1
|
Wang L, Shi F, Cao Y, Xie L. Multiple roles of branched-chain amino acid metabolism in tumour progression. J Biomed Sci 2025; 32:41. [PMID: 40205401 PMCID: PMC11983764 DOI: 10.1186/s12929-025-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-changing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeostasis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabolism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progression can enhance our understanding of the relationship between metabolism and cancer and provide new strategies for cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine (Hunan Children's Hospital), Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Ma Q, Li H, Song Z, Deng Z, Huang W, Liu Q. Fueling the fight against cancer: Exploring the impact of branched-chain amino acid catalyzation on cancer and cancer immune microenvironment. Metabolism 2024; 161:156016. [PMID: 39222743 DOI: 10.1016/j.metabol.2024.156016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Metabolism of Branched-chain amino acids (BCAAs) is essential for the nutrient necessities in mammals. Catalytic enzymes serve to direct the whole-body BCAAs oxidation which involve in the development of various metabolic disorders. The reprogrammed metabolic elements are also responsible for malignant oncogenic processes, and favor the formation of distinctive immunosuppressive microenvironment surrounding different cancers. The impotent immune surveillance related to BCAAs dysfunction is a novel topic to investigate. Here we focus on the BCAA catalysts that contribute to metabolic changes and dysregulated immune reactions in cancer progression. We summarize the current knowledge of BCAA catalyzation, highlighting the interesting roles of BCAA metabolism in the treatment of cancers.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province
| | - Zhihao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province.
| |
Collapse
|
3
|
Subhan MA, Torchilin VP. Advances in siRNA Drug Delivery Strategies for Targeted TNBC Therapy. Bioengineering (Basel) 2024; 11:830. [PMID: 39199788 PMCID: PMC11351222 DOI: 10.3390/bioengineering11080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Among breast cancers, triple-negative breast cancer (TNBC) has been recognized as the most aggressive type with a poor prognosis and low survival rate. Targeted therapy for TNBC is challenging because it lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Chemotherapy, radiation therapy, and surgery are the common therapies for TNBC. Although TNBC is prone to chemotherapy, drug resistance and recurrence are commonly associated with treatment failure. Combination therapy approaches using chemotherapy, mAbs, ADC, and antibody-siRNA conjugates may be effective in TNBC. Recent advances with siRNA-based therapy approaches are promising for TNBC therapy with better prognosis and reduced mortality. This review discusses advances in nanomaterial- and nanobiomaterial-based siRNA delivery platforms for TNBC therapy exploring targeted therapy approaches for major genes, proteins, and TFs upregulated in TNBC tumors, which engage in molecular pathways associated with low TNBC prognosis. Bioengineered siRNA drugs targeting one or several genes simultaneously can downregulate desired genes, significantly reducing disease progression.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Division of Nephrology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Li Y, Lin Y, Tang Y, Jiang M, Chen X, Chen H, Nie Q, Wu J, Tong X, Li J, Yu L, Hou J, Guo W, Chen L, Chen M, Zhang J, Lin S, Fu F, Wang C. MAZ-mediated up-regulation of BCKDK reprograms glucose metabolism and promotes growth by regulating glucose-6-phosphate dehydrogenase stability in triple-negative breast cancer. Cell Death Dis 2024; 15:516. [PMID: 39025830 PMCID: PMC11258276 DOI: 10.1038/s41419-024-06835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Tumour metabolic reprogramming is pivotal for tumour survival and proliferation. Investigating potential molecular mechanisms within the heterogeneous and clinically aggressive triple-negative breast cancer (TNBC) subtype is essential to identifying novel therapeutic targets. Accordingly, we investigated the role of branched-chain α-keto acid dehydrogenase kinase (BCKDK) in promoting tumorigenesis in TNBC. We analysed The Cancer Genome Atlas dataset and immunohistochemically stained surgical specimens to investigate BCKDK expression and its prognostic implications in TNBC. The effects of BCKDK on tumorigenesis were assessed using cell viability, colony formation, apoptosis, and cell cycle assays, and subsequently validated in vivo. Metabolomic screening was performed via isotope tracer studies. The downstream target was confirmed using mass spectrometry and a co-immunoprecipitation experiment coupled with immunofluorescence analysis. Upstream transcription factors were also examined using chromatin immunoprecipitation and luciferase assays. BCKDK was upregulated in TNBC tumour tissues and associated with poor prognosis. BCKDK depletion led to reduced cell proliferation both in vitro and vivo. MYC-associated zinc finger protein (MAZ) was confirmed as the major transcription factor directly regulating BCKDK expression in TNBC. Mechanistically, BCKDK interacted with glucose-6-phosphate dehydrogenase (G6PD), leading to increased flux in the pentose phosphate pathway for macromolecule synthesis and detoxification of reactive oxygen species. Forced expression of G6PD rescued the growth defect in BCKDK-deficient cells. Notably, the small-molecule inhibitor of BCKDK, 3,6-dichlorobenzo(b)thiophene-2-carboxylic acid, exhibited anti-tumour effects in a patient-derived tumour xenograft model. Our findings hold significant promise for developing targeted therapies aimed at disrupting the MAZ/BCKDK/G6PD signalling pathway, offering potential advancements in treating TNBC through metabolic reprogramming.
Collapse
Affiliation(s)
- Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yali Tang
- School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Xiaobin Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hanxi Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qian Nie
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jinqiao Wu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xin Tong
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jing Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Liuwen Yu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jialin Hou
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shuhai Lin
- School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
5
|
Srinivasamurthy BC, Ramamoorthi S. The Progression and Prospects of the Gene Expression Profiling in Ovarian Epithelial Cancer. Gynecol Minim Invasive Ther 2024; 13:141-145. [PMID: 39184260 PMCID: PMC11343359 DOI: 10.4103/gmit.gmit_13_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer is one of the most common cancers with a high mortality rate among females worldwide. The understanding of the pathogenesis of the disease is highly important to provide personalized therapy to the patients. Ovarian cancer is as heterogeneous as colon and breast cancer which makes it difficult to treat. The development of gene signature is the only hope in providing targeted therapy to improve the survival of ovarian cancer patients. Malignant epithelial carcinomas are the most common cancers of the ovary with different histological and molecular subtypes and clinical behavior. The development of precursor lesions of ovarian carcinoma in the tubes and endometrium has provided a new dimension to the origin of ovarian cancers. The clinical utility of various gene signatures may not be logical unless validated. Validated gene signatures can aid the clinician in deciding the appropriate line of treatment.
Collapse
|
6
|
Jaliffa C, Rogel U, Sen I, Singer G. Comprehensive Genomic Characterization in Ovarian Low-Grade and Chemosensitive and Chemoresistant High-Grade Serous Carcinomas. Oncology 2024; 102:979-987. [PMID: 38697030 DOI: 10.1159/000538948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION Genomic characterization of serous ovarian carcinoma (SOC), which includes low-grade serous carcinoma (LGSC) and high-grade serous carcinoma (HGSC), remains necessary to improve efficacy of platinum-based chemotherapy. The aim of this study was to investigate the genomic variations in these SOC groups, also in relation to chemoresponse. METHODS Forty-five samples of SOC were retrospectively analyzed by next-generation sequencing on DNA/RNA extracts from formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained at diagnosis. HGSCs were classified as platinum-resistant and platinum-sensitive. RESULTS In the LGSC group, 44% of the carcinomas had mutually exclusive variants in the RAS/RAF pathway, while additional likely oncogenic variants in the CDKN2A, SMARCA4, and YAP1 genes were observed in the remaining LGSCs. Tumor mutation burden (TMB) was significantly lower in the intrinsically chemoresistant LGSC group than in the HGSC group. In the HGSC cohort, TP53 variants were found in 90% and homologous recombination repair (HRR) pathway variants in 41% of the neoplasms. HGSCs of the chemoresistant group without classic mutations in the HRR pathway were characterized by additional variants in FGFR2 and with an FGFR3::TACC3 fusion. In addition, HGSCs showed MYC, CCNE1, and AKT2 gains that were almost exclusively observed in the chemosensitive HGSC group. CONCLUSION These results suggest that very low TMB and MYC, CCNE1, and AKT2 gains in SOC patients may be biomarkers related to platinum treatment efficacy. Thorough genomic characterization of SOCs prior to treatment might lead to more specific platinum-based chemotherapy strategies.
Collapse
Affiliation(s)
- Carolina Jaliffa
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland,
| | - Uwe Rogel
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| | - Indrani Sen
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| | - Gad Singer
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| |
Collapse
|
7
|
Ismailov ZB, Belykh ES, Chernykh AA, Udoratina AM, Kazakov DV, Rybak AV, Kerimova SN, Velegzhaninov IO. Systematic review of comparative transcriptomic studies of cellular resistance to genotoxic stress. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108467. [PMID: 37657754 DOI: 10.1016/j.mrrev.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
The development of resistance by tumor cells to various types of therapy is a significant problem that decreases the effectiveness of oncology treatments. For more than two decades, comparative transcriptomic studies of tumor cells with different sensitivities to ionizing radiation and chemotherapeutic agents have been conducted in order to identify the causes and mechanisms underlying this phenomenon. However, the results of such studies have little in common and often contradict each other. We have assumed that a systematic analysis of a large number of such studies will provide new knowledge about the mechanisms of development of therapeutic resistance in tumor cells. Our comparison of 123 differentially expressed gene (DEG) lists published in 98 papers suggests a very low degree of consistency between the study results. Grouping the data by type of genotoxic agent and tumor type did not increase the similarity. The most frequently overexpressed genes were found to be those encoding the transport protein ABCB1 and the antiviral defense protein IFITM1. We put forward a hypothesis that the role played by the overexpression of the latter in the development of resistance may be associated not only with the stimulation of proliferation, but also with the limitation of exosomal communication and, as a result, with a decrease in the bystander effect. Among down regulated DEGs, BNIP3 was observed most frequently. The expression of BNIP3, together with BNIP3L, is often suppressed in cells resistant to non-platinum genotoxic chemotherapeutic agents, whereas it is increased in cells resistant to ionizing radiation. These observations are likely to be mediated by the binary effects of these gene products on survival, and regulation of apoptosis and autophagy. The combined data also show that even such obvious mechanisms as inhibition of apoptosis and increase of proliferation are not universal but show multidirectional changes.
Collapse
Affiliation(s)
- Z B Ismailov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - E S Belykh
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - A A Chernykh
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 50 Pervomaiskaya St., Syktyvkar 167982, Russia
| | - A M Udoratina
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - D V Kazakov
- Institute of Physics and Mathematics of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 4 Oplesnina St., Syktyvkar 167982, Russia
| | - A V Rybak
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - S N Kerimova
- State Medical Institution Komi Republican Oncology Center, 46 Nyuvchimskoe highway, Syktyvkar 167904, Russia
| | - I O Velegzhaninov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia.
| |
Collapse
|
8
|
Inhibition of branched-chain alpha-keto acid dehydrogenase kinase augments the sensitivity of ovarian and breast cancer cells to paclitaxel. Br J Cancer 2023; 128:896-906. [PMID: 36526674 PMCID: PMC9977917 DOI: 10.1038/s41416-022-02095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
CONTEXT Many cancer patients who initially respond to chemotherapy eventually develop chemoresistance, and to address this, we previously conducted a RNAi screen to identify genes contributing to resistance. One of the hits from the screen was branched-chain α-keto acid dehydrogenase kinase (BCKDK). BCKDK controls the metabolism of branched-chain amino acids (BCAAs) through phosphorylation and inactivation of the branched-chain α-keto acid dehydrogenase complex (BCKDH), thereby inhibiting catabolism of BCAAs. METHODS We measured the impact on paclitaxel sensitivity of inhibiting BCKDK in ovarian and breast cancer cell lines. RESULTS Inhibition of BCKDK using siRNA or two chemical inhibitors (BCKDKi) was synergistic with paclitaxel in both breast and ovarian cancer cells. BCKDKi reduced levels of BCAA and the addition of exogenous BCAA suppressed this synergy. BCKDKi inactivated the mTORC1-Aurora pathway, allowing cells to overcame M-phase arrest induced by paclitaxel. In some cases, cells almost completed cytokinesis, then reverted to a single cell, resulting in multinucleate cells. CONCLUSION BCKDK is an attractive target to augment the sensitivity of cancer cells to paclitaxel.
Collapse
|
9
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
10
|
High Density of CD16+ Tumor-Infiltrating Immune Cells in Recurrent Ovarian Cancer Is Associated with Enhanced Responsiveness to Chemotherapy and Prolonged Overall Survival. Cancers (Basel) 2021; 13:cancers13225783. [PMID: 34830938 PMCID: PMC8616362 DOI: 10.3390/cancers13225783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The late—and in most cases at an advanced stage—diagnosis of patients with ovarian cancer (OC) and the high recurrence rate make this malignant disease the most lethal among gynecological cancers. With a mortality-to-incidence ratio of 0.74, OC is a tumor with the fifth most frequent progression after esophageal cancer, liver cancer, pancreatic cancer, and brain tumors. The updated FIGO staging system is the gold standard in the clinic and includes surgical, radiologic, and pathologic elements to describe the extent of OC. This system is used to describe tumor extent, plan further therapy, and predict prognosis. However, it is consistently observed that patients with identical stages and treatments have a completely different outcome in terms of survival and recurrence. This fact indicates that this classification alone is not sufficient for the prognosis of OC in the vast majority of cases. Over the last two decades, many studies have demonstrated the critical role of the tumor microenvironment in tumorigenesis, progression, prognosis, and response to chemotherapy. In the current study, we investigate the role of CD16 expression in OC. Abstract Background: Ovarian cancer (OC) is the most aggressive and fatal malignancy of the female reproductive system. Debulking surgery with adjuvant chemotherapy represents the standard treatment, but recurrence rates are particularly high. Over the past decades, the association between the immune system and cancer progression has been extensively investigated. However, the interaction between chemotherapy and cancer immune infiltration is still unclear. In this study, we examined the prognostic role of CD16 expression in OC, as related to the effectiveness of standard adjuvant chemotherapy treatment. Methods: We analyzed the infiltration by immune cells expressing CD16, a well-characterized natural killer (NK) and myeloid cell marker, in a tissue microarray (TMA) of 47 patient specimens of primary OCs and their matching recurrences by immunohistochemistry (IHC). We analyzed our data first in the whole cohort, then in the primary tumors, and finally in recurrences. We focused on recurrence-free survival (RFS), overall survival (OS), and chemosensitivity. Chemosensitivity was defined as RFS of more than 6 months. Results: There was no significant correlation between CD16 expression and prognosis in primary carcinomas. However, interestingly, a high density of CD16-expressing tumor-infiltrating immune cells (TICs) in recurrent carcinoma was associated with better RFS (p = 0.008) and OS (p = 0.029). Moreover, high CD16 cell density in recurrent ovarian carcinoma showed a significant association with chemosensitivity (p = 0.034). Univariate Cox regression analysis revealed that the high expression of CD16+ TIC in recurrent cancer biopsies is significantly associated with an increased RFS (HR = 0.49; 95% CI 0.24–0.99; p = 0.047) and OS (HR = 0.28; 95% CI 0.10–0.77; p = 0.013). However, this was not independent of known prognostic factors such as age, FIGO stage, resection status, and the number of chemotherapy cycles. Conclusions: The high density of CD16-expressing TICs in recurrent ovarian cancer is associated with a better RFS and OS, thereby suggesting a previously unsuspected interaction between standard OC chemotherapy and immune cell infiltration.
Collapse
|
11
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
12
|
A novel small molecule LLL12B inhibits STAT3 signaling and sensitizes ovarian cancer cell to paclitaxel and cisplatin. PLoS One 2021; 16:e0240145. [PMID: 33909625 PMCID: PMC8081214 DOI: 10.1371/journal.pone.0240145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer deaths among American women. Platinum and taxane combination chemotherapy represents the first-line approach for ovarian cancer, but treatment success is often limited by chemoresistance. Therefore, it is necessary to find new drugs to sensitize ovarian cancer cells to chemotherapy. Persistent activation of Signal Transducer and Activator of Transcription 3 (STAT3) signaling plays an important role in oncogenesis. Using a novel approach called advanced multiple ligand simultaneous docking (AMLSD), we developed a novel nonpeptide small molecule, LLL12B, which targets the STAT3 pathway. In this study, LLL12B inhibited STAT3 phosphorylation (tyrosine 705) and the expression of its downstream targets, which are associated with cancer cell proliferation and survival. We showed that LLL12B also inhibits cell viability, migration, and proliferation in human ovarian cancer cells. LLL12B combined with either paclitaxel or with cisplatin demonstrated synergistic inhibitory effects relative to monotherapy in inhibiting cell viability and LLL12B-paclitaxel or LLL12B-cisplatin combination exhibited greater inhibitory effects than cisplatin-paclitaxel combination in ovarian cancer cells. Furthermore, LLL12B-paclitaxel or LLL12B-cisplatin combination showed more significant in inhibiting cell migration and growth than monotherapy in ovarian cancer cells. In summary, our results support the novel small molecule LLL12B as a potent STAT3 inhibitor in human ovarian cancer cells and suggest that LLL12B in combination with the current front-line chemotherapeutic drugs cisplatin and paclitaxel may represent a promising approach for ovarian cancer therapy.
Collapse
|
13
|
Geraldo LHM, Spohr TCLDS, Amaral RFD, Fonseca ACCD, Garcia C, Mendes FDA, Freitas C, dosSantos MF, Lima FRS. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther 2021; 6:45. [PMID: 33526777 PMCID: PMC7851145 DOI: 10.1038/s41392-020-00367-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.
Collapse
Affiliation(s)
- Luiz Henrique Medeiros Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | | | - Celina Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catarina Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Fabio dosSantos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Wei C, Liu X, Wang Q, Li Q, Xie M. Identification of Hypoxia Signature to Assess the Tumor Immune Microenvironment and Predict Prognosis in Patients with Ovarian Cancer. Int J Endocrinol 2021; 2021:4156187. [PMID: 34950205 PMCID: PMC8692015 DOI: 10.1155/2021/4156187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The 5-year overall survival rate of ovarian cancer (OC) patients is less than 40%. Hypoxia promotes the proliferation of OC cells and leads to the decline of cell immunity. It is crucial to find potential predictors or risk model related to OC prognosis. This study aimed at establishing the hypoxia-associated gene signature to assess tumor immune microenvironment and predicting the prognosis of OC. METHODS The gene expression data of 378 OC patients and 370 OC patients were downloaded from datasets. The hypoxia risk model was constructed to reflect the immune microenvironment in OC and predict prognosis. RESULTS 8 genes (AKAP12, ALDOC, ANGPTL4, CITED2, ISG20, PPP1R15A, PRDX5, and TGFBI) were included in the hypoxic gene signature. Patients in the high hypoxia risk group showed worse survival. Hypoxia signature significantly related to clinical features and may serve as an independent prognostic factor for OC patients. 2 types of immune cells, plasmacytoid dendritic cell and regulatory T cell, showed a significant infiltration in the tissues of the high hypoxia risk group patients. Most of the immunosuppressive genes (such as ARG1, CD160, CD244, CXCL12, DNMT1, and HAVCR1) and immune checkpoints (such as CD80, CTLA4, and CD274) were upregulated in the high hypoxia risk group. Gene sets related to the high hypoxia risk group were associated with signaling pathways of cell cycle, MAPK, mTOR, PI3K-Akt, VEGF, and AMPK. CONCLUSION The hypoxia risk model could serve as an independent prognostic indicator and reflect overall immune response intensity in the OC microenvironment.
Collapse
Affiliation(s)
- Chunyan Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqing Liu
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Shangzhou District, Shangluo, Shanxi Province, China
| | - Qin Wang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qipei Li
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Xie
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Zhang Y, Liu J, Raj-Kumar PK, Sturtz LA, Praveen-Kumar A, Yang HH, Lee MP, Fantacone-Campbell JL, Hooke JA, Kovatich AJ, Shriver CD, Hu H. Development and validation of prognostic gene signature for basal-like breast cancer and high-grade serous ovarian cancer. Breast Cancer Res Treat 2020; 184:689-698. [PMID: 32880016 PMCID: PMC8916168 DOI: 10.1007/s10549-020-05884-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Molecular similarities have been reported between basal-like breast cancer (BLBC) and high-grade serous ovarian cancer (HGSOC). To date, there have been no prognostic biomarkers that can provide risk stratification and inform treatment decisions for both BLBC and HGSOC. In this study, we developed a molecular signature for risk stratification in BLBC and further validated this signature in HGSOC. METHODS RNA-seq data was downloaded from The Cancer Genome Atlas (TCGA) project for 190 BLBC and 314 HGSOC patients. Analyses of differentially expressed genes between recurrent vs. non-recurrent cases were performed using different bioinformatics methods. Gene Signature was established using weighted linear combination of gene expression levels. Their prognostic performance was evaluated using survival analysis based on progression-free interval (PFI) and disease-free interval (DFI). RESULTS 63 genes were differentially expressed between 18 recurrent and 40 non-recurrent BLBC patients by two different methods. The recurrence index (RI) calculated from this 63-gene signature significantly stratified BLBC patients into two risk groups with 38 and 152 patients in the low-risk (RI-Low) and high-risk (RI-High) groups, respectively (p = 0.0004 and 0.0023 for PFI and DFI, respectively). Similar performance was obtained in the HGSOC cohort (p = 0.0131 and 0.004 for PFI and DFI, respectively). Multivariate Cox regression adjusting for age, grade, and stage showed that the 63-gene signature remained statistically significant in stratifying HGSOC patients (p = 0.0005). CONCLUSION A gene signature was identified to predict recurrence in BLBC and HGSOC patients. With further validation, this signature may provide an additional prognostic tool for clinicians to better manage BLBC, many of which are triple-negative and HGSOC patients who are currently difficult to treat.
Collapse
Affiliation(s)
- Yi Zhang
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Lori A Sturtz
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Howard H Yang
- Center for Cancer Research, National Cancer Institute, Rockville, MD, USA
| | - Maxwell P Lee
- Center for Cancer Research, National Cancer Institute, Rockville, MD, USA
| | - J Leigh Fantacone-Campbell
- Murtha Cancer Center Research Program, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jeffrey A Hooke
- Murtha Cancer Center Research Program, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Albert J Kovatich
- Murtha Cancer Center Research Program, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Craig D Shriver
- Murtha Cancer Center Research Program, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA.
| |
Collapse
|
16
|
Huang YL, Liang CY, Ritz D, Coelho R, Septiadi D, Estermann M, Cumin C, Rimmer N, Schötzau A, Núñez López M, Fedier A, Konantz M, Vlajnic T, Calabrese D, Lengerke C, David L, Rothen-Rutishauser B, Jacob F, Heinzelmann-Schwarz V. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. eLife 2020; 9:59442. [PMID: 33026975 PMCID: PMC7541088 DOI: 10.7554/elife.59442] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.
Collapse
Affiliation(s)
- Yen-Lin Huang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ching-Yeu Liang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Danilo Ritz
- Proteomics core facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Ricardo Coelho
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Manuela Estermann
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Cécile Cumin
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Natalie Rimmer
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Schötzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Konantz
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Diego Calabrese
- Histology Core Facility, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Claudia Lengerke
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Internal Medicine, Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Leonor David
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Gynecological Cancer Center, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
17
|
Ahn HM, Kim DG, Kim YJ. Blockade of endothelin receptor A enhances the therapeutic efficacy of gemcitabine in pancreatic cancer cells. Biochem Biophys Res Commun 2020; 527:568-573. [PMID: 32423820 DOI: 10.1016/j.bbrc.2020.04.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 01/23/2023]
Abstract
Pancreatic adenocarcinoma is currently one of the leading causes of cancer-related death worldwide. The high rate of mortality in pancreatic cancer patients is due to the inability to detect early-stage disease and the disease being highly refractory to therapy. Gemcitabine has been the standard chemotherapy for advanced pancreatic cancer patients for the last two decades. However, gemcitabine resistance develops within a few weeks of treatment, and the associated mechanism remains poorly understood. Therefore, a novel therapeutic strategy is needed to overcome the limited clinical efficacy of gemcitabine in pancreatic adenocarcinoma. In this study, we demonstrated that ET-1/ETAR axis gene expression was upregulated in pancreatic cancer cells after treatment with gemcitabine. Additionally, ETAR expression was significantly higher in tumor tissues than in normal tissues, and patients with high ETAR expression had a notably worse overall survival rate than those with low ETAR expression. Furthermore, our results revealed that bosentan, an ETAR antagonist, enhanced the growth-inhibiting and proapoptotic effects of gemcitabine on pancreatic cancer cells. Thus, our findings indicate that blockade of the ET-1/ETAR axis signaling pathway promotes the antiproliferative effect of gemcitabine on pancreatic cancer. Therefore, combination of ETAR blockade and gemcitabine serves as an effective therapeutic approach to achieve clinical benefits in pancreatic adenocarcinoma patients.
Collapse
Affiliation(s)
- Hye-Mi Ahn
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Dong-Gun Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Youn-Jae Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
18
|
Posabella A, Köhn P, Lalos A, Wilhelm A, Mechera R, Soysal S, Muenst S, Güth U, Stadlmann S, Terracciano L, Droeser RA, Zeindler J, Singer G. High density of CD66b in primary high-grade ovarian cancer independently predicts response to chemotherapy. J Cancer Res Clin Oncol 2020; 146:127-136. [PMID: 31853662 DOI: 10.1007/s00432-019-03108-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Ovarian carcinoma (OC) is the most lethal female genital cancer. After a primary curative surgical approach followed by chemotherapy, a fraction of the patients recur with chemoresistant disease. Data indicate a favorable therapeutic effect of tumor-infiltrating neutrophils (TIN) in OC. Our aim was to investigate the prognostic role of CD66b expression, corresponding to neutrophilic infiltration for recurrence-free survival (RFS) and overall survival (OS) in patients with OC. METHODS A collective of 47 primary serous ovarian carcinoma and their matching recurrences were processed and stained with CD66b using immunohistochemistry. Tumors from patients with RFS of more than 6 months were defined as chemosensitive. Statistical analysis of CD66b expression was performed to assess the clinical endpoints. RESULTS High density of CD66b expressing neutrophils in primary carcinoma was associated with chemosensitivity (p = 0.014) and longer RFS (p = 0.001). Univariate analysis identified high density of CD66b expressing neutrophils as a predictor for favorable RFS (HR 0.41, 95% CI 0.22-0.76, p < 0.005). Residual disease > 2 cm (HR 3.67, 95% CI 1.62-8.31, p < 0.002) and higher number of chemotherapy cycles (HR 1.28, 95% CI 1.05-1.55, p < 0.013) were associated with worse RFS. Multivariate analysis showed that high density of CD66b expressing neutrophils (HR 0.22, 95% CI 0.10-0.48, p < 0.001) and residual disease > 2 cm (HR 3.69, 95% CI 1.43-9.53, p < 0.007) were independent predictors of RFS but had no impact on OS. CONCLUSION High CD66b neutrophil density in primary high-grade OC predicts good response to initial chemotherapy and longer recurrence-free survival independent of known risk factors.
Collapse
Affiliation(s)
- Alberto Posabella
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Philipp Köhn
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Alexandros Lalos
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Alexander Wilhelm
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Robert Mechera
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Savas Soysal
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Simone Muenst
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Uwe Güth
- Brustzentrum Zürich, Seefeldstrasse 214, 8008, Zurich, Switzerland
- Department of Gynecology and Obstetrics, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Sylvia Stadlmann
- Department of Gynecology and Obstetrics, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
- Institute of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404, Baden, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Raoul A Droeser
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland.
| | - Jasmin Zeindler
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Gad Singer
- Department of Gynecology and Obstetrics, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
- Institute of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404, Baden, Switzerland
| |
Collapse
|
19
|
Wang W, Zhao F, Zhao Y, Pan W, Cao P, Wu L, Wang Z, Zhao X, Zhao Y, Wang H. Design, Synthesis, and Preliminary Bioactivity Evaluation of 2,7-Substituted Carbazole Derivatives as Potent Autotaxin Inhibitors and Antitumor Agents†. Anticancer Agents Med Chem 2019; 19:256-264. [PMID: 30173652 DOI: 10.2174/1871520618666180830161821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autotaxin-LPA signaling has been implicated in cancer progression, and targeted for the discovery of cancer therapeutic agents. OBJECTIVE Potential ATX inhibitors were synthesized to develop novel leading compounds and effective anticancer agents. METHODS The present work designs and synthesizes a series of 2,7-subsitituted carbazole derivatives with different terminal groups R [R = -Cl (I), -COOH (II), -B(OH)2 (III), or -PO(OH)2 (I-IV)]. The inhibition of these compounds on the enzymatic activity of ATX was measured using FS-3 and Bis-pNpp as substrates, and the cytotoxicity of these compounds was evaluated using SW620, SW480, PANC-1, and SKOV-3 human carcinoma cells. Furthermore, the binding of leading compound with ATX was analyzed by molecular docking. RESULTS Compound III was shown to be a promising antitumor candidate by demonstrating both good inhibition of ATX enzymatic activity and high cytotoxicity against human cancer cell lines. Molecular docking study shows that compound III is located in a pocket, which mainly comprises amino acids 209 to 316 in domain 2 of ATX, and binds with these residues of ATX through van der Waals, conventional hydrogen bonds, and hydrophobic interactions. CONCLUSION Compound III with the terminal group R = -B(OH)2 has the most potent inhibitory effect with the greatest cytotoxicity to cancer cells. Moreover, the docking model provides a structural basis for the future optimization of promising antitumor compounds.
Collapse
Affiliation(s)
- Wenming Wang
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Shanxi, Taiyuan 030006, China
| | - Fengmei Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Yarui Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Weiwei Pan
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Pengcheng Cao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Shanxi, Changzhi 046011, China
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, TN 38152, United States
| | - Yi Zhao
- Biology Institute of Shanxi, Shanxi, Taiyuan 030006, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Shanxi, Taiyuan 030006, China
| |
Collapse
|
20
|
Sun J, Bao S, Xu D, Zhang Y, Su J, Liu J, Hao D, Zhou M. Large-scale integrated analysis of ovarian cancer tumors and cell lines identifies an individualized gene expression signature for predicting response to platinum-based chemotherapy. Cell Death Dis 2019; 10:661. [PMID: 31506427 PMCID: PMC6737147 DOI: 10.1038/s41419-019-1874-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/13/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
Abstract
Heterogeneity in chemotherapeutic response is directly associated with prognosis and disease recurrence in patients with ovarian cancer (OvCa). Despite the significant clinical need, a credible gene signature for predicting response to platinum-based chemotherapy and for guiding the selection of personalized chemotherapy regimens has not yet been identified. The present study used an integrated approach involving both OvCa tumors and cell lines to identify an individualized gene expression signature, denoted as IndividCRS, consisting of 16 robust chemotherapy-responsive genes for predicting intrinsic or acquired chemotherapy response in the meta-discovery dataset. The robust performance of this signature was subsequently validated in 25 independent tumor datasets comprising 2215 patients and one independent cell line dataset, across different technical platforms. The IndividCRS was significantly correlated with the response to platinum therapy and predicted the improved outcome. Moreover, the IndividCRS correlated with homologous recombination deficiency (HRD) and was also capable of discriminating HR-deficient tumors with or without platinum-sensitivity for guiding HRD-targeted clinical trials. Our results reveal the universality and simplicity of the IndividCRS as a promising individualized genomic tool to rapidly monitor response to chemotherapy and predict the outcome of patients with OvCa.
Collapse
Affiliation(s)
- Jie Sun
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Siqi Bao
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Dandan Xu
- Faculty of Sciences, Department of Biology, Harbin University, Harbin, 150081, P. R. China
| | - Yan Zhang
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Jiaqi Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Dapeng Hao
- Faculty of Health Sciences, University of Macau, Macau, 999078, P. R. China.
| | - Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China.
| |
Collapse
|
21
|
Han J, Lim W, You D, Jeong Y, Kim S, Lee JE, Shin TH, Lee G, Park S. Chemoresistance in the Human Triple-Negative Breast Cancer Cell Line MDA-MB-231 Induced by Doxorubicin Gradient Is Associated with Epigenetic Alterations in Histone Deacetylase. JOURNAL OF ONCOLOGY 2019; 2019:1345026. [PMID: 31275376 PMCID: PMC6582875 DOI: 10.1155/2019/1345026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Chemoresistance is one of the major causes of therapeutic failure in breast cancer patients. In this study, the mechanism of chemoresistance in human triple-negative breast cancer (TNBC) cells (MDA-MB-231) induced by doxorubicin (DOX) gradient was investigated. These DOX-resistant cells showed higher drug efflux rate, increased anchorage-independent growth when cultured in suspension, and increased tumor-forming ability in nude mice, compared to the wild-type MDA-MB-231 cells. RNA sequencing analysis showed an increase in the expression of genes involved in membrane transport, antiapoptosis, and histone regulation. Kaplan-Meier plot analysis of TNBC patients who underwent preoperative chemotherapy showed that the relapse free survival (RFS) of patients with high HIST1H2BK (histone cluster 1 H2B family member k) expression was significantly lower than that of patients with low HIST1H2BK expression. Quantitative real-time PCR confirmed that the level of HIST1H2BK expression was increased in resistant cells. The cytotoxicity analysis showed that the DOX resistance of resistant cells was reduced by treatment with a histone deacetylase (HDAC) inhibitor. Our results suggest that, in DOX-resistant cells, HIST1H2BK expression can be rapidly induced by the high expression of genes involved in membrane transport, antiapoptosis, and histone regulation. In conclusion, chemoresistance in MDA-MB-231 cells can occur in a relatively short period by DOX gradient via this previously known mechanism of resistance, and DOX resistance is dependent on the specificity of resistant cells to HDAC.
Collapse
Affiliation(s)
- Jeonghun Han
- Regenerative Medicine and Cell Therapy Institute, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yisun Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Sangmin Kim
- Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
- Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
22
|
Zhao H, Sun Q, Li L, Zhou J, Zhang C, Hu T, Zhou X, Zhang L, Wang B, Li B, Zhu T, Li H. High Expression Levels of AGGF1 and MFAP4 Predict Primary Platinum-Based Chemoresistance and are Associated with Adverse Prognosis in Patients with Serous Ovarian Cancer. J Cancer 2019; 10:397-407. [PMID: 30719133 PMCID: PMC6360311 DOI: 10.7150/jca.28127] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022] Open
Abstract
Primary platinum-based chemoresistance occurs in approximately one-third of patients with serous ovarian cancer (SOC); however, traditional clinical indicators are poor predictors of chemoresistance. So we aimed to identify novel genes as predictors of primary platinum-based chemoresistance. Gene expression microarray analyses were performed to identify the genes related to primary platinum resistance in SOC on two discovery datasets (GSE51373, GSE63885) and one validation dataset (TCGA). Univariate and multivariate analyses with logistic regression were performed to evaluate the predictive values of the genes for platinum resistance. Machine learning algorithms (linear kernel support vector machine and artificial neural network) were applied to build prediction models. Univariate and multivariate analyses with Cox proportional hazards regression and log-rank tests were used to assess the effects of these gene signatures for platinum resistance on prognosis in two independent datasets (GSE9891, GSE32062). AGGF1 and MFAP4 were found highly expressed in patients with platinum-resistant SOC and independently predicted platinum resistance. Platinum resistance prediction models based on these targets had robust predictive power (highest AUC: 0.8056, 95% CI: 0.6338-0.9773; lowest AUC: 0.7245, 95% CI: 0.6052-0.8438). An AGGF1- and MFAP4-centered protein interaction network was built, and hypothetical regulatory pathways were identified. Enrichment analysis indicated that aberrations of extracellular matrix may play important roles in platinum resistance in SOC. High AGGF1 and MFAP4 expression levels were also related to shorter recurrence-free and overall survival in patients with SOC after adjustment for other clinical variables. Therefore, AGGF1 and MFAP4 are potential predictive biomarkers for response to platinum-based chemotherapy and survival outcomes in SOC.
Collapse
Affiliation(s)
- Haiyue Zhao
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Qian Sun
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lisong Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jinhua Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Cong Zhang
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Hu
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuemei Zhou
- Department of Obstetrics and Gynecology, Xiaogan First Hospital, Xiaogan 432000, China
| | - Long Zhang
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Baiyu Wang
- Department of Obstetrics and Gynecology, Yangxin County People's Hospital, Huangshi, 435200, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Suizhou Central Hospital, Suizhou 441300, China
| | - Tao Zhu
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Li
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| |
Collapse
|
23
|
Cochran JM, Busch DR, Leproux A, Zhang Z, O’Sullivan TD, Cerussi AE, Carpenter PM, Mehta RS, Roblyer D, Yang W, Paulsen KD, Pogue B, Jiang S, Kaufman PA, Chung SH, Schnall M, Snyder BS, Hylton N, Carp SA, Isakoff SJ, Mankoff D, Tromberg BJ, Yodh AG. Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-11. [PMID: 30338678 PMCID: PMC6194199 DOI: 10.1117/1.jbo.24.2.021202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 05/20/2023]
Abstract
Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer.
Collapse
Affiliation(s)
- Jeffrey M. Cochran
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: Jeffrey M. Cochran, E-mail:
| | - David R. Busch
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
| | - Anaïs Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Zheng Zhang
- Brown University School of Public Health, Department of Biostatistics and Center for Statistical Sciences, Providence, Rhode Island, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Albert E. Cerussi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Philip M. Carpenter
- University of Southern California, Keck School of Medicine, Department of Pathology, Los Angeles, California, United States
| | - Rita S. Mehta
- University of California Irvine, Department of Medicine, Irvine, California, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wei Yang
- University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Brian Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Peter A. Kaufman
- Dartmouth-Hitchcock Medical Center, Department of Hematology and Oncology, Lebanon, New Hampshire, United States
| | - So Hyun Chung
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Mitchell Schnall
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Bradley S. Snyder
- Brown University School of Public Health, Center for Statistical Sciences, Providence, Rhode Island, United States
| | - Nola Hylton
- University of California, Department of Radiology, San Francisco, California, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Steven J. Isakoff
- Massachusetts General Hospital, Department of Hematology and Oncology, Boston, Massachusetts, United States
| | - David Mankoff
- University of Pennsylvania, Division of Nuclear Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| |
Collapse
|
24
|
Tigyi GJ, Yue J, Norman DD, Szabo E, Balogh A, Balazs L, Zhao G, Lee SC. Regulation of tumor cell - Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis. Adv Biol Regul 2018; 71:183-193. [PMID: 30243984 DOI: 10.1016/j.jbior.2018.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The lipid mediator lysophosphatidic acid (LPA) in biological fluids is primarily produced by cleavage of lysophospholipids by the lysophospholipase D enzyme Autotaxin (ATX). LPA has been identified and abundantly detected in the culture medium of various cancer cell types, tumor effusates, and ascites fluid of cancer patients. Our current understanding of the physiological role of LPA established its role in fundamental biological responses that include cell proliferation, metabolism, neuronal differentiation, angiogenesis, cell migration, hematopoiesis, inflammation, immunity, wound healing, regulation of cell excitability, and the promotion of cell survival by protecting against apoptotic death. These essential biological responses elicited by LPA are seemingly hijacked by cancer cells in many ways; transcriptional upregulation of ATX leading to increased LPA levels, enhanced expression of multiple LPA GPCR subtypes, and the downregulation of its metabolic breakdown. Recent studies have shown that overexpression of ATX and LPA GPCR can lead to malignant transformation, enhanced proliferation of cancer stem cells, increased invasion and metastasis, reprogramming of the tumor microenvironment and the metastatic niche, and development of resistance to chemo-, immuno-, and radiation-therapy of cancer. The fundamental role of LPA in cancer progression and the therapeutic inhibition of the ATX-LPA axis, although highly appealing, remains unexploited as drug development to these targets has not reached into the clinic yet. The purpose of this brief review is to highlight some unique signaling mechanisms engaged by the ATX-LPA axis and emphasize the therapeutic potential that lies in blocking the molecular targets of the LPA system.
Collapse
Affiliation(s)
- Gabor J Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary.
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Erzsebet Szabo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary
| | - Louisa Balazs
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Guannan Zhao
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| |
Collapse
|
25
|
Fisher N, Edwards MG, Hemming R, Allin SM, Wallis JD, Bulman Page PC, Mckenzie MJ, Jones SM, Elsegood MRJ, King-Underwood J, Richardson A. Synthesis and Activity of a Novel Autotaxin Inhibitor-Icodextrin Conjugate. J Med Chem 2018; 61:7942-7951. [PMID: 30059212 DOI: 10.1021/acs.jmedchem.8b00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autotaxin is an extracellular phospholipase D that catalyzes the hydrolysis of lysophosphatidyl choline (LPC) to generate the bioactive lipid lysophosphatidic acid (LPA). Autotaxin has been implicated in many pathological processes relevant to cancer. Intraperitoneal administration of an autotaxin inhibitor may benefit patients with ovarian cancer; however, low molecular mass compounds are known to be rapidly cleared from the peritoneal cavity. Icodextrin is a polymer that is already in clinical use because it is slowly eliminated from the peritoneal cavity. Herein we report conjugation of the autotaxin inhibitor HA155 to icodextrin. The conjugate inhibits autotaxin activity (IC50 = 0.86 ± 0.13 μg mL-1) and reduces cell migration. Conjugation of the inhibitor increased its solubility, decreased its membrane permeability, and improved its intraperitoneal retention in mice. These observations demonstrate the first application of icodextrin as a covalently-bonded drug delivery platform with potential use in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Natalie Fisher
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K.,Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and Physical Sciences , Keele University , Keele ST5 5BG , U.K
| | - Michael G Edwards
- Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and Physical Sciences , Keele University , Keele ST5 5BG , U.K
| | - Ryan Hemming
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | - Steven M Allin
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | - John D Wallis
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | | | - Michael J Mckenzie
- Charnwood Molecular Ltd. , The Heritage Building, Prince William Road , Loughborough LE11 5DA , U.K
| | - Stefanie M Jones
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K
| | - Mark R J Elsegood
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , U.K
| | - John King-Underwood
- Computational Chemistry Resource , Old Cottage Hospital , Ledbury HR8 1ED , U.K
| | - Alan Richardson
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K
| |
Collapse
|
26
|
High OX40 expression in recurrent ovarian carcinoma is indicative for response to repeated chemotherapy. BMC Cancer 2018; 18:425. [PMID: 29661166 PMCID: PMC5903007 DOI: 10.1186/s12885-018-4339-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/08/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ovarian carcinoma (OC) is the fifth most common female cancer and mostly diagnosed at an advanced stage. Surgical debulking is usually followed by adjuvant platinum-based chemotherapy. Only few biomarkers are known to be related to chemosensitivity. OX40 is a TNF receptor member and expressed on activated CD4+ and CD8+ T cells. It is known that OX40 signaling promotes survival and responds to various immune cells of the innate and adaptive immune system. Therefore we investigated the indicative value of OX40 expression for recurrence and survival in OC. METHODS A tissue microarray of biopsies of mostly high-grade primary serous OC and matched recurrences of 47 patients was stained with OX40. Recurrence within 6 months of the completion of platinum-based chemotherapy was defined as chemoresistance. RESULTS Chemosensitivity correlated significantly with high OX40 positive immune cell density in primary cancer biopsies (p = 0.027). Furthermore patients with a higher OX40 expression in recurrent cancer biopsies showed a better outcome in recurrence free survival (RFS) (p = 0.017) and high OX40 expression was associated with chemosensitivity (p = 0.008). OX40 positive TICI in recurrent carcinomas significantly correlated with IL-17 positive tumor infiltrating immune cells in primary carcinomas (r s = 0.34; p = 0.023). Univariate cox regression analysis revealed a significant longer RFS and higher numbers of chemotherapy cycles for high OX40 tumor cell expression in recurrent cancer biopsies (HR 0.39, 95%CI 0.16-0.94, p = 0.036 and 1.28, 95%CI 1.05-1.55; p = 0.013). CONCLUSION High OX40 expression in OC is correlated with chemosensitivity and improved RFS in OC. Patients might therefore benefit from a second line therapy.
Collapse
|
27
|
Zhao H, Yu X, Ding Y, Zhao J, Wang G, Wu X, Jiang J, Peng C, Guo GZ, Cui S. MiR-770-5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2. Oncotarget 2018; 7:53254-53268. [PMID: 27449101 PMCID: PMC5288183 DOI: 10.18632/oncotarget.10736] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, we examined the role of the miRNA miR-770-5p in cisplatin chemotherapy resistance in ovarian cancer (OVC) patients. miR-770-5p expression was reduced in platinum-resistant patients. Using a 6.128-fold in expression as the cutoff value, miR-770-5p expression served as a prognostic biomarker and predicted the response to cisplatin treatment and survival among OVC patients. Overexpression of miR-770-5p in vitro reduced survival in chemoresistant cell lines after cisplatin treatment. ERCC2, a target gene of miR-770-5p that participates in the NER system, was negatively regulated by miR-770-5p. siRNA-mediated silencing of ERCC2 reversed the inhibition of apoptosis resulting from miR-770-5p downreglation in A2780S cells. A comet assay confirmed that this restoration of cisplatin chemosensitivity was due to the inhibition of DNA repair. These findings suggest that endogenous miR-770-5p may function as an anti-oncogene and promote chemosensitivity in OVC, at least in part by downregulating ERCC2. miR-770-5p may therefore be a useful biomarker for predicting chemosensitivity to cisplatin in OVC patients and improve the selection of effective, more personalized, treatment strategies.
Collapse
Affiliation(s)
- Henan Zhao
- Dalian Medical University, Dalian, China
| | | | | | | | - Guang Wang
- Dalian Medical University, Dalian, China
| | - Xian Wu
- Dalian Medical University, Dalian, China
| | - Jiyong Jiang
- Obstetrics and Gynecology Hospital, Dalian, China
| | - Chun Peng
- Department of Biology, York University, Toronto, Canada
| | - Gordon Zhuo Guo
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
28
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2017; 16:1337-1351. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
29
|
Rosanò L, Cianfrocca R, Sestito R, Tocci P, Di Castro V, Bagnato A. Targeting endothelin-1 receptor/β-arrestin1 network for the treatment of ovarian cancer. Expert Opin Ther Targets 2017; 21:925-932. [DOI: 10.1080/14728222.2017.1361930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
30
|
Wu YH, Huang YF, Chang TH, Chou CY. Activation of TWIST1 by COL11A1 promotes chemoresistance and inhibits apoptosis in ovarian cancer cells by modulating NF-κB-mediated IKKβ expression. Int J Cancer 2017; 141:2305-2317. [PMID: 28815582 DOI: 10.1002/ijc.30932] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
We have shown that collagen type XI alpha 1 (COL11A1) promotes ovarian cancer progression and is associated with chemoresistance to cisplatin and paclitaxel in ovarian cancer cells. Here, we demonstrate how COL11A1 regulates twist family basic helix-loop-helix transcription factor 1-related protein 1 (TWIST1) to induce chemoresistance and inhibit apoptosis in ovarian cancer cells. Small interfering RNA-mediated reduction in COL11A1 protein levels increased the chemosensitivity to cisplatin and paclitaxel via downregulated TWIST1 expression. TWIST1 messenger RNA levels positively associated with COL11A1 messenger RNA expression levels in ovarian tumors. High TWIST1 expression levels were significantly associated with a progression-free interval of ≤ 6 months (p = 0.001) and death (p = 0.040). In addition, patients with high TWIST1 mRNA levels had significantly shorter 5-year overall-survival (p = 0.004) and progression-free survival (p = 0.009) rates, compared to patients with low TWIST1 levels. Increased TWIST1 expression caused by COL11A1-induced transcription of the inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ) gene occurred via increased SP1 phosphorylation and binding to the IKKβ promoter. COL11A1-mediated nuclear factor-kappa B activation, via transcriptional activation of IKKβ, promoted TWIST1, Mcl-1, and GAS6 expression, which were associated with chemoresistance and anti-apoptosis in ovarian cancer cells. We suggest that IKKβ and TWIST1 can potentially be targeted in patients with COL11A1-positive ovarian cancer.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
31
|
Gupta I, Burney I, Al-Moundhri MS, Tamimi Y. Molecular genetics complexity impeding research progress in breast and ovarian cancers. Mol Clin Oncol 2017; 7:3-14. [PMID: 28685067 PMCID: PMC5492732 DOI: 10.3892/mco.2017.1275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Breast and ovarian cancer are heterogeneous diseases. While breast cancer accounts for 25% of cancers worldwide, ovarian cancer accounts for 3.5% of all cancers and it is considered to be the most lethal type of cancer among women. In Oman, breast cancer accounts for 25% and ovarian cancer for 4.5% of all cancer cases. Various risk factors, including variable biological and clinical traits, are involved in the onset of breast and ovarian cancer. Although highly developed diagnostic and therapeutic methods have paved the way for better management, targeted therapy against specific biomarkers has not yet shown any significant improvement, particularly in triple-negative breast cancer and epithelial ovarian cancer, which are associated with high mortality rates. Thus, elucidating the mechanisms underlying the pathology of these diseases is expected to improve their prevention, prognosis and management. The aim of the present study was to provide a comprehensive review and updated information on genomics and proteomics alterations associated with cancer pathogenesis, as reported by several research groups worldwide. Furthermore, molecular research in our laboratory, aimed at identifying new pathways involved in the pathogenesis of breast and ovarian cancer using microarray and chromatin immunoprecipitation (ChIP), is discussed. Relevant candidate genes were found to be either up- or downregulated in a cohort of breast cancer cases. Similarly, ChIP analysis revealed that relevant candidate genes were regulated by the E2F5 transcription factor in ovarian cancer tissue. An ongoing study aims to validate these genes with a putative role as biological markers that may contribute to the development of targeted therapies for breast and ovarian cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ikram Burney
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mansour S Al-Moundhri
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
32
|
Sun CY, Su TF, Li N, Zhou B, Guo ES, Yang ZY, Liao J, Ding D, Xu Q, Lu H, Meng L, Wang SX, Zhou JF, Xing H, Weng DH, Ma D, Chen G. A chemotherapy response classifier based on support vector machines for high-grade serous ovarian carcinoma. Oncotarget 2016; 7:3245-54. [PMID: 26675546 PMCID: PMC4823103 DOI: 10.18632/oncotarget.6569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/21/2015] [Indexed: 01/13/2023] Open
Abstract
Long-term outcome of high-grade serous epithelial ovarian carcinoma (HGSOC) remains poor as a result of recurrence and the emergence of drug resistance. Almost all the patients were given the same platinum-based chemotherapy after debulking surgery even though some of them are naturally resistant to the first-line chemotherapy. No method could verify this part of patients right after the surgery currently. In this study, we used 156 paraffin-embedded high-grade HGSOC specimens for immunohistochemical analysis with 37 immunology markers, and association between the expression levels of these markers and the chemoresponse were evaluated. A support vector machine (SVM)-based HGSOC prognostic classifier was then established, and was validated by a 95-patient independent cohort. The classifier was strongly predictive of chemotherapy resistance, and divided patients into low- and high-risk groups with significant differences progression-free survival (PFS) and overall survival (OS). This classifier may provide a potential way to predict the chemotherapy resistance of HGSOC right after the surgery, and then allow clinicians to make optimal clinical decision for those potentially chemoresistant patients. The potential clinical application of this classifier will benefit those patients with primary drug resistance.
Collapse
Affiliation(s)
- Chao-Yang Sun
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tie-Fen Su
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Na Li
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Zhou
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - En-Song Guo
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zong-Yuan Yang
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Liao
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dong Ding
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qin Xu
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Lu
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Meng
- Department of Haematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shi-Xuan Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian-Feng Zhou
- Department of Haematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Xing
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Dan-Hui Weng
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ding Ma
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
33
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2016. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
34
|
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
35
|
Tumbarello DA, Andrews MR, Brenton JD. SPARC Regulates Transforming Growth Factor Beta Induced (TGFBI) Extracellular Matrix Deposition and Paclitaxel Response in Ovarian Cancer Cells. PLoS One 2016; 11:e0162698. [PMID: 27622658 PMCID: PMC5021370 DOI: 10.1371/journal.pone.0162698] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022] Open
Abstract
TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1-256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior.
Collapse
Affiliation(s)
- David A. Tumbarello
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - Melissa R. Andrews
- University of St Andrews, School of Medicine, MBSB, North Haugh, St Andrews, United Kingdom
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| |
Collapse
|
36
|
Droeser RA, Mechera R, Däster S, Weixler B, Kraljević M, Delko T, Güth U, Stadlmann S, Terracciano L, Singer G. MPO density in primary cancer biopsies of ovarian carcinoma enhances the indicative value of IL-17 for chemosensitivity. BMC Cancer 2016; 16:639. [PMID: 27531373 PMCID: PMC4988007 DOI: 10.1186/s12885-016-2673-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/03/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cancer of the ovary is mostly discovered at a late stage and cannot be removed by surgery alone. Therefore surgery is usually followed by adjuvant chemotherapy. However, few reliable biomarkers exist to predict response to chemotherapy of ovarian cancer. Previously, we could demonstrate that IL-17 density is indicative for chemosensitivity. This study focuses on the predictive value of myeloperoxidase (MPO) concerning response to chemotherapy of ovarian cancer. METHODS Biopsies of mostly high-grade primary serous ovarian carcinomas and their matched recurrences were stained with MPO after fixation in formalin and embedding in paraffin. For this staining the technique of tissue-microarray was used. Recurrence within 6 months of the completion of platinum-based chemotherapy was defined as chemoresistance as previously publised. Data for MPO could be analyzed in 92 biopsies. RESULTS MPO and IL-17 positive immune cells correlated significantly in biopsies of primary and recurrent carcinomas (r s = 0.41; p = 0.004 and r s = 0.40; p = 0.007, respectively). MPO expression alone did not predict response to chemotherapy, but in multivariate cox regression analysis including age, residual disease, number of chemotherapy cycles, FIGO classification and combined categorized MPO and IL-17 cell densities of primary cancer biopsies, the combination of both immune markers was an independent prognostic factor for recurrence-free survival (p = 0.013, HR = .23, 95CI = 0.07-0.73). There was no chemoresistant patient in the subgroup of MPO + IL-17+, neither in primary nor in recurrent cancer biopsies. CONCLUSIONS High MPO positive cell density enhances the indicative value of IL-17 for response to chemotherapy in ovarian carcinoma. Although, these results have to be validated in a larger cohort.
Collapse
Affiliation(s)
- Raoul A Droeser
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland. .,Institute for Surgical Research and Hospital Management ICFS, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Robert Mechera
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Silvio Däster
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Benjamin Weixler
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Marko Kraljević
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Tarik Delko
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Uwe Güth
- Department of Gynecology and Obstetrics, Kantonsspital Winterthur, Brauerstrasse 15, 8400, Winterthur, Switzerland.,Department of Gynecology and Obstetrics, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Sylvia Stadlmann
- Institute of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404, Baden, Switzerland.,Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Gad Singer
- Institute of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404, Baden, Switzerland.,Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| |
Collapse
|
37
|
Wu YH, Chang TH, Huang YF, Chen CC, Chou CY. COL11A1 confers chemoresistance on ovarian cancer cells through the activation of Akt/c/EBPβ pathway and PDK1 stabilization. Oncotarget 2016; 6:23748-63. [PMID: 26087191 PMCID: PMC4695149 DOI: 10.18632/oncotarget.4250] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/28/2015] [Indexed: 01/18/2023] Open
Abstract
Chemoresistance to anticancer drugs substantially reduces survival in epithelial ovarian carcinoma (EOC). Here, microarray analysis showed that collagen type XI alpha 1 (COL11A1) is a chemotherapy response-associated gene. Chemoresistant cells expressed higher COL11A1 and c/EBPβ than chemosensitive cells. COL11A1 or c/EBPβ downregulation suppressed chemoresistance, whereas COL11A1 overexpression attenuated sensitivity to cisplatin and paclitaxel.The c/EBPβ binding site in the COL11A1 promoter was identified as the major determinant of cisplatin- and paclitaxel-induced COL11A1 expression. Immunoprecipitation and immunofluorescence showed that in resistant cells, Akt and PDK1 were highly expressed and that anticancer drugs enhanced binding activity between COL11A1 and PDK1 binding and attenuated PDK1 ubiquitination and degradation. Conversely, chemosensitive cells showed decreased activity of COL11A1 binding to PDK1 and increased PDK1 ubiquitination, which were reversed by COL11A1 overexpression. Analysis of 104 EOC patients showed that high COL11A1 mRNA levels are significantly associated with poor chemoresponse and clinical outcome.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Obstetrics and Gynaecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynaecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Chia-Yi Christian Hospital, Chia-Yi, Taiwan.,Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynaecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| |
Collapse
|
38
|
Januchowski R, Świerczewska M, Sterzyńska K, Wojtowicz K, Nowicki M, Zabel M. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines. J Cancer 2016; 7:1295-310. [PMID: 27390605 PMCID: PMC4934038 DOI: 10.7150/jca.15371] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in cytostatic drug resistance of cancer cells. The exact role of these COL genes in drug resistance requires further investigation.
Collapse
Affiliation(s)
- Radosław Januchowski
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Monika Świerczewska
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Karolina Sterzyńska
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Karolina Wojtowicz
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Michał Nowicki
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland
| | - Maciej Zabel
- 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland;; 2. Department of Histology and Embryology, Wroclaw Medical University, Poland
| |
Collapse
|
39
|
Gene-expression signatures in ovarian cancer: Promise and challenges for patient stratification. Gynecol Oncol 2016; 141:379-385. [DOI: 10.1016/j.ygyno.2016.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/04/2016] [Accepted: 01/27/2016] [Indexed: 11/22/2022]
|
40
|
Lisowska KM, Olbryt M, Student S, Kujawa KA, Cortez AJ, Simek K, Dansonka-Mieszkowska A, Rzepecka IK, Tudrej P, Kupryjańczyk J. Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival. J Cancer Res Clin Oncol 2016; 142:1239-52. [PMID: 27028324 PMCID: PMC4869753 DOI: 10.1007/s00432-016-2147-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 02/03/2023]
Abstract
Purpose Ovarian cancer is typically diagnosed at late stages, and thus, patients’ prognosis is poor. Improvement in treatment outcomes depends, at least partly, on better understanding of ovarian cancer biology and finding new molecular markers and therapeutic targets. Methods An unsupervised method of data analysis, singular value decomposition, was applied to analyze microarray data from 101 ovarian cancer samples; then, selected genes were validated by quantitative PCR. Results We found that the major factor influencing gene expression in ovarian cancer was tumor histological type. The next major source of variability was traced to a set of genes mainly associated with extracellular matrix, cell motility, adhesion, and immunological response. Hierarchical clustering based on the expression of these genes revealed two clusters of ovarian cancers with different molecular profiles and distinct overall survival (OS). Patients with higher expression of these genes had shorter OS than those with lower expression. The two clusters did not derive from high- versus low-grade serous carcinomas and were unrelated to histological (ovarian vs. fallopian) origin. Interestingly, there was considerable overlap between identified prognostic signature and a recently described invasion-associated signature related to stromal desmoplastic reaction. Several genes from this signature were validated by quantitative PCR; two of them—DSPG3 and LOX—were validated both in the initial and independent sets of samples and were significantly associated with OS and disease-free survival. Conclusions We distinguished two molecular subgroups of serous ovarian cancers characterized by distinct OS. Among differentially expressed genes, some may potentially be used as prognostic markers. In our opinion, unsupervised methods of microarray data analysis are more effective than supervised methods in identifying intrinsic, biologically sound sources of variability. Moreover, as histological type of the tumor is the greatest source of variability in ovarian cancer and may interfere with analyses of other features, it seems reasonable to use histologically homogeneous groups of tumors in microarray experiments. Electronic supplementary material The online version of this article (doi:10.1007/s00432-016-2147-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna M Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Sebastian Student
- Department of Automatic Control, Silesian Technical University, Gliwice, Poland
| | - Katarzyna A Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Alexander J Cortez
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Simek
- Department of Automatic Control, Silesian Technical University, Gliwice, Poland
| | | | - Iwona K Rzepecka
- Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Patrycja Tudrej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Jolanta Kupryjańczyk
- Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| |
Collapse
|
41
|
Sestito R, Cianfrocca R, Rosanò L, Tocci P, Semprucci E, Di Castro V, Caprara V, Ferrandina G, Sacconi A, Blandino G, Bagnato A. miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma. Oncotarget 2016; 7:4009-23. [PMID: 26675258 PMCID: PMC4826186 DOI: 10.18632/oncotarget.6546] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023] Open
Abstract
Drug resistance remains the major clinical barrier to successful treatment in epithelial ovarian carcinoma (EOC) patients, and the evidence of microRNA involvement in drug resistance has been recently emerging. Endothelin-1 (ET-1)/ETA receptor (ETAR) axis is aberrantly activated in chemoresistant EOC cells and elicits pleiotropic effects promoting epithelial-to-mesenchymal transition (EMT) and the acquisition of chemoresistance. However, the relationship between ETAR and miRNA is still unknown. Hence, in this study we evaluated whether dysregulation of miRNA might enhance ETAR expression in sensitive and resistant EOC cells. Based on bioinformatic tools, we selected putative miRNA able to recognize the 3'UTR of ETAR. An inverse correlation was observed between the expression levels of miR-30a and ETAR in both EOC cell lines and tumor samples. miR-30a was found to specifically bind to the 3'UTR of ETAR mRNA, indicating that ETAR is a direct target of miR-30a. Overexpression of miR-30a decreased Akt and mitogen activated protein kinase signaling pathway activation, cell proliferation, invasion, plasticity, EMT marker levels, and vascular endothelial growth factor release. Interestingly, ectopic expression of miR-30a re-sensitized platinum-resistant EOC cells to cisplatinum-induced apoptosis. Consistently, resistant EOC xenografts overexpressing miR-30a resulted in significantly less tumor growth than controls. Together our study provides a new perspective on the regulatory mechanism of ETAR gene. Interestingly, our findings highlight that blockade of ETAR regulatory axis is the mechanism underlying the tumor suppressor function of miR-30a in chemoresistant EOC cells.
Collapse
Affiliation(s)
- Rosanna Sestito
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Elisa Semprucci
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Andrea Sacconi
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
42
|
Shukla HD, Mahmood J, Vujaskovic Z. Integrated proteo-genomic approach for early diagnosis and prognosis of cancer. Cancer Lett 2015; 369:28-36. [DOI: 10.1016/j.canlet.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022]
|
43
|
Cho A, Howell VM, Colvin EK. The Extracellular Matrix in Epithelial Ovarian Cancer - A Piece of a Puzzle. Front Oncol 2015; 5:245. [PMID: 26579497 PMCID: PMC4629462 DOI: 10.3389/fonc.2015.00245] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/15/2015] [Indexed: 02/04/2023] Open
Abstract
Epithelial ovarian cancer is the fifth leading cause of cancer-related deaths in women and the most lethal gynecological malignancy. Extracellular matrix (ECM) is an integral component of both the normal and tumor microenvironment. ECM composition varies between tissues and is crucial for maintaining normal function and homeostasis. Dysregulation and aberrant deposition or loss of ECM components is implicated in ovarian cancer progression. The mechanisms by which tumor cells induce ECM remodeling to promote a malignant phenotype are yet to be elucidated. A thorough understanding of the role of the ECM in ovarian cancer is needed for the development of effective biomarkers and new therapies.
Collapse
Affiliation(s)
- Angela Cho
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW, Australia
| | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Emily K. Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Ganapathi MK, Jones WD, Sehouli J, Michener CM, Braicu IE, Norris EJ, Biscotti CV, Vaziri SAJ, Ganapathi RN. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int J Cancer 2015; 138:679-88. [PMID: 26311224 DOI: 10.1002/ijc.29815] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/21/2015] [Accepted: 08/03/2015] [Indexed: 02/04/2023]
Abstract
Tumor recurrence, following initial response to adjuvant chemotherapy, is a major problem in women with high-grade serous ovarian cancer (HGSOC). Microarray analysis of primary tumors has identified genes that may be useful in risk stratification/overall survival, but are of limited value in predicting the >70% rate for tumor recurrence. In this study, we performed RNA-Seq analysis of primary and recurrent HGSOC to first identify unique differentially expressed genes. From this dataset, we selected 21 archetypical coding genes and one noncoding RNA, based on statistically significant differences in their expression profile between tumors, for validation by qPCR in a larger cohort of 110 ovarian tumors (71 primary and 39 recurrent) and for testing association of specific genes with time-to-recurrence (TTR). Kaplan-Meier tests revealed that high expression of collagen type II, alpha 1 (COL2A1) was associated with delayed TTR (HR = 0.47, 95% CI: 0.27-0.82, p = 0.008), whereas low expression of the pseudogene, solute carrier family 6 member 10 (SLC6A10P), was associated with longer TTR (HR = 0.53, 95% CI: 0.30-0.93, p = 0.027). Notably, TTR was significantly delayed for tumors that simultaneously highly expressed COL2A1 and lowly expressed SLC6A10P (HR = 0.21, 95% CI: 0.082-0.54, p = 0.0011), an estimated median of 95 months as compared to an estimated median of 16 months for subjects expressing other levels of COL2A1 and SLC6A10P. Thus, evaluating expression levels of COL2A1 and SLC6A10P at primary surgery could be beneficial for clinically managing recurrence of HGSOC.
Collapse
Affiliation(s)
- Mahrukh K Ganapathi
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC
| | - Wendell D Jones
- Genomics and Bioinformatics Group, Expression Analysis-Quintiles, Durham, NC
| | - Jalid Sehouli
- Department of Gynecology, Charité Medical University of Berlin, Berlin, Germany
| | - Chad M Michener
- Women's Health and Obstetrics/Gynecology Institute, Cleveland Clinic, Cleveland, OH
| | - Ioana E Braicu
- Department of Gynecology, Charité Medical University of Berlin, Berlin, Germany
| | - Eric J Norris
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC
| | | | | | - Ram N Ganapathi
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC
| |
Collapse
|
45
|
Yang XH, Wang B, Cunningham JM. Identification of epigenetic modifications that contribute to pathogenesis in therapy-related AML: Effective integration of genome-wide histone modification with transcriptional profiles. BMC Med Genomics 2015; 8 Suppl 2:S6. [PMID: 26043758 PMCID: PMC4460748 DOI: 10.1186/1755-8794-8-s2-s6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Therapy-related, secondary acute myeloid leukemia (t-AML) is an increasingly frequent complication of intensive chemotherapy. This malignancy is often characterized by abnormalities of chromosome 7, including large deletions or chromosomal loss. A variety of studies suggest that decreased expression of the EZH2 gene located at 7q36.1 is critical in disease pathogenesis. This histone methyltransferase has been implicated in transcriptional repression through modifying histone H3 on lysine 27 (H3k27). However, the critical target genes of EZH2 and their regulatory roles remain unclear. Method To characterize the subset of EZH2 target genes that might contribute to t-AML pathogenesis, we developed a novel computational analysis to integrate tissue-specific histone modifications and genome-wide transcriptional regulation. Initial integrative analysis utilized a novel "seq2gene" strategy to explore largely the target genes of chromatin immuneprecipitation sequencing (ChIP-seq) enriched regions. By combining seq2gene with our Phenotype-Genotype-Network (PGNet) algorithm, we enriched genes with similar expression profiles and genomic or functional characteristics into "biomodules". Results Initial studies identified SEMA3A (semaphoring 3A) as a novel oncogenic candidate that is regulated by EZH2-silencing, using data derived from both normal and leukemic cell lines as well as murine cells deficient in EZH2. A microsatellite marker at the SEMA3A promoter has been associated with chemosensitivity and radiosensitivity. Notably, our subsequent studies in primary t-AML demonstrate an expected up-regulation of SEMA3A that is EZH2-modulated. Furthermore, we have identified three biomodules that are co-expressed with SEMA3A and up-regulated in t-AML, one of which consists of previously characterized EZH2-repressed gene targets. The other two biomodules include MAPK8 and TATA box targets. Together, our studies suggest an important role for EZH2 targets in t-AML pathogenesis that warrants further study. Conclusion These developed computational algorithms and systems biology strategies will enhance the knowledge discovery and hypothesis-driven analysis of multiple next generation sequencing data, for t-AML and other complex diseases.
Collapse
|
46
|
Raymond AA, Benhamouche S, Neaud V, Di Martino J, Javary J, Rosenbaum J. Reptin regulates DNA double strand breaks repair in human hepatocellular carcinoma. PLoS One 2015; 10:e0123333. [PMID: 25875766 PMCID: PMC4398330 DOI: 10.1371/journal.pone.0123333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Reptin/RUVBL2 is overexpressed in most hepatocellular carcinomas and is required for the growth and viability of HCC cells. Reptin is involved in several chromatin remodeling complexes, some of which are involved in the detection and repair of DNA damage, but data on Reptin involvement in the repair of DNA damage are scarce and contradictory. Our objective was to study the effects of Reptin silencing on the repair of DNA double-strand breaks (DSB) in HCC cells. Treatment of HuH7 cells with etoposide (25 μM, 30 min) or γ irradiation (4 Gy) increased the phosphorylation of H2AX by 1.94 ± 0.13 and 2.0 ± 0.02 fold, respectively. These values were significantly reduced by 35 and 65 % after Reptin silencing with inducible shRNA. Irradiation increased the number of BRCA1 (3-fold) and 53BP1 foci (7.5 fold). Depletion of Reptin reduced these values by 62 and 48%, respectively. These defects in activation and/or recruitment of repair proteins were not due to a decreased number of DSBs as measured by the COMET assay. All these results were confirmed in the Hep3B cell line. Protein expression of ATM and DNA-PKcs, the major H2AX kinases, was significantly reduced by 52 and 61 % after Reptin depletion whereas their mRNA level remained unchanged. Phosphorylation of Chk2, another ATM target, was not significantly altered. Using co-immunoprecipitation, we showed an interaction between Reptin and DNA-PKcs. The half-life of newly-synthesized DNA-PKcs was reduced when Reptin was silenced. Finally, depletion of Reptin was synergistic with etoposide or γ irradiation to reduce cell growth and colony formation. In conclusion, Reptin is an important cofactor for the repair of DSBs. Our data, combined with those of the literature suggests that it operates at least in part by regulating the expression of DNA-PKcs by a stabilization mechanism. Overexpression of Reptin in HCC could be a factor of resistance to treatment, consistent with the observed overexpression of Reptin in subgroups of chemo-resistant breast and ovarian cancers.
Collapse
Affiliation(s)
- Anne-Aurélie Raymond
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Samira Benhamouche
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Véronique Neaud
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Julie Di Martino
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Joaquim Javary
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Jean Rosenbaum
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
- * E-mail:
| |
Collapse
|
47
|
Ryner L, Guan Y, Firestein R, Xiao Y, Choi Y, Rabe C, Lu S, Fuentes E, Huw LY, Lackner MR, Fu L, Amler LC, Bais C, Wang Y. Upregulation of Periostin and Reactive Stroma Is Associated with Primary Chemoresistance and Predicts Clinical Outcomes in Epithelial Ovarian Cancer. Clin Cancer Res 2015; 21:2941-51. [PMID: 25838397 DOI: 10.1158/1078-0432.ccr-14-3111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/17/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Up to one third of ovarian cancer patients are intrinsically resistant to platinum-based treatment. However, predictive and therapeutic strategies are lacking due to a poor understanding of the underlying molecular mechanisms. This study aimed to identify key molecular characteristics that are associated with primary chemoresistance in epithelial ovarian cancers. EXPERIMENTAL DESIGN Gene expression profiling was performed on a discovery set of 85 ovarian tumors with clinically well-defined response to chemotherapies as well as on an independent validation dataset containing 138 ovarian patients from the chemotreatment arm of the ICON7 trial. RESULTS We identified a distinct "reactive stroma" gene signature that is specifically associated with primary chemoresistant tumors and was further upregulated in posttreatment recurrent tumors. Immunohistochemistry (IHC) and RNA in situ hybridization (RNA ISH) analyses on three of the highest-ranked signature genes (POSTN, LOX, and FAP) confirmed that modulation of the reactive stroma signature genes within the peritumoral stromal compartments was specifically associated with the clinical chemoresistance. Consistent with these findings, chemosensitive ovarian cells grown in the presence of recombinant POSTN promoted resistance to carboplatin and paclitaxel treatment in vitro. Finally, we validated the reactive stroma signature in an independent dataset and demonstrated that a high POSTN expression level predicts shorter progression-free survival following first-line chemotherapy. CONCLUSIONS Our findings highlight the important interplay between cancer and the tumor microenvironment in ovarian cancer biology and treatment. The identified reactive stromal components in this study provide a molecular basis to the further development of novel diagnostic and therapeutic strategies for overcoming chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Lisa Ryner
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Yinghui Guan
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Ron Firestein
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Yuanyuan Xiao
- Department of Biostatistics, Genentech, Inc., South San Francisco, California
| | - Younjeong Choi
- Department of Biostatistics, Genentech, Inc., South San Francisco, California
| | - Christina Rabe
- Department of Biostatistics, Genentech, Inc., South San Francisco, California
| | - Shan Lu
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Eloisa Fuentes
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Ling-Yuh Huw
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Mark R Lackner
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Ling Fu
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Lukas C Amler
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Carlos Bais
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Yulei Wang
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California.
| |
Collapse
|
48
|
Lloyd KL, Cree IA, Savage RS. Prediction of resistance to chemotherapy in ovarian cancer: a systematic review. BMC Cancer 2015; 15:117. [PMID: 25886033 PMCID: PMC4371880 DOI: 10.1186/s12885-015-1101-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/20/2015] [Indexed: 11/17/2022] Open
Abstract
Background Patient response to chemotherapy for ovarian cancer is extremely heterogeneous and there are currently no tools to aid the prediction of sensitivity or resistance to chemotherapy and allow treatment stratification. Such a tool could greatly improve patient survival by identifying the most appropriate treatment on a patient-specific basis. Methods PubMed was searched for studies predicting response or resistance to chemotherapy using gene expression measurements of human tissue in ovarian cancer. Results 42 studies were identified and both the data collection and modelling methods were compared. The majority of studies utilised fresh-frozen or formalin-fixed paraffin-embedded tissue. Modelling techniques varied, the most popular being Cox proportional hazards regression and hierarchical clustering which were used by 17 and 11 studies respectively. The gene signatures identified by the various studies were not consistent, with very few genes being identified by more than two studies. Patient cohorts were often noted to be heterogeneous with respect to chemotherapy treatment undergone by patients. Conclusions A clinically applicable gene signature capable of predicting patient response to chemotherapy has not yet been identified. Research into a predictive, as opposed to prognostic, model could be highly beneficial and aid the identification of the most suitable treatment for patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1101-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine L Lloyd
- MOAC DTC, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Ian A Cree
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Richard S Savage
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. .,Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
49
|
Pandya D, Mariani M, McHugh M, Andreoli M, Sieber S, He S, Dowell-Martino C, Fiedler P, Scambia G, Ferlini C. Herpes virus microRNA expression and significance in serous ovarian cancer. PLoS One 2014; 9:e114750. [PMID: 25485872 PMCID: PMC4259392 DOI: 10.1371/journal.pone.0114750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022] Open
Abstract
Serous ovarian cancer (SEOC) is the deadliest gynecologic malignancy. MicroRNAs (miRNAs) are a class of small noncoding RNAs which regulate gene expression and protein translation. MiRNAs are also encoded by viruses with the intent of regulating their own genes and those of the infected cells. This is the first study assessing viral miRNAs in SEOC. MiRNAs sequencing data from 487 SEOC patients were downloaded from the TCGA website and analyzed through in-house sequencing pipeline. To cross-validate TCGA analysis, we measured the expression of miR-H25 by quantitative immunofluorescence in an additional cohort of 161 SEOC patients. Gene, miRNA expression, and cytotoxicity assay were performed on multiple ovarian cancer cell lines transfected with miR-H25 and miR-BART7. Outcome analysis was performed using multivariate Cox and Kaplan-Meier method. Viral miRNAs are more expressed in SEOC than in normal tissues. Moreover, Herpetic viral miRNAs (miR-BART7 from EBV and miR-H25 from HSV-2) are significant and predictive biomarkers of outcome in multivariate Cox analysis. MiR-BART7 correlates with resistance to first line chemotherapy and early death, whereas miR-H25 appears to impart a protective effect and long term survival. Integrated analysis of gene and viral miRNAs expression suggests that miR-BART7 induces directly cisplatin-resistance, while miR-H25 alters RNA processing and affects the expression of noxious human miRNAs such as miR-143. This is the first investigation linking viral miRNA expression to ovarian cancer outcome. Viral miRNAs can be useful to develop biomarkers for early diagnosis and as a potential therapeutic tool to reduce SEOC lethality.
Collapse
Affiliation(s)
- Deep Pandya
- Danbury Hospital Research Institute, Danbury, CT, United States of America
| | - Marisa Mariani
- Danbury Hospital Research Institute, Danbury, CT, United States of America
| | - Mark McHugh
- Danbury Hospital Research Institute, Danbury, CT, United States of America
| | - Mirko Andreoli
- Danbury Hospital Research Institute, Danbury, CT, United States of America
| | - Steven Sieber
- Danbury Hospital Research Institute, Danbury, CT, United States of America
| | - Shiquan He
- Danbury Hospital Research Institute, Danbury, CT, United States of America
| | | | - Paul Fiedler
- Danbury Hospital Research Institute, Danbury, CT, United States of America
| | - Giovanni Scambia
- Department of Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Cristiano Ferlini
- Danbury Hospital Research Institute, Danbury, CT, United States of America
- * E-mail:
| |
Collapse
|
50
|
Vargas HA, Miccò M, Hong SI, Goldman DA, Dao F, Weigelt B, Soslow RA, Hricak H, Levine DA, Sala E. Association between morphologic CT imaging traits and prognostically relevant gene signatures in women with high-grade serous ovarian cancer: a hypothesis-generating study. Radiology 2014; 274:742-51. [PMID: 25383459 DOI: 10.1148/radiol.14141477] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate associations among imaging traits observed on computed tomographic (CT) images, Classification of Ovarian Cancer (CLOVAR) gene signatures, and survival in women with high-grade serous ovarian cancer (HGSOC). MATERIALS AND METHODS The institutional review board approved this HIPAA-compliant retrospective study of CT images obtained before cytoreductive surgery in 46 women with HGSOC, whose tumors were subjected to molecular analysis performed by the Cancer Genome Atlas Research Network. Two readers independently evaluated the CT features of the primary ovarian mass and sites of metastatic spread if present, including size, outline, and texture. Fisher exact test was used to examine the relationship between imaging traits and CLOVAR subtypes (CLOVAR differentiated, immunoreactive, mesenchymal, and proliferative). Kaplan-Meier and Cox proportional hazards regression survival analyses were performed. RESULTS The presence of mesenteric infiltration and diffuse peritoneal involvement by tumor at CT were significantly associated with CLOVAR subtype (P = .002-.004 for reader 1 and P = .005-.012 for reader 2). Mesenteric infiltration at CT was associated with CLOVAR mesenchymal subtype. Patients with mesenteric infiltration had shorter median progression-free survival than patients without mesenteric involvement (14.7 months vs 25.6 months according to both readers; P = .019 for reader 1 and .015 for reader 2) and overall survival (49.0 vs 58.2 months; P = .014 [reader 1] and 50.0 vs 59.1 months; P = .015 [reader 2]). No other imaging features were significantly associated with CLOVAR subtype or survival. CONCLUSION Specific CT imaging traits were associated with the CLOVAR subtypes and survival in patients with HGSOC.
Collapse
Affiliation(s)
- Hebert Alberto Vargas
- From the Departments of Radiology (H.A.V., M.M., S.I.H., H.H., E.S.), Epidemiology and Biostatistics (D.A.G.), Surgery (F.D., D.A.L.), and Pathology (B.W., R.A.S.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065
| | | | | | | | | | | | | | | | | | | |
Collapse
|