1
|
Marshall EJ, Ramarapu R, Leathers TA, Morrison-Welch N, Sandberg K, Kawashima M, Rogers CD. NSAID-mediated cyclooxygenase inhibition disrupts ectodermal derivative formation in axolotl embryos. Differentiation 2025; 143:100856. [PMID: 40154219 DOI: 10.1016/j.diff.2025.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
Embryonic exposures to non-steroidal anti-inflammatory drugs (NSAIDs) have been linked to preterm birth, neural tube closure defects, abnormal enteric innervation, and craniofacial malformations, potentially due to disrupted neural tube or neural crest (NC) cell development. Naproxen (NPX), a common non-steroidal anti-inflammatory drug (NSAID) used to relieve pain and inflammation, exerts its effects through non-selective cyclooxygenase (COX) inhibition. Our lab has identified that the cyclooxygenase (COX-1 and COX-2) isoenzymes are expressed during the early stages of vertebrate embryonic development, and that global inhibition of COX-1 and COX-2 function disrupts NC cell migration and differentiation in Ambystoma mexicanum (axolotl) embryos. NC cells differentiate into various adult tissues including craniofacial cartilage, bone, and neurons in the peripheral and enteric nervous systems. To investigate the specific phenotypic and molecular effects of NPX exposure on NC development and differentiation, and to identify molecular links between COX inhibition and NC derivative anomalies, we exposed late neurula and early tailbud stage axolotl embryos to various concentrations of NPX and performed immunohistochemistry (IHC) for markers of migratory and differentiating NC cells. Our results reveal that NPX exposure impairs the migration of SOX9+ NC cells, leading to abnormal development of craniofacial cartilage structures, including Meckel's cartilage in the jaw. NPX exposure also alters the expression of markers associated with peripheral and central nervous system (PNS and CNS) development, suggesting concurrent neurodevelopmental changes.
Collapse
Affiliation(s)
- Emma J Marshall
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Raneesh Ramarapu
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | | | - Kathryn Sandberg
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Maxim Kawashima
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Marshall EJ, Ramarapu R, Leathers TA, Morrison-Welch N, Sandberg K, Kawashima M, Rogers CD. NSAID-mediated cyclooxygenase inhibition disrupts ectodermal derivative formation in axolotl embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621122. [PMID: 39554061 PMCID: PMC11565853 DOI: 10.1101/2024.10.30.621122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Embryonic exposures to non-stseroidal anti-inflammatory drugs (NSAIDs) have been linked to preterm birth, neural tube closure defects, abnormal enteric innervation, and craniofacial malformations, potentially due to disrupted neural tube or neural crest (NC) cell development. Naproxen (NPX), a common non-steroidal anti-inflammatory drug (NSAID) used to relieve pain and inflammation, exerts its effects through non-selective cyclooxygenase (COX) inhibition. Our lab has identified that the cyclooxygenase (COX-1 and COX-2) isoenzymes are expressed during the early stages of vertebrate embryonic development, and that global inhibition of COX-1 and COX-2 function disrupts NC cell migration and differentiation in Ambystoma mexicanum (axolotl) embryos. NC cells differentiate into various adult tissues including craniofacial cartilage, bone, and neurons in the peripheral and enteric nervous systems. To investigate the specific phenotypic and molecular effects of NPX exposure on NC development and differentiation, and to identify molecular links between COX inhibition and NC derivative anomalies, we exposed late neurula and early tailbud stage axolotl embryos to various concentrations of NPX and performed immunohistochemistry (IHC) for markers of migratory and differentiating NC cells. Our results reveal that NPX exposure impairs the migration of SOX9+ NC cells, leading to abnormal development of craniofacial cartilage structures, including Meckel's cartilage in the jaw. NPX exposure also alters the expression of markers associated with peripheral and central nervous system (PNS and CNS) development, suggesting concurrent neurodevelopmental changes.
Collapse
Affiliation(s)
- Emma J Marshall
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Raneesh Ramarapu
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | | | - Kathryn Sandberg
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Maxim Kawashima
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
3
|
Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q, Zhou JL. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer 2024; 23:229. [PMID: 39395984 PMCID: PMC11470719 DOI: 10.1186/s12943-024-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
4
|
Montico F, Lamas CDA, Rossetto IMU, Baseggio AM, Cagnon VHA. Lobe-specific responses of TRAMP mice dorsolateral prostate following celecoxib and nintedanib therapy. J Mol Histol 2023; 54:379-403. [PMID: 37335420 DOI: 10.1007/s10735-023-10130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Delayed cancer progression in the ventral prostate of the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model has been previously reported upon celecoxib and nintedanib co-administration. Herein, we sought to further investigate the effects of these drugs association in some of their direct molecular targets (COX-2, VEGF and VEGFR-2) and in reactive stroma markers (TGF-β, αSMA, vimentin and pro-collagen 1) in the dorsolateral prostate, looking for lobe-specific responses. Male TRAMP mice were treated with celecoxib (10 mg/Kg, i.o.) and/or nintedanib (15 mg/Kg, i.o.) for 6 weeks and prostate was harvested for morphological and protein expression analyses. Results showed that combined therapy resulted in unique antitumor effects in dorsolateral prostate, especially due to the respective stromal or epithelial antiproliferative actions of these drugs, which altogether led to a complete inversion in high-grade (HGPIN) versus low-grade (LGPIN) premalignant lesion incidences in relation to controls. At the molecular level, this duality in drug action was paralleled by the differential down/upregulation of TGF-β signaling by celecoxib/nintedanib, thus leading to associated changes in stroma composition towards regression or quiescence, respectively. Additionally, combined therapy was able to promote decreased expression of inflammatory (COX-2) and angiogenesis (VEGF/VEGFR-2) mediators. Overall, celecoxib and nintedanib association provided enhanced antitumor effects in TRAMP dorsolateral as compared to former registers in ventral prostate, thus demonstrating lobe-specific responses of this combined chemoprevention approach. Among these responses, we highlight the ability in promoting TGF-β signaling and its associated stromal maturation/stabilization, thus yielding a more quiescent stromal milieu and resulting in greater epithelial proliferation impairment.
Collapse
Affiliation(s)
- Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil.
| | - Celina de Almeida Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| | - Isabela Maria Urra Rossetto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| | - Andressa Mara Baseggio
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-852, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| |
Collapse
|
5
|
Martínez-Puente DH, Garza-Morales R, Pérez-Trujillo JJ, Bernabé-Acosta F, Villanueva-Olivo A, García-García A, Zavala-Flores LM, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Enhanced antitumor activity induced by a DNA vaccine encoding E7 antigen fused to an ERAD-targeting sequence. J Drug Target 2023; 31:100-108. [PMID: 35896308 DOI: 10.1080/1061186x.2022.2107651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle in cell homeostasis and cell health through antigen presentation to immune cells. Thus, the ER has become a therapeutic target to induce cellular immune responses. We previously reported the antitumor effect of a DNA vaccine that expresses the E7 antigen fused to the cyclooxygenase-2 (COX-2) protein. This inflammation-related enzyme contains a degradation cassette associated with the endoplasmic reticulum-associated degradation (ERAD) pathway. To avoid the use of full-length COX-2 and any risk of adverse effects due to the activity of its catalytic site, we designed new versions of the fusion protein. These new constructs encode the E7 antigen fused to the signal peptide and the ERAD sequence of COX-2 with or without the membrane-binding domain (MBD) as well as deletion of the catalytic site. We evaluated the antigen-specific antitumor effect of these DNA constructs in murine prophylactic and therapeutic cancer models. These assays showed that the ERAD cassette is the minimum sequence in the COX-2 protein that induces an antitumor effect when fused to the E7 antigen with the advantage of eliminating any potential adverse effects from the use of full-length COX-2.
Collapse
Affiliation(s)
| | - Rodolfo Garza-Morales
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Federico Bernabé-Acosta
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey, México
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, México City, México
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | | | | |
Collapse
|
6
|
Toxicity, Safety, and Efficacy Studies on Mesenchymal Stem Cells Derived from Decidua basalis in Wistar Albino Rats by Intravenous and Subcutaneous Routes. Curr Issues Mol Biol 2022; 44:4045-4058. [PMID: 36135189 PMCID: PMC9498010 DOI: 10.3390/cimb44090277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Ex vivo expanded decidua-basalis(DB)-derived mesenchymal stem cells (MSCs) obtained from single donors have demonstrated therapeutic benefits in in vitro and in vivo studies. In this report, the intravenous and subcutaneous administration of DB-MSCs obtained from five healthy donors was assessed considering clinical grade proliferation, accessibility, and toxic effects in Wistar albino rats. The ability of the obtained DB-MSCs for differentiating, as well as their expression of several cell surface markers and immunomodulatory activities, were all assessed. Clinical standard proliferated cells were administered to animals intravenously and subcutaneously in a series of preclinical models in order to assess their in vivo toxicity, general safety, and tumorigenic possibilities. We established that DB cells exhibit structural and functional traits with MSCs. At various doses supplied intravenously or subcutaneously, the research showed no fatality, abnormal response to therapy, or substantial pathological modifications in the rats. Furthermore, there was no indication of prenatal damage in the same animal species when the rats were repeatedly treated with DBMSCs. Thus, DBMSCs were demonstrated to be non-toxic, non-teratogenic, and non-tumorigenic. To determine whether they can be administrated to human patients without risk, more investigation is recommended.
Collapse
|
7
|
de Godoy Fernandes G, Pedrina B, de Faria Lainetti P, Kobayashi PE, Govoni VM, Palmieri C, de Moura VMBD, Laufer-Amorim R, Fonseca-Alves CE. Morphological and Molecular Characterization of Proliferative Inflammatory Atrophy in Canine Prostatic Samples. Cancers (Basel) 2021; 13:1887. [PMID: 33920045 PMCID: PMC8071022 DOI: 10.3390/cancers13081887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Proliferative inflammatory atrophy (PIA) is an atrophic lesion of the prostate gland that occurs in men and dogs and is associated with a chronic inflammatory infiltrate. In this study, we retrospectively reviewed canine prostatic samples from intact dogs, identifying 50 normal prostates, 140 cases of prostatic hyperplasia, 171 cases of PIA, 84 with prostate cancer (PC), 14 with prostatic intraepithelial neoplasia (PIN) and 10 with bacterial prostatitis. PIA samples were then selected and classified according to the human classification. The presence of PIA lesions surrounding neoplastic areas was then evaluated to establish a morphological transition from normal to preneoplastic and neoplastic tissue. In addition, the expression of PTEN, P53, MDM2 and nuclear androgen receptor (AR) were analyzed in 20 normal samples and 20 PIA lesions by immunohistochemistry and qPCR. All PIA lesions showed variable degrees of mononuclear cell infiltration around the glands and simple atrophy was the most common histopathological feature. PIA was identified between normal glands and PC in 51 (61%) out of the 84 PC samples. PIA lesions were diffusely positive for molecular weight cytokeratin (HMWC). Decreased PTEN and AR gene and protein expression was found in PIA compared to normal samples. Overall, our results strongly suggest that PIA is a frequent lesion associated with PC. Additionally, this finding corroborates the hypothesis that in dogs, as is the case in humans, PIA is a pre neoplastic lesion that has the potential to progress into PC, indicating an alternative mechanism of prostate cancer development in dogs.
Collapse
Affiliation(s)
- Giovana de Godoy Fernandes
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Bruna Pedrina
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Patrícia de Faria Lainetti
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Priscila Emiko Kobayashi
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Verônica Mollica Govoni
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Chiara Palmieri
- Gatton Campus, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | | | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Carlos Eduardo Fonseca-Alves
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
- Institute of Health Sciences, Paulista University-UNIP, Bauru 17048-290, Brazil
| |
Collapse
|
8
|
Bahmad HF, Jalloul M, Azar J, Moubarak MM, Samad TA, Mukherji D, Al-Sayegh M, Abou-Kheir W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front Genet 2021; 12:652747. [PMID: 33841508 PMCID: PMC8033163 DOI: 10.3389/fgene.2021.652747] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is by far the most commonly diagnosed cancer in men worldwide. Despite sensitivity to androgen deprivation, patients with advanced disease eventually develop resistance to therapy and may die of metastatic castration-resistant prostate cancer (mCRPC). A key challenge in the management of PCa is the clinical heterogeneity that is hard to predict using existing biomarkers. Defining molecular biomarkers for PCa that can reliably aid in diagnosis and distinguishing patients who require aggressive therapy from those who should avoid overtreatment is a significant unmet need. Mechanisms underlying the development of PCa are not confined to cancer epithelial cells, but also involve the tumor microenvironment. The crosstalk between epithelial cells and stroma in PCa has been shown to play an integral role in disease progression and metastasis. A number of key markers of reactive stroma has been identified including stem/progenitor cell markers, stromal-derived mediators of inflammation, regulators of angiogenesis, connective tissue growth factors, wingless homologs (Wnts), and integrins. Here, we provide a synopsis of the stromal-epithelial crosstalk in PCa focusing on the relevant molecular biomarkers pertaining to the tumor microenvironment and their role in diagnosis, prognosis, and therapy development.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Mohammad Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abdul Samad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Application of Anti-Inflammatory Agents in Prostate Cancer. J Clin Med 2020; 9:jcm9082680. [PMID: 32824865 PMCID: PMC7464558 DOI: 10.3390/jcm9082680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is a major cause of human cancers. The environmental factors, such as microbiome, dietary components, and obesity, provoke chronic inflammation in the prostate, which promotes cancer development and progression. Crosstalk between immune cells and cancer cells enhances the secretion of intercellular signaling molecules, such as cytokines and chemokines, thereby orchestrating the generation of inflammatory microenvironment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play pivotal roles in inflammation-associated cancer by inhibiting effective anti-tumor immunity. Anti-inflammatory agents, such as aspirin, metformin, and statins, have potential application in chemoprevention of prostate cancer. Furthermore, pro-inflammatory immunity-targeted therapies may provide novel strategies to treat patients with cancer. Thus, anti-inflammatory agents are expected to suppress the “vicious cycle” created by immune and cancer cells and inhibit cancer progression. This review has explored the immune cells that facilitate prostate cancer development and progression, with particular focus on the application of anti-inflammatory agents for both chemoprevention and therapeutic approach in prostate cancer.
Collapse
|
10
|
Mulvaney EP, O'Sullivan ÁG, Eivers SB, Reid HM, Kinsella BT. Differential expression of the TPα and TPβ isoforms of the human T Prostanoid receptor during chronic inflammation of the prostate: Role for FOXP1 in the transcriptional regulation of TPβ during monocyte-macrophage differentiation. Exp Mol Pathol 2019; 110:104277. [PMID: 31271729 DOI: 10.1016/j.yexmp.2019.104277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 06/22/2019] [Indexed: 11/16/2022]
Abstract
Inflammation is linked to prostate cancer (PCa) and to other diseases of the prostate. The prostanoid thromboxane (TX)A2 is a pro-inflammatory mediator implicated in several prostatic diseases, including PCa. TXA2 signals through the TPα and TPβ isoforms of the T Prostanoid receptor (TP) which exhibit several functional differences and transcriptionally regulated by distinct promoters Prm1 and Prm3, respectively, within the TBXA2R gene. This study examined the expression of TPα and TPβ in inflammatory infiltrates within human prostate tissue. Strikingly, TPβ expression was detected in 94% of infiltrates, including in B- and T-lymphocytes and macrophages. In contrast, TPα was more variably expressed and, where present, expression was mainly confined to macrophages. To gain molecular insight into these findings, expression of TPα and TPβ was evaluated as a function of monocyte-to-macrophage differentiation in THP-1 cells. Expression of both TPα and TPβ was upregulated following phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 to their macrophage lineage. Furthermore, FOXP1, an essential transcriptional regulator down-regulated during monocyte-to-macrophage differentiation, was identified as a key trans-acting factor regulating TPβ expression through Prm3 in THP-1 cells. Knockdown of FOXP1 increased TPβ, but not TPα, expression in THP-1 cells, while genetic reporter and chromatin immunoprecipitation (ChIP) analyses established that FOXP1 exerts its repressive effect on TPβ through binding to four cis-elements within Prm3. Collectively, FOXP1 functions as a transcriptional repressor of TPβ in monocytes. This repression is lifted in differentiated macrophages, allowing for upregulation of TPβ expression and possibly accounting for the prominent expression of TPβ in prostate tissue-resident macrophages.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Áine G O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Reid
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Abstract
Signaling through the vitamin D receptor has been shown to be biologically active and important in a number of preclinical studies in prostate and other cancers. Epidemiologic data also indicate that vitamin D signaling may be important in the cause and prognosis of prostate and other cancers. These data indicate that perturbation of vitamin D signaling may be a target for the prevention and treatment of prostate cancer. Large studies of vitamin D supplementation will be required to determine whether these observations can be translated into prevention strategies. This paper reviews the available data in the use of vitamin D compounds in the treatment of prostate cancer. Clinical data are limited which support the use of vitamin D compounds in the management of men with prostate cancer. However, clinical trials guided by existing preclinical data are limited.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, USA
| | | |
Collapse
|
12
|
Ceran MU, Tasdemir U, Colak E, Güngör T. Can complete blood count inflammatory parameters in epithelial ovarian cancer contribute to prognosis? - a survival analysis. J Ovarian Res 2019; 12:16. [PMID: 30744662 PMCID: PMC6371536 DOI: 10.1186/s13048-019-0491-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Subjective The aim of the present study was to investigate the prognostic significance of preoperative complete blood count inflammatory markers in women operated for invasive Epithelial Ovarian Cancer (EOC). Method Two hundred forty four patients that underwent operation with the diagnosis of invasive EOC between 2006 and 2014 were included in the study. The date of operation, date of recurrence and final mortality evaluations were performed for survival analysis. The sensitivity, specificity, PPV and NPV were separately calculated with ROC analysis. Survival analysis was carried out with Kaplan Meier-Log Rank Method. Results Five-years overall survival rate was 56, 9% and 5-year disease-free survival (DFS) rate was 45,5%. Advanced disease stage, moderate-poor tumor differentiation, and the presence of recurrence were determined to have significant inverse relation at mean survival and 5-year survival rates. Neutrophil/lymphocyte ratio (NLR) and Platelet lymphocyte ratio (PLR) had prognostic effect on both DFS and overall survival based upon the cut-off values determined in the study (PLR = 231, s36, NLR = 3,83). Histopathological subtypes were not found to have any prognostic value. In correlation analysis, PLR and NLR had positive correlation with each other and negative correlation with overall survival. Conclusions Inflammatory markers such as NLR and PLR have independent prognostic value for women who undergo surgery for invasive EOC.
Collapse
Affiliation(s)
- Mehmet Ufuk Ceran
- Department of Gynecology and Obstetrics, Baskent University School of Medicine, Konya Medical and Research Center, Selcuklu, Konya, Turkey.
| | - Umit Tasdemir
- Department of Gynecology and Obstetrics, Baskent University School of Medicine, Konya Medical and Research Center, Selcuklu, Konya, Turkey
| | - Eser Colak
- Department of Gynecology and Obstetrics, Baskent University School of Medicine, Konya Medical and Research Center, Selcuklu, Konya, Turkey
| | - Tayfun Güngör
- Department of Gynecologic Oncology, Zekai Tahir Burak Women's Health, Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Alabiad MA, Harb OA, Taha HF, El Shafaay BS, Gertallah LM, Salama N. Prognostic and Clinic-Pathological Significances of SCF and COX-2 Expression in Inflammatory and Malignant Prostatic Lesions. Pathol Oncol Res 2018; 25:611-624. [PMID: 30402808 DOI: 10.1007/s12253-018-0534-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022]
Abstract
The initiation of prostatic malignancy has been linked to chronic inflammation. Stem cell factor (SCF) is an inflammatory cytokine that is specific to the c-KIT receptor which is type III receptor tyrosine kinase (RTK). Cyclooxygenases (COXs) are the main enzymes which are responsible for prostaglandins production from arachidonic acid. COX2 is an enzyme which is produced under different pathological conditions. The aim of our study; is to investigate the clinicopathological and the prognostic significance of SCF and COX-2 expression in prostatic adenocarcinoma (PC), chronic prostatitis and nodular prostatic hyperplasia (NPH) in a trial to clarify the role of inflammation as a risk factor for prostatic carcinogenesis and cancer progression. SCF and COX-2 tissue protein expression were evaluated in 50 cases of PC, 20 cases of chronic prostatitis and 10 cases of NPH using immunohistochemistry, patients were followed up for 5 years. The relationship between their levels of expressions, clinicopathological, and prognostic criteria were studied. SCF expression in PC was positively correlated with advanced patient age (p = <0.001), high level of PSA (p = 0.010), higher Gleason score (p = 0.011). COX-2 expression in PC was positively correlated with advanced patient age (p = <0.001), high level of PSA (p = 0.016), advanced D'Amico risk group (p = 0.038). High levels of expression of both SCF& COX-2 are associated with higher incidence of tumor relapse, worse disease overall survival and free survival (p < 0.001). SCF and COX-2 are associated with PC progression and associated with poor prognosis in PC patients.
Collapse
Affiliation(s)
- Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola A Harb
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba F Taha
- Medical Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Basant Sh El Shafaay
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Loay M Gertallah
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nashaat Salama
- Urology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Cossiolo DC, Costa HCM, Fernandes KBP, Laranjeira LLS, Fernandes MTP, Poli-Frederico RC. POLYMORPHISM OF THE COX-2 GENE AND SUSCEPTIBILITY TO COLON AND RECTAL CANCER. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2018; 30:114-117. [PMID: 29257846 PMCID: PMC5543789 DOI: 10.1590/0102-6720201700020008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/11/2017] [Indexed: 11/21/2022]
Abstract
Background: The colorectal neoplasm is the fourth most common malignancy among males and the third among females. In the Western world is estimated that 5% of the population will develop it, making this disease a major public health problem. Aim: To analyze the prevalence of the polymorphism -765G / C region of the COX-2 gene in colorectal cancer patients compared to a control group, analyzing the possible association between this polymorphism and susceptibility to colorectal cancer. Method: This is a case-control study with 85 participants. Were selected 25 with colorectal cancer (case group) and 60 participants without colorectal neoplasia (control group). The molecular genetic analysis was perform to identify the polymorphism -765G / C COX2 gene with standard literature technique. In addition, patient’s clinical and pathological data were analyzed. Results: There was a light increase in prevalence between men in the case group, although this difference was not statistically significant. The results showed a high prevalence of GC and CC genotype in individuals with colorectal cancer, demonstrating an association between the presence of the polymorphism in the COX2 gene and susceptibility to colorectal cancer in this pattern (p=0.02). Similarly, there was also difference in allele frequencies in the groups. When patients with cancer were separated by tumor location, there was a higher prevalence of polymorphism in the left colon (p=0.02). Conclusion: The polymorphism in the COX2 gene is associated with increased susceptibility to colorectal cancer, specially rectosigmoid tumors.
Collapse
Affiliation(s)
| | | | | | - Lino Luis Sanches Laranjeira
- Catholic University of Paraná, School of Medicine, Londrina, PR.,Colorectal Surgery, Institute of Cancer of Londrina, Londrina, PR
| | | | | |
Collapse
|
15
|
Li J, Lu X, Zou X, Jiang Y, Yao J, Liu H, Ni B, Ma H. COX-2 rs5275 and rs689466 polymorphism and risk of lung cancer: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e11859. [PMID: 30170377 PMCID: PMC6393127 DOI: 10.1097/md.0000000000011859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) is an inducible enzyme that mediates the synthesis of prostaglandin, which plays an important role in the inflammation response. The overexpression of COX-2 in lung cancer has been found in several studies, suggesting that COX-2 contributes to carcinogenesis. There are many previous case-control studies focused on the association between COX-2 polymorphism and lung cancer risk, however, the conclusion remained controversial. OBJECTIVES We performed this meta-analysis to evaluate the association between COX-2 rs5275 and rs689466 polymorphism and susceptibility to lung cancer. METHODS A systematic literature research was conducted on PubMed, Embase, Cochrane Library, OVID, Web of Science, and Google Scholar up to November 30, 2017. The quality of studies was assessed by Newcastle-Ottawa scale. We combined odds ratios (ORs) and 95% confidence intervals (CIs) in 5 different genetic models for evaluation under a fixed-effect model or random-effect model. Subgroup analysis was performed according to source of control, ethnicity, pathological types, and smoking status. Sensitivity analysis and publication bias were also conducted. RESULTS Eventually, 14 eligible studies were included in our meta-analysis. We found rs5275 gene polymorphism decreased the risk of lung cancer under heterozygote model (OR: 0.91, 95% CI: 0.84-0.98, P = .02). COX-2 rs689466 gene polymorphism was also related to a significantly reduced risk under allele (OR: 0.88, 95% CI: 0.82-0.95, P = .001), homozygote (OR: 0.81, 95% CI: 0.68-0.95, P = .01), heterozygote (OR: 0.81, 95% CI: 0.72-0.91, P < .001), and dominant model (OR: 0.81, 95% CI: 0.72-0.91, P < .001), except for recessive model. Subgroup analysis suggested a similar association in Asians, but not in Caucasians. Polymorphism of rs5275 was strongly associated with a reduced risk of lung adenocarcinoma according to stratified analysis by pathological types. Egger test identified no significant publication bias. CONCLUSIONS Our meta-analysis demonstrated that COX-2 rs5275 and rs689466 polymorphism significantly decrease the risk of lung cancer in Asians but not in Caucasians, indicating COX-2 could serve as a potential diagnostic marker for lung cancer.
Collapse
Affiliation(s)
| | | | | | - Yufeng Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, P. R. China
| | - Jie Yao
- Department of Thoracic Surgery
| | | | - Bin Ni
- Department of Thoracic Surgery
| | | |
Collapse
|
16
|
Trump DL. Calcitriol and cancer therapy: A missed opportunity. Bone Rep 2018; 9:110-119. [PMID: 30591928 PMCID: PMC6303233 DOI: 10.1016/j.bonr.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
The vitamin D receptor is expressed in most tissues of the body - and the cancers that arise from those tissues. The vitamin D signaling pathway is active in those tissues and cancers. This is at least consistent with the hypothesis that perturbing this signaling may have a favorable effect on the genesis and growth of cancers. Epidemiologic data indicate that vitamin D signaling may be important in the initiation and outcome of a number of types of cancer. Many studies have shown that calcitriol (1,25 dihydroxycholecalciferol) and other vitamin D compounds have antiproliferative, pro-apoptotic, anti-cell migration and antiangiogenic activity in a number of preclinical studies in many different cancer types. Unfortunately, the assessment of the activity of calcitriol or other vitamin D analogues in the treatment of cancer, as single agents or in combination with other anticancer agents has been stymied by the failure to adhere to commonly accepted principles of drug development and clinical trials conduct.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, United States of America
| |
Collapse
|
17
|
Kim SH, Park WS, Park BR, Joo J, Joung JY, Seo HK, Chung J, Lee KH. PSCA, Cox-2, and Ki-67 are independent, predictive markers of biochemical recurrence in clinically localized prostate cancer: a retrospective study. Asian J Androl 2018; 19:458-462. [PMID: 27232854 PMCID: PMC5507093 DOI: 10.4103/1008-682x.180798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is the second most common male cancer, with half of all patients going on to develop metastases. To better identify patients at high risk for prostate cancer progression and reduce prostate cancer-related mortality, improved prognostic factors are required. In this study, we used immunohistochemistry (IHC) to determine the prognostic values of multiple tissue biomarkers in hormone-naοve prostatectomy specimens of prostate cancer. Using 510 prostatectomy specimens collected between 2002 and 2012, IHC analysis was performed for Cerb-2, Cyclin D1, VEGF, EGFR, Rb, PSCA, p53, Bcl-2, Cox-2, PMS2, and Ki-67 on formalin-fixed paraffin-embedded sections. The Cox proportional hazard model was used to determine the predictive risk factors for biochemical recurrence (BCR) of prostate cancer. During a median 44-month follow-up, 128 (25.1%) patients developed BCR. A multivariate regression analysis revealed that Ki-67 (hazard ratio [HR]: 1.60, P = 0.033), PSCA (HR: 0.42, P < 0.001), and Cox-2 (HR: 2.05, P = 0.003) were the only significant prognostic tissue markers of BCR. Resection margin status (HR: 1.67, P = 0.010), pathologic pT0/1/2 stage (vs pT3/4; HR: 0.20, P = 0.002), preoperative PSA levels (HR: 1.03, P < 0.001), biopsied (HR: 1.30, P = 0.022) and pathologic (HR: 1.42, P = 0.005) Gleason scores, and prostate size (HR: 0.97, P = 0.003) were significant clinicopathologic factors. The expression of Ki-67, PSCA, and Cox-2 biomarkers along with other clinicopathologic factors were prognostic factors for BCR in patients with clinically localized prostate cancer following radical prostatectomy.
Collapse
Affiliation(s)
- Sung Han Kim
- Department of Urology, Center for Prostate Cancer, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Weon Seo Park
- Department of Urology, Center for Prostate Cancer, Research Institute and Hospital of National Cancer Center, Goyang, Korea.,Department of Pathology, Center for Prostate Cancer, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Bo Ram Park
- Department of Statistics, Biometric Research Branch, Clinical Research Coordination Center, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jungnam Joo
- Department of Statistics, Biometric Research Branch, Clinical Research Coordination Center, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jae Young Joung
- Department of Urology, Center for Prostate Cancer, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ho Kyung Seo
- Department of Urology, Center for Prostate Cancer, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jinsoo Chung
- Department of Urology, Center for Prostate Cancer, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Kang Hyun Lee
- Department of Urology, Center for Prostate Cancer, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| |
Collapse
|
18
|
Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2017; 15:11-24. [PMID: 29089606 DOI: 10.1038/nrurol.2017.167] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inflammation promotes the development of several types of solid cancers and might contribute to prostate carcinogenesis. This hypothesis partly originates in the frequent observation of inflammatory cells in the prostate microenvironment of adult men. Inflammation is associated with putative prostate cancer precursor lesions, termed proliferative inflammatory atrophy. Inflammation might drive prostate carcinogenesis via oxidative stress and generation of reactive oxygen species that induce mutagenesis. Additionally, inflammatory stress might cause epigenetic alterations that promote neoplastic transformation. Proliferative inflammatory atrophy is enriched for proliferative luminal epithelial cells of intermediate phenotype that might be prone to genomic alterations leading to prostatic intraepithelial neoplasia and prostate cancer. Studies in animals suggest that inflammatory changes in the prostate microenvironment contribute to reprogramming of prostate epithelial cells, a possible step in tumour initiation. Prostatic infection, concurrent with epithelial barrier disruption, might be a key driver of an inflammatory microenvironment; the discovery of a urinary microbiome indicates a potential source of frequent exposure of the prostate to a diverse number of microorganisms. Hence, current evidence suggests that inflammation and atrophy are involved in prostate carcinogenesis and suggests a role for the microbiome in establishing an inflammatory prostate microenvironment that might promote prostate cancer development and progression.
Collapse
Affiliation(s)
- Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| |
Collapse
|
19
|
Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. APPLIED BIOLOGICAL CHEMISTRY 2017; 60:327-338. [DOI: 10.1007/s13765-017-0285-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
20
|
Liu MC, Chen WH, Chiou CS, Lo WC, Dubey NK, Chen YC, Lai WFT, Yeh SD, Chiang HS, Deng WP. Inhibition of chronic prostate inflammation by hyaluronic acid through an immortalized human prostate stromal cell line model. PLoS One 2017; 12:e0178152. [PMID: 28558037 PMCID: PMC5448756 DOI: 10.1371/journal.pone.0178152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/08/2017] [Indexed: 11/24/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is the most common urologic disease among elderly men. A well-established in vitro cell model is required to determine the therapeutic mechanism of BPH inflammation. In this study, we attempted to establish an immortalized human prostate stromal cell line by transfecting with HPV-16 E6/E7 and designated as ihPSC. No significant difference was found in fibroblast-like morphology between primary hPSC and ihPSC. The ihPSC possessed a significantly higher cell proliferation rate than primary hPSC. The prostate-specific markers and proteins including cytoskeleton (α-SMA and vimentin) and smooth muscle (calponin), especially the androgen receptor (AR) were also examined in ihPSC, almost identical to the primary hPSC. To create an in vitro model featuring chronic prostatic inflammation, ihPSC was stimulated with IFN-γ+IL-17 and then treated with the high molecular weight hyaluronic acid hylan G-F 20 as an alternative strategy for inhibiting BPH inflammation. Hylan G-F 20 could dose-dependently diminish the inflammation-induced proliferation in ihPSC. The enhanced expressions of inflammatory molecules including IL-1β, IL-6, IL-8, cyclooxygenase 2 (COX2), inducible nitrogen oxide synthase (iNOS), and Toll-like receptor 4 (TLR4) were all abolished by hylan G-F 20. For inflammatory signaling, hylan G-F 20 can also diminish the IFN-γ+IL-17-increased expression of iNOS and p65 in ihPSC. These findings suggest that ihPSC could provide a mechanism-based platform for investigating prostate inflammation. The hylan G-F 20 showed strong anti-inflammatory effects by decreasing inflammatory cytokines and signalings in the ihPSC, indicating its therapeutic potentials in BPH treatment in the future.
Collapse
Affiliation(s)
- Ming-Che Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan, R.O.C
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Wei-Hong Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, R.O.C
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Chi-Sheng Chiou
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, R.O.C
| | - Wen-Cheng Lo
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan, R.O.C
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Navneet Kumar Dubey
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, R.O.C
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Yu-Chin Chen
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Wen-Fu T. Lai
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shauh-Der Yeh
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan, R.O.C
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Han-Sun Chiang
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Win-Ping Deng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan, R.O.C
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan, R.O.C
- College of Oral medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Ko CJ, Lan SW, Lu YC, Cheng TS, Lai PF, Tsai CH, Hsu TW, Lin HY, Shyu HY, Wu SR, Lin HH, Hsiao PW, Chen CH, Huang HP, Lee MS. Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene 2017; 36:4597-4609. [PMID: 28368394 DOI: 10.1038/onc.2017.82] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic inflammation plays an important role in cancer development and progression. Cyclooxygenases-2 (COX-2) is a key enzyme in generating prostaglandins causing inflammation, is often found to be overexpressed in prostate cancer (PCa) and is correlated with PCa cell invasion and metastasis. We aim to investigate the molecular mechanism of how COX-2 promotes PCa cell invasion and metastasis and to evaluate the effect of COX-2 inhibitors in a selected model of PCa progression. Our results showed that the expression of COX-2 and Interleukin 1β (IL-1β) was upregulated in highly invasive PCa cells and was correlated with the activated levels of membrane-anchored serine protease matriptase. The expression levels of COX-2 were increased and were correlated with matriptase levels in PCa specimens. Moreover, results showed that COX-2 overexpression or a COX-2 product Prostaglandin E2 (PGE2) caused an increase in matriptase activation and PCa cell invasion, whereas COX-2 silencing antagonized matriptase activation and cell invasion. In addition, the inhibition of COX-2-mediated matriptase activation by Celebrex and sulindac sulfide suppressed the androgen-independent and COX2-overexpressing PCa PC-3 cell invasion, tumor growth and lung metastasis in an orthotopic xenograft model. Our results indicate that COX-2/matriptase signaling contributes to the invasion, tumor growth and metastasis of COX-2-overexpressing and androgen-independent PCa cells.
Collapse
Affiliation(s)
- C-J Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-W Lan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-C Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - T-S Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - P-F Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-H Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - T-W Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-Y Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-Y Shyu
- Bureau of Investigation, Ministry of Justice, Taipei, Taiwan
| | - S-R Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-H Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - P-W Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - C-H Chen
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - H-P Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - M-S Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Sarbishegi M, Khajavi O, Arab MR. Withania coagulans Extract Induces Cell Apoptosis and Inhibits COX-2 Expression in a Rat Model of Benign Prostatic Hyperplasia. Nephrourol Mon 2016; 8:e39284. [PMID: 27878112 PMCID: PMC5111096 DOI: 10.5812/numonthly.39284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Background Phytotherapy is a popular treatment option in cases of benign prostatic hyperplasia (BPH), with many different herbal products being used for the treatment of this condition. Withania coagulans (WC) is an herbal medicine that has shown anti-tumoral, anti-inflammatory, and antioxidant effects. Objectives This study examined the effect of Withania coagulans extract (WCE) on prostatic cell apoptosis and cyclooxygenase-2 (COX-2) expression in cases of benign prostatic hyperplasia (BPH) in rats. Methods Forty Wistar rats were equally divided into five groups: control, sham, BPH, BPH + WCE, and BPH + CLX (celecoxib) as a positive control group. The induction of BPH was achieved via the subcutaneous injection of 3 mg/kg of testosterone propionate (TP) daily for 28 days. The animals received WCE, celecoxib, or distilled water by oral gavage accompanied by the TP injection. After four weeks, the prostate glands of the rats were weighed to measure the prostatic index (PI). The ventral lobes of the prostates were dissected and processed with paraffin blocks in order to study the number of mast cells. A TUNEL analysis was performed to evaluate the cell apoptosis, while the expression of COX-2 was examined using immunohistochemistry. Results BPH was obvious in the ventral lobe of the prostate, and the administration of WCE markedly decreased the PI and the number of mast cells (P < 0.001) in the BPH rats. Additionally, the WCE treatment induced prostatic cell apoptosis when compared to the BPH group. Furthermore, following the WCE treatment, the expression of COX-2 in the prostatic tissues was significantly decreased when compared to the BPH groups. Conclusions According to the results of this study, WCE was effective in the treatment of BPH in rats. It may therefore have beneficial effects in the treatment of patients with BPH.
Collapse
Affiliation(s)
- Maryam Sarbishegi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Corresponding author: Maryam Sarbishegi, Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran. Tel: +98-3329571519, Fax: +98-33291124, E-mail:
| | - Ozra Khajavi
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
| | - Mohammad Reza Arab
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
| |
Collapse
|
23
|
Investigating associations of cyclooxygenase-2 expression with angiogenesis, proliferation, macrophage and T-lymphocyte infiltration in canine melanocytic tumours. Melanoma Res 2016; 26:338-47. [DOI: 10.1097/cmr.0000000000000262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Adissu HA, McKerlie C, Di Grappa M, Waterhouse P, Xu Q, Fang H, Khokha R, Wood GA. Timp3 loss accelerates tumour invasion and increases prostate inflammation in a mouse model of prostate cancer. Prostate 2015; 75:1831-43. [PMID: 26332574 DOI: 10.1002/pros.23056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. METHODS To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. RESULTS Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. CONCLUSIONS This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression.
Collapse
Affiliation(s)
- Hibret A Adissu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
- Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto 1 King's College Circle, Toronto, Ontario, Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Colin McKerlie
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
- Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto 1 King's College Circle, Toronto, Ontario, Canada
| | - Marco Di Grappa
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Paul Waterhouse
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Qiang Xu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
25
|
Sobolewski C, Rhim J, Legrand N, Muller F, Cerella C, Mack F, Chateauvieux S, Kim JG, Yoon AY, Kim KW, Dicato M, Diederich M. 2,5-Dimethyl-celecoxib inhibits cell cycle progression and induces apoptosis in human leukemia cells. J Pharmacol Exp Ther 2015; 355:308-28. [PMID: 26330537 DOI: 10.1124/jpet.115.225011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/28/2015] [Indexed: 03/08/2025] Open
Abstract
Cyclooxygenase-2 (COX-2) is an essential regulator of cancer promotion and progression. Extensive efforts to target this enzyme have been developed to reduce growth of cancer cells for chemopreventive and therapeutic reasons. In this context, cyclooxygenase-2 inhibitors present interesting antitumor effects. However, inhibition of COX-2 by anti-COX-2 compounds such as celecoxib was recently associated with detrimental cardiovascular side effects limiting their clinical use. As many anticancer effects of celecoxib are COX-2 independent, analogs such as 2,5-dimethyl-celecoxib (DMC), which lacks COX-2-inhibitory activity, represent a promising alternative strategy. In this study, we investigated the effect of this molecule on growth of hematologic cancer cell lines (U937, Jurkat, Hel, Raji, and K562). We found that this molecule is able to reduce the growth and induces apoptosis more efficiently than celecoxib in all the leukemic cell lines tested. Cell death was associated with downregulation of Mcl-1 protein expression. We also found that DMC induces endoplasmic reticulum stress, which is associated with a decreased of GRP78 protein expression and an alteration of cell cycle progression at the G1/S transition in U937 cells. Accordingly, typical downregulation of c-Myc and cyclin D1 and an upregulation of p27 were observed. Interestingly, for shorter time points, an alteration of mitotic progression, associated with the downregulation of survivin protein expression was observed. Altogether, our data provide new evidence about the mode of action of this compound on hematologic malignancies.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Jiyun Rhim
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Noémie Legrand
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Fabienne Mack
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Sébastien Chateauvieux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Jeoung-Gyun Kim
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Ah-Young Yoon
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Kyu-Won Kim
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg (C.S., N.L., F.Mu. C.C., F.Ma., S.C., M.Dic.); Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea (J.R., S.C., M.Die.); and SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea (J.G.K., A.Y.Y., K.W.K.)
| |
Collapse
|
26
|
Müller C, Tufa DM, Chatterjee D, Mühlradt PF, Schmidt RE, Jacobs R. The TLR-2/TLR-6 agonist macrophage-activating lipopeptide-2 augments human NK cell cytotoxicity when PGE2 production by monocytes is inhibited by a COX-2 blocker. Cancer Immunol Immunother 2015; 64:1175-84. [PMID: 26036909 PMCID: PMC11028474 DOI: 10.1007/s00262-015-1723-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/24/2015] [Indexed: 12/29/2022]
Abstract
Macrophage-activating lipopeptide-2 (MALP-2) is a potent inducer of proinflammatory cytokine secretion by macrophages, monocytes, and dendritic cells. MALP-2 was reported to be involved in natural killer (NK) cell activation and ensuing tumor rejection. However, the mechanism of MALP-2-mediated NK cell activation remained unclear. Therefore, we studied the effects of MALP-2 on cultured human NK cells. We found that MALP-2 had no direct effect on NK cells. Instead, MALP-2 acted on monocytes and triggered the release of different molecules such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-15, interferon gamma-induced protein (IP-10), and prostaglandin (PG)-E2. Our data show that monocyte-derived IP-10 could significantly induce NK cell cytotoxicity as long as the immunosuppression by PGE2 is specifically inhibited by cyclooxygenase (COX)-2 blockade. In summary, our results show that MALP-2-mediated stimulation of monocytes results in the production of several mediators which, depending on the prevailing conditions, affect the activity of NK cells in various ways. Hence, MALP-2 administration with concurrent blocking of COX-2 can be considered as a promising approach in MALP-2-based adjuvant tumor therapies.
Collapse
Affiliation(s)
- Christina Müller
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dejene M. Tufa
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Debanjana Chatterjee
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | - Reinhold E. Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
27
|
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium. Sci Rep 2015; 5:12977. [PMID: 26256764 PMCID: PMC4530342 DOI: 10.1038/srep12977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage.
Collapse
|
28
|
|
29
|
Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes. Apoptosis 2015; 20:466-80. [DOI: 10.1007/s10495-014-1084-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Lack of association between COX-2 8473T>C polymorphism and breast cancer risk: a meta-analysis. Contemp Oncol (Pozn) 2014; 18:177-81. [PMID: 25520577 PMCID: PMC4269000 DOI: 10.5114/wo.2014.41394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/15/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Aim of the study Results of recent published studies on the association between the COX-2 8473T>C polymorphism and the risk of breast cancer have often been conflicting. To make a more precise estimation of the potential relationship, a meta-analysis was performed. Material and methods A total of seven case-control studies with 7,033 cases and 9,350 controls were included in the current meta-analysis through searching the databases of PubMed, Embase, and Cochrane Library (up to March 1st, 2013). The odds ratio (OR) and 95% confidence interval (95% CI) were calculated to assess the strength of the association. The meta-analysis was conducted in a fixed/random effect model. Results We found no significant associations for all genetic models after all studies were pooled into the meta-analysis (for C vs. T: OR = 0.974, 95% CI: 0.906–1.047, p = 0.471; for CC vs. TT: OR = 0.957, 95% CI: 0.803–1.140, p = 0.62; for TC vs. TT: OR = 0.964, 95% CI: 0.881–1.055, p = 0.421; for CC + TC vs. TT: OR = 0.963, 95% CI: 0.880–1.053, p = 0.406; for CC vs. TT + TC: OR = 0.978, 95% CI: 0.831–1.15, p = 0.788). We also observed no obvious associations in the subgroup analyses by ethnicity (Caucasian) and source of controls (population based, PB) for all genetic models. Conclusions Current evidence suggests that the COX-2 8473T>C polymorphism is not associated with breast cancer risk.
Collapse
|
31
|
Saturated fatty acids up-regulate COX-2 expression in prostate epithelial cells via toll-like receptor 4/NF-κB signaling. Inflammation 2014; 37:467-77. [PMID: 24221358 DOI: 10.1007/s10753-013-9760-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cyclooxygenase-2 (COX-2) has been implicated in prostate carcinogenesis, and recently it has been confirmed to be a molecular target of saturated fatty acids (SFAs). In the present study, we investigated the effect of stearic acid (SA) and palmitic acid (PA), two of the most abundant SFAs contained in dietary fat, on COX-2 expression in prostate epithelial cells and the signaling transduction pathway involved. First, we demonstrated that both SA and PA increased the mRNA and protein expression of COX-2, and consistently induced the activation of NF-κB in RWPE-1, BPH-1 and PC-3 prostate epithelial cell lines. The effect of SA and PA on COX-2 over-expression and NF-κB activation was in a dose-dependent manner, and PA was more potent than SA at the same concentration. Then, we demonstrated inhibition of NF-κB using its specific inhibitor strikingly attenuated PA-induced COX-2 expression. Toll-like receptor 4 (TLR4) was revealed to be expressed on RWPE-1, BPH-1 and PC-3 cell lines by PCR and immunofluorescence staining, and blocking its signaling significantly inhibited PA induced COX-2 over-expression and NF-κB activation. Taken together, we demonstrated that SFAs can up-regulate COX-2 expression in prostate epithelial cells, and this effect was mediated mainly through the TLR4/NF-κB signaling pathway.
Collapse
|
32
|
Peng Q, Yang S, Lao X, Tang W, Chen Z, Lai H, Wang J, Sui J, Qin X, Li S. Meta-analysis of the association between COX-2 polymorphisms and risk of colorectal cancer based on case-control studies. PLoS One 2014; 9:e94790. [PMID: 24733273 PMCID: PMC3986224 DOI: 10.1371/journal.pone.0094790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/20/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Cyclooxygenase-2 (COX-2) is an inducible enzyme converting arachidonic acid to prostaglandins and playing important roles in inflammatory diseases as well as tumor development. Previous studies investigating the association between COX-2 polymorphisms and colorectal cancer (CRC) risk reported conflicting results. We performed a meta-analysis of all available studies to explore this association. METHODS All studies published up to October 2013 on the association between COX-2 polymorphisms and CRC risk were identified by searching electronic databases PubMed, EMBASE, and Cochrane library. The association between COX-2 polymorphisms and CRC risk was assessed by odds ratios (ORs) together with their 95% confidence intervals (CIs). RESULTS Ten studies with 6,774 cases and 9,772 controls were included for -1195A>G polymorphism, 13 studies including 6,807 cases and 10,052 controls were available for -765G>C polymorphism, and 8 studies containing 5,121 cases and 7,487 controls were included for 8473T>C polymorphism. With respect to -765G>C polymorphism, we did not find a significant association with CRC risk when all eligible studies were pooled into the meta-analysis. However, in subgroup analyses by ethnicity and cancer location, with a Bonferroni corrected alpha of 0.05/2, statistical significant increased CRC risk was found in the Asian populations (dominant model CC+CG vs. GG: OR = 1.399, 95%CI: 1.113-1.760, P = 0.004) and rectum cancer patients (CC vs. GG: OR = 2.270, 95%CI: 1.295-3.980, P = 0.004; Recessive model CC vs. CG+GG: OR = 2.269, 95%CI: 1.297-3.970, P = 0.004). In subgroup analysis according to source of control, no significant association was detected. With respect to -1195A>G and 8473T>C polymorphisms, no significant association with CRC risk was demonstrated in the overall and subgroup analyses. CONCLUSIONS The present meta-analysis suggests that the COX-2 -765G>C polymorphism may be a risk factor for CRC in Asians and rectum cancer patients. Further large and well-designed studies are needed to confirm this association.
Collapse
Affiliation(s)
- Qiliu Peng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shi Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianjun Lao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weizhong Tang
- Department of Anal and Colorectal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiping Chen
- Department of Occupational Health and Environmental Health, School of Public Health at Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Lai
- Department of Gastrointestinal Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jingzhe Sui
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (XQ); (SL)
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (XQ); (SL)
| |
Collapse
|
33
|
Inhibitor of 5-lipoxygenase, zileuton, suppresses prostate cancer metastasis by upregulating E-cadherin and paxillin. Urology 2014; 82:1452.e7-14. [PMID: 24295266 DOI: 10.1016/j.urology.2013.08.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/07/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the expression of 5-lipoxygenase (5-LOX) in metastatic prostate cancer and whether zileuton, the inhibitor of 5-LOX, plays a role in the metastasis of prostate cancer. METHODS An enzyme-linked immunosorbent assay was used to measure 5-hydroxyeicosatetraenoic acid (5-HETE) in patient and TRAMP mice blood samples. Kaplan-Meier analysis and the log-rank test were used to analyze the survival of the mice. Immunofluorescence and immunohistochemistry were used to assay the expression of 5-LOX in the samples. After treatment with 10 μM zileuton, cell motility and the invasion of PC-3 cells were assayed using immunofluorescence, Western blotting, and transwell. TRAMP mice were treated with zileuton (600 mg/kg and 1200 mg/kg) at 24 weeks of age. Ten weeks later, the mice were killed, and the tumors (size and number) were measured. RESULTS The levels of 5-HETE were significantly greater in the TRAMP mice with metastasis than in the tumors in situ. However, no such difference was found in the human samples. The lifespan of the mice was shorter at high levels of 5-HETE (>2.4 ng/mL). The expression of 5-LOX in the metastasis sample was notably greater than that in the tumors in situ. After treatment with zileuton, the expression of paxillin and E-cadherin in PC-3 and LNCaP cells was upregulated. In the transwell experiments, the motility of PC-3 was suppressed after treatment with zileuton. The mice treated with a high level of zileuton (1200 mg/kg) also had fewer tumors; however, the size did not show a significant difference. CONCLUSION The inhibitor of 5-LOX, zileuton, can suppress prostate cancer metastasis by repaired expression of E-cadherin and paxillin.
Collapse
|
34
|
Garcia M, Velez R, Romagosa C, Majem B, Pedrola N, Olivan M, Rigau M, Guiu M, Gomis RR, Morote J, Reventós J, Doll A. Cyclooxygenase-2 inhibitor suppresses tumour progression of prostate cancer bone metastases in nude mice. BJU Int 2014; 113:E164-77. [DOI: 10.1111/bju.12503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marta Garcia
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Roberto Velez
- Universitat Autònoma de Barcelona; Barcelona Spain
- Orthopaedic Surgery and Traumatology Department; Vall d'Hebron University Hospital; Barcelona Spain
| | - Cleofé Romagosa
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Pathology; Vall d'Hebron University Hospital; Barcelona Spain
| | - Blanca Majem
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Núria Pedrola
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Mireia Olivan
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Orthopaedic Surgery and Traumatology Department; Vall d'Hebron University Hospital; Barcelona Spain
| | - Marina Rigau
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Marc Guiu
- Oncology Programme; Institute for Research in Biomedicine (IRB-Barcelona); Barcelona Spain
| | - Roger R. Gomis
- Oncology Programme; Institute for Research in Biomedicine (IRB-Barcelona); Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona Spain
| | - Juan Morote
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Urology; Vall d'Hebron University Hospital; Barcelona Spain
| | - Jaume Reventós
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Basic Science; International University of Catalonia; Barcelona Spain
| | - Andreas Doll
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Department of Basic Science; International University of Catalonia; Barcelona Spain
| |
Collapse
|
35
|
The role of inflammation in prostate cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:153-81. [PMID: 24818723 DOI: 10.1007/978-3-0348-0837-8_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the United States and in "Westernized" countries, the prevalence of both prostate cancer and prostate inflammation is very high, indicating that the two pathologies could be causally related. Indeed, chronic inflammation is now regarded as an "enabling" characteristic of human cancer. Prostate cancer incidence is thought to be mediated in part by genetics, but also by environmental exposures, including the same exposures that may contribute to the development of prostatic inflammation. As our understanding of the role of inflammation in cancer deepens, it is increasingly apparent that "inflammation" as a whole is a complex entity that does not always play a negative role in cancer etiology. In fact, inflammation can play potentially dichotomous (both pro and antitumorigenic) roles depending on the nature and the cellular makeup of the immune response. This chapter will focus on reviewing the current state of knowledge on the role of innate and adaptive immune cells within the prostate tumor microenvironment and their seemingly complex role in prostate cancer in preventing versus promoting initiation and progression of the disease.
Collapse
|
36
|
Vitamin k2, a naturally occurring menaquinone, exerts therapeutic effects on both hormone-dependent and hormone-independent prostate cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:287358. [PMID: 24062781 PMCID: PMC3767046 DOI: 10.1155/2013/287358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/30/2013] [Indexed: 12/31/2022]
Abstract
In recent years, several studies have shown that vitamin k2 (VK2) has anticancer activity in a variety of cancer cells. The antitumor effects of VK2 in prostate cancer are currently not known. In the present study, we sought to characterize the anticancer potential of VK2 in both androgen-dependent and -independent prostate cancer cells. Our investigations show that VK2 is able to suppress viability of androgen-dependent and androgen-independent prostate cancer cells via caspase-3 and -8 dependent apoptosis. We also show that VK2 treatment reduces androgen receptor expression and PSA secretion in androgen-dependent prostate cancer cells. Our results also implicate VK2 as a potential anti-inflammatory agent, as several inflammatory genes are downregulated in prostate cancer cells following treatment with VK2. Additionally, AKT and NF-kB levels in prostate cancer cells are reduced significantly when treated with VK2. These findings correlated with the results of the Boyden chamber and angiogenesis assay, as VK2 treatment reduced cell migration and angiogenesis potential of prostate cancer cells. Finally, in a nude mice model, VK2 administration resulted in significant inhibition of both androgen-dependent and androgen-independent tumor growth. Overall, our results suggest that VK2 may be a potential therapeutic agent in the treatment of prostate cancer.
Collapse
|
37
|
Taddei ML, Giannoni E, Comito G, Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett 2013; 341:80-96. [PMID: 23376253 DOI: 10.1016/j.canlet.2013.01.042] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/12/2022]
Abstract
Cancer cells undergo genetic changes allowing their adaptation to environmental changes, thereby obtaining an advantage during the long metastatic route, disseminated of several changes in the surrounding environment. In particular, plasticity in cell motility, mainly due to epigenetic regulation of cancer cells by environmental insults, engage adaptive strategies aimed essentially to survive in hostile milieu, thereby escaping adverse sites. This review is focused on tumor microenvironment as a collection of structural and cellular elements promoting plasticity and adaptive programs. We analyze the role of extracellular matrix stiffness, hypoxia, nutrient deprivation, acidity, as well as different cell populations of tumor microenvironment.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | |
Collapse
|
38
|
Huang HFS, Shu P, Murphy TF, Aisner S, Fitzhugh VA, Jordan ML. Significance of Divergent Expression of Prostaglandin EP4 and EP3 Receptors in Human Prostate Cancer. Mol Cancer Res 2013; 11:427-39. [DOI: 10.1158/1541-7786.mcr-12-0464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Hamsin DEZA, Hamid RA, Yazan LS, Taib CNM, Ting YL. The hexane fraction of Ardisia crispa Thunb. A. DC. roots inhibits inflammation-induced angiogenesis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:5. [PMID: 23298265 PMCID: PMC3547822 DOI: 10.1186/1472-6882-13-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 01/04/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ardisia crispa (Myrsinaceae) is used in traditional Malay medicine to treat various ailments associated with inflammation, including rheumatism. The plant's hexane fraction was previously shown to inhibit several diseases associated with inflammation. As there is a strong correlation between inflammation and angiogenesis, we conducted the present study to investigate the anti-angiogenic effects of the plant's roots in animal models of inflammation-induced angiogenesis. METHODS We first performed phytochemical screening and high-performance liquid chromatography (HPLC) fingerprinting of the hexane fraction of Ardisia crispa roots ethanolic extract (ACRH) and its quinone-rich fraction (QRF). The anti-inflammatory properties of ACRH and QRF were tested using the Miles vascular permeability assay and the murine air pouch granuloma model following oral administration at various doses. RESULTS Preliminary phytochemical screening of ACRH revealed the presence of flavonoids, triterpenes, and tannins. The QRF was separated from ACRH (38.38% w/w) by column chromatography, and was isolated to yield a benzoquinonoid compound. The ACRH and QRF were quantified by HPLC. The LD(50) value of ACRH was 617.02 mg/kg. In the Miles vascular permeability assay, the lowest dose of ACRH (10 mg/kg) and all doses of QRF significantly reduced vascular endothelial growth factor (VEGF)-induced hyperpermeability, when compared with the vehicle control. In the murine air pouch granuloma model, ACRH and QRF both displayed significant and dose-dependent anti-inflammatory effects, without granuloma weight. ACRH and QRF significantly reduced the vascular index, but not granuloma tissue weight. CONCLUSIONS In conclusion, both ACRH and QRF showed potential anti-inflammatory properties in a model of inflammation-induced angiogenesis model, demonstrating their potential anti-angiogenic properties.
Collapse
|
40
|
Kazma R, Mefford JA, Cheng I, Plummer SJ, Levin AM, Rybicki BA, Casey G, Witte JS. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. PLoS One 2012; 7:e51680. [PMID: 23272139 PMCID: PMC3522730 DOI: 10.1371/journal.pone.0051680] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/05/2012] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer is the most frequent and second most lethal cancer in men in the United States. Innate immunity and inflammation may increase the risk of prostate cancer. To determine the role of innate immunity and inflammation in advanced prostate cancer, we investigated the association of 320 single nucleotide polymorphisms, located in 46 genes involved in this pathway, with disease risk using 494 cases with advanced disease and 536 controls from Cleveland, Ohio. Taken together, the whole pathway was associated with advanced prostate cancer risk (P = 0.02). Two sub-pathways (intracellular antiviral molecules and extracellular pattern recognition) and four genes in these sub-pathways (TLR1, TLR6, OAS1, and OAS2) were nominally associated with advanced prostate cancer risk and harbor several SNPs nominally associated with advanced prostate cancer risk. Our results suggest that the innate immunity and inflammation pathway may play a modest role in the etiology of advanced prostate cancer through multiple small effects.
Collapse
Affiliation(s)
- Rémi Kazma
- Department of Epidemiology and Biostatistics and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Joel A. Mefford
- Department of Epidemiology and Biostatistics and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Iona Cheng
- Epidemiology Program, University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, Hawai’i, United States of America
| | - Sarah J. Plummer
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Albert M. Levin
- Department of Biostatistics and Research Epidemiology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Benjamin A. Rybicki
- Department of Biostatistics and Research Epidemiology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Graham Casey
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - John S. Witte
- Department of Epidemiology and Biostatistics and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Peng Y, Shi J, Du X, Wang L, Klocker H, Mo L, Mo Z, Zhang J. Prostaglandin E2 induces stromal cell-derived factor-1 expression in prostate stromal cells by activating protein kinase A and transcription factor Sp1. Int J Biochem Cell Biol 2012; 45:521-30. [PMID: 23246486 DOI: 10.1016/j.biocel.2012.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/01/2012] [Accepted: 11/25/2012] [Indexed: 12/29/2022]
Abstract
Recent reports indicate prostaglandin E2 (PGE2) can modulate tumor environment and promote angiogenesis through induction of stromal cell-derived factor 1 (SDF-1) production. We investigated the mechanism of PGE2-induced SDF-1 regulation in human prostate stromal cell and analyzed the effects in a stromal-epithelial interaction model. PGE2 stimulation increased SDF-1 expression in the prostate stromal cell lines WPMY-1 and NAF. We revealed signaling through the PGE2 receptor EP3 and activation of protein kinase A (PKA) are required. The EP3 agonist sulprostone and the cAMP analog forskolin mimicked and the EP3 siRNA, antagonist L798106 and the PKA inhibitor H89 abrogated the effect of PGE2 on SDF-1 expression. SDF-1 promoter truncation experiments demonstrated a 254 bp (from nt -219 to nt +34) SDF-1 proximal promoter fragment containing 5 putative transcription factor Sp1 binding motifs is sufficient for PGE2 induction. CHIP assays confirmed binding and PGE2 induced recruitment of Sp1 to the SDF-1 promoter. Sp1 motif mutation identified Sp1 motifs -140/-133 and -9/+1 as the crucial elements responsible for PGE2 induction. Moreover, SDF-1 was up- or down-regulated by Sp1 over-expression or knock-down. We also demonstrate stimulation of migration of prostate cancer cell lines PC3 and DU145 with conditioned media collected from WPMY-1 or NAF cells stimulated with PGE2 and blockade of enhanced migration by a SDF-1 neutralizing antibody. In conclusion, we provide evidence for a paracrine prostate stromal-epithelial interaction induced by upregulation of expression of SDF-1 by PGE2. Our research provides new insights into the mechanism promoting metastasis of prostate carcinoma via stromal-epithelial interaction.
Collapse
Affiliation(s)
- Yanfei Peng
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice. Br J Cancer 2012; 108:91-8. [PMID: 23321513 PMCID: PMC3553512 DOI: 10.1038/bjc.2012.498] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. METHODS A 1-cm(2) area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. RESULTS Compared with sham-treated controls, the Spi(-) mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. CONCLUSION The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis.
Collapse
|
43
|
Shao N, Feng N, Wang Y, Mi Y, Li T, Hua L. Systematic review and meta-analysis of COX-2 expression and polymorphisms in prostate cancer. Mol Biol Rep 2012; 39:10997-1004. [PMID: 23053989 DOI: 10.1007/s11033-012-2001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 10/01/2012] [Indexed: 12/18/2022]
Abstract
Evidence is accumulating that cyclooxygenase-2 (COX-2) may play an important role in prostate cancer (PCa). Recently, gene polymorphisms in COX-2 have been implicated to alter the risk of PCa and overexpression of COX-2 may be associated with clinical and prognostic significance in PCa. However, the results of these studies are inconclusive or controversial. To derive a more precise estimation of the relationships, we performed an updated meta-analysis. A comprehensive search was conducted to examine all the eligible studies of COX-2 polymorphism and expression in PCa. We used odds ratios (ORs) to assess the strength of the association and the 95 % confidence intervals (CIs) give a sense of the precision of the estimate. Overall, no significant associations between COX-2 polymorphism and PCa risk were found. However, high expression of COX-2 was significantly higher in T3-T4 stages of PCa than in T1-T2 stages of PCa (OR = 2.33, 95 %CI: 1.54-3.53, P < 0.0001). COX-2 might play an important role in the progress of PCa, overexpression of COX-2 correlates with T3-T4 stages of PCa. COX-2 might be a potential therapy target for PCa and work as a prognostic factor for PCa patients.
Collapse
Affiliation(s)
- Ning Shao
- Department of Urology, Jiangsu Province Geriatric Hospital, 65 Jiangsu Road, Nanjing, 210024, China
| | | | | | | | | | | |
Collapse
|
44
|
Oleksowicz L, Liu Y, Bracken RB, Gaitonde K, Burke B, Succop P, Levin L, Dong Z, Lu S. Secretory phospholipase A2-IIa is a target gene of the HER/HER2-elicited pathway and a potential plasma biomarker for poor prognosis of prostate cancer. Prostate 2012; 72:1140-9. [PMID: 22127954 PMCID: PMC3345320 DOI: 10.1002/pros.22463] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/01/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Our previous study showed that prostate cancer cells overexpress and secrete secretory phospholipases A2 group IIa (sPLA2-IIa) and plasma sPLA2-IIa was elevated in prostate cancer patients. The current study further explored the underlying mechanism of sPLA2-IIa overexpression and the potential role of sPLA2-IIa as a prostate cancer biomarker. METHODS Plasma and tissue specimens from prostate cancer patients were analyzed for sPLA2-IIa levels. Regulation of sPLA2-IIa expression by Heregulin-α was determined by Western blot and reporter assay. RESULTS We found that Heregulin-α enhanced expression of the sPLA2-IIa gene via the HER2/HER3-elicited pathway. The EGFR/HER2 dual inhibitor Lapatinib and the NF-kB inhibitor Bortezomib inhibited sPLA2-IIa expression induced by Heregulin-α. Heregulin-α upregulated expression of the sPLA2-IIa gene at the transcriptional level. We further confirmed that plasma sPLA2-IIa secreted by mouse bearing human prostate cancer xenografts reached detectable plasma concentrations. A receiver operating characteristic (ROC) analysis of patient plasma specimens revealed that high levels of plasma sPLA2-IIa, with the optimum cutoff value of 2.0 ng/ml, were significantly associated with high Gleason score (8-10) relative to intermediate Gleason score (6-7) prostate cancers and advanced relative to indolent cancers. The area under the ROC curve (area under curve, AUC) was 0.73 and 0.74, respectively. CONCLUSION We found that Heregulin-α, in addition to EGF, contributes to sPLA2-IIa overexpression in prostate cancer cells. Our findings support the notion that high levels of plasma sPLA2-IIa may serve as a poor prognostic biomarker capable of distinguishing aggressive from indolent prostate cancers, which may improve decision-making and optimize patient management.
Collapse
Affiliation(s)
- Leslie Oleksowicz
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Yin Liu
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - R. Bruce Bracken
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Krishnanath Gaitonde
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Barbara Burke
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Paul Succop
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Linda Levin
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Zhongyun Dong
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Shan Lu
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237
- To whom correspondence should be addressed. Department of Pathology, University of Cincinnati College of Medicine, Building A, Room 259, 2120 East, Galbraith Road, Cincinnati, OH 45237-0507. Phone: 513-558-5109; Fax: 513-558-1312;
| |
Collapse
|
45
|
Vlachostergios PJ, Karasavvidou F, Patrikidou A, Voutsadakis IA, Kakkas G, Moutzouris G, Zintzaras E, Daliani DD, Melekos MD, Papandreou CN. p53 and cyclooxygenase-2 expression are directly associated with cyclin D1 expression in radical prostatectomy specimens of patients with hormone-naïve prostate cancer. Pathol Oncol Res 2012; 18:245-252. [PMID: 21786090 DOI: 10.1007/s12253-011-9435-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 07/07/2011] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a potentially curable disease when diagnosed in early stages and subsequently treated with radical prostatectomy (RP). However, a significant proportion of patients tend to relapse early, with the emergence of biochemical failure (BF) as an established precursor of progression to metastatic disease. Several candidate molecular markers have been studied in an effort to enhance the accuracy of existing predictive tools regarding the risk of BF after RP. We studied the immunohistochemical expression of p53, cyclooxygenase-2 (COX-2) and cyclin D1 in a cohort of 70 patients that underwent RP for early stage, hormone naïve PCa, with the aim of prospectively identifying any possible interrelations as well as correlations with known prognostic parameters such as Gleason score, pathological stage and time to prostate-specific antigen (PSA) relapse. We observed a significant (p = 0.003) prognostic role of p53, with high protein expression correlating with shorter time to BF (TTBF) in univariate analysis. Both p53 and COX-2 expression were directly associated with cyclin D1 expression (p = 0.055 and p = 0.050 respectively). High p53 expression was also found to be an independent prognostic factor (p = 0.023). Based on previous data and results provided by this study, p53 expression exerts an independent negative prognostic role in localized prostate cancer and could therefore be evaluated as a useful new molecular marker to be added in the set of known prognostic indicators of the disease. With respect to COX-2 and cyclin D1, further studies are required to elucidate their role in early prediction of PCa relapse after RP.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly School of Medicine, Biopolis, 41110, Larissa, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wright JL, Lin DW, Stanford JL. The effect of demographic and clinical factors on the relationship between BMI and PSA levels. Prostate 2011; 71:1631-7. [PMID: 21432865 PMCID: PMC3409087 DOI: 10.1002/pros.21380] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 02/17/2011] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Studies have reported lower prostate specific antigen (PSA) levels in men with a higher body mass index (BMI). Additional factors such as diabetes mellitus, benign prostatic hyperplasia (BPH) and certain medications may also affect PSA levels and confound the PSA-BMI association. In this study we evaluated the potential confounding effect of these factors on the obesity-PSA relationship and evaluated the association between these factors and PSA level. METHODS The study cohort consisted of 770 population-based controls without a history of prostate cancer (PCa) who participated in a prior PCa study. Demographic, anthropometric, and medical history data were obtained, and PSA level was determined from blood drawn at the time of interview. Linear regression was performed to evaluate the PSA-BMI relationship, adjusting for potential confounders. Finally, a forward stepwise algorithm was used to determine which factors were independently associated with PSA values. RESULTS With increase in BMI (<25, 25-29, ≥30), the geometric mean PSA level declined (1.18, 1.13, and 0.94, respectively); obese men had a 17% (95% CI 0.70-0.99) lower age-adjusted PSA level compared to normal weight men. However, this relationship was non-significant (P = 0.17) in the multivariate model. Independent predictors of PSA level included age (β = 1.03, 95% CI 1.02-1.04), history of BPH (β = 1.48, 95% CI 1.27-1.72), current statin (β = 0.85, 95% CI 0.74-0.98), and NSAID use (β = 0.84, 95% CI 0.72-0.98). CONCLUSION The relationship between obesity and PSA is confounded by a number of factors, which likely explain the observed inverse association previously reported. These results should help in interpreting PSA values in men screened for PCa.
Collapse
Affiliation(s)
- Jonathan L Wright
- Department of Urology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
47
|
Amirian ES, Ittmann MM, Scheurer ME. Associations between arachidonic acid metabolism gene polymorphisms and prostate cancer risk. Prostate 2011; 71:1382-9. [PMID: 21308720 PMCID: PMC7339922 DOI: 10.1002/pros.21354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/14/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND The arachidonic acid (AA) pathway is suspected to be involved in the development of various cancers, including prostate cancer. However, the role of single nucleotide polymorphisms (SNPs) of AA pathway genes remains unclear. The purpose of this case-control study was to evaluate the association between prostate cancer risk and 14 such SNPs in the PTGS2, PTGES2, ALOX5, ALOX5AP, and LTA4H genes. METHODS Genotyping was conducted on 585 white prostate cancer cases and 585 healthy, age-matched controls. The best genetic model for each SNP was determined using Akaike's information criterion. Odds ratios for the association between each SNP and prostate cancer risk were calculated, both overall and stratified by obesity (BMI ≥ 30). Haplotype analysis was conducted for the PTGES2 SNPs. RESULTS LTA4H rs1978331 was inversely associated with prostate cancer risk overall (unadjusted, overdominant model OR = 0.68, 95% CI: 0.51-0.91 for TC vs. TT/CC). Among non-obese individuals, the GG genotype of PTGES2 rs10987883 was associated with an increased risk for prostate cancer (unadjusted, recessive model OR = 3.23, 95% CI: 1.27-8.23). CONCLUSIONS Our results indicate that SNPs in certain AA metabolism genes may influence prostate cancer susceptibility. Furthermore, it is possible that obesity, which induces a chronic state of low-level inflammation in addition to several metabolic sequelae, may modify the impact of these SNPs. These findings should be confirmed in a larger study with power to detect differential effects by obesity.
Collapse
Affiliation(s)
- E. Susan Amirian
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX USA
| | - Michael M. Ittmann
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX USA
- Dept. of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
| | - Michael E. Scheurer
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX USA
- Dept. of Pediatrics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
48
|
Gyftopoulos K, Vourda K, Sakellaropoulos G, Perimenis P, Athanasopoulos A, Papadaki E. The angiogenic switch for vascular endothelial growth factor-A and cyclooxygenase-2 in prostate carcinoma: correlation with microvessel density, androgen receptor content and Gleason grade. Urol Int 2011; 87:464-9. [PMID: 21912077 DOI: 10.1159/000329289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Angiogenesis is essential for tumor growth and metastasis; however, angiogenic factors are not uniformly expressed in prostate carcinoma. Our aim was to determine the expression of vascular endothelial growth factor-A (VEGF-A) and cyclooxygenase-2 (COX-2) in prostate carcinomas in relation to intratumoral microvessel density (MVD), tumor grade and androgen receptor (AR) status. MATERIALS AND METHODS The expression of AR, VEGF-A and COX-2 was immunohistochemically evaluated in 24 benign prostatic hyperplasia (BPH) and 139 prostate carcinoma cases. MVD was evaluated by CD34 immunostaining. RESULTS Nuclear AR expression was inversely related to tumor grade (p < 0.001). MVD was strongly related to tumor grade, VEGF-A and COX-2 (p < 0.001 in all comparisons). VEGF-A expression increased with tumor grade (p < 0.01) and was inversely related to stromal AR expression. COX-2 was present in both BPH and prostate carcinoma, but its expression increased with tumor grade (p < 0.01). High-grade neoplasms presented low-to-moderate VEGF staining intensity compared to strong COX-2 expression. CONCLUSIONS Both VEGF-A and COX-2 expression is positively correlated with tumor grade and MVD. However, in Gleason 8-10 tumors, VEGF expression is moderate while COX-2 immunostaining is intense, suggesting a possible switch in the role of these two angiogenic factors in poorly differentiated neoplasms.
Collapse
Affiliation(s)
- K Gyftopoulos
- Department of Anatomy, University of Patras, School of Medicine, Patras, Greece. kogyftop @ yahoo.gr
| | | | | | | | | | | |
Collapse
|
49
|
Krishnan AV, Srinivas S, Feldman D. Inhibition of prostaglandin synthesis and actions contributes to the beneficial effects of calcitriol in prostate cancer. DERMATO-ENDOCRINOLOGY 2011; 1:7-11. [PMID: 20046582 DOI: 10.4161/derm.1.1.7106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
Abstract
Our research is aimed at obtaining a better understanding of the molecular mechanisms of the anti-proliferative and cancer preventive effects of calcitriol with the goal of developing strategies to improve the treatment of prostate cancer (PCa). In PCa cells calcitriol inhibits the synthesis and biological actions of prostaglandins (PGs) by three actions: (i) the inhibition of the expression of cyclooxygenase-2 (COX-2), the enzyme that synthesizes PGs, (ii) the upregulation of the expression of 15-prostaglandin dehydrogenase (15-PGDH), the enzyme that inactivates PGs and (iii) decreasing the expression of EP and FP PG receptors that are essential for PG signaling. Since PGs have been shown to promote carcinogenesis and progression of multiple cancers, we hypothesize that the inhibition of the PG pathway contributes to the ability of calcitriol to prevent or inhibit PCa development and growth. We have shown that the combination of calcitriol and non-steroidal anti-inflammatory drugs (NSAIDs) result in a synergistic inhibition of the growth of PCa cell cultures and this combination therapy offers a potential therapeutic strategy. These findings led us to embark on a clinical trial combining the non-selective NSAID naproxen with calcitriol in men with early recurrent PCa. The results indicate that the combination of high dose weekly calcitriol with naproxen slows the rate of rise (doubling time) of PSA in most patients indicating the slowing of disease progression. Further studies are warranted to determine the role of this combination therapy in the management of recurrent PCa.
Collapse
Affiliation(s)
- Aruna V Krishnan
- Department of Medicine; Divisions of Endocrinology; Stanford University School of Medicine; Stanford, California USA
| | | | | |
Collapse
|
50
|
Wen X, Chao C, Ives K, Hellmich MR. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells. BMC Mol Biol 2011; 12:29. [PMID: 21745389 PMCID: PMC3142223 DOI: 10.1186/1471-2199-12-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/11/2011] [Indexed: 01/06/2023] Open
Abstract
Background Cyclooxygenase-2 (COX-2) and the bombesin (BBS)-like peptide, gastrin-releasing peptide (GRP), have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR)-positive, androgen-insensitive prostate cancer cell line, PC-3. BBS-stimulated COX-2 expression is mediated, in part, by p38MAPK and PI3 kinase (PI3K)/Akt pathways, and blocked by a GRPR antagonist. The PI3K/Akt pathway couples GRPR to the transcription factor, activator protein-1 (AP-1), and enhanced COX-2 promoter activity. Although BBS stimulates nuclear factor-kappaB (NF-κB) in PC-3, NF-κB does not regulate GRPR-mediated COX-2 expression. The p38MAPK pathway increases BBS-stimulated COX-2 expression by slowing the degradation of COX-2 mRNA. Expression of recombinant GRPR in the androgen-sensitive cell line LNCaP is sufficient to confer BBS-stimulated COX-2 expression via the p38MAPK and PI3K/Akt pathways. Conclusions Our study establishes a mechanistic link between GRPR activation and enhanced COX-2 expression in prostate cancer cell lines, and suggests that inhibiting GRPR may, in the future, provide an effective therapeutic alternative to non-steroidal anti-inflammatory drugs for inhibiting COX-2 in patients with recurrent prostate cancer.
Collapse
Affiliation(s)
- Xiaodong Wen
- Department of Surgery, Univ. of Texas Medical Branch, 301 Univ. Blvd., Galveston, TX 77555, USA
| | | | | | | |
Collapse
|