1
|
Lin TP, Chen PC, Lin CY, Wang BJ, Kuo YY, Yeh CC, Tseng JC, Huo C, Kao CL, Shih LJ, Chen JK, Li CY, Hour TC, Chuu CP. Prostate cancer cells elevate glycolysis and G6PD in response to caffeic acid phenethyl ester-induced growth inhibition. BMC Cancer 2025; 25:95. [PMID: 39819475 PMCID: PMC11737093 DOI: 10.1186/s12885-025-13477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle. We therefore suspect that CAPE treatment may interfere glucose metabolism in PCa cells. METHODS Seahorse Bioenergetics platform was applied to analyzed the extra cellular acidification rate (ECAR) and oxygen consumption rate (OCR) of PCa cells under CAPE treatment. UPLC-MSMS with Multiple Reaction Monitoring (MRM), PCR, and western blot were used to analyze the effects of CAPE on metabolites, genes, and proteins involved in glycolysis, TCA cycle and pentose phosphate pathway in PCa cells. Flow cytometry and ELISA were used to determine the level of reactive oxygen species in PCa cells being treated with CAPE. RESULTS Seahorse Bioenergetics analysis revealed that ECAR, glycolysis, OCR, and ATP production were elevated in C4-2B cells under CAPE treatment. Protein levels of glucose-6-phosphate dehydrogenase (G6PD), phosphogluconate dehydrogenase (PGD), glutaminase (GLS), phospho-AMPK Thr172 as well as abundance of pyruvate, lactate, ribulose-5-phosphate, and sedoheptulose-7-phosphate were increased in CAPE-treated C4-2B cells. ROS level decreased 48 h after treatment with CAPE. Co-treatment of AMPK inhibitor with CAPE exhibited additive growth inhibition on PCa cells. CONCLUSIONS Our study indicated that PCa cells attempted to overcome the CAPE-induced stress by upregulation of glycolysis and G6PD but failed to impede the growth inhibition caused by CAPE. Concurrent treatment of CAPE and inhibitors targeting glycolysis may be effective therapy for advanced PCa.
Collapse
Affiliation(s)
- Tzu-Ping Lin
- Faculty of Medicine, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan
- Department of Urology, Taipei Veterans General Hospital, Taipei City, 11217, Taiwan
| | - Pei-Chun Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei City, 11031, Taiwan
| | - Bi-Juan Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Ying-Yu Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Chien-Chih Yeh
- Department of Education and Medical Research, Taoyuan Armed Forces General Hospital, Taoyuan City, 325208, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114202, Taiwan
| | - Jen-Chih Tseng
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Chieh Huo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Cheng-Li Kao
- Division of Urology, Departments of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114202, Taiwan
- Division of Urology, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan City, 325208, Taiwan
| | - Li-Jane Shih
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114202, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, 114202, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Tzyh-Chyuan Hour
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City, 80708, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.
- PhD Program for Aging, China Medical University, Taichung City, 40402, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung City, 40227, Taiwan.
- Department of Life Sciences, National Central University, Taoyuan City, 32031, Taiwan.
| |
Collapse
|
2
|
Miller KA, Degan S, Wang Y, Cohen J, Ku SY, Goodrich DW, Gelman IH. PTEN-regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. Oncogene 2024; 43:22-34. [PMID: 37875657 PMCID: PMC10766561 DOI: 10.1038/s41388-023-02875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastatic development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node dissemination, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
Affiliation(s)
- Karina A Miller
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- American Society of Human Genetics, Rockville, MD, 20852, USA
| | - Seamus Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Yanqing Wang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Joseph Cohen
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- Sequence, Inc., Morrisville, NC, USA
| | - Sheng Yu Ku
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA.
| |
Collapse
|
3
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
4
|
Miller K, Degan S, Wang Y, Cohen J, Ku SY, Goodrich D, Gelman I. PTEN regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. RESEARCH SQUARE 2023:rs.3.rs-2924750. [PMID: 37292818 PMCID: PMC10246239 DOI: 10.21203/rs.3.rs-2924750/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastasis development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node disseminations, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
|
5
|
Tseng JC, Wang BJ, Wang YP, Kuo YY, Chen JK, Hour TC, Kuo LK, Hsiao PJ, Yeh CC, Kao CL, Shih LJ, Chuu CP. Caffeic acid phenethyl ester suppresses EGFR/FAK/Akt signaling, migration, and tumor growth of prostate cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154860. [PMID: 37201366 DOI: 10.1016/j.phymed.2023.154860] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is upregulated in prostate cancer (PCa). However, suppression of EGFR did not improve the patient outcome, possibly due to the activation of PI3K/Akt signaling in PCa. Compounds able to suppress both PI3K/Akt and EGFR signaling may be effective for treating advanced PCa. PURPOSE We examined if caffeic acid phenethyl ester (CAPE) simultaneously suppresses the EGFR and Akt signaling, migration and tumor growth in PCa cells. METHODS Wound healing assay, transwell migration assay and xenograft mice model were used to determine the effects of CAPE on migration and proliferation of PCa cells. Western blot, immunoprecipitation, and immunohistochemistry staining were performed to determine the effects of CAPE on EGFR and Akt signaling. RESULTS CAPE treatment decreased the gene expression of HRAS, RAF1, AKT2, GSK3A, and EGF and the protein expression of phospho-EGFR (Y845, Y1069, Y1148, Y1173), phospho-FAK, Akt, and ERK1/2 in PCa cells. CAPE treatment inhibited the EGF-induced migration of PCa cells. Combined treatment of CAPE with EGFR inhibitor gefitinib showed additive inhibition on migration and proliferation of PCa cells. Injection of CAPE (15 mg/kg/3 days) for 14 days suppressed the tumor growth of prostate xenografts in nude mice as well as suppressed the levels of Ki67, phospho-EGFR Y845, MMP-9, phospho-Akt S473, phospho-Akt T308, Ras, and Raf-1 in prostate xenografts. CONCLUSIONS Our study suggested that CAPE can simultaneously suppress the EGFR and Akt signaling in PCa cells and is a potential therapeutic agent for advanced PCa.
Collapse
Affiliation(s)
- Jen-Chih Tseng
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan; Immunology Research Center, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Bi-Juan Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ya-Pei Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ying-Yu Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Tzyh-Chyuan Hour
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 80737, Taiwan; Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung 80737, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80737, Taiwan
| | - Li-Kuo Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City 104217, Taiwan; Department of Nursing, Mackay Medical College, Taipei City, Taiwan
| | - Po-Jen Hsiao
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan; Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Chih Yeh
- Department of Education and Medical Research, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Li Kao
- Division of Urology, Departments of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Urology, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Li-Jane Shih
- Department of Education and Medical Research, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32031, Taiwan; PhD Program for Aging and Graduate Institute of Basic Medical Science, China Medical University, Taichung City 40402, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung City 40227, Taiwan.
| |
Collapse
|
6
|
Alam M, Hasan GM, Eldin SM, Adnan M, Riaz MB, Islam A, Khan I, Hassan MI. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161:114452. [PMID: 36878052 DOI: 10.1016/j.biopha.2023.114452] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common malignancy worldwide. The signaling cascades are stimulated via genetic modifications in upstream signaling molecules, which affect apoptotic, proliferative, and differentiation pathways. Dysregulation of these signaling cascades causes cancer-initiating cell proliferation, cancer development, and drug resistance. Numerous efforts in the treatment of NSCLC have been undertaken in the past few decades, enhancing our understanding of the mechanisms of cancer development and moving forward to develop effective therapeutic approaches. Modifications of transcription factors and connected pathways are utilized to develop new treatment options for NSCLC. Developing designed inhibitors targeting specific cellular signaling pathways in tumor progression has been recommended for the therapeutic management of NSCLC. This comprehensive review provided deeper mechanistic insights into the molecular mechanism of action of various signaling molecules and their targeting in the clinical management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Muhammad Bilal Riaz
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdnask, Poland; Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
7
|
Translational proteomics and phosphoproteomics: Tissue to extracellular vesicles. Adv Clin Chem 2022; 112:119-153. [PMID: 36642482 DOI: 10.1016/bs.acc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We are currently experiencing a rapidly developing era in terms of translational and clinical medical sciences. The relatively mature state of nucleic acid examination has significantly improved our understanding of disease mechanism and therapeutic potential of personalized treatment, but misses a large portion of phenotypic disease information. Proteins, in particular phosphorylation events that regulates many cellular functions, could provide real-time information for disease onset, progression and treatment efficacy. The technical advances in liquid chromatography and mass spectrometry have realized large-scale and unbiased proteome and phosphoproteome analyses with disease relevant samples such as tissues. However, tissue biopsy still has multiple shortcomings, such as invasiveness of sample collection, potential health risk for patients, difficulty in protein preservation and extreme heterogeneity. Recently, extracellular vesicles (EVs) have offered a great promise as a unique source of protein biomarkers for non-invasive liquid biopsy. Membranous EVs provide stable preservation of internal proteins and especially labile phosphoproteins, which is essential for effective routine biomarker detection. To aid efficient EV proteomic and phosphoproteomic analyses, recent developments showcase clinically-friendly EV techniques, facilitating diagnostic and therapeutic applications. Ultimately, we envision that with streamlined sample preparation from tissues and EVs proteomics and phosphoproteomics analysis will become routine in clinical settings.
Collapse
|
8
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
9
|
Jonnalagadda B, Arockiasamy S, Krishnamoorthy S. Cellular growth factors as prospective therapeutic targets for combination therapy in androgen independent prostate cancer (AIPC). Life Sci 2020; 259:118208. [PMID: 32763294 DOI: 10.1016/j.lfs.2020.118208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide, with prostate cancer, the second most commonly diagnosed cancer among men. Prostate cancer develops in the peripheral zone of the prostate gland, and the initial progression largely depends on androgens, the male reproductive hormone that regulates the growth and development of the prostate gland and testis. The currently available treatments for androgen dependent prostate cancer are, however, effective for a limited period, where the patients show disease relapse, and develop androgen-independent prostate cancer (AIPC). Studies have shown various intricate cellular processes such as, deregulation in multiple biochemical and signaling pathways, intra-tumoral androgen synthesis; AR over-expression and mutations and AR activation via alternative growth pathways are involved in progression of AIPC. The currently approved treatment strategies target a single cellular protein or pathway, where the cells slowly develop resistance and adapt to proliferate via other cellular pathways over a period of time. Therefore, an increased research aims to understand the efficacy of combination therapy, which targets multiple interlinked pathways responsible for acquisition of resistance and survival. The combination therapy is also shown to enhance efficacy as well as reduce toxicity of the drugs. Thus, the present review focuses on the signaling pathways involved in the progression of AIPC, comprising a heterogeneous population of cells and the advantages of combination therapy. Several clinical and pre-clinical studies on a variety of combination treatments have shown beneficial outcomes, yet further research is needed to understand the potential of combination therapy and its diverse strategies.
Collapse
Affiliation(s)
- Bhavana Jonnalagadda
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | - Sriram Krishnamoorthy
- Department of Urology, Sri Ramachandra Medical Centre, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
10
|
ROR2 suppresses metastasis of prostate cancer via regulation of miR-199a-5p-PIAS3-AKT2 signaling axis. Cell Death Dis 2020; 11:376. [PMID: 32415173 PMCID: PMC7228945 DOI: 10.1038/s41419-020-2587-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Bones are the most common metastatic sites for prostate cancer (PCa). Receptor tyrosine kinase-like orphan receptor 2 (ROR2), a noncanonical Wnt receptor, plays crucial roles in skeletal morphogenesis, osteoblast differentiation, and bone formation. The role of ROR2 in PCa metastasis is unclear. We analyzed online datasets from Oncomine as well as using IHC staining on tissue array to determine the relationship between ROR2 expression level and disease outcome of PCa. To investigate how ROR2 regulates migration and invasion of PCa cells, we performed transwell assay and orthotopic xenograft model in nude mice. We then applied the Micro-Western Array (MWA), a high-throughput western blotting platform to analyze the downstream signaling pathways being regulated by ROR2. Compared with nonmalignant PZ-HPV-7 and RWPE-1 cells, PCa cell lines express lower level of ROR2 protein. Constitutive expression of ROR2 in PC-3, DU-145, or C4-2B PCa cells significantly suppressed the cell migration, invasion, and epithelial-mesenchymal transition (EMT) proteins. MWA, western blotting, and microRNA analysis showed that elevation of ROR2 suppressed the expression of miR-199a-5p, which in turn increased the expression of PIAS3. The upregulation of PIAS3 then decreased AKT2 and the phosphorylation of AKT, resulting in the inhibition of migration and invasion of PCa cells both in vitro and in orthotopic xenograft mice model. IHC staining of tissue array and Oncomine datasets analysis indicated that the gene and protein level of ROR2 is much lower in metastatic prostate tumors as compared with primary tumors or adjacent normal prostate tissues. Low level of ROR2 correlated to poor survival and high recurrent frequency in PCa patients. In conclusion, we discovered that ROR2 suppresses PCa metastasis via regulation of PIAS3-PI3K-AKT2 signaling axis.
Collapse
|
11
|
Song Q, Qin S, Pascal LE, Zou C, Wang W, Tong H, Zhang J, Catalona WJ, Dhir R, Morrell M, Balasubramani GK, Lu Y, Wang Z. SIRPB1 promotes prostate cancer cell proliferation via Akt activation. Prostate 2020; 80:352-364. [PMID: 31905248 PMCID: PMC7421598 DOI: 10.1002/pros.23950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Signal regulatory protein β1 (SIRPB1) is a signal regulatory protein member of the immunoglobulin superfamily and is capable of modulating receptor tyrosine kinase-coupled signaling. Copy number variations at the SIRPB1 locus were previously reported to associate with prostate cancer aggressiveness in patients, however, the role of SIRPB1 in prostate carcinogenesis is unknown. METHODS Fluorescence in situ hybridization and laser-capture microdissection coupled with quantitative polymerase chain reaction was utilized to determine SIRPB1 gene amplification and messenger RNA expression in prostate cancer specimens. The effect of knockdown of SIRPB1 by RNA interference in PC3 prostate cancer cells on cell growth in colony formation assays and cell mobility in wound-healing, transwell assays, and cell cycle analysis was determined. Overexpression of SIPRB1 in C4-2 prostate cancer cells on cell migration, invasion, colony formation and cell cycle progression and tumor take rate in xenografts was also determined. Western blot assay of potential downstream SIRPB1 pathways was also performed. RESULTS SIRPB1 gene amplification was detected in up to 37.5% of prostate cancer specimens based on in silico analysis of several publicly available datasets. SIRPB1 gene amplification and overexpression were detected in prostate cancer specimens. The knockdown of SIRPB1 significantly suppressed cell growth in colony formation assays and cell mobility. SIRPB1 knockdown also induced cell cycle arrest during the G0 /G1 phase and enhancement of apoptosis. Conversely, overexpression of SIPRB1 in C4-2 prostate cancer cells significantly enhanced cell migration, invasion, colony formation, and cell cycle progression and increased C4-2 xenograft tumor take rate in nude mice. Finally, this study presented evidence for SIRPB1 regulation of Akt phosphorylation and showed that Akt inhibition could abolish SIRPB1 stimulation of prostate cancer cell proliferation. CONCLUSIONS These results suggest that SIRPB1 is a potential oncogene capable of activating Akt signaling to stimulate prostate cancer proliferation and could be a biomarker for patients at risk of developing aggressive prostate cancer.
Collapse
Affiliation(s)
- Qiong Song
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Siyuan Qin
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
| | - Laura E. Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Chunlin Zou
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
| | - Wenchu Wang
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
| | - Haibo Tong
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - William J. Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Megan Morrell
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | | | - Yi Lu
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- Corresponding author, contact information: Zhou Wang, Ph.D., Department of Urology, University of Pittsburgh School of Medicine, 5200 Centre Avenue, Suite G40, Pittsburgh, PA 15232, Phone: 412-623-3903, Fax: 412-623-3904,
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Corresponding author, contact information: Zhou Wang, Ph.D., Department of Urology, University of Pittsburgh School of Medicine, 5200 Centre Avenue, Suite G40, Pittsburgh, PA 15232, Phone: 412-623-3903, Fax: 412-623-3904,
| |
Collapse
|
12
|
Xiong X, Schober M, Tassone E, Khodadadi-Jamayran A, Sastre-Perona A, Zhou H, Tsirigos A, Shen S, Chang M, Melamed J, Ossowski L, Wilson EL. KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Rep 2019; 25:3006-3020.e7. [PMID: 30540935 PMCID: PMC6405286 DOI: 10.1016/j.celrep.2018.11.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
There is a considerable need to identify those individuals with prostate cancer who have indolent disease. We propose that
genes that control adult stem cell homeostasis in organs with slow turnover, such as the prostate, control cancer fate. One such
gene, KLF4, overexpressed in murine prostate stem cells, regulates their homeostasis, blocks malignant transformation, and
controls the self-renewal of tumor-initiating cells. KLF4 loss induces the molecular features of aggressive cancer and converts
PIN lesions to invasive sarcomatoid carcinomas; its re-expression in vivo reverses this process. Bioinformatic
analysis links these changes to human cancer. KLF4 and its downstream targets make up a gene signature that identifies indolent
tumors and predicts recurrence-free survival. This approach may improve prognosis and identify therapeutic targets for advanced
cancer. Available criteria for segregating prostate cancer patients into those requiring therapeutic intervention and those who can
be followed are inadequate. Xiong et al. show that KLF4 and its downstream targets make up a gene signature that identifies
indolent tumors. This approach may improve prognosis and identify therapeutic targets for advanced cancer.
Collapse
Affiliation(s)
- Xiaozhong Xiong
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | - Markus Schober
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Evelyne Tassone
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Ana Sastre-Perona
- Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Miao Chang
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jonathan Melamed
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Liliana Ossowski
- Department of Medicine, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Elaine L Wilson
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Department of Urology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
13
|
Histone Demethylase KDM4C Stimulates the Proliferation of Prostate Cancer Cells via Activation of AKT and c-Myc. Cancers (Basel) 2019; 11:cancers11111785. [PMID: 31766290 PMCID: PMC6896035 DOI: 10.3390/cancers11111785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 01/12/2023] Open
Abstract
Our three-dimensional organotypic culture revealed that human histone demethylase (KDM) 4C, a histone lysine demethylase, hindered the acini morphogenesis of RWPE-1 prostate cells, suggesting its potential oncogenic role. Knockdown (KD) of KDM4C suppressed cell proliferation, soft agar colony formation, and androgen receptor (AR) transcriptional activity in PCa cells as well as reduced tumor growth of human PCa cells in zebrafish xenotransplantation assay. Micro-Western array (MWA) analysis indicated that KD of KDM4C protein decreased the phosphorylation of AKT, c-Myc, AR, mTOR, PDK1, phospho-PDK1 S241, KDM8, and proteins involved in cell cycle regulators, while it increased the expression of PTEN. Fluorescent microscopy revealed that KDM4C co-localized with AR and c-Myc in the nuclei of PCa cells. Overexpression of either AKT or c-Myc rescued the suppressive effect of KDM4C KD on PCa cell proliferation. Echoing the above findings, the mRNA and protein expression of KDM4C was higher in human prostate tumor tissues as compared to adjacent normal prostate tissues, and higher KDM4C protein expression in prostate tumors correlated to higher protein expression level of AKT and c-Myc. In conclusion, KDM4C promotes the proliferation of PCa cells via activation of c-Myc and AKT.
Collapse
|
14
|
Koshkin VS, Mir MC, Barata P, Gul A, Gupta R, Stephenson AJ, Kaouk J, Berglund R, Magi-Galluzzi C, Klein EA, Dreicer R, Garcia JA. Randomized phase II trial of neoadjuvant everolimus in patients with high-risk localized prostate cancer. Invest New Drugs 2019; 37:559-566. [PMID: 31037562 DOI: 10.1007/s10637-019-00778-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022]
Abstract
Background Despite definitive local therapy, patients with high-risk prostate cancer have a significant risk for local and distant failure. To date, no systemic therapy given prior to surgery has been shown to improve outcomes. The phosphatidilinositol 3-kinase/AKT/mTOR pathway is commonly dysregulated in men with prostate cancer. We sought to determine the clinical efficacy and safety of the mTOR/TORC1 inhibitor everolimus in men with high-risk prostate cancer undergoing radical prostatectomy. Methods This is a randomized phase II study of everolimus at two different doses (5 and 10 mg daily) given orally for 8 weeks before radical prostatectomy in men with high-risk prostate cancer. The primary endpoint was the pathologic response (histologic P0, margin status, extraprostatic extension) and surgical outcomes. Secondary endpoints included changes in serum PSA level and treatment effects on levels of expression of mTOR, p4EBP1, pS6 and pAKT. Results Seventeen patients were enrolled: nine at 10 mg dose and eight at 5 mg dose. No pathologic complete responses were observed and the majority of patients (88%) had an increase in their PSA values leading to this study being terminated early due to lack of clinical efficacy. Treatment-related adverse events were similar to those previously reported with the use of everolimus in other solid tumors and no additional surgical complications were observed. A significant decrease in the expression of p4EBP1 was noted in prostatectomy samples following treatment. Conclusions Neoadjuvant everolimus given at 5 mg or 10 mg daily for 8 weeks prior to radical prostatectomy did not impact pathologic responses and surgical outcomes of patients with high-risk prostate cancer. Trial registration NCT00526591 .
Collapse
Affiliation(s)
- Vadim S Koshkin
- University of California San Francisco, San Francisco, CA, USA
| | - Maria C Mir
- Instituto Valenciano Oncologia, Valencia, Spain
| | | | - Anita Gul
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Ruby Gupta
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Andrew J Stephenson
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Jihad Kaouk
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Ryan Berglund
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | | | - Eric A Klein
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | | | - Jorge A Garcia
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA.
| |
Collapse
|
15
|
Torrealba N, Rodriguez-Berriguete G, Fraile B, Olmedilla G, Martínez-Onsurbe P, Sánchez-Chapado M, Paniagua R, Royuela M. PI3K pathway and Bcl-2 family. Clinicopathological features in prostate cancer. Aging Male 2018; 21:211-222. [PMID: 29316844 DOI: 10.1080/13685538.2018.1424130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathways and Bcl-2 family play a central role in prostate cancer (PC). The aim was to determine influence in the biochemical progression in PC. To evaluate the association between clinic pathological and immunohistochemical variables, Spearman's test was performed. Log-rank test and Kaplan-Meier curves were used for survival comparisons. To explore the correlation of the studied immunohistochemical parameters and the established prognostic variables with biochemical progression, univariate and multivariate Cox proportional Hazard regression analyses were performed. Spearman analysis showed correlation between stroma expression and tumor expression of PI3K with biochemical progression (p = .009, p = .004), respectively, and tumor immunohistochemical score with biochemical progression (p = .051). In the multivariate Cox regression model, only PI3K was retained as independent predictors of biochemical progression. In stroma expression, PI3K is (HR 0.172, 95% CI 0.065-0.452, p = .000); tumor expression, PI3K is (HR 0.087, 95% CI 0.026-0.293, p = .000), and tumor immunohistochemical score (HR 0.382, 95% CI 0.209-0.697 p = .002). Our results suggest a role for prostatic expression of PI3K was prognostic markers for PC. PI3K/AKT/mTOR and Bcl-2 family are becoming an important therapeutic target and predictive biomarkers of onset and progression of PC.
Collapse
Affiliation(s)
- Norelia Torrealba
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | | | - Benito Fraile
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | - Gabriel Olmedilla
- b Department of Pathology , University of Alcalá , Alcalá de Henares , Spain
| | | | | | - Ricardo Paniagua
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | - Mar Royuela
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| |
Collapse
|
16
|
Sumanasuriya S, De Bono J. Treatment of Advanced Prostate Cancer-A Review of Current Therapies and Future Promise. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a030635. [PMID: 29101113 DOI: 10.1101/cshperspect.a030635] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite many recent advances in the therapy for metastatic castration-resistant prostate cancer (mCRPC), the disease remains incurable, although men suffering from this disease are living considerably longer. In this review, we discuss the current treatment options available for this disease, such as taxane-based chemotherapy, the novel hormone therapies abiraterone and enzalutamide, and treatments such as radium-223 and sipuleucel-T. We also highlight the need for ongoing research in this field, because, despite numerous recent advances, the prognosis for mCRPC remains poor. Furthermore, as a growing body of evidence shows the increasing heterogeneity of the disease, and highlights the ongoing need for disease molecular stratification and validation/qualification of predictive biomarkers, we explore this burgeoning research space that is likely to transform how we treat this disease. We describe putative predictive biomarkers, including androgen receptor splice variants, phosphatase and tensin homolog (PTEN) loss, homologous recombination repair defects, including BRCA2 loss, and mismatch repair defects. The development of next-generation sequencing techniques and the routine biopsy of metastatic disease have driven significant advances in our understanding of the genomics of cancer, and are now poised to transform our treatment of this disease.
Collapse
Affiliation(s)
- Semini Sumanasuriya
- Division of Clinical Studies, The Institute of Cancer Research, Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, United Kingdom
| | - Johann De Bono
- Division of Clinical Studies, The Institute of Cancer Research, Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, United Kingdom
| |
Collapse
|
17
|
Xu J, Lan Y, Yu F, Zhu S, Ran J, Zhu J, Zhang H, Li L, Cheng S, Xiao Y, Li X. Transcriptome analysis reveals a long non-coding RNA signature to improve biochemical recurrence prediction in prostate cancer. Oncotarget 2018; 9:24936-24949. [PMID: 29861844 PMCID: PMC5982764 DOI: 10.18632/oncotarget.25048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
Despite highly successful treatments for localized prostate cancer (PCa), prognostic biomarkers are needed to improve patient management and prognosis. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are key regulators with biological and clinical significance. By transcriptome analysis, we identified a set of consistently dysregulated lncRNAs in PCa across different datasets and revealed an eight-lncRNA signature that significantly associated with the biochemical recurrence (BCR)-free survival. Based on the signature, patients could be classified into high- and low-risk groups with significantly different survival (HR = 2.19; 95% CI = 1.67-2.88; P < 0.0001). Validations in the validation cohorts and another independent cohort confirmed its prognostic value for recurrence prediction. Multivariable analysis showed that the signature was independent of common clinicopathological features and stratified analysis further revealed its role in elevating risk stratification of current prognostic models. Additionally, the eight-lncRNA signature was able to improve on the CAPRA-S score for the prediction of BCR as well as to reflect the metastatic potential of PCa. Functional characterization suggested that these lncRNAs which showed PCa-specific expression patterns may involve in critical processes in tumorigenesis. Overall, our results demonstrated potential application of lncRNAs as novel independent biomarkers. The eight-lncRNA signature may have clinical potential for facilitating further stratification of more aggressive patients who would benefit from adjuvant therapy.
Collapse
Affiliation(s)
- Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fulong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Shiwei Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jianrong Ran
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiali Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongyi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Lili Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Shujun Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China.,State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
18
|
Profiling Prostate Cancer Therapeutic Resistance. Int J Mol Sci 2018; 19:ijms19030904. [PMID: 29562686 PMCID: PMC5877765 DOI: 10.3390/ijms19030904] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival and invasion via resistance to anoikis. In particular, the process of epithelial-mesenchymal-transition (EMT), directed by transforming growth factor-β (TGF-β), confers stem cell properties and acquisition of a migratory and invasive phenotype via resistance to anoikis. Our lead agent DZ-50 may have a potentially high efficacy in advanced metastatic castration resistant prostate cancer (mCRPC) by eliciting an anoikis-driven therapeutic response. The plasticity of differentiated prostate tumor gland epithelium allows cells to de-differentiate into mesenchymal cells via EMT and re-differentiate via reversal to mesenchymal epithelial transition (MET) during tumor progression. A characteristic feature of EMT landscape is loss of E-cadherin, causing adherens junction breakdown, which circumvents anoikis, promoting metastasis and chemoresistance. The targetable interactions between androgens/AR and TGF-β signaling are being pursued towards optimized therapeutic regimens for the treatment of mCRPC. In this review, we discuss the recent evidence on targeting the EMT-MET dynamic interconversions to overcome therapeutic resistance in patients with recurrent therapeutically resistant prostate cancer. Exploitation of the phenotypic landscape and metabolic changes that characterize the prostate tumor microenvironment in advanced prostate cancer and consequential impact in conferring treatment resistance are also considered in the context of biomarker discovery.
Collapse
|
19
|
Jiang D, Xiao C, Xian T, Wang L, Mao Y, Zhang J, Pang J. Association of doublecortin-like kinase 1 with tumor aggressiveness and poor biochemical recurrence-free survival in prostate cancer. Onco Targets Ther 2018. [PMID: 29535532 PMCID: PMC5836645 DOI: 10.2147/ott.s157295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Doublecortin-like kinase 1 (DCLK1) has been proven to be involved in numerous tumors, while its role in prostate cancer (PCa) is still unclear. This study aimed at investigating the expression pattern and prognostic value of DCLK1 in PCa. Patients and methods Real-time polymerase chain reaction and Western blot were employed to determine DCLK1 mRNA and protein levels in 25 paired fresh samples of PCa and benign prostatic hyperplasia (BPH) as well as in PCa cell lines. Immunohistochemistry (IHC) was also performed in 125 PCa and 65 BPH tissues to assess DCLK1 expression. Then, the association of DCLK1 expression with clinicopathological parameters and biochemical recurrence (BCR) after radical prostatectomy was statistically analyzed. In addition, the role of DCLK1 in PCa cell proliferation, migration, and invasion was evaluated by using MTT and transwell assays. Results The mRNA and protein levels of DCLK1 were markedly higher in the fresh samples of PCa than that in BPH. Consistently, IHC revealed increased expression of DCLK1 in PCa paraffin-embedded tissues compared with BPH. Moreover, increased DCLK1 expression was significantly associated with postoperative Gleason grading (P=0.012), pathological T stage (P=0.001), seminal vesicle invasion (P=0.026), and lymph node involvement (P=0.017), respectively. The Kaplan–Meier curve analysis demonstrated that high DCLK1 expression was associated with lower postoperative BCR-free survival (bRFS). Furthermore, multivariate Cox analysis showed that postoperative Gleason grading (P=0.018), pathological T stage (P<0.001), seminal vesicle invasion (P=0.012), lymph node involvement (P=0.014), and DCLK1 expression (P=0.014) were independent predictors of BCR. In vitro, the overexpression and knockdown of DCLK1 in PCa cell lines indicated that DCLK1 could promote cell proliferation, migration, and invasion. Conclusion Increased DCLK1 expression is associated with PCa aggressiveness and may independently predict poor bRFS in patients with PCa.
Collapse
Affiliation(s)
- Donggen Jiang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chutian Xiao
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tuzeng Xian
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liantao Wang
- Department of General Surgery, Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University, Shenzhen, China
| | - Yunhua Mao
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junfu Zhang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jun Pang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Urology, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
20
|
Zhang S, Li J, Zhou G, Mu D, Yan J, Xing J, Yao Z, Sheng H, Li D, Lv C, Sun B, Hong Q, Guo H. Aurora-A regulates autophagy through the Akt pathway in human prostate cancer. Cancer Biomark 2018; 19:27-34. [PMID: 28269749 DOI: 10.3233/cbm-160238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Aurora A kinase is frequently overexpressed in a variety of tumor types, including the prostate. However, the function of Aurora A in autophagy in prostate cancer has not been investigated. Here, we aimed to study the functioning mechanism and autophagy associated signaling pathways of Aurora A in prostate cancer. METHODS To investigate the biological function of Aurora A, down-regulation of Aurora A was performed followed by functional testing assays. Immunohistochemistry was used to detect the expression of Aurora A in human prostate cancer specimens. CCK8, Transwell, flow cytometric analysis and measurement of tumor formation in nude mice were performed to test the effects of Aurora A down-regulation in vivo and in vitro. Signaling pathway analysis was performed by using Western blot. Autophagy activity was measured by monitoring the expression levels of LC3-II. RESULTS Aurora A overexpression was significantly higher in human prostate cancer specimens than in BPH. Furthermore, Aurora A knockdown inhibited the proliferation of prostate cancer cells by suppressing the Akt pathway, indicating that Akt is a novel Aurora A substrate in prostate cancer. Additionally, Aurora A down-regulation prompts autophagy in prostate cancer cells. Most importantly, Aurora A ablation almost fully abrogates tumorigenesis in nude mice, suggesting that Aurora A is a key oncogenic effector in prostate cancer. CONCLUSIONS Taken together, our data suggest that Aurora-A plays an important role in the suppression of autophagy by inhibiting the phosphorylation of Akt, which in turn prevents autophagy-induced apoptosis in prostate cancer.
Collapse
|
21
|
Histone methyltransferase PRMT6 plays an oncogenic role of in prostate cancer. Oncotarget 2018; 7:53018-53028. [PMID: 27323813 PMCID: PMC5288165 DOI: 10.18632/oncotarget.10061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality. Until now the specific role of histone methyltransferases (HMTs) deregulated expression/activity in PCa is poorly understood. Herein we aimed to uncover the potential oncogenic role of PRMT6 in prostate carcinogenesis. PRMT6 overexpression was confirmed in PCa, at transcript and protein level. Stable PRMT6 knockdown in PC-3 cells attenuated malignant phenotype, increasing apoptosis and decreasing cell viability, migration and invasion. PRMT6 silencing was associated with decreased H3R2me2a levels and increased MLL and SMYD3 expression. PRMT6 silencing increased p21, p27 and CD44 and decreased MMP-9 expression and was associated with PI3K/AKT/mTOR downregulation and increased AR signaling pathway. In Sh-PRMT6 cells, AR restored expression might re-sensitized cells to androgen deprivation therapy, impacting in clinical management of castration-resistant PCa (CRPC). PRMT6 plays an oncogenic role in PCa and predicts for more clinically aggressive disease, constituting a potential target for patients with CRPC.
Collapse
|
22
|
Abstract
Akt/protein kinase B (PKB) is a serine/threonine kinase which is implicated in mediating a variety of biological responses including cell growth, proliferation and survival. Akt is activated by phosphorylation on two critical residues, namely threonine 308 (Thr308) and serine 473 (Ser473). Several studies have found Akt2 to be amplified or overexpressed at the mRNA level in various tumor cell lines and in a number of human malignancies such as colon, pancreatic and breast cancers. Nevertheless, activation of Akt isoforms by phosphorylation appears to be more clinically significant than Akt2 amplification or overexpression. Many studies in the past 4–5 years have revealed a prognostic and/or predictive role of Akt phosphorylation in breast, prostate and non-small cell lung cancer. Several publications suggest a role of phosphorylated Akt also in endometrial, pancreatic, gastric, tongue and renal cancer. However, different types of assays were used in these studies. Before assessment of P-Akt can be incorporated into routine clinical practice, all aspects of the assay methodology will have to be standardized.
Collapse
Affiliation(s)
- J. Cicenas
- Evolutionary Biology, Zoological Institute, University of Basel, Basel - Switzerland
| |
Collapse
|
23
|
Chen S, Nimick M, Cridge AG, Hawkins BC, Rosengren RJ. Anticancer potential of novel curcumin analogs towards castrate-resistant prostate cancer. Int J Oncol 2017; 52:579-588. [PMID: 29207190 DOI: 10.3892/ijo.2017.4207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/14/2017] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer is initially sensitive to hormone therapy; however, over time the majority of patients progress to a hormone-insensitive form classified as castration-resistant prostate cancer (CRPC). CRPC is highly metastatic and patients have a poor prognosis. Thus, new drugs for the treatment of this disease are required. In this study, we therefore examined the cytotoxic effects and anticancer mechanism(s) of action of second generation curcumin analogs towards CRPC cells. For this purpose, PC3 and DU145 cells were treated with a series of curcumin analogs at 0-10 µM for 72 h and cytotoxicity was determined by the sulforhodamine B (SRB) assay. Two compounds, 1-isopropyl-3,5-bis(pyridin-3-ylmethylene)-4-piperidone (RL118) and 1-methyl-3,5-[(6-methoxynaphthalen-2-yl)methylene]-4-piperidone (RL121), were found to have the most potent cytotoxic effect with EC50 values of 0.50 and 0.58 µM in the PC3 cells and EC50 values of 0.76 and 0.69 µM in the DU145 cells, respectively. Thus, further experiments were performed focusing on these two compounds. Flow cytometry was performed to determine their effects on the cell cycle and apoptosis. Both analogs increased the number of cells in the G2/M phase of the cell cycle and induced apoptosis. Specifically, in the PC3 cells, RL121 increased the number of cells in the G2/M phase by 86% compared to the control, while RL118 increased the number of cells in the G2/M phase by 42% compared to the control after 24 h. Moreover, both RL118 and RL121 induced the apoptosis of both cell lines. In the DU145 cells, a 38-fold increase in the number of apoptotic cells was elicited by RL118 and a 78-fold increase by RL121 compared to the control. Furthermore, the effects of both analogs on the expression of key proteins involved in cell proliferation were also determined by western blot analysis. The results revealed that both analogs inhibited the expression of nuclear factor (NF)-κB (p65/RelA), eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), p-4E-BP1, mammalian target of rapamycin (mTOR), p-mTOR, AKT and p-AKT. Thus, the findings of this study provide evidence that RL118 and RL121 have potent anticancer activity against CPRC cells, and both analogs warrant further investigation in vivo.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Andrew G Cridge
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Bill C Hawkins
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Yu W, Chu L, Zhao K, Chen H, Xiang J, Zhang Y, Li H, Zhao W, Sun M, Wei Q, Fu X, Xie C, Zhu Z. A nomogram based on phosphorylated AKT1 for predicting locoregional recurrence in patients with oesophageal squamous cell carcinoma. J Cancer 2017; 8:3755-3763. [PMID: 29151963 PMCID: PMC5688929 DOI: 10.7150/jca.20828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background: The AKT signalling pathway controls survival and growth in many malignant tumours. However, the prognostic value of phosphorylated AKT1 (p-AKT1) for locoregional-progression free survival (LPFS) in oesophageal squamous cell carcinoma (ESCC) has not been established. Our aim was to develop a nomogram to predict local recurrence using p-AKT1 and main clinical characteristics in patients with thoracic ESCC undergoing radical three-field lymph node dissection. Methods: Immunohistochemistry was performed to examine p-AKT1 expression in 181 thoracic ESCC patients. The Kaplan-Meier method was used to calculate LPFS. Cox regression analysis was also performed to evaluate prognostic factors. A nomogram comprising biological and clinical factors was established to predict LPFS. Results: The 5-year LPFS rate was 63.9%. Multivariate analysis revealed that expression of p-AKT1 (p<0.001), pathologic N category (p=0.004) and number of lymph nodes retrieved (p=0.001) were independent prognostic factors for LPFS. Increased expression of p-AKT1 was associated with decreased LPFS in patients with ESCC. In addition, a nomogram was established based on all significant independent factors for locoregional recurrence risk. Harrell's c-index for predicting LPFS was 0.78. Conclusion: Activation of AKT1 was associated with poor locoregional control in ESCC patients. The nomogram, based on p-AKT1 expression and clinically significant parameters, could be used as an accurate stratification model for predicting locoregional recurrence in patients with ESCC after radical resection.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiaqing Xiang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yawei Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hecheng Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Congying Xie
- Radiotherapy and Chemotherapy Department, the 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
25
|
Breen KJ, O'Neill A, Murphy L, Fan Y, Boyce S, Fitzgerald N, Dorris E, Brady L, Finn SP, Hayes BD, Treacy A, Barrett C, Aziz MA, Kay EW, Fitzpatrick JM, Watson RWG. Investigating the role of the IGF axis as a predictor of biochemical recurrence in prostate cancer patients post-surgery. Prostate 2017; 77:1288-1300. [PMID: 28726241 DOI: 10.1002/pros.23389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Between 20% and 35% of prostate cancer (PCa) patients who undergo treatment with curative intent (ie, surgery or radiation therapy) for localized disease will experience biochemical recurrence (BCR). Alterations in the insulin-like growth factor (IGF) axis and PTEN expression have been implicated in the development and progression of several human tumors including PCa. We examined the expression of the insulin receptor (INSR), IGF-1 receptor (IGF-1R), PTEN, and AKT in radical prostatectomy tissue of patients who developed BCR post-surgery. METHODS Tissue microarrays (TMA) of 130 patients post-radical prostatectomy (65 = BCR, 65 = non-BCR) were stained by immunohistochemistry for INSR, IGF-1R, PTEN, and AKT using optimized antibody protocols. INSR, IGF1-R, PTEN, and AKT expression between benign and cancerous tissue, and different Gleason grades was assessed. Kaplan-Meier survival curves were used to examine the relationship between proteins expression and BCR. RESULTS INSR (P < 0.001), IGF-1R (P < 0.001), and AKT (P < 0.05) expression was significantly increased and PTEN (P < 0.001) was significantly decreased in cancerous versus benign tissue. There was no significant difference in INSR, IGF-1R, or AKT expression in the cancerous tissue of non-BCR versus BCR patients (P = 0.149, P = 0.990, P = 0.399, respectively). There was a significant decrease in PTEN expression in the malignant tissue of BCR versus non-BCR patients (P = 0.011). Combinational analysis of the tissue proteins identified a combination of decreased PTEN and increased AKT or increased INSR was associated with worst outcome. We found that in each case, our hypothesized worst group was most likely to experience BCR and this was significant for combinations of PTEN+INSR and PTEN+AKT but not PTEN+IGF-1R (P = 0.023, P = 0.028, P = 0.078, respectively). CONCLUSIONS Low PTEN is associated with BCR and this association is strongly modified by high INSR and high AKT expression. Measurement of these proteins could help inform appropriate patient selection for postoperative adjuvant therapy and prevent BCR.
Collapse
Affiliation(s)
- Kieran J Breen
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Amanda O'Neill
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa Murphy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Yue Fan
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Susie Boyce
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- UCD School of Mathematical Sciences, Dublin, Ireland
| | - Noel Fitzgerald
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Emma Dorris
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Lauren Brady
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Brian D Hayes
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Ann Treacy
- Department of Histopathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ciara Barrett
- Department of Histopathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Mardiana Abdul Aziz
- Department of Histopathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elaine W Kay
- Department of Pathology, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - John M Fitzpatrick
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - R William G Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
26
|
AKT can modulate the in vitro response of HNSCC cells to irreversible EGFR inhibitors. Oncotarget 2017; 8:53288-53301. [PMID: 28881811 PMCID: PMC5581110 DOI: 10.18632/oncotarget.18395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in up to 90% of head and neck squamous cell carcinoma (HNSCC) tumors. Cetuximab is the first targeted (anti-EGFR) therapy approved for the treatment of HNSCC patients. However, its efficacy is limited due to primary and secondary resistance, and there is no predict biomarkers of response. New generation of EGFR inhibitors with pan HER targeting and irreversible action, such as afatinib and allitinib, represents a significant therapeutic promise. In this study, we intend to compare the potential cytotoxicity of two anti-EGFR inhibitors (afatinib and allitinib) with cetuximab and to identify potential predictive biomarkers of response in a panel of HNSCC cell lines. The mutational analysis in the eight HNSCC cell lines revealed an EGFR mutation (p.H773Y) and gene amplification in the HN13 cells. According to the growth inhibition score (GI), allitinib was the most cytotoxic drug, followed by afatinib and finally cetuximab. The higher AKT phosphorylation level was associated with resistance to anti-EGFR agents. Therefore, we further performed drug combinations with anti-AKT agent (MK2206) and AKT1 gene editing, which demonstrated afatinib and allitinib sensitivity restored. Additionally, in silico analysis of TCGA database showed that AKT1 overexpression was present in 14.7% (41/279) of HNSCC cases, and was associated with perineural invasion in advanced stage. In conclusion, allitinib presented a greater cytotoxic profile when compared to afatinib and cetuximab. AKT pathway constitutes a predictive marker of allitinib response and combination with AKT inhibitors could restore response and increase treatment success.
Collapse
|
27
|
Ekoue DN, Bera S, Ansong E, Hart PC, Zaichick S, Domann FE, Bonini MG, Diamond AM. Allele-specific interaction between glutathione peroxidase 1 and manganese superoxide dismutase affects the levels of Bcl-2, Sirt3 and E-cadherin. Free Radic Res 2017; 51:582-590. [PMID: 28587495 PMCID: PMC5683088 DOI: 10.1080/10715762.2017.1339303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Manganese superoxide dismutase (MnSOD) is a mitochondrial-resident enzyme that reduces superoxide to hydrogen peroxide (H2O2), which can be further reduced to water by glutathione peroxidase (GPX1). Data from human studies have indicated that common polymorphisms in both of these proteins are associated with the risk of several cancers, including breast cancer. Moreover, polymorphisms in MnSOD and GPX1 were shown to interact to increase the risk of breast cancer. To gain an understanding of the molecular mechanisms behind these observations, we engineered human MCF-7 breast cancer cells to exclusively express GPX1 and/or MnSOD alleles and investigated the consequences on the expression of several proteins associated with cancer aetiology. Little or no effect was observed on the ectopic expression of these genes on the phosphorylation of Akt, although allele-specific effects and interactions were observed for the impact on the levels of Bcl-2, E-cadherin and Sirt3. The patterns observed were not consistent with the steady-state levels of H2O2 determined in the transfected cells. These results indicate plausible contributing factors to the effects of allelic variations on cancer risk observed in human epidemiological studies.
Collapse
Affiliation(s)
- Dede N. Ekoue
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Soumen Bera
- School of Life Sciences, B. S. Abdur Rahman University, India
| | - Emmanuel Ansong
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter C. Hart
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sofia Zaichick
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Marcelo G. Bonini
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alan M. Diamond
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Corresponding author: Phone +01 312 413 8747,
| |
Collapse
|
28
|
Hammerich KH, Frolov A, Li R, Ittmann M, Ayala GE. Cellular interactions of the phosphorylated form of AKT in prostate cancer. Hum Pathol 2017; 63:98-109. [DOI: 10.1016/j.humpath.2017.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/25/2017] [Accepted: 02/23/2017] [Indexed: 11/15/2022]
|
29
|
Hammarsten P, Dahl Scherdin T, Hägglöf C, Andersson P, Wikström P, Stattin P, Egevad L, Granfors T, Bergh A. High Caveolin-1 Expression in Tumor Stroma Is Associated with a Favourable Outcome in Prostate Cancer Patients Managed by Watchful Waiting. PLoS One 2016; 11:e0164016. [PMID: 27764093 PMCID: PMC5072718 DOI: 10.1371/journal.pone.0164016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Abstract
In the present study we have investigated whether Caveolin-1 expression in non-malignant and malignant prostate tissue is a potential prognostic marker for outcome in prostate cancer patients managed by watchful waiting. Caveolin-1 was measured in prostate tissues obtained through transurethral resection of the prostate from 395 patients diagnosed with prostate cancer. The majority of the patients (n = 298) were followed by watchful waiting after diagnosis. Tissue microarrays constructed from malignant and non-malignant prostate tissue were stained with an antibody against Caveolin-1. The staining pattern was scored and related to clinicopathologic parameters and outcome. Microdissection and qRT-PCR analysis of Cav-1 was done of the prostate stroma from non-malignant tissue and stroma from Gleason 3 and 4 tumors. Cav-1 RNA expression was highest in non-malignant tissue and decreased during cancer progression. High expression of Caveolin-1 in tumor stroma was associated with significantly longer cancer specific survival in prostate cancer patients. This association remained significant when Gleason score and local tumor stage were combined with Caveolin-1 in a Cox regression model. High stromal Caveolin-1 immunoreactivity in prostate tumors is associated with a favourable prognosis in prostate cancer patients managed by watchful waiting. Caveolin-1 could possibly become a useful prognostic marker for prostate cancer patients that are potential candidates for active surveillance.
Collapse
Affiliation(s)
- Peter Hammarsten
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- * E-mail:
| | - Tove Dahl Scherdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pernilla Andersson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Stattin
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Lars Egevad
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Lin HP, Lin CY, Huo C, Jan YJ, Tseng JC, Jiang SS, Kuo YY, Chen SC, Wang CT, Chan TM, Liou JY, Wang J, Chang WSW, Chang CH, Kung HJ, Chuu CP. AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2. Oncotarget 2016; 6:27097-112. [PMID: 26318033 PMCID: PMC4694976 DOI: 10.18632/oncotarget.4553] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/29/2015] [Indexed: 01/09/2023] Open
Abstract
The qRT-PCR analysis of 139 clinical samples and analysis of 150 on-line database clinical samples indicated that AKT3 mRNA expression level was elevated in primary prostate tumors. Immunohistochemical staining of 65 clinical samples revealed that AKT3 protein expression was higher in prostate tumors of stage I, II, III as compared to nearby normal tissues. Plasmid overexpression of AKT3 promoted cell proliferation of LNCaP, PC-3, DU-145, and CA-HPV-10 human prostate cancer (PCa) cells, while knockdown of AKT3 by siRNA reduced cell proliferation. Overexpression of AKT3 increased the protein expression of total AKT, phospho-AKT S473, phospho-AKT T308, B-Raf, c-Myc, Skp2, cyclin E, GSK3β, phospho-GSK3β S9, phospho-mTOR S2448, and phospho-p70S6K T421/S424, but decreased TSC1 (tuberous sclerosis 1) and TSC2 (tuberous Sclerosis Complex 2) proteins in PC-3 PCa cells. Overexpression of AKT3 also increased protein abundance of phospho-AKT S473, phospho-AKT T308, and B-Raf but decreased expression of TSC1 and TSC2 proteins in LNCaP, DU-145, and CA-HPV-10 PCa cells. Oncomine datasets analysis suggested that AKT3 mRNA level was positively correlated to BRAF. Knockdown of AKT3 in DU-145 cells with siRNA increased the sensitivity of DU-145 cells to B-Raf inhibitor treatment. Knockdown of TSC1 or TSC2 promoted the proliferation of PCa cells. Our observations implied that AKT3 may be a potential therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Hui-Ping Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chieh Huo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Department of Life Sciences, National Central University, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan.,Medical College of Chung Shan Medical University, Taichung City, Taiwan
| | - Jen-Chih Tseng
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ying-Yu Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Shyh-Chang Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chih-Ting Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Tzu-Min Chan
- Department of Medical Education and Research, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - John Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Hsing-Jien Kung
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan.,Graduate Program for Aging, China Medical University, Taichung City, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan.,Ph.D. program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
31
|
Das TP, Suman S, Papu John AMS, Pal D, Edwards A, Alatassi H, Ankem MK, Damodaran C. Activation of AKT negatively regulates the pro-apoptotic function of death-associated protein kinase 3 (DAPK3) in prostate cancer. Cancer Lett 2016; 377:134-139. [PMID: 27126362 PMCID: PMC4884664 DOI: 10.1016/j.canlet.2016.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 01/10/2023]
Abstract
The activation of AKT governs many signaling pathways and promotes cell growth and inhibits apoptosis in human malignancies including prostate cancer (CaP). Here, we investigated the molecular association between AKT activation and the function of death-associated protein kinase 3 (DAPK3) in CaP. An inverse correlation of pAKT and DAPK3 expression was seen in a panel of CaP cell lines. Inhibition of AKT by wortmannin/LY294002 or overexpression of DAPK3 reverts the proliferative function of AKT in CaP cells. On the other hand, ectopic expression of AKT inhibited DAPK3 function and induced proliferation of CaP cells. In addition, AKT over-expressed tumors exhibit aggressive growth when compared to control vector in xenograft models. The immunohistochemistry results revealed a down-regulation of DAPK3 expression in AKT over-expressed tumors as compared to control tumors. Finally, we examined the expression pattern of AKT and DAPK3 in human CaP specimens - the expected gradual increase and nuclear localization of pAKT was seen in higher Gleason score samples versus benign hyperplasia (BPH). On the contrary, reduced expression of DAPK3 was seen in higher Gleason stages versus BPH. This suggests that inhibition of DAPK3 may be a contributing factor to the carcinogenesis of the prostate. Understanding the mechanism by which AKT negatively regulates DAPK3 function may suggest whether DAPK3 can be a therapeutic target for CaP.
Collapse
Affiliation(s)
- Trinath P Das
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Suman Suman
- Department of Urology, University of Louisville, Louisville, KY, USA
| | | | - Deeksha Pal
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Angelena Edwards
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Houda Alatassi
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
32
|
Chen WY, Hua KT, Lee WJ, Lin YW, Liu YN, Chen CL, Wen YC, Chien MH. Akt Activation Correlates with Snail Expression and Potentially Determines the Recurrence of Prostate Cancer in Patients at Stage T2 after a Radical Prostatectomy. Int J Mol Sci 2016; 17:ijms17081194. [PMID: 27455254 PMCID: PMC5000592 DOI: 10.3390/ijms17081194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 11/16/2022] Open
Abstract
Our previous work demonstrated the epithelial-mesenchymal transition factor, Snail, is a potential marker for predicting the recurrence of localized prostate cancer (PCa). Akt activation is important for Snail stabilization and transcription in PCa. The purpose of this study was to retrospectively investigate the relationship between the phosphorylated level of Akt (p-Akt) in radical prostatectomy (RP) specimens and cancer biochemical recurrence (BCR). Using a tissue microarray and immunohistochemistry, the expression of p-Akt was measured in benign and neoplastic tissues from RP specimens in 53 patients whose cancer was pathologically defined as T2 without positive margins. Herein, we observed that the p-Akt level was higher in PCa than in benign tissues and was significantly associated with the Snail level. A high p-Akt image score (≥8) was significantly correlated with a higher histological Gleason sum, Snail image score, and preoperative prostate-specific antigen (PSA) value. Moreover, the high p-Akt image score and Gleason score sum (≥7) showed similar discriminatory abilities for BCR according to a receiver-operator characteristic curve analysis and were correlated with worse recurrence-free survival according to a log-rank test (p < 0.05). To further determine whether a high p-Akt image score could predict the risk of BCR, a Cox proportional hazard model showed that only a high p-Akt image score (hazard ratio (HR): 3.12, p = 0.05) and a high Gleason score sum (≥7) (HR: 1.18, p = 0.05) but not a high preoperative PSA value (HR: 0.62, p = 0.57) were significantly associated with a higher risk of developing BCR. Our data indicate that, for localized PCa patients after an RP, p-Akt can serve as a potential prognostic marker that improves predictions of BCR-free survival.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yung-Wei Lin
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Chi-Long Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| |
Collapse
|
33
|
Lopez SM, Agoulnik AI, Zhang M, Peterson LE, Suarez E, Gandarillas GA, Frolov A, Li R, Rajapakshe K, Coarfa C, Ittmann MM, Weigel NL, Agoulnik IU. Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression. Clin Cancer Res 2016; 22:3937-49. [PMID: 26968201 DOI: 10.1158/1078-0432.ccr-15-1983] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Castration therapy in advanced prostate cancer eventually fails and leads to the development of castration-resistant prostate cancer (CRPC), which has no cure. Characteristic features of CRPC can be increased androgen receptor (AR) expression and altered transcriptional output. We investigated the expression of nuclear receptor corepressor 1 (NCOR1) in human prostate and prostate cancer and the role of NCOR1 in response to antiandrogens. EXPERIMENTAL DESIGN NCOR1 protein levels were compared between matched normal prostate and prostate cancer in 409 patient samples. NCOR1 knockdown was used to investigate its effect on bicalutamide response in androgen-dependent prostate cancer cell lines and transcriptional changes associated with the loss of NCOR1. NCOR1 transcriptional signature was also examined in prostate cancer gene expression datasets. RESULTS NCOR1 protein was detected in cytoplasm and nuclei of secretory epithelial cells in normal prostate. Both cytoplasmic and nuclear NCOR1 protein levels were lower in prostate cancer than in normal prostate. Prostate cancer metastases show significant decrease in NCOR1 transcriptional output. Inhibition of LNCaP cellular proliferation by bicalutamide requires NCOR1. NCOR1-regulated genes suppress cellular proliferation and mediate bicalutamide resistance. In the mouse, NCOR1 is required for bicalutamide-dependent regulation of a subset of the AR target genes. CONCLUSIONS In summary, we demonstrated that NCOR1 function declines with prostate cancer progression. Reduction in NCOR1 levels causes bicalutamide resistance in LNCaP cells and compromises response to bicalutamide in mouse prostate in vivo Clin Cancer Res; 22(15); 3937-49. ©2016 AACR.
Collapse
Affiliation(s)
- Sandra M Lopez
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Manqi Zhang
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas
| | - Egla Suarez
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Gregory A Gandarillas
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Anna Frolov
- Dan L. Duncan Cancer Center-Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Rile Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Christian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas. Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Irina U Agoulnik
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas. Biomolecular Sciences Institute, School of Integrated Science and Humanity, Florida international University, Miami, Florida.
| |
Collapse
|
34
|
Udayakumar TS, Stoyanova R, Shareef MM, Mu Z, Philip S, Burnstein KL, Pollack A. Edelfosine Promotes Apoptosis in Androgen-Deprived Prostate Tumors by Increasing ATF3 and Inhibiting Androgen Receptor Activity. Mol Cancer Ther 2016; 15:1353-63. [PMID: 26944919 DOI: 10.1158/1535-7163.mct-15-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Edelfosine is a synthetic alkyl-lysophospholipid that possesses significant antitumor activity in several human tumor models. Here, we investigated the effects of edelfosine combined with androgen deprivation (AD) in LNCaP and VCaP human prostate cancer cells. This treatment regimen greatly decreased cell proliferation compared with single agent or AD alone, resulting in higher levels of apoptosis in LNCaP compared with VCaP cells. Edelfosine caused a dose-dependent decrease in AKT activity, but did not affect the expression of total AKT in either cell line. Furthermore, edelfosine treatment inhibited the expression of androgen receptor (AR) and was associated with an increase in activating transcription factor 3 (ATF3) expression levels, a stress response gene and a negative regulator of AR transactivation. ATF3 binds to AR after edelfosine + AD and represses the transcriptional activation of AR as demonstrated by PSA promoter studies. Knockdown of ATF3 using siRNA-ATF3 reversed the inhibition of PSA promoter activity, suggesting that the growth inhibition effect of edelfosine was ATF3 dependent. Moreover, expression of AR variant 7 (ARv7) and TMPRSS2-ERG fusion gene were greatly inhibited after combined treatment with AD and edelfosine in VCaP cells. In vivo experiments using an orthotopic LNCaP model confirmed the antitumor effects of edelfosine + AD over the individual treatments. A significant decrease in tumor volume and PSA levels was observed when edelfosine and AD were combined, compared with edelfosine alone. Edelfosine shows promise in combination with AD for the treatment of prostate cancer patients. Mol Cancer Ther; 15(6); 1353-63. ©2016 AACR.
Collapse
Affiliation(s)
- Thirupandiyur S Udayakumar
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Radka Stoyanova
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Mohammed M Shareef
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Zhaomei Mu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sakhi Philip
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | - Alan Pollack
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
35
|
Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1. Oncotarget 2016; 6:6684-707. [PMID: 25788262 PMCID: PMC4466643 DOI: 10.18632/oncotarget.3246] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/30/2015] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1–3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4–2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.
Collapse
|
36
|
Rybak AP, Bristow RG, Kapoor A. Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget 2015; 6:1900-19. [PMID: 25595909 PMCID: PMC4385825 DOI: 10.18632/oncotarget.2953] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
The cells of the prostate gland are dependent on cell signaling pathways to regulate their growth, maintenance and function. However, perturbations in key signaling pathways, resulting in neoplastic transformation of cells in the prostate epithelium, are likely to generate subtypes of prostate cancer which may subsequently require different treatment regimes. Accumulating evidence supports multiple sources of stem cells in the prostate epithelium with distinct cellular origins for prostate tumorigenesis documented in animal models, while human prostate cancer stem-like cells (PCSCs) are typically enriched by cell culture, surface marker expression and functional activity assays. As future therapies will require a deeper understanding of its cellular origins as well as the pathways that drive PCSC maintenance and tumorigenesis, we review the molecular and functional evidence supporting dysregulation of PI3K/AKT, RAS/MAPK and STAT3 signaling in PCSCs, the development of castration resistance, and as a novel treatment approach for individual men with prostate cancer.
Collapse
Affiliation(s)
- Adrian P Rybak
- McMaster Institute of Urology, Division of Urology, Department of Surgery, McMaster University, ON, Canada.,St. Joseph's Hospital, Hamilton, ON, Canada
| | - Robert G Bristow
- Princess Margaret Cancer Centre (University Health Network), ON, Canada.,Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anil Kapoor
- McMaster Institute of Urology, Division of Urology, Department of Surgery, McMaster University, ON, Canada.,St. Joseph's Hospital, Hamilton, ON, Canada
| |
Collapse
|
37
|
Zhao SG, Evans JR, Kothari V, Sun G, Larm A, Mondine V, Schaeffer EM, Ross AE, Klein EA, Den RB, Dicker AP, Karnes RJ, Erho N, Nguyen PL, Davicioni E, Feng FY. The Landscape of Prognostic Outlier Genes in High-Risk Prostate Cancer. Clin Cancer Res 2015; 22:1777-86. [DOI: 10.1158/1078-0432.ccr-15-1250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022]
|
38
|
Liu W, Vielhauer GA, Holzbeierlein JM, Zhao H, Ghosh S, Brown D, Lee E, Blagg BSJ. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells. Mol Pharmacol 2015; 88:121-30. [PMID: 25939977 PMCID: PMC4468638 DOI: 10.1124/mol.114.097303] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/04/2015] [Indexed: 12/29/2022] Open
Abstract
The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α -: dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer.
Collapse
Affiliation(s)
- Weiya Liu
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - George A Vielhauer
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Jeffrey M Holzbeierlein
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Huiping Zhao
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Suman Ghosh
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Douglas Brown
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Eugene Lee
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Brian S J Blagg
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| |
Collapse
|
39
|
Martin NE, Gerke T, Sinnott JA, Stack EC, Andrén O, Andersson SO, Johansson JE, Fiorentino M, Finn S, Fedele G, Stampfer M, Kantoff PW, Mucci LA, Loda M. Measuring PI3K Activation: Clinicopathologic, Immunohistochemical, and RNA Expression Analysis in Prostate Cancer. Mol Cancer Res 2015; 13:1431-40. [PMID: 26124442 DOI: 10.1158/1541-7786.mcr-14-0569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/12/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Assessing the extent of PI3K pathway activity in cancer is vital to predicting sensitivity to PI3K-targeting drugs, but the best biomarker of PI3K pathway activity in archival tumor specimens is unclear. Here, PI3K pathway activation was assessed, in clinical tissue from 1,021 men with prostate cancers, using multiple pathway nodes that include PTEN, phosphorylated AKT (pAKT), phosphorylated ribosomal protein S6 (pS6), and stathmin. Based on these markers, a 9-point score of PI3K activation was created using the combined intensity of the 4-markers and analyzed its association with proliferation (Ki67), apoptosis (TUNEL), and androgen receptor (AR) status, as well as pathologic features and cancer-specific outcomes. In addition, the PI3K activation score was compared with mRNA expression profiling data for a large subset of men. Interestingly, those tumors with higher PI3K activation scores also had higher Gleason grade (P = 0.006), increased AR (r = 0.37; P < 0.001) and Ki67 (r = 0.24; P < 0.001), and decreased TUNEL (r = -0.12; P = 0.003). Although the PI3K activation score was not associated with an increased risk of lethal outcome, a significant interaction between lethal outcome, Gleason and high PI3K score (P = 0.03) was observed. Finally, enrichment of PI3K-specific pathways was found in the mRNA expression patterns differentiating the low and high PI3K activation scores; thus, the 4-marker IHC score of PI3K pathway activity correlates with features of PI3K activation. IMPLICATIONS The relationship of this activation score to sensitivity to anti-PI3K agents remains to be tested but may provide more precision guidance when selecting patients for these therapies.
Collapse
Affiliation(s)
- Neil E Martin
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Travis Gerke
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Jennifer A Sinnott
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward C Stack
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ove Andrén
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Swen-Olof Andersson
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Jan-Erik Johansson
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Michelangelo Fiorentino
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Pathology Unit, Addarii Institute, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Stephen Finn
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Trinity College, Dublin, Ireland
| | - Giuseppe Fedele
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Meir Stampfer
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Massimo Loda
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
40
|
Engiles JB, Galantino-Homer HL, Boston R, McDonald D, Dishowitz M, Hankenson KD. Osteopathology in the Equine Distal Phalanx Associated With the Development and Progression of Laminitis. Vet Pathol 2015; 52:928-44. [PMID: 26063172 DOI: 10.1177/0300985815588604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although the equine distal phalanx and hoof lamellae are biomechanically and physiologically integrated, bony changes in the distal phalanx are poorly described in laminitis. The aims of this study were (1) to establish a laminitis grading scheme that can be applied to the wide spectrum of lesions seen in naturally occurring cases and (2) to measure and describe changes in the distal phalanx associated with laminitis using micro-computed tomography (micro-CT) and histology. Thirty-six laminitic and normal feet from 15 performance and nonperformance horses were evaluated. A laminitis grading scheme based on radiographic, gross, histopathologic, and temporal parameters was developed. Laminitis severity grades generated by this scheme correlated well with clinical severity and coincided with decreased distal phalanx bone volume and density as measured by micro-CT. Laminitic hoof wall changes included progressive ventral rotation and distal displacement of the distal phalanx with increased thickness of the stratum internum-corium tissues with lamellar wedge formation. Histologically, there was epidermal lamellar necrosis with basement membrane separation and dysplastic regeneration, including acanthosis and hyperkeratosis, corresponding to the lamellar wedge. The changes detected by micro-CT corresponded to microscopic findings in the bone, including osteoclastic osteolysis of trabecular and osteonal bone with medullary inflammation and fibrosis. Bone changes were identified in horses with mild/early stages of laminitis as well as severe/chronic stages. The authors conclude that distal phalangeal pathology is a quantifiable and significant component of laminitis pathology and may have important implications for early detection or therapeutic intervention of equine laminitis.
Collapse
Affiliation(s)
- J B Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - H L Galantino-Homer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - R Boston
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - D McDonald
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - M Dishowitz
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K D Hankenson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
41
|
Ayala G, Frolov A, Chatterjee D, He D, Hilsenbeck S, Ittmann M. Expression of ERG protein in prostate cancer: variability and biological correlates. Endocr Relat Cancer 2015; 22:277-87. [PMID: 25972242 PMCID: PMC4432248 DOI: 10.1530/erc-14-0586] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Prostate cancer is the second leading cause of cancer-related death of men in the USA. The TMPRSS2/ERG (T/E) fusion gene is present in approximately 50% of prostate cancers and promotes tumor progression in vivo. The presence of the T/E fusion gene is strongly associated with the expression of ERG protein, but emerging evidence indicates a significant interfocal and intrafocal variability in the levels of ERG protein expression. We therefore analyzed ERG protein expression by image analysis to objectively quantitate the extent of such heterogeneity, and confirmed significant interfocal and intrafocal variability of ERG protein expression levels in cancer expressing ERG. To define the pathways associated with ERG and its variable expression in prostate cancer, we have analyzed the correlations of ERG expression, as evaluated by immunohistochemistry, with 46 key proteins associated with signal transduction, transcriptional control, and other processes using a large tissue microarray with more than 500 prostate cancers. We found a significant correlation of ERG expression with the markers of activation of the PI3K, MYC, and NFκB pathways, which had previously been linked directly or indirectly to ERG expression. We have also identified significant correlations with novel proteins that have not been previously linked to ERG expression, including serum response factor, the p160 coactivator SRC1, and Sprouty1. Notably, SKP2 only correlated with a high level of ERG protein expression. Thus ERG expression is variable in prostate cancer and is associated with activation of multiple pathways and proteins including several potentially targetable pathways.
Collapse
Affiliation(s)
- Gustavo Ayala
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical School, Houston, Texas, USADan L. Duncan Cancer CenterHouston, Texas, USADepartment of Pathology and ImmunologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USADepartment of Veterans AffairsMichael E. DeBakey VA Medical Center, Houston, Texas 77030, USA
| | - Anna Frolov
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical School, Houston, Texas, USADan L. Duncan Cancer CenterHouston, Texas, USADepartment of Pathology and ImmunologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USADepartment of Veterans AffairsMichael E. DeBakey VA Medical Center, Houston, Texas 77030, USA Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical School, Houston, Texas, USADan L. Duncan Cancer CenterHouston, Texas, USADepartment of Pathology and ImmunologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USADepartment of Veterans AffairsMichael E. DeBakey VA Medical Center, Houston, Texas 77030, USA
| | - Deyali Chatterjee
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical School, Houston, Texas, USADan L. Duncan Cancer CenterHouston, Texas, USADepartment of Pathology and ImmunologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USADepartment of Veterans AffairsMichael E. DeBakey VA Medical Center, Houston, Texas 77030, USA
| | - Dandan He
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical School, Houston, Texas, USADan L. Duncan Cancer CenterHouston, Texas, USADepartment of Pathology and ImmunologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USADepartment of Veterans AffairsMichael E. DeBakey VA Medical Center, Houston, Texas 77030, USA
| | - Susan Hilsenbeck
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical School, Houston, Texas, USADan L. Duncan Cancer CenterHouston, Texas, USADepartment of Pathology and ImmunologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USADepartment of Veterans AffairsMichael E. DeBakey VA Medical Center, Houston, Texas 77030, USA
| | - Michael Ittmann
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical School, Houston, Texas, USADan L. Duncan Cancer CenterHouston, Texas, USADepartment of Pathology and ImmunologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USADepartment of Veterans AffairsMichael E. DeBakey VA Medical Center, Houston, Texas 77030, USA Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical School, Houston, Texas, USADan L. Duncan Cancer CenterHouston, Texas, USADepartment of Pathology and ImmunologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USADepartment of Veterans AffairsMichael E. DeBakey VA Medical Center, Houston, Texas 77030, USA
| |
Collapse
|
42
|
Lindqvist J, Imanishi SY, Torvaldson E, Malinen M, Remes M, Örn F, Palvimo JJ, Eriksson JE. Cyclin-dependent kinase 5 acts as a critical determinant of AKT-dependent proliferation and regulates differential gene expression by the androgen receptor in prostate cancer cells. Mol Biol Cell 2015; 26:1971-84. [PMID: 25851605 PMCID: PMC4472009 DOI: 10.1091/mbc.e14-12-1634] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022] Open
Abstract
CDK5 acts as a signaling hub in prostate cancer cells by controlling androgen responses through AR stabilization and specific gene targeting, maintaining and accelerating cell proliferation through activation of the oncogenic AKT kinase, and releasing cell cycle breaks in a variety of prostate cancer cell lines. Contrary to cell cycle–associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in differentiated cells and its destructive activation in Alzheimer's disease. Recently, CDK5 has been implicated in a number of different cancers, but how it is able to stimulate cancer-related signaling pathways remains enigmatic. Our goal was to study the cancer-promoting mechanisms of CDK5 in prostate cancer. We observed that CDK5 is necessary for proliferation of several prostate cancer cell lines. Correspondingly, there was considerable growth promotion when CDK5 was overexpressed. When examining the reasons for the altered proliferation effects, we observed that CDK5 phosphorylates S308 on the androgen receptor (AR), resulting in its stabilization and differential expression of AR target genes including several growth-priming transcription factors. However, the amplified cell growth was found to be separated from AR signaling, further corroborated by CDK5-depdent proliferation of AR null cells. Instead, we found that the key growth-promoting effect was due to specific CDK5-mediated AKT activation. Down-regulation of CDK5 repressed AKT phosphorylation by altering its intracellular localization, immediately followed by prominent cell cycle inhibition. Taken together, these results suggest that CDK5 acts as a crucial signaling hub in prostate cancer cells by controlling androgen responses through AR, maintaining and accelerating cell proliferation through AKT activation, and releasing cell cycle breaks.
Collapse
Affiliation(s)
- Julia Lindqvist
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Elin Torvaldson
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Marjo Malinen
- Institute of Biomedicine/Medical Biochemistry, University of Eastern Finland, and Department of Pathology, Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - Mika Remes
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Fanny Örn
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine/Medical Biochemistry, University of Eastern Finland, and Department of Pathology, Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - John E Eriksson
- Department of Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
43
|
Gomez L, Kovac JR, Lamb DJ. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids 2015; 95:80-7. [PMID: 25560485 PMCID: PMC4323677 DOI: 10.1016/j.steroids.2014.12.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/14/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
The majority of prostate cancer (PCa) cases are diagnosed as a localized disease. Definitive treatment, active surveillance or watchful waiting are employed as therapeutic paradigms. The current standard of care for the treatment of metastatic PCa is either medical or surgical castration. Once PCa progresses in spite of castrate androgen levels it is termed 'castration-resistant prostate cancer' (CRPC). Patients may even exhibit rising PSA levels with possible bone, lymph node or solid organ metastases. In 2010, the only agent approved for the treatment of CRPC was docetaxel, a chemotherapeutic agent. It is now known that cells from patients with CRPC express androgen receptors (AR) and remain continuously influenced by androgens. As such, treatments with novel hormonal agents that specifically target the biochemical conversion of cholesterol to testosterone have come to the forefront. The use of cytochrome P450c17 (CYP17A1) inhibitor underlies one of the most recent advances in the treatment of CRPC. Abiraterone acetate (AA) was the first CYP17A1 inhibitor approved in the United States. This review will discuss CRPC in general with a specific focus on AA and novel CYP17A1 inhibitors. AA clinical trials will be reviewed along with other novel adjunct treatments that may enhance the effectiveness of abiraterone therapy. Furthermore, the most recently identified CYP17A1 inhibitors Orteronel, Galeterone, VT-464, and CFG920 will also be explored.
Collapse
Affiliation(s)
- Lissette Gomez
- Scott Department of Urology and The Center for Reproductive Medicine, and the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jason R Kovac
- Urology of Indiana, Male Reproductive Endocrinology and Surgery, Carmel, IN, United States
| | - Dolores J Lamb
- Scott Department of Urology and The Center for Reproductive Medicine, and the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
44
|
Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl 2014; 16:378-86. [PMID: 24759575 PMCID: PMC4023363 DOI: 10.4103/1008-682x.122876] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androgen deprivation therapy (ADT). Emerging evidence demonstrates a key role for the PI3K-AKT-mTOR signaling axis in the development and maintenance of CRPC. This pathway, which is deregulated in the majority of advanced PCas, serves as a critical nexus for the integration of growth signals with downstream cellular processes such as protein synthesis, proliferation, survival, metabolism and differentiation, thus providing mechanisms for cancer cells to overcome the stress associated with androgen deprivation. Furthermore, preclinical studies have elucidated a direct connection between the PI3K-AKT-mTOR and androgen receptor (AR) signaling axes, revealing a dynamic interplay between these pathways during the development of ADT resistance. Thus, there is a clear rationale for the continued clinical development of a number of novel inhibitors of the PI3K pathway, which offer the potential of blocking CRPC growth and survival. In this review, we will explore the relevance of the PI3K-AKT-mTOR pathway in PCa progression and castration resistance in order to inform the clinical development of specific pathway inhibitors in advanced PCa. In addition, we will highlight current deficiencies in our clinical knowledge, most notably the need for biomarkers that can accurately predict for response to PI3K pathway inhibitors.
Collapse
Affiliation(s)
| | - Andrew C Hsieh
- Division of Hematology/Oncology and Department of Internal Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
45
|
Graça I, Sousa EJ, Costa-Pinheiro P, Vieira FQ, Torres-Ferreira J, Martins MG, Henrique R, Jerónimo C. Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget 2014; 5:5950-64. [PMID: 24797896 PMCID: PMC4171604 DOI: 10.18632/oncotarget.1909] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/16/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of cancer-related morbidity and mortality worldwide. Although early disease is often efficiently managed therapeutically, available options for advanced disease are mostly ineffective. Aberrant DNA methylation associated with gene-silencing of cancer-related genes is a common feature of PCa. Therefore, DNA methylation inhibitors might constitute an attractive alternative therapy. Herein, we evaluated the anti-cancer properties of hydralazine, a non-nucleoside DNA methyltransferases (DNMT) inhibitor, in PCa cell lines. In vitro assays showed that hydralazine exposure led to a significant dose and time dependent growth inhibition, increased apoptotic rate and decreased invasiveness. Furthermore, it also induced cell cycle arrest and DNA damage. These phenotypic effects were particularly prominent in DU145 cells. Following hydralazine exposure, decreased levels of DNMT1, DNMT3a and DNMT3b mRNA and DNMT1 protein were depicted. Moreover, a significant decrease in GSTP1, BCL2 and CCND2 promoter methylation levels, with concomitant transcript re-expression, was also observed. Interestingly, hydralazine restored androgen receptor expression, with upregulation of its target p21 in DU145 cell line. Protein array analysis suggested that blockage of EGF receptor signaling pathway is likely to be the main mechanism of hydralazine action in DU145 cells. Our data demonstrate that hydralazine attenuated the malignant phenotype of PCa cells, and might constitute a useful therapeutic tool.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology & Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto
- Departments of School of Allied Health Sciences ESTSP, Polytechnic of Porto
| | - Elsa J Sousa
- Cancer Biology & Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto
| | - Pedro Costa-Pinheiro
- Cancer Biology & Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto
| | - Filipa Q Vieira
- Cancer Biology & Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto
- Departments of School of Allied Health Sciences ESTSP, Polytechnic of Porto
| | - Jorge Torres-Ferreira
- Cancer Biology & Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto
- Department of Pathology, Portuguese Oncology Institute-Porto
| | - Maria Gabriela Martins
- Department of Hematology - Laboratory of Flow Cytometry, Portuguese Oncology Institute-Porto
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto
- Department of Pathology, Portuguese Oncology Institute-Porto
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of the Portuguese Oncology Institute-Porto
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto
| |
Collapse
|
46
|
Sailer V, Kristiansen G. Histopathological screening for prostate carcinoma: is a benign biopsy a negative biopsy? APMIS 2014; 122:690-8. [DOI: 10.1111/apm.12291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/14/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Verena Sailer
- Institute of Pathology; University Hospital of Bonn; Bonn Germany
| | - Glen Kristiansen
- Institute of Pathology; University Hospital of Bonn; Bonn Germany
| |
Collapse
|
47
|
Ottley E, Gold E. microRNA and non-canonical TGF-β signalling: implications for prostate cancer therapy. Crit Rev Oncol Hematol 2014; 92:49-60. [PMID: 24985060 DOI: 10.1016/j.critrevonc.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 02/07/2023] Open
Abstract
The incidence of prostate cancer is increasing worldwide and marks a significant health issue. Paired with this, current therapeutic options for advanced prostate cancer, notably androgen deprivation therapy (ADT), fail to provide a consistent level of efficacy throughout the treatment period, highlighting the need for new robust therapies. Growth factors, such as Transforming Growth Factor-beta (TGF-β), possess the ability to impede cancer development in the early stages, via alterations in either apoptosis, cell proliferation, or the promotion of cellular senescence. However, later in the pathogenesis, advanced prostate cancer cells become insensitive to the previously beneficial effects of TGF-β. The molecular mechanisms behind this acquired insensitivity are not well understood. Thus, the aim of this review is to examine the effects of a class of small non-coding RNA, microRNA (miRNA), on TGF-β signalling. The impact of miRNA on the canonical TGF-β Smad signalling pathway has been well investigated, hence, in this review, we will examine whether miRNA targeting members of non-canonical TGF-β signalling members, such as, Erk, RhoA, PI3K/Akt and JNK/p38 could provide alternate therapeutic options for advanced prostate cancer.
Collapse
Affiliation(s)
- Edward Ottley
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Elspeth Gold
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
48
|
Qin L, Gong C, Chen AM, Guo FJ, Xu F, Ren Y, Liao H. Peroxisome proliferator‑activated receptor γ agonist rosiglitazone inhibits migration and invasion of prostate cancer cells through inhibition of the CXCR4/CXCL12 axis. Mol Med Rep 2014; 10:695-700. [PMID: 24842333 DOI: 10.3892/mmr.2014.2232] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 03/07/2014] [Indexed: 11/06/2022] Open
Abstract
It has been indicated that the C‑X‑C chemokine receptor type 4/C‑X‑C chemokine ligand 12 (CXCR4/CXCL12) axis is involved in promoting invasion and metastasis in tumors. Therefore, novel drugs capable of downregulating the CXCR4/CXCL12 axis may demonstrate potential for the treatment of metastatic prostate cancer (PCa). Rosiglitazone (RSG), a thiazolidinedione ligand of the peroxisome proliferator‑activated receptor (PPAR) γ, has been found to inhibit proliferation, induce apoptosis, suppress angiogenesis and inhibit metastasis. However, the precise mechanisms by which RSG regulates CXCR4 gene expression and the consequent effects on prostate cell migration and invasion are not fully understood. In this study, it was observed that RSG is capable of downregulating the expression of CXCR4 in PCa cells in a dose‑, time‑ and PPARγ‑dependent manner. Furthermore, it was observed that the downregulation of CXCR4 expression occurred at a transcriptional level, as indicated by a reduction in CXCR4 mRNA expression. Suppression of CXCR4 expression by RSG further correlated with the inhibition of CXCL12‑induced migration and invasion in PCa cells. Analysis of the predominant intracellular signaling pathways that act downstream of the activated CXCR4/CXCL12 axis, namely the phosphatidyl inositol 3‑kinase (PI3K)‑protein kinase B (Akt) cascades, revealed that RSG rapidly interferes with the phosphorylation/activation of Akt, which mediates CXCL12‑stimulated migration and invasion. Overall, the findings of this study suggest that RSG represents a novel inhibitor of CXCR4 expression and, thus, has significant potential as a powerful therapeutic agent for the treatment of metastatic PCa.
Collapse
Affiliation(s)
- Liang Qin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - An-Min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng-Jing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fei Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ye Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Liao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
49
|
Olar A, He D, Florentin D, Ding Y, Ayala G. Biologic correlates and significance of axonogenesis in prostate cancer. Hum Pathol 2014; 45:1358-64. [PMID: 24767770 DOI: 10.1016/j.humpath.2014.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 11/28/2022]
Abstract
Cancer-related axonogenesis and neurogenesis are recently described biologic phenomena. Our previously published data showed that nerve density and the number of neurons in the parasympathetic ganglia are increased in prostate cancer (PCa) and associated with aggressive disease. Tissue microarrays were constructed from 640 radical prostatectomy specimens with PCa. Anti-protein gene product 9.5 (PGP 9.5) antibodies were used to identify and quantify nerve density. Protein expression was objectively analyzed using deconvolution imaging, image segmentation, and image analysis. Data were correlated with clinicopathological variables and tissue biomarkers available in our database. Nerve density, as measured by PGP 9.5 expression, had a weak but significant positive correlation with the lymph node status (ρ = 0.106; P = .0275). By Cox univariate analysis, PGP 9.5 was a predictor of time to biochemical recurrence, but not on multivariate analysis. Increased nerve density correlated with increased proliferation of PCa cells. It also correlated with expression of proteins involved in survival pathways (Phosphorylated alpha serine/threonine-protein kinase, NFκB, GSK-2, PIM-2, c-Myc, SKP-2, SRF, P27n, PTEN), with increased levels of hormonal regulation elements (androgen receptor, estrogen receptor α), and coregulators and repressors (SRC-1, SRC-2, AIB-1, DAX). Axonogenesis is a recently described phenomenon of paramount importance in the biology of PCa. Although the degree of axonogenesis is predictive of aggressive behavior in PCa, it does not add to the information present in current models on multivariate analysis. We present data that corroborate that axonogenesis is involved in biologic processes such as proliferation of PCa, through activation of survival pathways and interaction with hormonal regulation.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Dandan He
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Diego Florentin
- Department of Internal Medicine, Sinai-Grace Hospital and Wayne State University, Detroit, MI 48235
| | - Yi Ding
- Department of Pathology and Laboratory Medicine, The University of Texas Health Sciences Center at Houston, Medical School, Houston, TX 77030
| | - Gustavo Ayala
- Department of Pathology and Laboratory Medicine, The University of Texas Health Sciences Center at Houston, Medical School, Houston, TX 77030.
| |
Collapse
|
50
|
Lin HP, Lin CY, Hsiao PH, Wang HD, Sheng Jiang S, Hsu JM, Jim WT, Chen M, Kung HJ, Chuu CP. Difference in protein expression profile and chemotherapy drugs response of different progression stages of LNCaP sublines and other human prostate cancer cells. PLoS One 2013; 8:e82625. [PMID: 24349321 PMCID: PMC3857776 DOI: 10.1371/journal.pone.0082625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/25/2013] [Indexed: 12/29/2022] Open
Abstract
Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, 80-90% of the patients who receive androgen ablation therapy ultimately develop recurrent tumors in 12-33 months after treatment with a median overall survival time of 1-2 years after relapse. LNCaP is a commonly used cell line established from a human lymph node metastatic lesion of prostatic adenocarcinoma. We previously established two relapsed androgen receptor (AR)-rich androgen-independent LNCaP sublines 104-R1 (androgen depleted for 12 months) and 104-R2 cells (androgen depleted for 24 months) from AR-positive androgen-dependent LNCaP 104-S cells. LNCaP 104-R1 and 104-R2 mimics the AR-positive hormone-refractory relapsed tumors in patients receiving androgen ablation therapy. Androgen treatment stimulates proliferation of 104-S cells, but causes growth inhibition and G1 cell cycle arrest in 104-R1 and 104-R2 cells. We investigated the protein expression profile difference between LNCaP 104-S vs. LNCaP 104-R1, 104-R2, PC-3, and DU-145 cells as well as examined the sensitivity of these prostate cancer cells to different chemotherapy drugs and small molecule inhibitors. Compared to 104-S cells, 104-R1 and 104-R2 cells express higher protein levels of AR, PSA, c-Myc, Skp2, BCL-2, P53, p-MDM2 S166, Rb, and p-Rb S807/811. The 104-R1 and 104-R2 cells express higher ratio of p-Akt S473/Akt, p-EGFR/EGFR, and p-Src/Src, but lower ratio of p-ERK/ERK than 104-S cells. PC-3 and DU-145 cells express higher c-Myc, Skp2, Akt, Akt1, and phospho-EGFR but less phospho-Akt and phospho-ERK. Overexpression of Skp2 increased resistance of LNCaP cells to chemotherapy drugs. Paclitaxel, androgen, and inhibitors for PI3K/Akt, EGFR, Src, or Bcl-2 seem to be potential choices for treatment of advanced prostate cancers. Our study provides rationale for targeting Akt, EGFR, Src, Bcl-2, and AR signaling as a treatment for AR-positive relapsed prostate tumors after hormone therapy.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, County, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, County, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, County, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, County, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, County, Taiwan
| | - Ping-Hsuan Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City, Taiwan
| | - Shih Sheng Jiang
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, County, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, County, Taiwan
| | - Jong-Ming Hsu
- Department of Urology, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Wai-Tim Jim
- Department of Pediatrics, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Hsing-Jien Kung
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, County, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, County, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, County, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, County, Taiwan
- Graduate Program for Aging, China Medical University, Taichung City, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan
- * E-mail:
| |
Collapse
|