PMC7471341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main type of esophageal cancer (EC) worldwide, causing half a million deaths each year. Recent evidence has demonstrated the role of the gut microbiota in health and disease. However, our current understanding of the gut microbiome in EC remains scarce. Here, we characterized the gut and esophageal microbiome in a metastatic mouse model of ESCC and examined the functional roles of the gut microbiota in EC development in fecal microbiota transplantation (FMT) experiments. Nude mice intraperitoneally xenografted with human EC-109 cells showed significant alterations in the overall structure, but not alpha diversity, of the gut and esophageal microbiome as compared to naïve control mice. Xenograft of EC cells depleted the order Pasteurellales in the gut microbiome, and enriched multiple predicted metabolic pathways, including those involved in carbohydrate and lipid metabolism, in the esophageal microbiome. FMT of stool from healthy mice to antibiotic-treated xenograft-bearing mice significantly attenuated liver metastasis, suggesting a protective role of the commensal gut microbiota in EC. Moreover, we showed that combination chemotherapy with cisplatin and 5-fluorouracil, and the anti-EC medicinal herb Andrographis paniculata (AP) differentially affected the gut and esophageal microbiome in EC. FMT experiment revealed a reduced anti-metastatic efficacy of AP on liver metastasis in antibiotic-treated xenograft-bearing mice, suggesting a role of the commensal gut microbiota in the anti-metastatic efficacy of the herb. In conclusion, our findings reveal for the first time an interplay between the gut microbiota and EC and provide insights into the treatment strategies for EC.
Collapse
Affiliation(s)
- Man Kit Cheung
- Department of Surgery, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Grace Gar Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong KongShatin, New Territories, Hong Kong
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Kei Yin Tsui
- Department of Surgery, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Adele Joyce Gomes
- Department of Surgery, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Philip Wai Yan Chiu
- Department of Surgery, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong KongShatin, New Territories, Hong Kong
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| |
Collapse
|
37
|
Negi S, Pahari S, Bashir H, Agrewala JN. Intestinal microbiota disruption limits the isoniazid mediated clearance of Mycobacterium tuberculosis in mice. Eur J Immunol 2020; 50:1976-1987. [PMID: 32673409 DOI: 10.1002/eji.202048556] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) continues to remain a global threat due to the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains and toxicity associated with TB drugs. Intestinal microbiota has been reported to affect the host response to immunotherapy and drugs. However, how it affects the potency of first-line TB drug isoniazid (INH) is largely unknown. Here, we examined the impact of gut microbial dysbiosis on INH efficiency to kill Mtb. In this study, we employed in vivo mouse model, pretreated with broad-spectrum antibiotics (Abx) cocktail to disrupt their intestinal microbial population prior to Mtb infection and subsequent INH therapy. We demonstrated that microbiota disruption results in the impairment of INH-mediated Mtb clearance, and aggravated TB-associated tissue pathology. Further, it suppressed the innate immunity and reduced CD4 T-cell response against Mtb. Interestingly, a distinct shift of gut microbial profile was noted with abundance of Enterococcus and reduction of Lactobacillus and Bifidobacterium population. Our results show that the intestinal microbiota is crucial determinant in efficacy of INH to kill Mtb and impacts the host immune response against infection. This work provides an intriguing insight into the potential links between host gut microbiota and potency of INH.
Collapse
Affiliation(s)
- Shikha Negi
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India.,Present address: Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susanta Pahari
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India.,Immunology Division, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Hilal Bashir
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India.,Centre for Biomedical Engineering, Indian Institute of Technology-Ropar, Rupnagar, Punjab, India
| |
Collapse
|
38
|
Focus on the Role of NLRP3 Inflammasome in Diseases. Int J Mol Sci 2020; 21:ijms21124223. [PMID: 32545788 PMCID: PMC7352196 DOI: 10.3390/ijms21124223] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a protective reaction activated in response to detrimental stimuli, such as dead cells, irritants or pathogens, by the evolutionarily conserved immune system and is regulated by the host. The inflammasomes are recognized as innate immune system sensors and receptors that manage the activation of caspase-1 and stimulate inflammation response. They have been associated with several inflammatory disorders. The NLRP3 inflammasome is the most well characterized. It is so called because NLRP3 belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs). Recent evidence has greatly improved our understanding of the mechanisms by which the NLRP3 inflammasome is activated. Additionally, increasing data in animal models, supported by human studies, strongly implicate the involvement of the inflammasome in the initiation or progression of disorders with a high impact on public health, such as metabolic pathologies (obesity, type 2 diabetes, atherosclerosis), cardiovascular diseases (ischemic and non-ischemic heart disease), inflammatory issues (liver diseases, inflammatory bowel diseases, gut microbiome, rheumatoid arthritis) and neurologic disorders (Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis and other neurological disorders), compared to other molecular platforms. This review will provide a focus on the available knowledge about the NLRP3 inflammasome role in these pathologies and describe the balance between the activation of the harmful and beneficial inflammasome so that new therapies can be created for patients with these diseases.
Collapse
|
39
|
Li X, Liu Y, Wang Y, Li X, Liu X, Guo M, Tan Y, Qin X, Wang X, Jiang M. Sucralose Promotes Colitis-Associated Colorectal Cancer Risk in a Murine Model Along With Changes in Microbiota. Front Oncol 2020; 10:710. [PMID: 32582527 PMCID: PMC7286428 DOI: 10.3389/fonc.2020.00710] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Sucralose is a calorie-free high-intensity artificial sweetener that is widely used in thousands of foods and beverages all over the world. Although it was initially regarded as a safe, inert food additive, its adverse effect on gut microbiota and health has drawn more and more attention as evidence accumulates. Studies by us and others revealed that sucralose exacerbated gut damage and inflammation in animal models for inflammatory bowel disease (IBD), including those for both ulcerative colitis, and Crohn's disease. Our study demonstrated that sucralose greatly aggravated dextran sulfate sodium (DSS)-induced colitis along with causing changes in gut microbiota, the gut barrier and impaired inactivation of digestive proteases mediated by deconjugated bilirubin. It is well-documented that IBD greatly increases the risk of colorectal cancer (CRC), the globally third-most-common cancer, which, like IBD, has a high rate in the developed countries. Azoxymethane (AOM)/DSS has been the most commonly used animal model for CRC. In this study, we further explored the effect of sucralose on tumorigenesis and the possible mechanism involved using the AOM/DSS mouse model. First, 1.5 mg/ml sucralose was included in the drinking water for 6 weeks to reach a relatively stable phase of impact on gut microbiota. Then, 10 mg/kg AOM was administered through intraperitoneal injection. Seven days later, 2.5% DSS was put in the drinking water for 5 days, followed by 2 weeks without DSS. The 5 days of DSS was then repeated, and the mice were sacrificed 6 weeks after AOM injection. The results showed that sucralose caused significant increases in the number and size of AOM/DSS-induced colorectal tumors along with changes in other parameters such as body and spleen weight, pathological scores, mortality, fecal β-glucuronidase and digestive proteases, gut barrier molecules, gut microbiota, inflammatory cytokines and pathways (TNFα, IL-1β, IL-6, IL-10, and TLR4/Myd88/NF-κB signaling), and STAT3/VEGF tumor-associated signaling pathway molecules. These results suggest that sucralose may increase tumorigenesis along with dysbiosis of gut microbiota, impaired inactivation of digestive protease, damage to the gut barrier, and exacerbated inflammation.
Collapse
Affiliation(s)
- Xueting Li
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Xue Li
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Xinran Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Mengru Guo
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Yiwei Tan
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Xiaofa Qin
- GI Biopharma Inc., Westfield, NJ, United States
| | - Xiuhong Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Mingshan Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Saeedi BJ, Liu KH, Owens JA, Hunter-Chang S, Camacho MC, Eboka RU, Chandrasekharan B, Baker NF, Darby TM, Robinson BS, Jones RM, Jones DP, Neish AS. Gut-Resident Lactobacilli Activate Hepatic Nrf2 and Protect Against Oxidative Liver Injury. Cell Metab 2020; 31:956-968.e5. [PMID: 32213347 PMCID: PMC7329068 DOI: 10.1016/j.cmet.2020.03.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/09/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Many studies have suggested a role for gut-resident microbes (the "gut microbiome") in modulating host health; however, the mechanisms by which they impact systemic physiology remain largely unknown. In this study, metabolomic and transcriptional profiling of germ-free and conventionalized mouse liver revealed an upregulation of the Nrf2 antioxidant and xenobiotic response in microbiome-replete animals. Using a Drosophila-based screening assay, we identified members of the genus Lactobacillus capable of stimulating Nrf2. Indeed, the human commensal Lactobacillus rhamnosus GG (LGG) potently activated Nrf2 in the Drosophila liver analog and the murine liver. This activation was sufficient to protect against two models of oxidative liver injury, acetaminophen overdose and acute ethanol toxicity. Characterization of the portal circulation of LGG-treated mice by tandem mass spectrometry identified a small molecule activator of Nrf2, 5-methoxyindoleacetic acid, produced by LGG. Taken together, these data demonstrate a mechanism by which intestinal microbes modulate hepatic susceptibility to oxidative injury.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshua A Owens
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah Hunter-Chang
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary C Camacho
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard U Eboka
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bindu Chandrasekharan
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nusaiba F Baker
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Trevor M Darby
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian S Robinson
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Burgueño JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol 2020; 17:263-278. [PMID: 32103203 DOI: 10.1038/s41575-019-0261-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The human gastrointestinal tract is colonized by trillions of microorganisms that interact with the host to maintain structural and functional homeostasis. Acting as the interface between the site of the highest microbial burden in the human body and the richest immune compartment, a single layer of intestinal epithelial cells specializes in nutrient absorption, stratifies microorganisms to limit colonization of tissues and shapes the responses of the subepithelial immune cells. In this Review, we focus on the expression, regulation and functions of Toll-like receptors (TLRs) in the different intestinal epithelial lineages to analyse how epithelial recognition of bacteria participates in establishing homeostasis in the gut. In particular, we elaborate on the involvement of epithelial TLR signalling in controlling crypt dynamics, enhancing epithelial barrier integrity and promoting immune tolerance towards the gut microbiota. Furthermore, we comment on the regulatory mechanisms that fine-tune TLR-driven immune responses towards pathogens and revisit the role of TLRs in epithelial repair after injury. Finally, we discuss how dysregulation of epithelial TLRs can lead to the generation of dysbiosis, thereby increasing susceptibility to colitis and tumorigenesis.
Collapse
Affiliation(s)
- Juan F Burgueño
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
42
|
Li C, Zhuang M, Zhu B, Li Y, Zhang W, Yan H, Zhang P, Li D, Yang J, Sun Y, Chen H, Cui Q, Jin P, Sun Y. Epidermal growth factor regulation by autophagy-mediated lncRNA H19 in murine intestinal tract after severe burn. J Cell Mol Med 2020; 24:5878-5887. [PMID: 32301281 PMCID: PMC7214185 DOI: 10.1111/jcmm.15262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
To investigate the regulation of epidermal growth factor (EGF) by autophagy‐mediated long non‐coding RNA (lncRNA) H19 in the intestinal tracts of severely burned mice. C57BL/6J mice received third‐degree burns to 30% of the total body surface area. Rapamycin and 3‐methyladenine (3‐MA) were used to activate and inhibit autophagy, and the changes in LC3 and Beclin1 levels were assessed by Western blotting. The effect of autophagy on lncRNA H19 was detected by qRT‐PCR. Adenovirus‐mediated overexpression of lncRNA H19 in IEC‐6 cells was used to assess the effects of lncRNA H19 on EGF and let‐7g via bioinformatics analysis, Western blotting and qRT‐PCR. let‐7g mimic/inhibitor was used to overexpress/inhibit let‐7g, and qRT‐PCR and Western blotting were used to detect the effects of let‐7g on EGF. The expression levels of LC3‐II, Beclin1 and lncRNA H19 were increased in intestinal tissues and IEC‐6 cells after rapamycin treatment but were reversed after 3‐MA treatment. LC3‐II, Beclin1 and lncRNA H19 levels increased in intestinal tissues after the burn, and these increases were more significant after rapamycin treatment but decreased after 3‐MA treatment. The lncRNA H19 overexpression in IEC‐6 cells resulted in increased and decreased expression levels of EGF and let‐7g, respectively. Furthermore, overexpression and inhibition of let‐7g resulted in decreased and increased expression of EGF, respectively. Taken together, intestinal autophagy is activated after a serious burn, which can increase the transcription level of lncRNA H19. lncRNA H19 may regulate the repair of EGF via let‐7g following intestinal mucosa injury after a burn.
Collapse
Affiliation(s)
- Cuijie Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Bo Zhu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Ye Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Wenwen Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Hao Yan
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Pan Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Dan Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Juan Yang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Yuan Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Haijun Chen
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Qingwei Cui
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Peisheng Jin
- Department of Plastic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| |
Collapse
|
43
|
Yu AI, Zhao L, Eaton KA, Ho S, Chen J, Poe S, Becker J, Gonzalez A, McKinstry D, Hasso M, Mendoza-Castrejon J, Whitfield J, Koumpouras C, Schloss PD, Martens EC, Chen GY. Gut Microbiota Modulate CD8 T Cell Responses to Influence Colitis-Associated Tumorigenesis. Cell Rep 2020; 31:107471. [PMID: 32268087 PMCID: PMC7934571 DOI: 10.1016/j.celrep.2020.03.035] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence that gut microbiome perturbations, also known as dysbiosis, can influence colorectal cancer development. To understand the mechanisms by which the gut microbiome modulates cancer susceptibility, we examine two wild-type mouse colonies with distinct gut microbial communities that develop significantly different tumor numbers using a mouse model of inflammation-associated tumorigenesis. We demonstrate that adaptive immune cells contribute to the different tumor susceptibilities associated with the two microbial communities. Mice that develop more tumors have increased colon lamina propria CD8+ IFNγ+ T cells before tumorigenesis but reduced CD8+ IFNγ+ T cells in tumors and adjacent tissues compared with mice that develop fewer tumors. Notably, intratumoral T cells in mice that develop more tumors exhibit increased exhaustion. Thus, these studies suggest that microbial dysbiosis can contribute to colon tumor susceptibility by hyperstimulating CD8 T cells to promote chronic inflammation and early T cell exhaustion, which can reduce anti-tumor immunity.
Collapse
Affiliation(s)
- Amy I Yu
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon Ho
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiachen Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara Poe
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Becker
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison Gonzalez
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Delaney McKinstry
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muneer Hasso
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Joel Whitfield
- Cancer Center Immunology Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles Koumpouras
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace Y Chen
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Zagato E, Pozzi C, Bertocchi A, Schioppa T, Saccheri F, Guglietta S, Fosso B, Melocchi L, Nizzoli G, Troisi J, Marzano M, Oresta B, Spadoni I, Atarashi K, Carloni S, Arioli S, Fornasa G, Asnicar F, Segata N, Guglielmetti S, Honda K, Pesole G, Vermi W, Penna G, Rescigno M. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol 2020; 5:511-524. [PMID: 31988379 PMCID: PMC7048616 DOI: 10.1038/s41564-019-0649-5] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The microbiota has been shown to promote intestinal tumourigenesis, but a possible anti-tumourigenic effect has also been postulated. Here, we demonstrate that changes in the microbiota and mucus composition are concomitant with tumourigenesis. We identified two anti-tumourigenic strains of the microbiota-Faecalibaculum rodentium and its human homologue, Holdemanella biformis-that are strongly under-represented during tumourigenesis. Reconstitution of ApcMin/+ or azoxymethane- and dextran sulfate sodium-treated mice with an isolate of F. rodentium (F. PB1) or its metabolic products reduced tumour growth. Both F. PB1 and H. biformis produced short-chain fatty acids that contributed to control protein acetylation and tumour cell proliferation by inhibiting calcineurin and NFATc3 activation in mouse and human settings. We have thus identified endogenous anti-tumourigenic bacterial strains with strong diagnostic, therapeutic and translational potential.
Collapse
Affiliation(s)
- Elena Zagato
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Chiara Pozzi
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | | | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabiana Saccheri
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Guglietta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Laura Melocchi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Pathology Department, Fondazione Poliambulanza Hospital, Brescia, Italy
| | - Giulia Nizzoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
- Theoreo Srl, Montecorvino Pugliano, Italy
- European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Bianca Oresta
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Ilaria Spadoni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Koji Atarashi
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Arioli
- Division of Food Microbiology and Bioprocesses and Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia Fornasa
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | | | - Nicola Segata
- CIBIO Department, University of Trento, Trento, Italy
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses and Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University, Saint Louis, MO, USA
| | - Giuseppe Penna
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
45
|
Leystra AA, Clapper ML. Gut Microbiota Influences Experimental Outcomes in Mouse Models of Colorectal Cancer. Genes (Basel) 2019; 10:genes10110900. [PMID: 31703321 PMCID: PMC6895921 DOI: 10.3390/genes10110900] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Mouse models are a valuable resource for use throughout the development and testing of new therapeutic strategies for CRC. Tumorigenesis and response to therapy in humans and mouse models alike are influenced by the microbial communities that colonize the gut. Differences in the composition of the gut microbiota can confound experimental findings and reduce the replicability and translatability of the resulting data. Despite this, the contribution of resident microbiota to preclinical tumor models is often underappreciated. This review does the following: (1) summarizes evidence that the gut microbiota influence CRC disease phenotypes; (2) outlines factors that can influence the composition of the gut microbiota; and (3) provides strategies that can be incorporated into the experimental design, to account for the influence of the microbiota on intestinal phenotypes in mouse models of CRC. Through careful experimental design and documentation, mouse models can continue to rapidly advance efforts to prevent and treat colon cancer.
Collapse
|
46
|
McGee HM, Jiang D, Soto-Pantoja DR, Nevler A, Giaccia AJ, Woodward WA. Targeting the Tumor Microenvironment in Radiation Oncology: Proceedings from the 2018 ASTRO-AACR Research Workshop. Clin Cancer Res 2019; 25:2969-2974. [PMID: 30723144 PMCID: PMC7265991 DOI: 10.1158/1078-0432.ccr-18-3781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
The development of cancers and their response to radiation are intricately linked to the tumor microenvironment (TME) in which they reside. Tumor cells, immune cells, and stromal cells interact with each other and are influenced by the microbiome and metabolic state of the host, and these interactions are constantly evolving. Stromal cells not only secrete extracellular matrix and participate in wound contraction, but they also secrete fibroblast growth factors (FGF), which mediate macrophage differentiation. Tumor-associated macrophages migrate to hypoxic areas and secrete vascular endothelial growth factor (VEGF) to promote angiogenesis. The microbiome and its byproducts alter the metabolic milieu by shifting the balance between glucose utilization and fatty acid oxidation, and these changes subsequently influence the immune response in the TME. Not only does radiation exert cell-autonomous effects on tumor cells, but it influences both the tumor-promoting and tumor-suppressive components in the TME. To gain a deeper understanding of how the TME influences the response to radiation, the American Society for Radiation Oncology and the American Association of Cancer Research organized a scientific workshop on July 26-27, 2018, to discuss how the microbiome, the immune response, the metabolome, and the stroma all shift the balance between radiosensitivity and radioresistance. The proceedings from this workshop are discussed here and highlight recent discoveries in the field, as well as the most important areas for future research.
Collapse
Affiliation(s)
- Heather M McGee
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Soto-Pantoja
- Department of Radiation Oncology, Comprehensive Cancer Center Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Avinoam Nevler
- Department of Surgery, Thomas Jefferson School of Medicine, Philadelphia, Pennsylvania
- Talpoit Medical Leadership Program, Sheba Medical Center, Ramat-Gan, Israel
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
47
|
Sharma NK, Sarode SC, Sarode GS, Patil S. Vomocytosis by macrophages: a crucial event in the local niche of tumors. Future Oncol 2019; 15:1545-1550. [PMID: 31038349 DOI: 10.2217/fon-2019-0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer & Translational Research Lab, Dr DY Patil Biotechnology & Bioinformatics Institute, Dr DY Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology & Microbiology, Dr DY Patil Dental College & Hospital, Dr DY Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, India
| | - Gargi S Sarode
- Department of Oral Pathology & Microbiology, Dr DY Patil Dental College & Hospital, Dr DY Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
48
|
Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019; 234:17023-17049. [PMID: 30888065 DOI: 10.1002/jcp.28436] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Rui Guan
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Sun
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
49
|
Harusato A, Viennois E, Etienne-Mesmin L, Matsuyama S, Abo H, Osuka S, Lukacs NW, Naito Y, Itoh Y, Li JD, Merlin D, Gewirtz AT, Denning TL. Early-Life Microbiota Exposure Restricts Myeloid-Derived Suppressor Cell-Driven Colonic Tumorigenesis. Cancer Immunol Res 2019; 7:544-551. [PMID: 30782668 DOI: 10.1158/2326-6066.cir-18-0444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/28/2022]
Abstract
Gut microbiota and their metabolites are instrumental in regulating homeostasis at intestinal and extraintestinal sites. However, the complex effects of prenatal and early postnatal microbial exposure on adult health and disease outcomes remain incompletely understood. Here, we showed that mice raised under germ-free conditions until weaning and then transferred to specific pathogen-free (SPF) conditions harbored altered microbiota composition, augmented inflammatory cytokine and chemokine expression, and were hyper-susceptible to colitis-associated tumorigenesis later in adulthood. Increased number and size of colon tumors and intestinal epithelial cell proliferation in recolonized germ-free mice were associated with augmented intratumoral CXCL1, CXCL2, and CXCL5 expression and granulocytic myeloid-derived suppressor cell (G-MDSC) accumulation. Consistent with these findings, CXCR2 neutralization in recolonized germ-free mice completely reversed the exacerbated susceptibility to colitis-associated tumorigenesis. Collectively, our findings highlight a crucial role for early-life microbial exposure in establishing intestinal homeostasis that restrains colon cancer in adulthood.
Collapse
Affiliation(s)
- Akihito Harusato
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia. .,Department of Gastroenterology, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Lucie Etienne-Mesmin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.,UMR454 MEDIS, Université Clermont Auvergne/INRA, Clermont-Ferrand, France
| | - Shingo Matsuyama
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Hirohito Abo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Satoru Osuka
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jian-Dong Li
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
50
|
Lee YP, Chiu CC, Lin TJ, Hung SW, Huang WC, Chiu CF, Huang YT, Chen YH, Chen TH, Chuang HL. The germ-free mice monocolonization with Bacteroides fragilis improves azoxymethane/dextran sulfate sodium induced colitis-associated colorectal cancer. Immunopharmacol Immunotoxicol 2019; 41:207-213. [PMID: 30706742 DOI: 10.1080/08923973.2019.1569047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated colorectal cancer (CAC). Previous studies have indicated that the composition of gut microflora may be involved in CAC induction and progress. Bacteroides fragilis (BF) is a Gram-negative anaerobe belonging to colonic symbiotic bacteria of the host. This study was aimed to investigate the protective role of BF in a colorectal cancer (CRC) model induced by azoxymethane (AOM) and dextran sulfate sodium (DSS) in germ-free (GF) mice. Materials and methods: Total 22 GF mice were divided into two groups: GF and BF group. Half of the GF mice were colonized with BF for 28 days before CRC induction by AOM/DSS. Results: BF colonization increased animal survival (100%). Cecum weight and cecum/body weight ratio significantly decreased in BF/AOM/DSS group. Interestingly, there was a significant decrease in tumor number and tumor incidence in the BF/AOM/DSS group as compared to the GF/AOM/DSS group. The adenocarcinoma/adenoma incidence and histologic score were also decreased in the BF/AOM/DSS group. In addition, immunohistochemistry staining found decreased numbers of cell proliferation (PCNA) and inflammatory cell (granulocytes) infiltration in the colon mucosa of the BF group. The β-catenin staining in the BF/AOM/DSS group had fewer and weaker positive signal expressions. Taking together, the BF colonization significantly ameliorated AOM/DSS-induced CRC by suppressing the activity of cell proliferation-related molecules and reducing the number of inflammatory cells. Conclusions: Symbiotic BF may play a pivotal role in maintaining the gastrointestinal immunophysiologic balance and regulating anti-tumorigenesis responses.
Collapse
Affiliation(s)
- Yen-Peng Lee
- a Graduate Institute of Veterinary Pathobiology , College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Chien-Chao Chiu
- b Division of Animal Industry, Animal Technology Laboratories , Agricultural Technology Research Institute , Miaoli , Taiwan
| | - Tien-Jen Lin
- c Department of Neurosurgery , Wan Fang Hospital, Taipei Medical University , Taipei , Taiwan.,d Graduate Institute of Sports Science , College of Exercise and Health Sciences, National Taiwan Sport University , Taoyuan , Taiwan.,e Graduate Institute of Injury Prevention and Control , Taipei Medical University , Taipei , Taiwan
| | - Shao-Wen Hung
- b Division of Animal Industry, Animal Technology Laboratories , Agricultural Technology Research Institute , Miaoli , Taiwan
| | - Wen-Ching Huang
- f Department of Exercise and Health Science , National Taipei University of Nursing and Health Sciences , Taipei , Taiwan
| | - Ching-Feng Chiu
- g Graduate Institute of Metabolism and Obesity Sciences , College of Nutrition, Taipei Medical University , Taipei , Taiwan
| | - Yen-Te Huang
- h National Laboratory Animal Center , National Applied Research Laboratories , Taipei , Taiwan
| | - Yi-Hsun Chen
- a Graduate Institute of Veterinary Pathobiology , College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Ter-Hsin Chen
- a Graduate Institute of Veterinary Pathobiology , College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Hsiao-Li Chuang
- h National Laboratory Animal Center , National Applied Research Laboratories , Taipei , Taiwan
| |
Collapse
|