1
|
Wang S, Xie B, Deng H, Ma X, Tang B, Ma L, Zhu J, Li J, Li L. Effect of PRKD3 on cell cycle in gastric cancer progression and downstream regulatory networks. Med Oncol 2025; 42:135. [PMID: 40131654 DOI: 10.1007/s12032-025-02663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
Protein kinase D3 (PRKD3), belonging to the protein kinase D family, significantly influences tumor development and progression. The role of PRKD3 in advancing gastric cancer (GC) and its effects on the cell cycle are not well understood, necessitating detailed investigation. Assessment of PRKD3 expression in both malignant and normal gastric tissues was performed using bioinformatics databases. The influence of PRKD3 on GC's malignant characteristics was evaluated through in vitro experiments utilizing cell line models of GC. Additionally, proteomic analyses were conducted to investigate the potential mechanisms of PRKD3 in GC progression. PRKD3 was notably overexpressed in GC tissues, correlating with adverse outcomes for patients. PRKD3 knockdown impaired GC cell malignancy, manifesting as a 2.12-fold decline in proliferation(p < 0.01), 2.64-fold suppression of migration(p < 0.01), 2.16-fold inhibition of invasion(p < 0.01), and G2/M phase arrest. Proteomic and Western blot analyses had revealed a substantial enrichment in differentially expressed proteins (DEPs) associated with tumor-related signaling pathways, including FoxO and p53, which was paralleled by significant alterations in the levels of key cell cycle proteins such as CDK1, CyclinB1, CHK1 and PLK1, with a 6.8-fold elevation in CHK1 levels(p < 0.05). The overexpression of PRKD3 was intricately linked with the aggressive behaviors of GC. Targeting PRKD3 activity offers potential for effective treatments of GC.
Collapse
Affiliation(s)
- Shuaiyang Wang
- Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Lanzhou Second Hospital, Lanzhou, 730000, Gansu, China
| | - Bei Xie
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Haohua Deng
- Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Lanzhou Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xingyuan Ma
- Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Lanzhou Second Hospital, Lanzhou, 730000, Gansu, China
| | - Baoyuan Tang
- Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Lanzhou Second Hospital, Lanzhou, 730000, Gansu, China
| | - Lei Ma
- Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Lanzhou Second Hospital, Lanzhou, 730000, Gansu, China
| | - Jinmei Zhu
- Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Lanzhou Second Hospital, Lanzhou, 730000, Gansu, China
| | - Jing Li
- Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Linjing Li
- Department of Clinical Laboratory Center, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Cuiying Biomedical Research Center, Lanzhou University Lanzhou Second Hospital, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Ding J, Yang A, Zhou L, Zhang F, Zhou H, Zhang Y, Wang Y, Liu Y, Liang D, Liu Y, Wu Y. PLK1 Downregulation Attenuates ET-1-Induced Cardiomyocyte Hypertrophy by Suppressing the ERK1/2 Pathway. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10604-3. [PMID: 40095199 DOI: 10.1007/s12265-025-10604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Cardiomyocyte hypertrophy is a key remodeling response to cardiac stress and an independent risk factor for heart failure. However, the molecular mechanism of cardiomyocyte hypertrophy is not yet fully understood. We here found Polo-like kinase 1 (PLK1) was crucial in regulating endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. Notably, PLK1 expression was significantly elevated in ET-1-induced hypertrophic cardiomyocytes and pressure overload-induced hypertrophic cardiac tissue. Knocking down Plk1 reduced the cell size of hypertrophic cardiomyocytes and suppressed the expression of hypertrophic markers, including ANP, BNP and β-MHC. The PLK1 inhibitor BI2536 had similar effects on hypertrophic cardiomyocytes. Mechanistically, the ERK1/2 pathway was identified as the key downstream pathway mediating the effects of PLK1 on ET-1-induced cardiomyocyte hypertrophy. Finally, the deficiency of PLK1 attenuated the hypertrophy of hiPSC-CMs. In summary, our study revealed that PLK1 regulates ET-1-induced cardiomyocyte hypertrophy through the ERK1/2 pathway, providing insights into the pathogenesis and potential therapies for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jie Ding
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Anqi Yang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Liping Zhou
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Fulei Zhang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Huixing Zhou
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuemei Zhang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yan Wang
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Yi Liu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Dandan Liang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuanyuan Liu
- Jinzhou Medical University, Jinzhou, 121000, China.
| | - Yahan Wu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
3
|
Zhu J, Jia X, Ren S, Zhang Z, Li H, Wang J, Song B, Wu W, Peng C. Inhibition of Polo-Like Kinase 1 Dampens the Replication of Vaccinia Virus in Mammalian Cells. J Med Virol 2025; 97:e70240. [PMID: 39953955 DOI: 10.1002/jmv.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Since the eradication of smallpox, zoonotic poxviruses, such as the mpox virus (MPXV), continue to pose a threat to public health. Identifying drugs that reduce poxvirus infection and replication, as well as understanding their molecular mechanisms, is essential for epidemic control. Polo-like kinase 1 (PLK1) has been shown to facilitate vaccinia virus (VACV) infection and replication. This study confirms the effects of the PLK1 inhibitors HMN-214 and ON-01910 on VACV replication in A549 cells. Both viral titers and DNA loads were significantly reduced in treated cells after infection. Additionally, ON-01910 demonstrated broad-spectrum antiviral activity against the lumpy skin disease virus (LSDV) and the infectious bovine rhinotracheitis virus (IBRV) in vitro. PLK1 knockdown in A549 cells also led to a reduction in VACV protein expression, viral titers, and DNA levels. Further analysis showed that VACV infection leads to the accumulation of PLK1 near viral factories. However, despite its strong in vitro effects, ON-01910 did not significantly reduce VACV replication in mice. These findings highlight the critical role of PLK1 in VACV replication and its potential as a target for antiviral therapy against orthopoxviruses.
Collapse
Affiliation(s)
- Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuejiao Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zihui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hua Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baifen Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Zhang G, Pannucci A, Ivanov AA, Switchenko J, Sun SY, Sica GL, Liu Z, Huang Y, Schmitz JC, Owonikoko TK. Polo-like Kinase 1 Inhibitors Demonstrate In Vitro and In Vivo Efficacy in Preclinical Models of Small Cell Lung Cancer. Cancers (Basel) 2025; 17:446. [PMID: 39941812 PMCID: PMC11815996 DOI: 10.3390/cancers17030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Objective: To investigate the preclinical efficacy and identify predictive biomarkers of polo-like kinase 1 (PLK1) inhibitors in small cell lung cancer (SCLC) models. Methods: We tested the cytotoxicity of selective PLK1 inhibitors (rigosertib, volasertib, and onvansertib) in a panel of SCLC cell lines. We confirmed the therapeutic efficacy of subcutaneous xenografts of representative cell lines and in four patient-derived xenograft models generated from patients with platinum-sensitive and platinum-resistant SCLC. We employed an integrated analysis of genomic and transcriptomic sequencing data to identify potential biomarkers of the activity and mechanisms of resistance in laboratory-derived resistance models. Results: Volasertib, rigosertib, and onvansertib showed strong in vitro cytotoxicity at nanomolar concentrations in human SCLC cell lines. Rigosertib, volasertib, and onvansertib showed equivalent efficacy to that of standard care agents (irinotecan and cisplatin) in vivo with significant growth inhibition superior to cisplatin in PDX models of platinum-sensitive and platinum-resistant SCLC. There was an association between YAP1 expression and disruptive or inactivation TP53 gene mutations, with greater efficacy of PLK1 inhibitors. Comparison of lab-derived onvansertib-resistant H526 cells to parental cells revealed differential gene expression with upregulation of NAP1L3, CYP7B1, AKAP7, and FOXG1 and downregulation of RPS4Y1, KDM5D, USP9Y, and EIF1AY highlighting the potential mechanisms of resistance in the clinical setting. Conclusions: We established the efficacy of PLK1 inhibitors in vitro and in vivo using PDX models of platinum-sensitive and resistant relapsed SCLC. An ongoing phase II trial is currently testing the efficacy of onvansertib in patients with SCLC (NCT05450965).
Collapse
Affiliation(s)
- Guojing Zhang
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (A.P.); (Z.L.); (Y.H.)
- University of Maryland Greenebaum Comprehensive Cancer Center (UMGCCC), 22 South Green Street N9E17, Baltimore, MD 21201, USA; (G.Z.); (J.C.S.)
| | - Abbe Pannucci
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (A.P.); (Z.L.); (Y.H.)
| | - Andrey A. Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Jeffrey Switchenko
- Biostatistics Shared Resource of Winship Cancer Institute, Atlanta, GA 30322, USA;
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA;
| | - Gabriel L. Sica
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA;
| | - Zhentao Liu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (A.P.); (Z.L.); (Y.H.)
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Yufei Huang
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (A.P.); (Z.L.); (Y.H.)
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - John C. Schmitz
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (A.P.); (Z.L.); (Y.H.)
- University of Maryland Greenebaum Comprehensive Cancer Center (UMGCCC), 22 South Green Street N9E17, Baltimore, MD 21201, USA; (G.Z.); (J.C.S.)
| | - Taofeek K. Owonikoko
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (A.P.); (Z.L.); (Y.H.)
- University of Maryland Greenebaum Comprehensive Cancer Center (UMGCCC), 22 South Green Street N9E17, Baltimore, MD 21201, USA; (G.Z.); (J.C.S.)
| |
Collapse
|
5
|
Hu K, Xie L, Wu W, Zhang J, Li Y, He J, Zhang Y, Lu D, Koeffler HP, Lin L, Yin D. CYR61 Acts as an Intracellular Microtubule-Associated Protein and Coordinates Mitotic Progression via PLK1-FBW7 Pathway. Int J Biol Sci 2024; 20:3140-3155. [PMID: 38904029 PMCID: PMC11186368 DOI: 10.7150/ijbs.93335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61), also called CCN1, has long been characterized as a secretory protein. Nevertheless, the intracellular function of CYR61 remains unclear. Here, we found that CYR61 is important for proper cell cycle progression. Specifically, CYR61 interacts with microtubules and promotes microtubule polymerization to ensure mitotic entry. Moreover, CYR61 interacts with PLK1 and accumulates during the mitotic process, followed by degradation as mitosis concludes. The proteolysis of CYR61 requires the PLK1 kinase activity, which directly phosphorylates two conserved motifs on CYR61, enhancing its interaction with the SCF E3 complex subunit FBW7 and mediating its degradation by the proteasome. Mutations of phosphorylation sites of Ser167 and Ser188 greatly increase CYR61's stability, while deletion of CYR61 extends prophase and metaphase and delays anaphase onset. In summary, our findings highlight the precise control of the intracellular CYR61 by the PLK1-FBW7 pathway, accentuating its significance as a microtubule-associated protein during mitotic progression.
Collapse
Affiliation(s)
- Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Jingyuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yu Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, P.R. China
| | - Jiehua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - H. Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
6
|
Poyil PK, Siraj AK, Padmaja D, Parvathareddy SK, Thangavel S, Alobaisi K, Diaz R, Begum R, Haqawi W, Al‐Sobhi SS, Al‐Dayel F, Al‐Kuraya KS. PLK1 and FoxM1 expressions positively correlate in papillary thyroid carcinoma and their combined inhibition results in synergistic anti-tumor effects. Mol Oncol 2024; 18:691-706. [PMID: 38361222 PMCID: PMC10920088 DOI: 10.1002/1878-0261.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
Polo-like kinase 1 (PLK1; also known as serine/threonine-protein kinase PLK1) serves as a central player in cell proliferation, exerting critical regulatory roles in mitotic processes and cell survival. We conducted an analysis of PLK1 protein expression in a large cohort of samples from papillary thyroid carcinoma (PTC) patients and examined its functional significance in PTC cell lines, both in vitro and in vivo. PLK1 overexpression was noted in 54.2% of all PTC and was significantly associated with aggressive clinicopathological parameters; it was also found to be an independent prognostic marker for shorter recurrence-free survival. Given the significant association between PLK1 and forkhead box protein M1 (FoxM1), and their concomitant overexpression in a large proportion of PTC samples, we explored their correlation and their combined inhibitions in PTC in vitro and in vivo. Inhibition of PLK1 expression indeed suppressed cell proliferation, leading to cell cycle arrest and apoptosis in PTC cell lines. Significantly, the downregulation of PLK1 reduced the self-renewal capability of spheroids formed from PTC cells. Immunoprecipitation analysis shows that PLK1 binds to FoxM1 and vice versa in vitro. Mechanistically, PLK1 knockdown suppresses FoxM1 expression, whereas inhibition of FoxM1 does not affect PLK1 expression, which suggests that PLK1 acts through the FoxM1 pathway. The combined treatment of a PLK1 inhibitor (volasertib) and a FoxM1 inhibitor (thiostrepton) demonstrated a synergistic effect in reducing PTC cell growth in vitro and delaying tumor growth in vivo. This study highlights the important role of PLK1 in PTC tumorigenesis and prognosis. It also highlights the synergistic therapeutic potential of dual-targeting PLK1 and FoxM1 in PTC, unveiling a potential innovative therapeutic strategy for managing aggressive forms of PTC.
Collapse
Affiliation(s)
- Pratheesh Kumar Poyil
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Abdul K. Siraj
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Divya Padmaja
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | | | - Saravanan Thangavel
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Khadija Alobaisi
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Roxanne Diaz
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Rafia Begum
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Saif S. Al‐Sobhi
- Department of SurgeryKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Fouad Al‐Dayel
- Department of PathologyKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Khawla S. Al‐Kuraya
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| |
Collapse
|
7
|
Pan YR, Lai JCY, Huang WK, Peng PH, Jung SM, Lin SH, Chen CP, Wu CE, Hung TH, Yu AL, Wu KJ, Yeh CN. PLK1 and its substrate MISP facilitate intrahepatic cholangiocarcinoma progression by promoting lymphatic invasion and impairing E-cadherin adherens junctions. Cancer Gene Ther 2024; 31:322-333. [PMID: 38057358 PMCID: PMC10874889 DOI: 10.1038/s41417-023-00705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a subtype of CCA and has a high mortality rate and a relatively poor prognosis. However, studies focusing on increased cell motility and loss of epithelial integrity during iCCA progression remain relatively scarce. We collected seven fresh tumor samples from four patients to perform RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) to determine the transcriptome profile and chromatin accessibility of iCCA. The increased expression of cell cycle regulators, including PLK1 and its substrate MISP, was identified. Ninety-one iCCA patients were used to validate the clinical significance of PLK1 and MISP. The upregulation of PLK1 and MISP was determined in iCCA tissues. Increased expression of PLK1 and MISP was significantly correlated with tumor number, N stage, and lymphatic invasion in an iCCA cohort. Knockdown of PLK1 or MISP reduced trans-lymphatic endothelial migration and wound healing and affected focal adhesions in vitro. In cell‒cell junctions, MISP localized to adherens junctions and suppressed E-cadherin dimerization. PLK1 disrupted adherens junctions in a myosin-dependent manner. Furthermore, PLK1 and MISP promoted cell proliferation in vitro and tumorigenesis in vivo. In iCCA, PLK1 and MISP promote aggressiveness by increasing lymphatic invasion, tumor growth, and motility through the repression of E-cadherin adherens junctions.
Collapse
Affiliation(s)
- Yi-Ru Pan
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Joseph Chieh-Yu Lai
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
- Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Sheng-Hsuan Lin
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chiao-Ping Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, CA, 92103, USA
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan.
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
- School of Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
Chhabra G, Singh CK, Ndiaye MA, Su S, Shirley CA, Ahmad N. Role of PLK1/NUMB/NOTCH in epithelial-mesenchymal transition in human melanoma. NPJ Precis Oncol 2024; 8:6. [PMID: 38184733 PMCID: PMC10771520 DOI: 10.1038/s41698-023-00493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024] Open
Abstract
Polo-like kinase 1 (PLK1), a serine/threonine kinase, is overexpressed in melanoma and its expression has been associated with poor disease prognosis. PLK1 has been shown to interact with NUMB, a NOTCH antagonist. However, the exact role of PLK1, NUMB, and NOTCH signaling in epithelial-mesenchymal transition (EMT) in melanoma progression is unclear. In this study, Affymetrix microarray analysis was performed to determine differentially expressed genes following shRNA-mediated knockdown of PLK1 in human melanoma cells that showed significant modulations in EMT and metastasis-related genes. Using multiple PLK1-modulated melanoma cell lines, we found that PLK1 is involved in the regulation of cell migration, invasion, and EMT via its kinase activity and NOTCH activation. In vitro kinase assay and mass spectrometry analysis demonstrated a previously unknown PLK1 phosphorylation site (Ser413) on NUMB. Overexpression of non-phosphorylatable (S413A) and phosphomimetic (S413D) mutants of NUMB in melanoma cells implicated the involvement of NUMB-S413 phosphorylation in cell migration and invasion, which was independent of NOTCH activation. To determine the clinical relevance of these findings, immunohistochemistry was performed using melanoma tissue microarray, which indicated a strong positive correlation between PLK1 and N-cadherin, a protein required for successful EMT. These findings were supported by TCGA analysis, where expression of high PLK1 with low NUMB or high NOTCH or N-cadherin showed a significant decrease in survival of melanoma patients. Overall, these results suggest a potential role of PLK1 in EMT, migration, and invasion of melanoma cells. Our findings support the therapeutic targeting of PLK1, NUMB, and NOTCH for melanoma management.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, 53705, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI, 53705, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI, 53705, USA
| | - Shengqin Su
- Department of Dermatology, University of Wisconsin, Madison, WI, 53705, USA
| | - Carl A Shirley
- Department of Dermatology, University of Wisconsin, Madison, WI, 53705, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
| |
Collapse
|
9
|
Tsuji K, Tamamura H, Burke TR. Application of a Fluorescence Recovery-Based Polo-Like Kinase 1 Binding Assay to Polo-Like Kinase 2 and Polo-Like Kinase 3. Biol Pharm Bull 2024; 47:1282-1287. [PMID: 38987177 DOI: 10.1248/bpb.b24-00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
10
|
Wang Y, Yao M, Li C, Yang K, Qin X, Xu L, Shi S, Yu C, Meng X, Xie C. Targeting ST8SIA6-AS1 counteracts KRAS G12C inhibitor resistance through abolishing the reciprocal activation of PLK1/c-Myc signaling. Exp Hematol Oncol 2023; 12:105. [PMID: 38104151 PMCID: PMC10724920 DOI: 10.1186/s40164-023-00466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND KRASG12C inhibitors (KRASG12Ci) AMG510 and MRTX849 have shown promising efficacy in clinical trials and been approved for the treatment of KRASG12C-mutant cancers. However, the emergence of therapy-related drug resistance limits their long-term potential. This study aimed to identify the critical mediators and develop overcoming strategies. METHODS By using RNA sequencing, RT-qPCR and immunoblotting, we identified and validated the upregulation of c-Myc activity and the amplification of the long noncoding RNA ST8SIA6-AS1 in KRASG12Ci-resistant cells. The regulatory axis ST8SIA6-AS1/Polo-like kinase 1 (PLK1)/c-Myc was investigated by bioinformatics, RNA fluorescence in situ hybridization, RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation. Gain/loss-of-function assays, cell viability assay, xenograft models, and IHC staining were conducted to evaluate the anti-cancer effects of co-inhibition of ST8SIA6-AS1/PLK1 pathway and KRAS both in vitro and in vivo. RESULTS KRASG12Ci sustainably decreased c-Myc levels in responsive cell lines but not in cell lines with intrinsic or acquired resistance to KRASG12Ci. PLK1 activation contributed to this ERK-independent c-Myc stability, which in turn directly induced PLK1 transcription, forming a positive feedback loop and conferring resistance to KRASG12Ci. ST8SIA6-AS1 was found significantly upregulated in resistant cells and facilitated the proliferation of KRASG12C-mutant cancers. ST8SIA6-AS1 bound to Aurora kinase A (Aurora A)/PLK1 and promoted Aurora A-mediated PLK1 phosphorylation. Concurrent targeting of KRAS and ST8SIA6-AS1/PLK1 signaling suppressed both ERK-dependent and -independent c-Myc expression, synergistically led to cell death and tumor regression and overcame KRASG12Ci resistance. CONCLUSIONS Our study deciphers that the axis of ST8SIA6-AS1/PLK1/c-Myc confers both intrinsic and acquired resistance to KRASG12Ci and represents a promising therapeutic target for combination strategies with KRASG12Ci in the treatment of KRASG12C-mutant cancers.
Collapse
Affiliation(s)
- Yafang Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, Anhui, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Cheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China
| | - Xiaolong Qin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lansong Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, Anhui, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Shangxuan Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengcheng Yu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China
| | - Xiangjun Meng
- Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
- China Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai, 200001, China
- China Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, 200001, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
11
|
Su S, Ndiaye MA, Guzmán-Pérez G, Baus RM, Huang W, Patankar MS, Ahmad N. Potential Tumor Suppressor Role of Polo-like Kinase 5 in Cancer. Cancers (Basel) 2023; 15:5457. [PMID: 38001717 PMCID: PMC10669931 DOI: 10.3390/cancers15225457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The polo-like kinase (PLK) family of serine/threonine kinases contains five members (PLK1-5). Most PLKs are involved in cell cycle regulation and DNA damage response. However, PLK5 is different as it lacks a functional kinase domain and is not involved in cell cycle control. PLK5 remains the least-studied family member, and its role in oncogenesis remains enigmatic. Here, we identified tissues with high PLK5 expression by leveraging the Protein Atlas and GTEx databases with relevant literature and selected ovarian, lung, testis, endometrium, cervix, and fallopian tube tissues as candidates for further investigation. Subsequently, we performed immunohistochemical staining for PLK5 on multiple tissue microarrays followed by Vectra scanning and quantitative inForm analysis. This revealed consistently downregulated PLK5 expression in these cancers compared to normal tissues. To validate and extend our findings, we performed pan-cancer analysis of PLK5 expression using public RNAseq databases (TCGA and GTEx). We found PLK5 is downregulated in 18 cancer types, including our selected candidates. Interestingly, we also observed PLK5 expression remains consistently low in later stages of cancer, suggesting PLK5 may have a greater role in tumor initiation than cancer progression. Overall, our study demonstrates PLK5 downregulation in multiple cancers, highlighting its role as a tumor suppressor.
Collapse
Affiliation(s)
- Shengqin Su
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (S.S.); (G.G.-P.)
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (S.S.); (G.G.-P.)
| | - Glorimar Guzmán-Pérez
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (S.S.); (G.G.-P.)
| | - Rebecca Michael Baus
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (R.M.B.)
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (R.M.B.)
| | - Manish Suresh Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53792, USA;
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (S.S.); (G.G.-P.)
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
| |
Collapse
|
12
|
Cheng Z, Hwang SS, Bhave M, Rahman T, Chee Wezen X. Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ. J Chem Inf Model 2023; 63:6912-6924. [PMID: 37883148 DOI: 10.1021/acs.jcim.3c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug-drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure-activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.
Collapse
Affiliation(s)
- Zixuan Cheng
- School of Engineering and Science, Swinburne University of Technology Sarawak, 93350 Kuching, Malaysia
| | - Siaw San Hwang
- School of Engineering and Science, Swinburne University of Technology Sarawak, 93350 Kuching, Malaysia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne 3122, Victoria, Australia
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K
| | - Xavier Chee Wezen
- School of Engineering and Science, Swinburne University of Technology Sarawak, 93350 Kuching, Malaysia
| |
Collapse
|
13
|
Song S, Gu H, Li J, Yang P, Qi X, Liu J, Zhou J, Li Y, Shu P. Identification of immune-related gene signature for predicting prognosis in uterine corpus endometrial carcinoma. Sci Rep 2023; 13:9255. [PMID: 37286702 DOI: 10.1038/s41598-023-35655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
The objective of this study is to develop a gene signature related to the immune system that can be used to create personalized immunotherapy for Uterine Corpus Endometrial Carcinoma (UCEC). To classify the UCEC samples into different immune clusters, we utilized consensus clustering analysis. Additionally, immune correlation algorithms were employed to investigate the tumor immune microenvironment (TIME) in diverse clusters. To explore the biological function, we conducted GSEA analysis. Next, we developed a Nomogram by integrating a prognostic model with clinical features. Finally, we performed experimental validation in vitro to verify our prognostic risk model. In our study, we classified UCEC patients into three clusters using consensus clustering. We hypothesized that cluster C1 represents the immune inflammation type, cluster C2 represents the immune rejection type, and cluster C3 represents the immune desert type. The hub genes identified in the training cohort were primarily enriched in the MAPK signaling pathway, as well as the PD-L1 expression and PD-1 checkpoint pathway in cancer, all of which are immune-related pathways. Cluster C1 may be a more suitable for immunotherapy. The prognostic risk model showed a strong predictive ability. Our constructed risk model demonstrated a high level of accuracy in predicting the prognosis of UCEC, while also effectively reflecting the state of TIME.
Collapse
Affiliation(s)
- Siyuan Song
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Haoqing Gu
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jingzhan Li
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Peipei Yang
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Xiafei Qi
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jiatong Liu
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jiayu Zhou
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ye Li
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Peng Shu
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
14
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
15
|
Cao X, He J, Chen A, Ran J, Li J, Chen D, Zhang H. Comprehensive Analysis of Necroptosis Landscape in Skin Cutaneous Melanoma for Appealing its Implications in Prognosis Estimation and Microenvironment Status. J Pers Med 2023; 13:jpm13020245. [PMID: 36836481 PMCID: PMC9962795 DOI: 10.3390/jpm13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Due to poor prognosis and immunotherapy failure of skin cutaneous melanoma (SKCM), this study sought to find necroptosis-related biomarkers to predict prognosis and improve the situation with predicted immunotherapy drugs. EXPERIMENTAL DESIGN The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression Program (GTEx) database were utilized to recognize the differential necroptosis-related genes (NRGs). Univariate Cox (uni-Cox) and least absolute shrinkage and selection operator (LASSO) Cox analysis were utilized for prognostic signature establishment. The signature was verified in the internal cohort. To assess the signature's prediction performance, the area under the curve (AUC) of receiver operating characteristic (ROC) curves, Kaplan-Meier (K-M) analyses, multivariate Cox (multi-Cox) regression, nomogram, and calibration curves were performed. The molecular and immunological aspects were also reviewed using single-sample gene set enrichment analysis (ssGSEA). Cluster analysis was performed to identify the different types of SKCM. Finally, the expression of the signature gene was verified by immunohistochemical staining. RESULTS On basis of the 67 NRGs, 4 necroptosis-related genes (FASLG, PLK1, EGFR, and TNFRSF21) were constructed to predict SKCM prognosis. The area's 1-, 3-, and 5-year OS under the AUC curve was 0.673, 0.649, and 0.677, respectively. High-risk individuals had significantly lower overall survival (OS) compared to low-risk patients. Immunological status and tumor cell infiltration in high-risk groups were significantly lower, indicating an immune system that was suppressed. In addition, hot and cold tumors could be obtained by cluster analysis, which is helpful for accurate treatment. Cluster 1 was considered a hot tumor and more susceptible to immunotherapy. Immunohistochemical results were consistent with positive and negative regulation of coefficients in signature. CONCLUSION The results of this finding supported that NRGs could predict prognosis and help make a distinction between the cold and hot tumors for improving personalized therapy for SKCM.
Collapse
Affiliation(s)
- Xiaoying Cao
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - An Chen
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ran
- Neuroscience Research Center, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Dilong Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
- Correspondence: (D.C.); (H.Z.)
| | - Hengshu Zhang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Correspondence: (D.C.); (H.Z.)
| |
Collapse
|
16
|
Javed A, Özduman G, Altun S, Duran D, Yerli D, Özar T, Şimşek F, Korkmaz KS. Mitotic Kinase Inhibitors as Therapeutic Interventions for Prostate Cancer: Evidence from In Vitro Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:1699-1712. [PMID: 36872354 DOI: 10.2174/1871530323666230303092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 03/07/2023]
Abstract
Prostate cancer is one of the devastating diseases characterized by genetic changes leading to uncontrolled growth and metastasis of the cells of the prostate gland and affects men worldwide. Conventional hormonal and chemotherapeutic agents are effective in mitigating the disease if diagnosed at an early stage. All dividing eukaryotic cells require mitotic progression for the maintenance of genomic integrity in progeny populations. The protein kinases, upon activation and de-activation in an ordered fashion, lead to spatial and temporal regulation of the cell division process. The entry into mitosis along with the progression into sub-phases of mitosis is ensured due to the activity of mitotic kinases. These kinases include Polo-Like-Kinase 1 (PLK1), Aurora kinases, and Cyclin-Dependent- Kinase 1 (CDK1), among others. The mitotic kinases, among others, are usually overexpressed in many cancers and can be targeted using small molecule inhibitors to reduce the effects of these regulators on mechanisms, such as regulation of genomic integrity and mitotic fidelity. In this review, we attempted to discuss the appropriate functions of mitotic kinases revealed through cell culture studies and the impact of their respective inhibitors derived in pre-clinical studies. The review is designed to elucidate the growing field of small molecule inhibitors and their functional screening or mode of action at the cellular and molecular level in the context of Prostate Cancer. Therefore, studies performed specifically on cells of Prostatic-origin are narrated in this review, culminating in a comprehensive view of the specific field of mitotic kinases that can be targeted for therapy of Prostate cancer.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Gülseren Özduman
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Sevda Altun
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Doğan Duran
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Dilan Yerli
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Tilbe Özar
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Faruk Şimşek
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
17
|
Wood CR, Wu WT, Yang YS, Yang JS, Xi Y, Yang WJ. From ecology to oncology: To understand cancer stem cell dormancy, ask a Brine shrimp (Artemia). Adv Cancer Res 2023; 158:199-231. [PMID: 36990533 DOI: 10.1016/bs.acr.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The brine shrimp (Artemia), releases embryos that can remain dormant for up to a decade. Molecular and cellular level controlling factors of dormancy in Artemia are now being recognized or applied as active controllers of dormancy (quiescence) in cancers. Most notably, the epigenetic regulation by SET domain-containing protein 4 (SETD4), is revealed as highly conserved and the primary control factor governing the maintenance of cellular dormancy from Artemia embryonic cells to cancer stem cells (CSCs). Conversely, DEK, has recently emerged as the primary factor in the control of dormancy exit/reactivation, in both cases. The latter has been now successfully applied to the reactivation of quiescent CSCs, negating their resistance to therapy and leading to their subsequent destruction in mouse models of breast cancer, without recurrence or metastasis potential. In this review, we introduce the many mechanisms of dormancy from Artemia ecology that have been translated into cancer biology, and herald Artemia's arrival on the model organism stage. We show how Artemia studies have unlocked the mechanisms of the maintenance and termination of cellular dormancy. We then discuss how the antagonistic balance of SETD4 and DEK fundamentally controls chromatin structure and consequently governs CSCs function, chemo/radiotherapy resistance, and dormancy in cancers. Many key stages from transcription factors to small RNAs, tRNA trafficking, molecular chaperones, ion channels, and links with various pathways and aspects of signaling are also noted, all of which link studies in Artemia to those of cancer on a molecular and/or cellular level. We particularly emphasize that the application of such emerging factors as SETD4 and DEK may open new and clear avenues for the treatment for various human cancers.
Collapse
Affiliation(s)
- Christopher R Wood
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wen-Tao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yao-Shun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Shu Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongmei Xi
- The Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Hu X, Jin X, Cao X, Liu B. The Anaphase-Promoting Complex/Cyclosome Is a Cellular Ageing Regulator. Int J Mol Sci 2022; 23:ijms232315327. [PMID: 36499653 PMCID: PMC9740938 DOI: 10.3390/ijms232315327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.
Collapse
Affiliation(s)
- Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
19
|
Gola C, Licenziato L, Accornero P, Iussich S, Morello E, Buracco P, Modesto P, Aresu L, De Maria R. The mitotic regulator polo-like kinase 1 as a potential therapeutic target for c-Myc-overexpressing canine osteosarcomas. Vet Comp Oncol 2022; 20:890-900. [PMID: 36054794 PMCID: PMC9804590 DOI: 10.1111/vco.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in dogs, characterized by a locally aggressive and highly metastatic behaviour. Despite the current standards of care, most dogs succumb to the disease, indicating the need for novel treatment strategies. Polo-like kinase 1 (PLK1) is dysregulated in a variety of human cancer types, including osteosarcoma, and induces c-Myc accumulation. The crosstalk between the two molecules coordinates cell proliferation, differentiation, self-renewal and apoptosis. Therefore, PLK1 has recently emerged as a potential therapeutic target, mainly in tumours overexpressing c-Myc. BI 2536 is a selective PLK1 inhibitor promoting mitotic arrest and apoptosis in a variety of cancer cells. This research aimed at evaluating PLK1 and c-Myc protein expression in 53 appendicular canine osteosarcoma (cOSA) samples and the in vitro effects of BI 2536 on a c-Myc and PLK1-overexpressing cOSA cell line (D17). PLK1 and c-Myc expression in cOSA samples showed no correlation with clinicopathological data. However, c-Myc overexpression was associated with a significantly reduced overall survival (p = .003). Western Blot and RT-qPCR assays revealed that D17 expressed high protein and transcript levels of both PLK1 and MYC. When treated with BI 2536 (range 2.5-15 nM) for 24 h, D17 showed a substantial decrease in cell growth, inducing apoptosis and G2 /M cell cycle arrest. Interestingly, under BI 2536 treatment, D17 showed decreased c-Myc protein levels. Consistent with human OSA, these preliminary data outline the prognostic value of c-Myc expression in cOSA and highlight the potential role of PLK1 as an antiproliferative therapeutic target for tumours overexpressing c-Myc.
Collapse
Affiliation(s)
- Cecilia Gola
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Luca Licenziato
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paolo Accornero
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Selina Iussich
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Emanuela Morello
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paolo Buracco
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paola Modesto
- SC Diagnostica SpecialisticaIstituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'AostaTurinTOItaly
| | - Luca Aresu
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | | |
Collapse
|
20
|
Lin Z, Li Y, Han X, Fu Z, Tian Z, Li C. Targeting SPHK1/PBX1 Axis Induced Cell Cycle Arrest in Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:12741. [PMID: 36361531 PMCID: PMC9657307 DOI: 10.3390/ijms232112741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 03/05/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85~90% of lung cancer cases, with a poor prognosis and a low 5-year survival rate. Sphingosine kinase-1 (SPHK1), a key enzyme in regulating sphingolipid metabolism, has been reported to be involved in the development of NSCLC, although the underlying mechanism remains unclear. In the present study, we demonstrated the abnormal signature of SPHK1 in NSCLC lesions and cell lines of lung cancers with a potential tumorigenic role in cell cycle regulation. Functionally, ectopic Pre-B cell leukemia homeobox-1 (PBX1) was capable of restoring the arrested G1 phase induced by SPHK1 knockdown. However, exogenous sphingosine-1-phosphate (S1P) supply had little impact on the cell cycle arrest by PBX1 silence. Furthermore, S1P receptor S1PR3 was revealed as a specific switch to transport the extracellular S1P signal into cells, and subsequently activated PBX1 to regulate cell cycle progression. In addition, Akt signaling partially participated in the SPHK1/S1PR3/PBX1 axis to regulate the cell cycle, and the Akt inhibitor significantly decreased PBX1 expression and induced G1 arrest. Targeting SPHK1 with PF-543 significantly inhibited the cell cycle and tumor growth in preclinical xenograft tumor models of NSCLC. Taken together, our findings exhibit the vital role of the SPHK1/S1PR3/PBX1 axis in regulating the cell cycle of NSCLC, and targeting SPHK1 may develop a therapeutic effect in tumor treatment.
Collapse
Affiliation(s)
- Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Zhenkun Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin 150081, China
| | - Zhenhuan Tian
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
21
|
Construction of a Colorectal Cancer Prognostic Risk Model and Screening of Prognostic Risk Genes Using Machine-Learning Algorithms. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9408839. [PMID: 36267311 PMCID: PMC9578894 DOI: 10.1155/2022/9408839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/09/2022]
Abstract
This study is aimed at constructing a prognostic risk model for colorectal cancer (CRC) using machine-learning algorithms to provide accurate staging and screening of credible prognostic risk genes. We extracted CRC data from GSE126092 and GSE156355 of the Gene Expression Omnibus (GEO) database and datasets from TCGA to analyze the differentially expressed genes (DEGs) using bioinformatics analysis. Among the 330 shared DEGs related to CRC prognosis, we divided the analysis period into different phases and applied univariate COX regression, LASSO, and multivariate COX regression analysis. GO analysis and KEGG analysis revealed that the functions of these DEGs were primarily focused on cell cycle, DNA replication, cell mitosis, and other related functions, and this confirmed our results from a biological perspective. Finally, a prognostic risk model for CRC based on the CHGA, CLU, PLK1, AXIN2, NR3C2, IL17RB, GCG, and AJUBA genes was constructed, and the risk score enabled us to predict the prognosis for CRC. To obtain a comprehensive and accurate model, we used both internal and external evaluations, and the model was able to correctly differentiate patients with CRC into a high-risk group with poor prognosis and a low-risk group with good prognosis. The AUC values of the 3-, 5-, and 10-year survival ROC curves were 0.715, 0.721, and 0.777, respectively, according to the internal evaluation, and the AUC values were 0.606, 0.698, and 0.608, respectively, for the external evaluation using GSE39582 from the GEO database. We determined that CLU, PLK1, and IL17RB could be considered to be independent prognostic factors for CRC with significantly different expression (P < 0.05). Using machine-learning methods, a prognostic risk model comprised of eight genes was constructed. Not only does this model provide improved treatment guidance, but it also provides a novel perspective for analyzing survival conditions at a deeper biological level.
Collapse
|
22
|
Zhang Z, Cheng L, Li J, Qiao Q, Karki A, Allison DB, Shaker N, Li K, Utturkar SM, Lanman NMA, Rao X, Rychahou P, He D, Konieczny SF, Wang C, Shao Q, Evers BM, Liu X. Targeting Plk1 Sensitizes Pancreatic Cancer to Immune Checkpoint Therapy. Cancer Res 2022; 82:3532-3548. [PMID: 35950917 PMCID: PMC9532376 DOI: 10.1158/0008-5472.can-22-0018] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
Polo-like kinase 1 (Plk1) plays an important role in cell-cycle regulation. Recent work has suggested that Plk1 could be a biomarker of gemcitabine response in pancreatic ductal adenocarcinoma (PDAC). Although targeting Plk1 to treat PDAC has been attempted in clinical trials, the results were not promising, and the mechanisms of resistance to Plk1 inhibition is poorly understood. In addition, the role of Plk1 in PDAC progression requires further elucidation. Here, we showed that Plk1 was associated with poor outcomes in patients with PDAC. In an inducible transgenic mouse line with specific expression of Plk1 in the pancreas, Plk1 overexpression significantly inhibited caerulein-induced acute pancreatitis and delayed development of acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Bioinformatics analyses identified the regulatory networks in which Plk1 is involved in PDAC disease progression, including multiple inflammation-related pathways. Unexpectedly, inhibition or depletion of Plk1 resulted in upregulation of PD-L1 via activation of the NF-κB pathway. Mechanistically, Plk1-mediated phosphorylation of RB at S758 inhibited the translocation of NF-κB to nucleus, inactivating the pathway. Inhibition of Plk1 sensitized PDAC to immune checkpoint blockade therapy through activation of an antitumor immune response. Together, Plk1 suppresses PDAC progression and inhibits NF-κB activity, and targeting Plk1 can potentiate the efficacy of immunotherapy in PDAC. SIGNIFICANCE Inhibition of Plk1 induces upregulation of PD-L1 expression in pancreatic ductal adenocarcinoma, stimulating antitumor immunity and sensitizing tumors to immunotherapy.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Lijun Cheng
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jie Li
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Qi Qiao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Anju Karki
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA
| | - Derek B. Allison
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Nuha Shaker
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kunyu Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Sagar M. Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Nadia M. Atallah Lanman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Xiongjian Rao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Stephen F. Konieczny
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Tissue-Based Markers as a Tool to Assess Response to Neoadjuvant Radiotherapy in Rectal Cancer-Systematic Review. Int J Mol Sci 2022; 23:ijms23116040. [PMID: 35682714 PMCID: PMC9181431 DOI: 10.3390/ijms23116040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
According to current guidelines, the current treatment for locally advanced rectal cancer is neoadjuvant therapy, followed by a total mesorectal excision. However, radiosensitivity tends to differ among patients due to tumor heterogeneity, making it difficult to predict the possible outcomes of the neoadjuvant therapy. This review aims to investigate different types of tissue-based biomarkers and their capability of predicting tumor response to neoadjuvant therapy in patients with locally advanced rectal cancer. We identified 169 abstracts in NCBI PubMed, selected 48 reports considered to meet inclusion criteria and performed this systematic review. Multiple classes of molecular biomarkers, such as proteins, DNA, micro-RNA or tumor immune microenvironment, were studied as potential predictors for rectal cancer response; nonetheless, no literature to date has provided enough sufficient evidence for any of them to be introduced into clinical practice.
Collapse
|
24
|
Kim T. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis. Int J Mol Sci 2022; 23:ijms23095252. [PMID: 35563642 PMCID: PMC9102930 DOI: 10.3390/ijms23095252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
The accurate distribution of the replicated genome during cell division is essential for cell survival and healthy organismal development. Errors in this process have catastrophic consequences, such as birth defects and aneuploidy, a hallmark of cancer cells. PLK1 is one of the master kinases in mitosis and has multiple functions, including mitotic entry, chromosome segregation, spindle assembly checkpoint, and cytokinesis. To dissect the role of PLK1 in mitosis, it is important to understand how PLK1 localizes in the specific region in cells. PLK1 localizes at the kinetochore and is essential in spindle assembly checkpoint and chromosome segregation. However, how PLK1 localizes at the kinetochore remains elusive. Here, we review the recent literature on the kinetochore recruitment mechanisms of PLK1 and its roles in spindle assembly checkpoint and attachment between kinetochores and spindle microtubules. Together, this review provides an overview of how the local distribution of PLK1 could regulate major pathways in mitosis.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
25
|
Akawa OB, Subair TI, Omolabi KF, Okunlola FO, Soliman MES. Mechanistic Insights into the Selective Dual BET and PLK1 Inhibitory Activity of a Novel Benzamide Compound in Castration-Resistant Prostrate Cancer. Chem Biodivers 2021; 18:e2100519. [PMID: 34729902 DOI: 10.1002/cbdv.202100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Though multifactorial, BET and PLK1 proteins have been found to be key players in the oncogenic process leading to castration-resistant prostate cancer through regulation of AR and MYC-mediated transcription. Hence, dual inhibition of these proteins appears to be an auspicious approach for CRPC therapy. WNY0824 has been reported to exhibit nanomolar range inhibition as well as significant anti-proliferative activity on AR-positive CRPC cells in vitro. However, structural, and mechanistic events associated with its dual inhibitory and anti-proliferative mechanisms remain unclear. Utilizing integrative computer-assisted atomistic techniques, analyses revealed that the dual-inhibitory activity of WNY0824 against BRD4 and PLK1 proteins is mediated by conserved residues present in the binding cavities of both proteins which are shown to elicit various strong intermolecular interactions and thus favour binding affinity. Also, binding orientation of the ligand at the protein binding cavities allowed for important hydrophobic interactions which resulted in high binding free energy of -42.50 kcal/mol and -51.64 kcal/mol towards BRD4 and PLK1, respectively. While van der Waals interactions are very important to ligand binding in BRD4-WNY complex, electrostatic interactions are pertinent to PLK1-WNY complex. Intriguingly, WNY0824 triggered conformational alterations in both proteins through increased structural instability, decreased structural compactness and mitigation in exposure of residues to solvent surface area. Consequently, critical interactions peculiar to the oncogenic activities of BRD4 and PLK1 were inhibited, a phenomenon that results in an antagonism of CRPC progression. The mechanistic insights presented in this report would further assist in the structure-based design of improved inhibitors useful in CRPC therapy.
Collapse
Affiliation(s)
- Oluwole B Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, 360001, Nigeria
| | - Temitayo I Subair
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Kehinde F Omolabi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Felix O Okunlola
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
26
|
Wang B, Huang X, Liang H, Yang H, Guo Z, Ai M, Zhang J, Khan M, Tian Y, Sun Q, Mao Z, Zheng R, Yuan Y. PLK1 Inhibition Sensitizes Breast Cancer Cells to Radiation via Suppressing Autophagy. Int J Radiat Oncol Biol Phys 2021; 110:1234-1247. [PMID: 33621661 DOI: 10.1016/j.ijrobp.2021.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Polo-like kinase 1 (PLK1) is a protein kinase that is overexpressed in breast cancer and may represent an attractive target for breast cancer treatment. However, few studies have investigated the relationship between PLK1 and radiosensitivity in breast cancer. Here, we attempted to explore whether PLK1 inhibition could sensitize breast cancer cells to radiation. METHODS AND MATERIALS Breast cancer cells were treated with PLK1 small interference RNA or the PLK1-inhibitor, GSK461364. Cell proliferation was assessed using a colony formation assay. Cell cycle analyses were performed by flow cytometry. DNA damage, autophagy, and reactive oxygen species induced by ionizing radiation were detected by immunofluorescence, Western blot, and flow cytometry, respectively. Microtubule-associated protein 1 light chain 3 alpha (LC3) puncta were detected using an immunofluorescence assay. A clonogenic survival assay was used to determine the effect of PLK1 inhibition on cell radiosensitivity. A xenograft mouse model of breast cancer cells was used to investigate the potential synergistic effects of PLK1 inhibition and irradiation in vivo. Finally, the expression of PLK1 and LC3 in the breast cancer tissues was evaluated by immunohistochemistry. RESULTS PLK1 inhibition significantly suppressed the proliferation and increased the radiosensitivity of breast cancer cells. Pharmacologic inhibition of PLK1 by the selective inhibitor, GSK461364, enhanced the radiosensitivity of breast cancer cells in vivo (n = 4, P = .002). Mechanistically, PLK1 inhibition led to the downregulation of radiation-induced reactive oxygen species and autophagy, thereby increasing the radiosensitivity of breast cancer cells. Additionally, we detected a positive correlation between the expression of PLK1 and LC3 in human breast cancer samples (n = 102, R = 0.486, P = .005). CONCLUSIONS Our findings indicate that PLK1 inhibition enhances the radiosensitivity of breast cancer cells in a manner associated with the suppression of radiation-induced autophagy. The inhibition of PLK1 represents a promising strategy for radiosensitizing breast cancer.
Collapse
Affiliation(s)
- Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Huiping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Hongli Yang
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Meiling Ai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
27
|
Zhang S, Chen Y, Tian C, He Y, Tian Z, Wan Y, Liu T. Dual-target Inhibitors Based on BRD4: Novel Therapeutic Approaches for Cancer. Curr Med Chem 2021; 28:1775-1795. [PMID: 32520674 DOI: 10.2174/0929867327666200610174453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, cancer continues being a dramatically increasing and serious threat to public health. Although many anti-tumor agents have been developed in recent years, the survival rate of patients is not satisfactory. The poor prognosis of cancer patients is closely related to the occurrence of drug resistance. Therefore, it is urgent to develop new strategies for cancer treatment. Multi-target therapies aim to have additive or synergistic effects and reduce the potential for the development of resistance by integrating different pharmacophores into a single drug molecule. Given the fact that majority of diseases are multifactorial in nature, multi-target therapies are being exploited with increasing intensity, which has brought improved outcomes in disease models and obtained several compounds that have entered clinical trials. Thus, it is potential to utilize this strategy for the treatment of BRD4 related cancers. This review focuses on the recent research advances of dual-target inhibitors based on BRD4 in the aspect of anti-tumor. METHODS We have searched the recent literatures about BRD4 inhibitors from the online resources and databases, such as pubmed, elsevier and google scholar. RESULTS In the recent years, many efforts have been taken to develop dual-target inhibitors based on BRD4 as anti-cancer agents, such as HDAC/BRD4 dual inhibitors, PLK1/BRD4 dual inhibitors and PI3K/BRD4 dual inhibitors and so on. Most compounds display good anti-tumor activities. CONCLUSION Developing new anti-cancer agents with new scaffolds and high efficiency is a big challenge for researchers. Dual-target inhibitors based on BRD4 are a class of important bioactive compounds. Making structural modifications on the active dual-target inhibitors according to the corresponding structure-activity relationships is of benefit to obtain more potent anti-cancer leads or clinical drugs. This review will be useful for further development of new dual-target inhibitors based on BRD4 as anti-cancer agents.
Collapse
Affiliation(s)
- Sitao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Yanzhao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Yujing He
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| |
Collapse
|
28
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
29
|
Identification and culture of proliferative cells in abnormal Taenia solium larvae: Role in the development of racemose neurocysticercosis. PLoS Negl Trop Dis 2021; 15:e0009303. [PMID: 33750965 PMCID: PMC8016263 DOI: 10.1371/journal.pntd.0009303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Racemose neurocysticercosis is an aggressive disease caused by the aberrant expansion of the cyst form of Taenia solium within the subarachnoid spaces of the human brain and spinal cord resulting in a mass effect and chronic inflammation. Although expansion is likely caused by the proliferation and growth of the parasite bladder wall, there is little direct evidence of the mechanisms that underlie these processes. Since the development and growth of cysts in related cestodes involves totipotential germinative cells, we hypothesized that the expansive growth of the racemose larvae is organized and maintained by germinative cells. Here, we identified proliferative cells expressing the serine/threonine-protein kinase plk1 by in situ hybridization. Proliferative cells were present within the bladder wall of racemose form and absent from the homologous tissue surrounding the vesicular form. Cyst proliferation in the related model species Taenia crassiceps (ORF strain) occurs normally by budding from the cyst bladder wall and proliferative cells were concentrated within the growth buds. Cells isolated from bladder wall of racemose larvae were established in primary cell culture and insulin stimulated their proliferation in a dose-dependent manner. These findings indicate that the growth of racemose larvae is likely due to abnormal cell proliferation. The different distribution of proliferative cells in the racemose larvae and their sensitivity to insulin may reflect significant changes at the cellular and molecular levels involved in their tumor-like growth. Parasite cell cultures offer a powerful tool to characterize the nature and formation of the racemose form, understand the developmental biology of T. solium, and to identify new effective drugs for treatment.
Collapse
|
30
|
Luo H, Liu W, Zhang Y, Yang Y, Jiang X, Wu S, Shao L. METTL3-mediated m 6A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Res Ther 2021; 12:159. [PMID: 33648590 PMCID: PMC7923612 DOI: 10.1186/s13287-021-02223-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) are a promising cell source in endodontic regeneration and tissue engineering with limited self-renewal and pluripotency capacity. N6-methyladenosine (m6A) is the most prevalent, reversible internal modification in RNAs associated with stem cell fate determination. In this study, we aim to explore the biological effect of m6A methylation in DPSCs. Methods m6A immunoprecipitation with deep sequencing (m6A RIP-seq) demonstrated the features of m6A modifications in DPSC transcriptome. Lentiviral vectors were constructed to knockdown or overexpress methyltransferase like 3 (METTL3). Cell morphology, viability, senescence, and apoptosis were analyzed by β-galactosidase, TUNEL staining, and flow cytometry. Bioinformatic analysis combing m6A RIP and shMETTL3 RNA-seq functionally enriched overlapped genes and screened target of METTL3. Cell cycle distributions were assayed by flow cytometry, and m6A RIP-qPCR was used to confirm METTL3-mediated m6A methylation. Results Here, m6A peak distribution, binding area, and motif in DPSCs were first revealed by m6A RIP-seq. We also found a relatively high expression level of METTL3 in immature DPSCs with superior regenerative potential and METTL3 knockdown induced cell apoptosis and senescence. A conjoint analysis of m6A RIP and RNA sequencing showed METTL3 depletion associated with cell cycle, mitosis, and alteration of METTL3 resulted in cell cycle arrest. Furthermore, the protein interaction network of differentially expressed genes identified Polo-like kinase 1 (PLK1), a critical cycle modulator, as the target of METTL3-mediated m6A methylation in DPSCs. Conclusions These results revealed m6A methylated hallmarks in DPSCs and a regulatory role of METTL3 in cell cycle control. Our study shed light on therapeutic approaches in vital pulp therapy and served new insight into stem cell-based tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02223-x.
Collapse
Affiliation(s)
- Haiyun Luo
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China.,Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yeqing Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiao Jiang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shiqing Wu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
31
|
Dufies M, Verbiest A, Cooley LS, Ndiaye PD, He X, Nottet N, Souleyreau W, Hagege A, Torrino S, Parola J, Giuliano S, Borchiellini D, Schiappa R, Mograbi B, Zucman-Rossi J, Bensalah K, Ravaud A, Auberger P, Bikfalvi A, Chamorey E, Rioux-Leclercq N, Mazure NM, Beuselinck B, Cao Y, Bernhard JC, Ambrosetti D, Pagès G. Plk1, upregulated by HIF-2, mediates metastasis and drug resistance of clear cell renal cell carcinoma. Commun Biol 2021; 4:166. [PMID: 33547392 PMCID: PMC7865059 DOI: 10.1038/s42003-021-01653-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Polo-like kinase 1 (Plk1) expression is inversely correlated with survival advantages in many cancers. However, molecular mechanisms that underlie Plk1 expression are poorly understood. Here, we uncover a hypoxia-regulated mechanism of Plk1-mediated cancer metastasis and drug resistance. We demonstrated that a HIF-2-dependent regulatory pathway drives Plk1 expression in clear cell renal cell carcinoma (ccRCC). Mechanistically, HIF-2 transcriptionally targets the hypoxia response element of the Plk1 promoter. In ccRCC patients, high expression of Plk1 was correlated to poor disease-free survival and overall survival. Loss-of-function of Plk1 in vivo markedly attenuated ccRCC growth and metastasis. High Plk1 expression conferred a resistant phenotype of ccRCC to targeted therapeutics such as sunitinib, in vitro, in vivo, and in metastatic ccRCC patients. Importantly, high Plk1 expression was defined in a subpopulation of ccRCC patients that are refractory to current therapies. Hence, we propose a therapeutic paradigm for improving outcomes of ccRCC patients.
Collapse
Affiliation(s)
- Maeva Dufies
- Centre Scientifique de Monaco, Biomedical Department, 8 quai Antoine Premier, 98 000, Monaco, Monaco.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, France.
| | - Annelies Verbiest
- Department of General Medical Oncology, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | | | - Papa Diogop Ndiaye
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, France
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189, Nice, France
| | - Xingkang He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Nicolas Nottet
- University Côte d'Azur, C3M, Inserm U1065, 06204, Nice, France
| | | | - Anais Hagege
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, France
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189, Nice, France
| | - Stephanie Torrino
- University Côte d'Azur, Institut de Pharmacologie Cellulaire et Moléculaire, CNRS UMR7275, 06560, Valbonne, France
| | - Julien Parola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, France
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189, Nice, France
- Centre Antoine Lacassagne, 06189, Nice, France
| | - Sandy Giuliano
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, France
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189, Nice, France
| | | | | | - Baharia Mograbi
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189, Nice, France
| | - Jessica Zucman-Rossi
- Inserm, UMR-1138, Génomique fonctionnelle des tumeurs solides, IUH, 75010, Paris, France
| | - Karim Bensalah
- Centre Hospitalier Universitaire (CHU) de Pontchaillou Rennes, service d'urologie, 35000, Rennes, France
| | - Alain Ravaud
- Centre Hospitalier Universitaire (CHU) de Bordeaux, service d'oncologie médicale, 33000, Bordeaux, France
| | | | | | | | | | | | - Benoit Beuselinck
- Department of General Medical Oncology, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | | - Damien Ambrosetti
- University Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, Hôpital Pasteur, Central laboratory of Pathology, 06000, Nice, France
| | - Gilles Pagès
- Centre Scientifique de Monaco, Biomedical Department, 8 quai Antoine Premier, 98 000, Monaco, Monaco.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Nice, France.
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189, Nice, France.
| |
Collapse
|
32
|
Su S, Chhabra G, Ndiaye MA, Singh CK, Ye T, Huang W, Dewey CN, Setaluri V, Ahmad N. PLK1 and NOTCH Positively Correlate in Melanoma and Their Combined Inhibition Results in Synergistic Modulations of Key Melanoma Pathways. Mol Cancer Ther 2021; 20:161-172. [PMID: 33177155 PMCID: PMC7790869 DOI: 10.1158/1535-7163.mct-20-0654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/24/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Melanoma is one of the most serious forms of skin cancer, and its increasing incidence coupled with nonlasting therapeutic options for metastatic disease highlights the need for additional novel approaches for its management. In this study, we determined the potential interactions between polo-like kinase 1 (PLK1, a serine/threonine kinase involved in mitotic regulation) and NOTCH1 (a type I transmembrane protein deciding cell fate during development) in melanoma. Employing an in-house human melanoma tissue microarray (TMA) containing multiple cases of melanomas and benign nevi, coupled with high-throughput, multispectral quantitative fluorescence imaging analysis, we found a positive correlation between PLK1 and NOTCH1 in melanoma. Furthermore, The Cancer Genome Atlas database analysis of patients with melanoma showed an association of higher mRNA levels of PLK1 and NOTCH1 with poor overall, as well as disease-free, survival. Next, utilizing small-molecule inhibitors of PLK1 and NOTCH (BI 6727 and MK-0752, respectively), we found a synergistic antiproliferative response of combined treatment in multiple human melanoma cells. To determine the molecular targets of the overall and synergistic responses of combined PLK1 and NOTCH inhibition, we conducted RNA-sequencing analysis employing a unique regression model with interaction terms. We identified the modulations of several key genes relevant to melanoma progression/metastasis, including MAPK, PI3K, and RAS, as well as some new genes such as Apobec3G, BTK, and FCER1G, which have not been well studied in melanoma. In conclusion, our study demonstrated a synergistic antiproliferative response of concomitant targeting of PLK1 and NOTCH in melanoma, unraveling a potential novel therapeutic approach for detailed preclinical/clinical evaluation.
Collapse
Affiliation(s)
- Shengqin Su
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Ting Ye
- Department of Statistics, University of Wisconsin, Madison, Wisconsin
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- William S. Middleton VA Medical Center, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin.
- William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
33
|
Ren Y, Deng R, Zhang Q, Li J, Han B, Ye P. Bioinformatics analysis of key genes in triple negative breast cancer and validation of oncogene PLK1. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1637. [PMID: 33490149 PMCID: PMC7812170 DOI: 10.21037/atm-20-6873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Breast cancer is the most common malignancy in women. Triple-negative breast cancer (TNBC) refers to a special subtype that is deficient in the expression of estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER-2). In this study, a variety of bioinformatics analysis tools were used to screen Hub genes related to the occurrence and development of triple negative breast cancer, and their biological functions were analyzed. Methods Gene Expression Omnibus (GEO) breast cancer microarray data GSE62931 was selected as the research object. The differentially expressed genes (DEGs) were screened and the protein-protein interaction (PPI) network of DEGs was constructed using bioinformatics tools. The Hub genes were also screened. The Gene Ontology (GO) knowledgebase and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for biological enrichment analysis. The Gene Expression Profiling Interactive Analysis (GEPIA) online tool was used to verify the expression of the screened genes and patient survival. The effects of polo-like kinase 1 (PLK1) on the proliferation, invasion, migration, and dryness of breast cancer cells were verified using cell counting kit 8 (CCK-8), transwell migration assays, scratch tests, and clone formation tests. An animal model of subcutaneous xenotransplantation of breast cancer was established to evaluate the effect of PLK1 on the proliferation of breast cancer. Results A total of 824 DEGs were screened by GSE62931 microarray data; 405 of which were up-regulated and 419 of which were down-regulated. Functional enrichment analysis showed that these DEGs were mainly enriched in cancer-related pathways and were primarily involved in biological processes (BP) such as cell and mitotic division. From the Hub gene screening, PLK1 was further identified as the Hub gene associated with TNBC. Cell and animal experiments indicated that PLK1 promotes the proliferation, invasion, migration, and clone formation of breast cancer cells. Conclusions Gene chip combined with bioinformatics methods can effectively analyze the DEGs related to the occurrence and development of breast cancer, and the screening of PLK1 can provide theoretical guidance for further research on the molecular mechanism of breast cancer and the screening of molecular markers.
Collapse
Affiliation(s)
- Yi Ren
- Breast Department, Xuzhou Cancer Hospital/Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Rong Deng
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing, China
| | - Qian Zhang
- Breast Department, Xuzhou Cancer Hospital/Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Jing Li
- Breast Department, Xuzhou Cancer Hospital/Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument & Food Engineering, University of Shanghai for Science & Technology, Shanghai, China
| |
Collapse
|
34
|
Shrestha B, Wang L, Zhang H, Hung CY, Tang L. Gold Nanoparticles Mediated Drug-Gene Combinational Therapy for Breast Cancer Treatment. Int J Nanomedicine 2020; 15:8109-8119. [PMID: 33116521 PMCID: PMC7585780 DOI: 10.2147/ijn.s258625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cancer is a complex heterogeneous disease to which singular modes of treatment mostly fail to produce a desired therapeutic efficacy. Targeting different cellular pathways using combinational therapies has been gaining popularity in cancer treatment, with the added benefit of reducing dosage and side effects. METHODS A gold nanoparticle-mediated drug delivery nanoplatform was developed for co-delivery of doxorubicin and polo-like kinase 1 (PLK1) siRNA. Gold nanoparticles were coated with polyethyleneimine to facilitate assembly of PLK1 on the surface. Doxorubicin was loaded on nanoparticles through a pH-sensitive linker with a thiol group at one terminal end for controlled release. RESULTS The therapeutic efficiency of this co-delivery system was evaluated in 2D and 3D cultured systems. The reduced IC50 value clearly demonstrated the synergistic effect of combined drug and gene delivery over their individual delivery in a cancer treatment model. CONCLUSION This study may provide an adaptable, facile platform to investigate drug-siRNA combinations for cancer inhibition.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Lijun Wang
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hao Zhang
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Chiung Yu Hung
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Liang Tang
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
35
|
Rödel F, Zhou S, Győrffy B, Raab M, Sanhaji M, Mandal R, Martin D, Becker S, Strebhardt K. The Prognostic Relevance of the Proliferation Markers Ki-67 and Plk1 in Early-Stage Ovarian Cancer Patients With Serous, Low-Grade Carcinoma Based on mRNA and Protein Expression. Front Oncol 2020; 10:558932. [PMID: 33117692 PMCID: PMC7577119 DOI: 10.3389/fonc.2020.558932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Since type and duration of an appropriate adjuvant chemotherapy in early-stage ovarian cancer (OC) are still being debated, novel markers for a better stratification of these patients are of utmost importance for the design of an improved chemotherapeutical strategy. In contrast to numerous cancer studies on cellular proliferation based on the immunohistochemistry-driven evaluation of protein expression, we compared mRNA and protein expression of two independent markers of cellular proliferation, Ki-67 and Plk1, in a large cohort of 243 early-stage OC and their relationship with clinicopathological features and survival. Based on marker expression we demonstrate that early-stage OC patients (stages I/II, low-grade, serous) with high expression (Ki-67, Plk1) had a significantly shorter progression-free survival (PFS) and overall survival (OS) compared to patients with low expression (Ki-67, Plk1). Remarkably, based on mRNA expression this significant difference got lost in advanced stages (III/IV): At least for PFS, high levels of Ki-67 and Plk1 correlate with moderately better survival compared to patients with low expressing tumors. Our data suggest that in addition to Ki-67, Plk1 is a novel marker for the stratification of early-stage OC patients to maximize therapeutic efforts. Both, Ki-67 and Plk1, seem to be better suited in early-stages (I/II) as therapeutical targets compared to advanced-stages (III/IV) OC.
Collapse
Affiliation(s)
- Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe-University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe-University, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK) Partner Site: Frankfurt, Frankfurt am Main, Germany
| | - Shengtao Zhou
- State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Balász Győrffy
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.,TTK Cancer Biomarker Research Group, Budapest, Hungary
| | - Monika Raab
- Department of Gynecology, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Mourad Sanhaji
- Department of Gynecology, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Ranadip Mandal
- Department of Gynecology, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Daniel Martin
- Department of Radiotherapy and Oncology, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Sven Becker
- Department of Gynecology, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Klaus Strebhardt
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK) Partner Site: Frankfurt, Frankfurt am Main, Germany.,Department of Gynecology, University Hospital, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Tsuji K, Hymel D, Burke TR. A new genre of fluorescence recovery assay to evaluate polo-like kinase 1 ATP-competitive inhibitors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4418-4421. [PMID: 32970049 PMCID: PMC7523589 DOI: 10.1039/d0ay01223h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using a probe consisting of a fluorescein-labeled variant of the potent polo-like kinase 1 (Plk1) inhibitor BI2536 [FITC-PEG-Lys(BI2536) 4], we were able to determine half maximal inhibitory concentration (IC50) of ATP-competitive Type 1 inhibitors of Plk1 by means of a fluorescence recovery assay. This methodology represents a cost-effective and simple alternative to traditional kinase assays for initial screening of potential Plk1 inhibitors.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702 USA.
| | | | | |
Collapse
|
37
|
Fang Z, Jung KH, Lee JE, Cho J, Lim JH, Hong SS. MEK blockade overcomes the limited activity of palbociclib in head and neck cancer. Transl Oncol 2020; 13:100833. [PMID: 32712554 PMCID: PMC7385517 DOI: 10.1016/j.tranon.2020.100833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Head and neck cancer (HNC) is characterized with multiple aberrations in cell cycle pathways, including amplification of cyclin D1. Palbociclib (PAL), a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to regulate cell cycle progression in HNC. However, recent studies have revealed the acquired resistance of certain cells to PAL through activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Therefore, we investigated whether the inhibition of MEK/ERK pathway by trametinib (TRA) may overcome the limited efficacy of PAL in HNC. We evaluated the effect of PAL alone and in combination with TRA on the viability of HNC cells, and found that the combination treatment synergistically inhibited the proliferation of HNC cells. The combination treatment induced G0/G1 cell cycle arrest and apoptotic cell death. In particular, apoptosis mediated by the combination treatment was accompanied with an increase in caspase-3 activity and the number of TUNEL-positive apoptotic cells. These results were consistent with the decrease in cell cycle progression and mitogen-activated protein kinase (MAPK) pathway activation. In a xenograft mouse model of HNC, PAL and TRA synergistically inhibited tumor growth and enhanced tumor cell apoptosis, consistent with the increase in the number of TUNEL-positive cells. The anti-proliferative effects were evident in tumor tissues subjected to the combination treatment as compared with those treated with single drug. Taken together, our study demonstrates that the combination of PAL and TRA exerts synergistic anticancer effects and inhibits cell cycle check points and MEK/ERK pathway in HNC, suggestive of their potential application for HNC treatment.
Collapse
Affiliation(s)
- Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Ji Eun Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Jinhyun Cho
- Department of Internal Medicine, Inha University Hospital, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Joo Han Lim
- Department of Internal Medicine, Inha University Hospital, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea.
| |
Collapse
|
38
|
Scheidt T, Alka O, Gonczarowska-Jorge H, Gruber W, Rathje F, Dell’Aica M, Rurik M, Kohlbacher O, Zahedi RP, Aberger F, Huber CG. Phosphoproteomics of short-term hedgehog signaling in human medulloblastoma cells. Cell Commun Signal 2020; 18:99. [PMID: 32576205 PMCID: PMC7310537 DOI: 10.1186/s12964-020-00591-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Aberrant hedgehog (HH) signaling is implicated in the development of various cancer entities such as medulloblastoma. Activation of GLI transcription factors was revealed as the driving force upon pathway activation. Increased phosphorylation of essential effectors such as Smoothened (SMO) and GLI proteins by kinases including Protein Kinase A, Casein Kinase 1, and Glycogen Synthase Kinase 3 β controls effector activity, stability and processing. However, a deeper and more comprehensive understanding of phosphorylation in the signal transduction remains unclear, particularly during early response processes involved in SMO activation and preceding GLI target gene regulation. METHODS We applied temporal quantitative phosphoproteomics to reveal phosphorylation dynamics underlying the short-term chemical activation and inhibition of early hedgehog signaling in HH responsive human medulloblastoma cells. Medulloblastoma cells were treated for 5.0 and 15 min with Smoothened Agonist (SAG) to induce and with vismodegib to inhibit the HH pathway. RESULTS Our phosphoproteomic profiling resulted in the quantification of 7700 and 10,000 phosphosites after 5.0 and 15 min treatment, respectively. The data suggest a central role of phosphorylation in the regulation of ciliary assembly, trafficking, and signal transduction already after 5.0 min treatment. ERK/MAPK signaling, besides Protein Kinase A signaling and mTOR signaling, were differentially regulated after short-term treatment. Activation of Polo-like Kinase 1 and inhibition of Casein Kinase 2A1 were characteristic for vismodegib treatment, while SAG treatment induced Aurora Kinase A activity. Distinctive phosphorylation of central players of HH signaling such as SMO, SUFU, GLI2 and GLI3 was observed only after 15 min treatment. CONCLUSIONS This study provides evidence that phosphorylation triggered in response to SMO modulation dictates the localization of hedgehog pathway components within the primary cilium and affects the regulation of the SMO-SUFU-GLI axis. The data are relevant for the development of targeted therapies of HH-associated cancers including sonic HH-type medulloblastoma. A deeper understanding of the mechanisms of action of SMO inhibitors such as vismodegib may lead to the development of compounds causing fewer adverse effects and lower frequencies of drug resistance. Video Abstract.
Collapse
Affiliation(s)
- Tamara Scheidt
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Oliver Alka
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Humberto Gonczarowska-Jorge
- Leibniz-Institute of Analytical Sciences- ISAS - e.V, Dortmund, Germany
- Present address: CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 Brazil
| | - Wolfgang Gruber
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Present address: EVER Valinject GmbH, 4866 Unterach am Attersee, Austria
| | - Florian Rathje
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | | | - Marc Rurik
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076 Tübingen, Germany
- Applied Bioinformatics, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - René P. Zahedi
- Leibniz-Institute of Analytical Sciences- ISAS - e.V, Dortmund, Germany
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Fritz Aberger
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
39
|
Xu Y, Wang Q, Xiao K, Liu Z, Zhao L, Song X, Hu X, Feng Z, Gao T, Zuo W, Zeng J, Wang N, Yu L. Novel Dual BET and PLK1 Inhibitor WNY0824 Exerts Potent Antitumor Effects in CRPC by Inhibiting Transcription Factor Function and Inducing Mitotic Abnormality. Mol Cancer Ther 2020; 19:1221-1231. [PMID: 32220972 DOI: 10.1158/1535-7163.mct-19-0578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/31/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is a lethal disease with few treatment alternatives once patients become resistant to second-generation antiandrogens. In CRPC, BET proteins are key regulators of AR- and MYC-mediated transcription, while the PLK1 inhibitor potentially downregulates AR and MYC besides influencing the cell cycle. Therefore, synchronous inhibition of BET and PLK1 would be a promising approach for CRPC therapy. This study developed a dual BET and PLK1 inhibitor WNY0824 with nanomolar and equipotent inhibition of BRD4 and PLK1. In vitro, WNY0824 exhibited excellent antiproliferation activity on AR-positive CRPC cells and induced apoptosis. These activities are attributable to its disruption of the AR-transcriptional program and the inhibition of the ETS pathway. Furthermore, WNY0824 downregulated MYC and induced mitotic abnormality. In vivo, oral WNY0824 administration suppressed tumor growth in the CRPC xenograft model of enzalutamide resistance. These findings suggest that WNY0824 is a selective dual BET and PLK1 inhibitor with potent anti-CRPC oncogenic activity and provides insights into the development of other novel dual BET- and PLK1-inhibiting drugs.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Benzamides
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle
- Cell Cycle Proteins/antagonists & inhibitors
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mitosis
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins/antagonists & inhibitors
- Receptors, Androgen/chemistry
- Transcription Factors/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kunjie Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tiantao Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Weiqiong Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
40
|
Gao Z, Man X, Li Z, Bi J, Liu X, Li Z, Li J, Zhang Z, Kong C. PLK1 promotes proliferation and suppresses apoptosis of renal cell carcinoma cells by phosphorylating MCM3. Cancer Gene Ther 2020; 27:412-423. [PMID: 31186514 DOI: 10.1038/s41417-019-0094-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/22/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
Minichromosome maintenance 3 (MCM3) protein has been widely studied due to its essential role in DNA replication. In addition, it is overexpressed in several human tumor types. However, the role of this protein in renal cell carcinoma (RCC) is not widely known. In this study, we demonstrated that polo-like kinase 1 (PLK1)-mediated MCM3 phosphorylation regulates proliferation and apoptosis in RCC. Our results confirm that PLK1 and phospho-MCM3 (p-MCM3) are highly expressed in renal cell carcinoma. The expression of PLK1 is closely related to the clinical characteristics of renal cell carcinoma. They play important roles in the proliferation and apoptosis of RCC. In vitro, after overexpression of PLK1 or MCM3, the proliferation of RCC cells was significantly enhanced and cell apoptosis was inhibited, while after knockout, the proliferation of RCC cells was weakened and cell apoptosis was promoted. In addition, Mn2+-Phos-tag SDS-PAGE, western blotting, and immunofluorescence were utilized to determine that MCM3 is a physiological substrate of PLK1, which is phosphorylated on serine 112 (Ser112) in a PLK1-dependent manner. PLK1-mediated MCM3 phosphorylation promotes RCC cell cycle proliferation and suppresses apoptosis in vitro. Moreover, we found that PLK1-mediated MCM3 phosphorylation induced cellular proliferation and decreased apoptosis, as well as tumor growth in mice. Overall, we conclude that PLK1-mediated MCM3 phosphorylation is a novel mechanism to regulate RCC proliferation and apoptosis.
Collapse
Affiliation(s)
- Zhipeng Gao
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Xiaojun Man
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Zhenhua Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Xiankui Liu
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Zeliang Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Jun Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China
| | - Zhe Zhang
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China.
| | - Chuize Kong
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, 110001, Shenyang, Liaoning, China.
| |
Collapse
|
41
|
Yousef EH, El-Mesery ME, Habeeb MR, Eissa LA. Polo-like kinase 1 as a promising diagnostic biomarker and potential therapeutic target for hepatocellular carcinoma. Tumour Biol 2020; 42:1010428320914475. [PMID: 32252611 DOI: 10.1177/1010428320914475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma is a major cause of cancer mortality worldwide. The outcome of hepatocellular carcinoma depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Polo-like kinase 1 is a serine/threonine kinase that plays essential roles in cell cycle progression and deoxyribonucleic acid damage. Moreover, polo-like kinase 1 knockdown decreases the survival of hepatocellular carcinoma cells; therefore, polo-like kinase 1 is an attractive target for anticancer treatments. Nobiletin, a natural polymethoxy flavonoid, exhibits a potential antiproliferative effect against a wide variety of cancers. This study targets to identify a reliable diagnostic biomarker for hepatocellular carcinoma and provide a potential therapeutic target for its treatment. Polo-like kinase 1 levels were analyzed in 44 hepatocellular carcinoma patients, 33 non-hepatocellular carcinoma liver cirrhosis patients and 15 healthy controls using the enzyme-linked immunosorbent assay method. Receiver operating characteristics curve analysis was used to establish a predictive model for polo-like kinase 1 relative to α-fetoprotein in hepatocellular carcinoma diagnosis. Furthermore, in the in vitro study, gene expressions were assessed by quantitative polymerase chain reaction in two human hepatocellular carcinoma cell lines after treatment with doxorubicin and polo-like kinase 1 inhibitor volasertib (Vola) either alone or in combination with nobiletin. Cell viability was also determined using the crystal violet assay.: Serum polo-like kinase 1 levels in hepatocellular carcinoma patients were significantly higher than liver cirrhosis and control groups (p < 0.0001). Polo-like kinase 1 showed a reasonable sensitivity, specificity, positive predictive value, and negative predictive value in hepatocellular carcinoma diagnosis. Moreover, nobiletin improved inhibition of cell growth induced by Vola and doxorubicin. Regarding reverse transcription polymerase chain reaction results, nobiletin suppressed expressions of polo-like kinase 1 and proliferating cell nuclear antigen and elevated expressions of P53, poly (ADPribose) polymerase 1, and caspase-3. Nobiletin/doxorubicin and nobiletin/Vola showed a significant increase in caspase-3 activity indicating cell apoptosis. Polo-like kinase 1 may be a potential biomarker for hepatocellular carcinoma diagnosis and follow-up during treatment with chemotherapies. In addition, nobiletin synergistically potentiates the doxorubicin and Vola-mediated anticancer effect that may be attributed partly to suppression of polo-like kinase 1 and proliferating cell nuclear antigen expression and enhancement of chemotherapy-induced apoptosis.
Collapse
Affiliation(s)
- Eman H Yousef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Horus University - Egypt, Damietta, Egypt
| | - Mohamed E El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Maha R Habeeb
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
42
|
Li Z, Yang C, Li X, Du X, Tao Y, Ren J, Fang F, Xie Y, Li M, Qian G, Xu L, Cao X, Wu Y, Lv H, Hu S, Lu J, Pan J. The dual role of BI 2536, a small-molecule inhibitor that targets PLK1, in induction of apoptosis and attenuation of autophagy in neuroblastoma cells. J Cancer 2020; 11:3274-3287. [PMID: 32231733 PMCID: PMC7097946 DOI: 10.7150/jca.33110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma (NB) is the most common extra-cranial solid tumor in childhood with the overall 5 years' survival less than 40%. Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase expressed during mitosis and over expressed in multiple cancers, including neuroblastoma. We found that higher PLK1 expression related to poor outcome of NB patients. BI2536, a small molecule inhibitor against PLK1, significantly reduced cell viability in a panel of NB cell lines, with IC50 less than 100 nM. PLK1 inhibition by BI 2536 treatment induced cell cycle arrest at G2/M phase and cell apoptosis in NB cells. Realtime PCR array revealed the PLK1 inhibition related genes, such as BIRC7, TNFSF10, LGALS1 and DAD1 et al. Moreover, autophagy activity was investigated in the NB cells treated with BI 2536. BI 2536 treatment in NB cells increased LC3-II puncta formation and LC3-II expression. Formation of autophagosome induced by BI 2536 was observed by transmission electron microscopy. However, BI2536 abrogated the autophagic flux in NB cells by reducing SQSTM1/p62 expression and AMPKαT172 phosphorylation. These results provide new clues for the molecular mechanism of cell death induced by BI 2536 and suggest that BI 2536 may act as new candidate drug for neuroblastoma.
Collapse
Affiliation(s)
- Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Xiaojuan Du
- Department of Gastroenterology, The 5th Hospital of Chinese PLA, Yinchuan, Ningxia, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Junli Ren
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Xu Cao
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Yi Wu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| |
Collapse
|
43
|
Shi L, Zhu H, Shen Y, Dou X, Guo H, Wang P, Zhang S, Zhou L, Zou X. Regulation of E2F Transcription Factor 3 by microRNA-152 Modulates Gastric Cancer Invasion and Metastasis. Cancer Manag Res 2020; 12:1187-1197. [PMID: 32110093 PMCID: PMC7034297 DOI: 10.2147/cmar.s239752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background The transcription factor, E2F transcription factor 3 (E2F3), has been proved to modulate metastasis in multiple human cancers. The present study was aimed to expound the function and specific mechanism of E2F3 in gastric cancer (GC) progression. Materials and Methods The expression of E2F3, microRNA-152 (miR-152) and PLK1 (polo-like kinase 1) in GC cell lines was detected by quantitative RT-PCR and Western blot. The roles of E2F3 and miR-152 in GC metastasis were classified using gain-of-function and loss-of-function assays. The miRNAs directly targeting E2F3 were identified by bioinformatics analysis and luciferase reporter experiment. Chromatin immunoprecipitation was carried out to reveal the correlation between E2F3 and PLK1. Results E2F3 expression was frequently up-regulated in GC tissues, and its high expression might imply poor prognosis. Downregulation of E2F3 restrained GC migration and invasion in vitro and in vivo. Interestingly, we proved that miR-152 was an upstream regulator of E2F3. Moreover, miR-152 reduced E2F3 expression by directly targeting its 3ʹ-UTR, and then modulated GC metastasis via polo-like kinase 1 (PLK1) mediated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signals. Conclusion E2F3 plays a crucial role in GC progression and the newly discovered miR-152/E2F3/PLK1 axis provides a new underlying target for therapy of metastasis in GC patients.
Collapse
Affiliation(s)
- Liangliang Shi
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Hao Zhu
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Yonghua Shen
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Xiaotan Dou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Huimin Guo
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Pin Wang
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Shu Zhang
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Lin Zhou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| |
Collapse
|
44
|
Barabutis N. Regulation of lung endothelial permeability by NEK kinases. IUBMB Life 2020; 72:801-804. [PMID: 32045095 DOI: 10.1002/iub.2251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/29/2020] [Indexed: 01/18/2023]
Abstract
Dysregulation of lung endothelial barrier function may lead to lethal outcomes, as demonstrated in the case of the acute respiratory distress syndrome (ARDS). p53 participates in the regulation of the lung endothelial barrier, and it has been associated both in vivo and in vitro with protective effects against the LPS-induced hyperpermeability. Family members of the never in mitosis A-related kinases (NEKs) are crucial mediators of fundamental cellular processes, including mitosis, and have been shown to posttranslationally modify p53. Since such modifications affect p53 stability and activity, it is highly probable that NEK kinases are also regulators of lung endothelial permeability. Thus, they may serve as possible therapeutic targets for treatment of pathologies associated with endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
45
|
Wang Y, Xie Y, Kilchrist KV, Li J, Duvall CL, Oupický D. Endosomolytic and Tumor-Penetrating Mesoporous Silica Nanoparticles for siRNA/miRNA Combination Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4308-4322. [PMID: 31939276 PMCID: PMC7011569 DOI: 10.1021/acsami.9b21214] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Combination therapies consisting of multiple short therapeutic RNAs, such as small interfering RNA (siRNA) and microRNA (miRNA), have enormous potential in cancer treatment as they can precisely silence a specific set of oncogenes and target multiple disease-related pathways. However, clinical use of siRNA/miRNA combinations is limited by the availability of safe and efficient systemic delivery systems with sufficient tumor penetrating and endosomal escaping capabilities. This study reports on the development of multifunctional tumor-penetrating mesoporous silica nanoparticles (iMSNs) for simultaneous delivery of siRNA (siPlk1) and miRNA (miR-200c), using encapsulation of a photosensitizer indocyanine green (ICG) to facilitate endosomal escape and surface conjugation of the iRGD peptide to enable deep tumor penetration. Increased cell uptake of the nanoparticles was observed in both 3D tumor spheroids in vitro and in orthotopic MDA-MB-231 breast tumors in vivo. Using a galectin-8 recruitment assay, we showed that reactive oxygen species generated by ICG upon light irradiation functioned as an endosomolytic stimulus that caused release of the siRNA/miRNA combination from endosomes. Co-delivery of the therapeutic RNAs displayed combined cell killing activity in cancer cells. Systemic intravenous treatment of metastatic breast cancer with the iMSNs loaded with siPlk1 and miR-200c resulted in a significant suppression of the primary tumor growth and in marked reduction of metastasis upon short light irradiation of the primary tumor. This work demonstrates that siRNA-miRNA combination assisted by the photodynamic effect and tumor penetrating delivery system may provide a promising approach for metastatic cancer treatment.
Collapse
Affiliation(s)
- Yazhe Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Present address: Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Present address: Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Kameron V. Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Corresponding author:
| |
Collapse
|
46
|
Zhang J, Wang Y, Li J, Zhao W, Yang Z, Feng Y. α-Santalol functionalized chitosan nanoparticles as efficient inhibitors of polo-like kinase in triple negative breast cancer. RSC Adv 2020; 10:5487-5501. [PMID: 35498298 PMCID: PMC9049642 DOI: 10.1039/c9ra09084c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase 1 (PLK-1) is a protein kinase that plays a significant role in the initiation, maintenance, and completion of mitotic processes in the cell cycle.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Yanan Wang
- Department of Pathology
- Affiliated Hospital of Hebei University
- Baoding
- China
| | - Jinmei Li
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Wenming Zhao
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Zhao Yang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yanguang Feng
- Department of Cardiology
- Baoding Qingyuan District People's Hospital
- Baoding
- China
| |
Collapse
|
47
|
Shakil S, Baig MH, Tabrez S, Rizvi SMD, Zaidi SK, Ashraf GM, Ansari SA, Khan AAP, Al-Qahtani MH, Abuzenadah AM, Chaudhary AG. Molecular and enzoinformatics perspectives of targeting Polo-like kinase 1 in cancer therapy. Semin Cancer Biol 2019; 56:47-55. [PMID: 29122685 DOI: 10.1016/j.semcancer.2017.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/22/2017] [Accepted: 11/04/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a disease that has been the focus of scientific research and discovery and continues to remain so. Polo-like kinases (PLKs) are basically serine/threonine kinase enzymes that control cell cycle from yeast to humans. PLK-1 stands for 'Polo-like kinase-1'. It is the most investigated protein among PLKs. It is crucial for intracellular processes, hence a 'hot' anticancer drug-target. Accelerating innovations in Enzoinformatics and associated molecular visualization tools have made it possible to literally perform a 'molecular level walk' traversing through and observing the minutest contours of the active site of relevant enzymes. PLK-1 as a protein consists of a kinase domain at the protein N-terminal and a Polo Box Domain (PBD) at the C-terminal connected by a short inter-domain linking region. PBD has two Polo-Boxes. PBD of PLK-1 gives the impression of "a small clamp sandwiched between two clips", where the two Polo Boxes are the 'clips' and the 'phosphopeptide' is the small 'clamp'. Broadly, two major sites of PLK-1 can be potential targets: one is the adenosine-5'-triphosphate (ATP)-binding site in the kinase domain and the other is PBD (more preferred due to specificity). Targeting PLK-1 RNA and the interaction of PLK-1 with a key binding partner can also be approached. However, the list of potent small molecule inhibitors targeting the PBD site of PLK-1 is still not long enough and needs due input from the scientific community. Recently, eminent scientists have proposed targeting the 'Y'-shaped pocket of PLK-1-PBD and encouraged design of ligands that should be able to concurrently bind to two or more modules of the 'Y' pocket. Hence, it is suggested that during molecular interaction analyses, particular focus should be kept on the moiety in each ligand/drug candidate which directly interacts with the amino acid residue(s) that belong(s) to one of the three binding modules which together create this Y-shaped cavity. This obviously includes (but it is not limited to) the 'shallow cleft'-forming residues i.e. Trp414, H538 and K540, as significance of these binding residues has been consistently highlighted by many studies. The present article attempts to give a concise yet critically updated overview of targeting PLK-1 for cancer therapy.
Collapse
Affiliation(s)
- Shazi Shakil
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammad H Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed M Danish Rizvi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Syed K Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shakeel A Ansari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
de Cárcer G. The Mitotic Cancer Target Polo-Like Kinase 1: Oncogene or Tumor Suppressor? Genes (Basel) 2019; 10:E208. [PMID: 30862113 PMCID: PMC6470689 DOI: 10.3390/genes10030208] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The master mitotic regulator, Polo-like kinase 1 (Plk1), is an essential gene for the correct execution of cell division. Plk1 has strong clinical relevance, as it is considered a bona fide cancer target, it is found overexpressed in a large collection of different cancer types and this tumoral overexpression often correlates with poor patient prognosis. All these data led the scientific community to historically consider Plk1 as an oncogene. Although there is a collection of scientific reports showing how Plk1 can contribute to tumor progression, recent data from different laboratories using mouse models, show that Plk1 can surprisingly play as a tumor suppressor. Therefore, the fact that Plk1 is an oncogene is now under debate. This review summarizes the proposed mechanisms by which Plk1 can play as an oncogene or as a tumor suppressor, and extrapolates this information to clinical features.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Group, Cancer Biology Department, Instituto de Investigaciones Biomédicas"Alberto Sols" (IIBm), Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid,(CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
50
|
Feng Y, Lin J, Liu Y, Tang Y, Zhou Y, Zhong M. Investigation of expressions of PDK1, PLK1 and c-Myc in diffuse large B-cell lymphoma. Int J Exp Pathol 2019; 100:32-40. [PMID: 30912195 PMCID: PMC6463398 DOI: 10.1111/iep.12307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma. Because the prognosis of DLBCL patients varies considerably, there is an urgent need to identify novel prognostic factors. In this study, we investigated the expression levels of the signalling enzyme 3-phosphoinositide-dependent protein kinase-1 (PDK1), the cell cycle regulatory enzyme Polo-like kinase 1 (PLK1) and the transcription factor (c-Myc) in DLBCL tissues and evaluated their clinical and prognostic significance. PDK1, PLK1 and c-Myc were detected by immunohistochemical staining of paraffin-embedded specimens from 152 DLBCL and 48 lymphadenitis patients. Expression levels were correlated with clinicopathological factors. PDK1, PLK1 and c-Myc were more commonly expressed in DLBCL specimens than in lymphadenitis specimens, and the expression of each protein correlated positively with that of the other two molecules. High PDK1, PLK1 and c-Myc expression, high international prognostic index score, high lactate dehydrogenase levels and late Ann Arbor stage were shown to correlate with shorter overall survival time. A multivariate Cox regression model showed that high expression levels of PLK1 and c-Myc were independent prognostic factors for DLBCL. Our findings indicate that PLK1 and c-Myc expression might be promising predictive biomarkers for DLBCL patients.
Collapse
Affiliation(s)
- Yuhua Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jinguan Lin
- Department of Daytime ChemotherapyHunan Cancer HospitalXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Yiping Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Youhong Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yangying Zhou
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Meizuo Zhong
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|