1
|
Borba HHL, Funke A, Wiens A, Utiyama SRDR, Perlin CM, Pontarolo R. Update on Biologic Therapies for Systemic Lupus Erythematosus. Curr Rheumatol Rep 2017; 18:44. [PMID: 27299782 DOI: 10.1007/s11926-016-0589-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystemic autoimmune disease driven by genetic, hormonal, and environmental factors. Despite the advances in diagnostic and therapeutic approaches in the last decades, SLE still leads to significant morbidity and increased mortality. Although a cure for SLE is still unknown, treatment is required to control acute disease exacerbation episodes (flares), decrease the frequency and severity of subsequent lupus flares, address comorbidities, and prevent end-organ damage. While conventional SLE pharmacotherapy may exhibit suboptimal efficacy and substantial toxicity, a growing knowledge of the disease pathogenesis enabled the research on novel therapeutic agents directed at specific disease-related targets. In this paper, we review the recent progress in the clinical investigation of biologic agents targeting B cells, T cells, cytokines, innate immunity, and other immunologic or inflammatory pathways. Although many investigational agents exhibited insufficient efficacy or inadequate safety in clinical trials, one of them, belimumab, fulfilled the efficacy and safety regulatory requirements and was approved for the treatment of SLE in Europe and the USA, which confirms that, despite all difficulties, advances in this field are possible.
Collapse
Affiliation(s)
- Helena Hiemisch Lobo Borba
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil
| | - Andreas Funke
- Rheumatology Service, Hospital de Clinicas, Federal University of Parana, Curitiba, PR, Brazil
| | - Astrid Wiens
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil
| | - Shirley Ramos da Rosa Utiyama
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil
| | - Cássio Marques Perlin
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil
| | - Roberto Pontarolo
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
2
|
Habibi-Anbouhi M, Azadmanesh K, Behdani M, Hajizadeh-Saffar E, Vahabpour R, Shokrgozar MA. Development and Characterization of a New Antipeptide Monoclonal Antibody Directed to Human CD20 Antigen. Cancer Biother Radiopharm 2016; 30:310-6. [PMID: 26352927 DOI: 10.1089/cbr.2015.1863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The rapid expansion of immunotherapeutic approaches for treatment of various diseases, including cancers, has been greatly facilitated by the invention of new generation of antibodies. Clinical studies have indicated that anti-CD20 mAb-based therapies represent an effective treatment for various diseases with overexpression of CD20 on their cell surface, such as non-Hodgkin's lymphoma, hemolytic anemia, as well as autoimmune diseases like rheumatoid arthritis. Technically, due to a short extra membrane domain, the recombinant CD20 protein is a difficult antigen to raise immune responses. In search for new monoclonal antibodies, the authors used an antigenic polypeptide, which yielded numbers of new binders that may lead to production of anti-CD20 antibodies, with improved diagnostic or clinical attributes. Mice were immunized with extra membrane loop of human CD20 (exCD20) polypeptide. The exCD20 antigen showed a desired immune response and was able to develop a monoclonal antibody, 3B4C10, which reacted well with peptide antigen as well as native antigen on the surface of Raji B-cell line. The antibody 3B4C10 with a balanced K(on) and K(off) may be applicable in the construction of affinity columns or beads for isolation and purification of CD20-positive cells and cancer stem cells.
Collapse
Affiliation(s)
| | | | - Mahdi Behdani
- 3 Venom & Biotherapeutics Molecules Laboratory, Biotechnology Research Center, Pasteur Institute of Iran , Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- 4 Department of Regenerative Medicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| | - Rouhollah Vahabpour
- 5 Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | | |
Collapse
|
3
|
Singh V, Gupta D, Almasan A. Development of Novel Anti-Cd20 Monoclonal Antibodies and Modulation in Cd20 Levels on Cell Surface: Looking to Improve Immunotherapy Response. JOURNAL OF CANCER SCIENCE & THERAPY 2015; 7:347-358. [PMID: 27413424 PMCID: PMC4939752 DOI: 10.4172/1948-5956.1000373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rituximab has been revolutionized and validated CD20 targeting monoclonal antibody. Although, it is widely used for lymphoma therapy and many patients have been benefited. However significant numbers of patients are refractory or developed resistance to current therapies due to low level of CD20 expression and/or availability on cells surface. Thus development of novel anti-CD20 mAbs with great cell killing ability and enhance CD20 levels on cell surface can potentially exploit lymphoma therapy. In this scenario, we are summarizing the recently developed mAbs against CD20 and compounds that have ability to induce CD20 expression at significant level. We also are providing information regarding combination strategy for use of radiation and anti-CD20 mAbs in vitro. However, it will need to be determined by rigorous at pre-clinical and clinic testing. We hope this review will be beneficial for current research in the area of immunotherapy or radio-immunotherapy.
Collapse
Affiliation(s)
- Vijay Singh
- Metabolic Cell Signaling Research, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Damodar Gupta
- Metabolic Cell Signaling Research, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Alexandru Almasan
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Rath T, Baker K, Dumont JA, Peters RT, Jiang H, Qiao SW, Lencer WI, Pierce GF, Blumberg RS. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol 2015; 35:235-254. [PMID: 24156398 PMCID: PMC4876602 DOI: 10.3109/07388551.2013.834293] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nearly 350 IgG-based therapeutics are approved for clinical use or are under development for many diseases lacking adequate treatment options. These include molecularly engineered biologicals comprising the IgG Fc-domain fused to various effector molecules (so-called Fc-fusion proteins) that confer the advantages of IgG, including binding to the neonatal Fc receptor (FcRn) to facilitate in vivo stability, and the therapeutic benefit of the specific effector functions. Advances in IgG structure-function relationships and an understanding of FcRn biology have provided therapeutic opportunities for previously unapproachable diseases. This article discusses approved Fc-fusion therapeutics, novel Fc-fusion proteins and FcRn-dependent delivery approaches in development, and how engineering of the FcRn-Fc interaction can generate longer-lasting and more effective therapeutics.
Collapse
Affiliation(s)
- Timo Rath
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristi Baker
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Shuo-Wang Qiao
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Wayne I. Lencer
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
|
6
|
Ying T, Gong R, Ju TW, Prabakaran P, Dimitrov DS. Engineered Fc based antibody domains and fragments as novel scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1977-1982. [PMID: 24792384 PMCID: PMC4185235 DOI: 10.1016/j.bbapap.2014.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) have been successful for the therapy of a number of diseases mostly cancer and immune disorders. However, the vast majority of mAbs approved for clinical use are full size, typically in IgG1 format. These mAbs may exhibit relatively poor tissue penetration and restricted epitope access due to their large size. A promising solution to this fundamental limitation is the engineering of smaller scaffolds based on the IgG1 Fc region. These scaffolds can be used for the generation of libraries of mutants from which high-affinity binders can be selected. Comprised of the CH2 and CH3 domains, the Fc region is important not only for the antibody effector function but also for its long half-life. This review focuses on engineered Fc based antibody fragments and domains including native (dimeric) Fc and monomeric Fc as well as CH2 and monomeric CH3, and their use as novel scaffolds and binders. The Fc based binders are promising candidate therapeutics with optimized half-life, enhanced tissue penetration and access to sterically restricted binding sites resulting in an increased therapeutic efficacy. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Tianlei Ying
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA.
| | - Rui Gong
- Antibody Engineering Group, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Tina W Ju
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Ponraj Prabakaran
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA
| |
Collapse
|
7
|
Robak T. Emerging Monoclonal Antibodies and Related Agents for the Treatment of Chronic Lymphocytic Leukemia. Future Oncol 2013; 9:69-91. [DOI: 10.2217/fon.12.157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Ul. Ciolkowskiego 2, Poland and Copernicus Memorial Hospital, 93-510 Lodz, Ul. Ciolkowskiego 2, Poland
| |
Collapse
|
8
|
Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, Hopfner KP, Umaña P, Niederfellner G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs 2012; 5:22-33. [PMID: 23211638 DOI: 10.4161/mabs.22771] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several novel anti-CD20 monoclonal antibodies are currently in development with the aim of improving the treatment of B cell malignancies. Mutagenesis and epitope mapping studies have revealed differences between the CD20 epitopes recognized by these antibodies. Recently, X-ray crystallography studies confirmed that the Type I CD20 antibody rituximab and the Type II CD20 antibody obinutuzumab (GA101) differ fundamentally in their interaction with CD20 despite recognizing a partially overlapping epitope on CD20. The Type I CD20 antibodies rituximab and ofatumumab are known to bind to different epitopes. The differences suggest that the biological properties of these antibodies are not solely determined by their core epitope sequences, but also depend on other factors, such as the elbow hinge angle, the orientation of the bound antibody and differential effects mediated by the Fc region of the antibody. Taken together, these factors may explain differences in the preclinical properties and clinical efficacy of anti-CD20 antibodies.
Collapse
Affiliation(s)
- Christian Klein
- Discovery Oncology, Pharma Research and Early Development, Roche Glycart AG, Schlieren, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang J, Rader C. Cloning, expression, and purification of monoclonal antibodies in scFv-Fc format. Methods Mol Biol 2012; 901:209-32. [PMID: 22723104 DOI: 10.1007/978-1-61779-931-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This protocol describes the generation of monoclonal antibodies in single-chain variable fragment (scFv)-Fc format. It includes the cloning of the scFv-Fc expression cassette into a mammalian expression vector followed by transient transfection of mammalian cells and purification by protein A affinity chromatography. The protocol is intended for applications in basic and preclinical research that require rapid access to milligram amounts of protein.
Collapse
Affiliation(s)
- Jiahui Yang
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Lu K, Wang X. Therapeutic advancement of chronic lymphocytic leukemia. J Hematol Oncol 2012; 5:55. [PMID: 22980425 PMCID: PMC3465197 DOI: 10.1186/1756-8722-5-55] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/06/2012] [Indexed: 12/20/2022] Open
Abstract
Despite the combinations of chemotherapy with monoclonal antibodies have further improved response rates, chronic lymphocytic leukemia (CLL) remains an incurable disease with an extremely variable course. This article reviews the ongoing clinical advances in the treatment of CLL in both previously untreated and relapsed disease and focuses on the benefit of different therapeutic strategies, the most effective therapy combinations and the potential activity of novel agents. Novel agents and combination therapies have been investigated by several studies in both the upfront and relapsed setting, particularly for patients with 17p deletion, TP53 mutation and fludarabine-refractory CLL. While these agents and combination therapies have improved initial response rates, ongoing studies are continued to determine and improve the efficacy and safety. Despite advancements in the treatment of CLL have led to high response rates, allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative option and reduced-intensity conditioning (RIC) allo-HSCT must be strongly considered whenever feasible. As such, ongoing studies of these agents and other novel approaches in clinical development are needed to expand and improve treatment options for CLL patients.
Collapse
Affiliation(s)
- Kang Lu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, 250021, P R China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, 250021, P R China
- Department of Diagnostics, Shandong University School of Medicine, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
11
|
|
12
|
Mohseni Nodehi S, Repp R, Kellner C, Bräutigam J, Staudinger M, Schub N, Peipp M, Gramatzki M, Humpe A. Enhanced ADCC activity of affinity maturated and Fc-engineered mini-antibodies directed against the AML stem cell antigen CD96. PLoS One 2012; 7:e42426. [PMID: 22879978 PMCID: PMC3411760 DOI: 10.1371/journal.pone.0042426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 07/09/2012] [Indexed: 12/23/2022] Open
Abstract
CD96, a cell surface antigen recently described to be preferentially expressed on acute myeloid leukemia (AML) leukemic stem cells (LSC) may represent an interesting target structure for the development of antibody-based therapeutic approaches. The v-regions from the CD96-specific hybridoma TH-111 were isolated and used to generate a CD96-specific single chain fragment of the variable regions (scFv). An affinity maturated variant resulting in 4-fold enhanced CD96-binding was generated by random mutagenesis and stringent selection using phage display. The affinity maturated scFv CD96-S32F was used to generate bivalent mini-antibodies by genetically fusing an IgG1 wild type Fc region or a variant with enhanced CD16a binding. Antibody dependent cell-mediated cytotoxicity (ADCC) experiments revealed that Fc engineering was essential to trigger significant effector cell-mediated lysis when the wild type scFv was used. The mini-antibody variant generated by fusing the affinity-maturated scFv with the optimized Fc variant demonstrated the highest ADCC activity (2.3-fold enhancement in efficacy). In conclusion, our data provide proof of concept that CD96 could serve as a target structure for effector cell-mediated lysis and demonstrate that both enhancing affinity for CD96 and for CD16a resulted in mini-antibodies with the highest cytolytic potential.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibody Affinity/immunology
- Antibody Specificity/immunology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Dose-Response Relationship, Immunologic
- Humans
- Hybridomas
- Immunoglobulin G/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Models, Molecular
- Molecular Sequence Data
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Mutation/genetics
- Neoplastic Stem Cells/immunology
- Protein Binding
- Protein Engineering
- Protein Structure, Tertiary
- Receptors, Fc/immunology
- Sequence Alignment
- Single-Chain Antibodies/immunology
Collapse
Affiliation(s)
- Sahar Mohseni Nodehi
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Roland Repp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Joachim Bräutigam
- Department of Structural Biology, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Natalie Schub
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Andreas Humpe
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
- * E-mail:
| |
Collapse
|
13
|
Foon KA, Takeshita K, Zinzani PL. Novel therapies for aggressive B-cell lymphoma. Adv Hematol 2012; 2012:302570. [PMID: 22536253 PMCID: PMC3318210 DOI: 10.1155/2012/302570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Abstract
Aggressive B-cell lymphoma (BCL) comprises a heterogeneous group of malignancies, including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma, and mantle cell lymphoma (MCL). DLBCL, with its 3 subtypes, is the most common type of lymphoma. Advances in chemoimmunotherapy have substantially improved disease control. However, depending on the subtype, patients with DLBCL still exhibit substantially different survival rates. In MCL, a mature B-cell lymphoma, the addition of rituximab to conventional chemotherapy regimens has increased response rates, but not survival. Burkitt lymphoma, the most aggressive BCL, is characterized by a high proliferative index and requires more intensive chemotherapy regimens than DLBCL. Hence, there is a need for more effective therapies for all three diseases. Increased understanding of the molecular features of aggressive BCL has led to the development of a range of novel therapies, many of which target the tumor in a tailored manner and are summarized in this paper.
Collapse
Affiliation(s)
- Kenneth A. Foon
- Celgene Corporation, 86 Morris Avenue, Summit, NJ 07901, USA
| | | | - Pier L. Zinzani
- Department of Hematology and Oncological Sciences “L. e A. Seràgnoli”, University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| |
Collapse
|
14
|
Hong JW, Cho WD, Hong KP, Kim SS, Son SM, Yun SJ, Lee HC, Yoon SS, Song HG. Generation of 1E8 Single Chain Fv-Fc Construct Against Human CD59. Immune Netw 2012; 12:33-9. [PMID: 22536168 PMCID: PMC3329601 DOI: 10.4110/in.2012.12.1.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/27/2012] [Accepted: 02/07/2012] [Indexed: 12/01/2022] Open
Abstract
Background Therapeutic approaches using monoclonal antibodies (mAbs) against complement regulatory proteins (CRPs:i.e.,CD46,CD55 and CD59) have been reported for adjuvant cancer therapy. In this study, we generated a recombinant 1E8 single-chain anti-CD59 antibody (scFv-Fc) and tested anti-cancer effect.by using complement dependent cytotoxicity (CDC). Methods We isolated mRNA from 1E8 hybridoma cells and amplified the variable regions of the heavy chain (VH) and light chain (VL) genes using reverse-transcriptase polymerase chain reaction (RT-PCR). Using a linker, the amplified sequences for the heavy and light chains were each connected to the sequence for a single polypeptide chain that was designed to be expressed. The VL and VH fragments were cloned into the pOptiVEC-TOPO vector that contained the human CH2-CH3 fragment. Then, 293T cells were transfected with the 1E8 single-chain Fv-Fc (scFv-Fc) constructs. CD59 expression was evaluated in the prostate cancer cell lines using flow cytometry. The enhancement of CDC effect by mouse 1E8 and 1E8 scFv-Fc were evaluated using a cytotoxicity assay. Results The scFv-Fc constructs were expressed by the transfected 293T cells and secreted into the culture medium. The immunoreactivity of the secreted scFv-Fc construct was similar to that of the mouse 1E8 for CCRF-CEM cells. The molecular masses of 1E8 scFv-Fc were about 120 kDa and 55 kDa under reducing and non-reducing conditions, respectively. The DNA sequence of 1E8 scFv-Fc was obtained and presented. CD59 was highly expressed by the prostate cancer cell line. The recombinant 1E8 scFv-Fc mAb revealed significantly enhanced CDC effect similar with mouse 1E8 for prostate cancer cells. Conclusion A 1E8 scFv-Fc construct for adjuvant cancer therapy was developed.
Collapse
Affiliation(s)
- Jeong-Won Hong
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Derby L, Czuczman MS. Update on novel monoclonal antibodies and immunoconjugates for the treatment of lymphoproliferative disorders. Future Oncol 2011; 7:963-79. [PMID: 21823892 DOI: 10.2217/fon.11.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The year 1997 was pivotal in lymphoma research, as it was the year that the US FDA approved rituximab. Rituximab significantly altered clinical management and outcomes of patients with B-cell malignancies. Despite a high initial response rate, the majority of patients subsequently develop variable degrees of therapeutic resistance to rituximab. Research attempting to understand the mechanisms of rituximab resistance and potential ways to overcome them has given rise to the development of novel targeted immunotherapeutics. This article will update the readers on advances in bioengineering of monoclonal antibodies and immunoconjugates that target CD20, as well as other surface antigens. Some additional novel immunotherapeutics, including small modular immunopharmaceuticals, bispecific monoclonal antibodies, T-cell engaging antibodies and immunoconjugates, will also be discussed.
Collapse
Affiliation(s)
- Lyudmyla Derby
- Department of Medicine, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
16
|
Repp R, Kellner C, Muskulus A, Staudinger M, Nodehi SM, Glorius P, Akramiene D, Dechant M, Fey GH, van Berkel PHC, van de Winkel JGJ, Parren PWHI, Valerius T, Gramatzki M, Peipp M. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. J Immunol Methods 2011; 373:67-78. [PMID: 21855548 DOI: 10.1016/j.jim.2011.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 11/29/2022]
Abstract
Protein- or glyco-engineering of antibody molecules can be used to enhance Fc-mediated effector functions. ScFv-Fc fusion proteins (scFv-Fc) represent interesting antibody derivatives due to their relatively simple design and increased tissue penetration. Here, the impact of protein- and glyco-engineering on ADCC potency of a panel of human IgG1-based scFv-Fc was tested. Three matched sets of scFv-Fc variants targeting CD7, CD20 or HLA class II and optimized for CD16a binding by mutagenesis, lack of core-fucose, or their combination, were generated and functionally tested in comparison to the corresponding wild type scFv-Fc. Antigen binding activity was not compromised by altered glycosylation or Fc mutagenesis, whereas Fc binding to CD16a was significantly enhanced in the order: non-core fucosylated/Fc-mutated double-engineered≫Fc-mutated≥non-core-fucosylated>wild-type IgG1-Fc. All engineered variants triggered potent ADCC with up to 100-fold reduced EC50 values compared to non-engineered variants. Interestingly, double-engineered variants were similarly effective in triggering ADCC compared to single-engineered variants irrespective of their 1 log greater CD16a binding affinity. Thus, these data demonstrate that protein- and glyco-engineering enhances NK-cell mediated ADCC of scFv-Fc similarly and show that enhancing CD16a affinity beyond a certain threshold does not result in a further increase of NK-cell mediated ADCC.
Collapse
Affiliation(s)
- Roland Repp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van Meerten T, Hagenbeek A. Novel antibodies against follicular non-Hodgkin's lymphoma. Best Pract Res Clin Haematol 2011; 24:231-56. [PMID: 21658621 DOI: 10.1016/j.beha.2011.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The anti-CD20 monoclonal antibody rituximab has revolutionized the treatment of patients with follicular B-cell lymphoma. With the combination of chemotherapy and rituximab the overall survival rate has increased with approximately 30%. Unfortunately, there is resistance to rituximab with relapse of the disease in about 60% of the patients during the first five years of treatment and eventually in all patients. To this end, there is a need to develop improved anti-CD20 monoclonal antibodies and antibodies that target other attractive molecules expressed on the follicular lymphoma cell. This review describes the development and clinical achievements so far of next generation anti-CD20 and other antibodies in the treatment of follicular B-cell lymphoma.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/classification
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD/immunology
- Apoptosis/drug effects
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Combined Modality Therapy
- Humans
- Immunoconjugates/therapeutic use
- Immunotherapy/methods
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/pathology
- Lymphoma, Follicular/therapy
- Mice
- Mice, Transgenic
- Models, Animal
- Species Specificity
Collapse
Affiliation(s)
- Tom van Meerten
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
18
|
Wong RL, Liu B, Zhu X, You L, Kong L, Han KP, Lee HI, Chavaillaz PA, Jin M, Wang Y, Rhode PR, Wong HC. Interleukin-15:Interleukin-15 receptor α scaffold for creation of multivalent targeted immune molecules. Protein Eng Des Sel 2011; 24:373-83. [PMID: 21177283 PMCID: PMC3049345 DOI: 10.1093/protein/gzq116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 10/27/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022] Open
Abstract
Human interleukin-15 (hIL-15) and its receptor α (hIL-15Rα) are co-expressed in antigen presenting cells allowing trans-presentation of the cytokine to immune effector cells. We exploited the high-affinity interactions between hIL-15 and the extracellular hIL-15Rα sushi domain (hIL-15RαSu) to create a functional scaffold for the design of multispecific fusion protein complexes. Using single-chain T cell receptors (scTCRs) as recognition domains linked to the IL-15:IL-15Rα scaffold, we generated both bivalent and bispecific complexes. In these fusions, the scTCR domains retain the antigen-binding activity and the hIL-15 domain exhibits receptor binding and biological activity. As expected, bivalent scTCR fusions exhibited improved antigen binding due to increased avidity, whereas fusions comprising two different scTCR domains were capable of binding two cognate peptide/MHC complexes. Bispecific molecules containing scTCR and scCD8αβ domains also exhibit enhanced binding to peptide/MHC complexes, demonstrating that the IL-15:IL-15Rα scaffold displays flexibility necessary to support multi-domain interactions with a given target. Surprisingly, functional heterodimeric molecules could be formed by co-expressing the TCR α and β chains separately as fusions to the hIL-15 and hIL-15RαSu domains. Together, these properties indicate that the hIL-15 and hIL-15RαSu domains can be used as versatile, functional scaffold for generating novel targeted immune molecules.
Collapse
Affiliation(s)
- Richard L. Wong
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Bai Liu
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Xiaoyun Zhu
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Lijing You
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Lin Kong
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Kai-Ping Han
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Hyung-il Lee
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | | | - Moonsoo Jin
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - Hing C. Wong
- Altor BioScience Corporation, Miramar, FL 33025, USA
| |
Collapse
|
19
|
Abstract
Over the last few years, new generations of anti-CD20 monoclonal antibodies (mAbs) have been developed for potential benefits over the classical, first-generation mAb rituximab. Compared with rituximab, new mAbs have enhanced antitumor activity resulting from increased complement-dependent cytotoxicity (CDC) and/or antibody-dependent cellular cytotoxicity (ADCC) and increased Fc binding affinity for the low-affinity variants of the FcγRIIIa receptor (CD16) on immune effector cells. The second-generation mAbs, which include ofatumumab, veltuzumab, and ocrelizumab, are humanized or fully human to reduce immunogenicity, but with an unmodified Fc region. Ofatumumab is a fully human anti-CD20 IgG1 mAb in clinical development for hematological malignancies and autoimmune diseases. Ofatumumab specifically recognizes an epitope encompassing both the small and large extracellular loops of CD20 molecule, and is more effective than rituximab at CDC induction and killing target cells. Veltuzumab (IMMU-106, hA20) is a humanized anti-CD20 mAb with complementarity-determining regions similar to rituximab. This antibody has enhanced binding avidities and a stronger effect on CDC compared with rituximab. Ocrelizumab is a humanized mAb with the potential for enhanced efficacy in lymphoid malignancies compared with rituximab due to increased binding affinity for the low-affinity variants of the FcγRIIIa receptor. The third-generation mAbs are also humanized mAbs, but in addition they have an engineered Fc to increase their binding affinity for the FcγRIIIa receptor. The third-generation mAbs include AME-133v, PRO131921 and GA-101. AME-133v (LY2469298) is a type I, humanized IgG1 mAb with enhanced affinity for FcγRIIIa receptor and an enhanced ADCC activity compared with rituximab. PRO131921 is a humanized anti-CD20 mAb engineered to have improved binding to FcγRIIIa and better ADCC compared with rituximab. GA-101 (RO5072759) is a fully humanized, type II, IgG1 mAb derived from humanization of the parental B-Ly1 mouse antibody and subsequent glycoengineering using GlycoMab® technology. GA-101 was designed for enhanced ADCC and superior direct cell-killing properties, in comparison with currently available type I antibodies. TRU-015 is a small modular immunopharmaceutical (SMIP) derived from key domains of an anti-CD20 antibody. TRU-015 represents a novel biological compound that retains Fc-mediated effector functions and is smaller than mAbs. In this article we review data on new anti-CD20 mAbs that are potentially useful in the treatment of lymphoid malignancies.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland.
| | | |
Collapse
|
20
|
Nagashima H, Kaneko K, Yamanoi A, Motoi S, Konakahara S, Kohroki J, Masuho Y. TNF receptor II fusion protein with tandemly repeated Fc domains. J Biochem 2011; 149:337-46. [PMID: 21278157 DOI: 10.1093/jb/mvq149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extracellular domain of tumour necrosis factor (TNF) receptor II fused with the human IgG1 Fc region (TNFRII-Fc), as well as antibodies against TNF, has been used to treat rheumatoid arthritis. However, TNFRII-Fc is less effective than these antibodies in terms of antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against cells bearing TNF on the cell surface. We hypothesized that these activities could be increased by fusing TNFRII with tandemly repeated Fc (TNFRII-Fc-Fc). The affinities of TNFRII-Fc-Fc for soluble TNF-α and transmembrane TNF-α and the TNF-α cytotoxicity-inhibitory activity were as potent as those of TNFRII-Fc. TNFRII-Fc-Fc showed much higher binding avidity for Fcγ receptors than TNFRII-Fc and was more potent in terms of both ADCC and CDC against cells expressing transmembrane TNF-α. TNFRII-Fc-Fc of 80 kDa, as well as TNFRII-Fc-Fc of 200 kDa, was detected. TNFRII-Fc-Fc (80 kDa) was as potent as TNFRII-Fc in terms of both ADCC and CDC. These results suggest that Fc multimerization of receptor-Fc fusion proteins can augment effector functions such as ADCC and CDC, and thereby have the potential to provide a superior therapeutic effect. This may be the case not only for TNFRII-Fc but also for other receptor-Fc fusion proteins.
Collapse
Affiliation(s)
- Hiroaki Nagashima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Lim SH, Beers SA, French RR, Johnson PWM, Glennie MJ, Cragg MS. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 2010; 95:135-43. [PMID: 19773256 PMCID: PMC2805725 DOI: 10.3324/haematol.2008.001628] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antibodies to CD20 have confirmed the hypothesis that monoclonal reagents can be given in vivo to alleviate human diseases. The targeting of CD20 on normal, malignant and auto-immune B-lymphocytes by rituximab has demonstrated substantial benefits for patients with a variety of B-cell lymphomas, as well as some with autoimmune disorders. There has been a notable increase in the survival rates from B-cell lymphoma in the decade since anti-CD20 therapy was introduced.
Collapse
Affiliation(s)
- Sean H Lim
- Tenovus Laboratory, Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | |
Collapse
|
23
|
Oflazoglu E, Audoly LP. Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. MAbs 2010; 2:14-9. [PMID: 20081379 PMCID: PMC2828574 DOI: 10.4161/mabs.2.1.10789] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 01/18/2023] Open
Abstract
Approval of an anti-CD20 chimeric monoclonal antibody, rituximab, has revolutionized cancer treatment and also validated CD20 targeting for providing benefit and improvement of overall response rate in B cell malignancies. Although many patients have benefited from the treatment of rituximab, there are still significant numbers of patients who are refractory or develop resistance to the treatment. Here we discuss pre-clinically well-defined potential mechanisms of action for rituximab and review the ways next generation anti-CD20 monoclonal antibodies can potentially exploit them to further enhance the treatment of B cell malignancies. Although the relative importance of each of these mechanism remains to be established in the clinic, well-designed clinical trials will help to define the efficacy and understanding of which effector activity of modified next generation anti-CD20 mAb will be important in the treatment of B-cell malignancies.
Collapse
Affiliation(s)
- Ezogelin Oflazoglu
- Merck Bioventures, Discovery Biologics, Merck & Co., Inc., Rahway, NJ, USA.
| | | |
Collapse
|
24
|
Strohl WR. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 2009; 20:685-91. [DOI: 10.1016/j.copbio.2009.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 12/31/2022]
|
25
|
Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr Opin Biotechnol 2009; 20:692-9. [PMID: 19889530 DOI: 10.1016/j.copbio.2009.10.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/14/2009] [Indexed: 12/27/2022]
Abstract
Fc fusion proteins are molecules in which the immunoglobulin Fc is fused genetically to a protein of interest, such as an extracellular domain of a receptor, ligand, enzyme, or peptide. Fc fusion proteins have some antibody-like properties such as long serum half-life and easy expression and purification, making them an attractive platform for therapeutic drugs. Five Fc fusion based drugs are on the market presently, and many more are in different stages of clinical trials, demonstrating that Fc fusion proteins have become credible alternatives to monoclonal antibodies as therapeutics. This review summarizes the Fc fusion proteins that have been approved for use in the clinic and those that are currently in clinical trials, as well as the different approaches to design Fc fusion proteins.
Collapse
|