1
|
Zhao Y, Du R, Chen M, Chen Z. The fusion characteristics of RET fusion in pan-cancer among the Chinese population: A comprehensive genomic analysis. Transl Oncol 2025; 55:102384. [PMID: 40184718 PMCID: PMC12002882 DOI: 10.1016/j.tranon.2025.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 03/05/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND RET fusions are significant oncogenic drivers, resulting from chromosomal rearrangements of the RET proto-oncogene with various partner genes. Understanding their structural characteristics is crucial for elucidating oncogenic potential and developing targeted therapies. METHODS This study analyzed 21,023 tumor samples and 3716 peripheral blood samples from a Chinese pan-cancer cohort using DNA or RNA-targeted next-generation sequencing (NGS). 19,668 tissues underwent DNA-based fusion detection and 1355 NSCLC tissues underwent RNA-based fusion detection using a 733-gene panel. ctDNA-based targeted NGS was also performed on blood samples. RESULTS RET fusions were detected in 1.027 % of tissue samples, predominantly lung and thyroid cancers. Compared to Western populations (87 % in intron 11), Chinese patients show a shift toward the exon 10-11 region, with 30.79 % in intron 10. RET rearrangements were classified into four categories (Simple Reciprocal Inversion, Co-Fusion, Single Fusion-Common, Single Fusion-Rare) with unique mutational profiles and tumor mutational burden scores. RNA-based NGS revealed some DNA-detected rearrangements might not undergo transcription, while Co-Fusion indicated potential simultaneous transcription of multiple RET fusions. An NSCLC patient with KIF5B-RET and ATRNL1-RET co-fusions achieved 15-month progression-free survival on RET-targeted therapy. CONCLUSION This study underscores the importance of structural insights for developing targeted therapies against RET fusion-driven cancers and highlights the need for further investigation into complex RET fusion mechanisms to better understand RET-driven oncogenesis.
Collapse
Affiliation(s)
- Yi Zhao
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ruo Du
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Mingcong Chen
- Department of thoracic radiotherapy, Taizhou Cancer Hospital, Zhejiang Cancer hospital Taizhou Branch, the University of Chinese Academy of Sciences, 317502, China.
| | - Zhiwei Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
2
|
Garrett JT, Tendler S, Feroz W, Kilroy MK, Yu H. Emerging importance of HER3 in tumorigenesis and cancer therapy. Nat Rev Clin Oncol 2025; 22:348-370. [PMID: 40087402 DOI: 10.1038/s41571-025-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
HER3 is a member of the HER/ErbB family of receptor tyrosine kinases, together with EGFR (HER1), HER2 and HER4. Despite having only weak intrinsic kinase activity, HER3 can contribute to oncogenic signalling via ligand-induced heterodimerization with other HER family members. Evidence indicates that HER3 is altered or aberrantly expressed across a variety of tumour types and can be associated with poor clinical outcomes. Whereas anticancer agents targeting EGFR and HER2 have been approved for decades, no drug targeting HER3 had been approved until very recently. Initial targeting of HER3 with monoclonal antibodies as single agents or in combination with other therapeutics produced disappointing clinical results. Subsequently, efforts have been made to target HER3 with novel agents such as antibody-drug conjugates and bispecific antibodies, with promising efficacy observed in several trials encompassing various tumour types. In December 2024, the HER3 × HER2 bispecific antibody zenocutuzumab was granted FDA Accelerated Approval for the treatment of non-small-cell lung cancers or pancreatic cancers harbouring fusions involving NRG1, the gene encoding the high-affinity HER3 ligand neuregulin 1. In this Review, we provide an essential guide to HER3 signalling and oncogenesis, HER3 expression in cancer and its prognostic implications, oncogenic HER3 somatic mutations as well as rare NRG1 fusions that might depend on HER3 signalling, and the roles of HER3 in resistance to cancer therapies. We also highlight efforts to target HER3 with diverse therapeutic strategies and the potential interplay between HER3 and the antitumour immune response.
Collapse
Affiliation(s)
- Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Salomon Tendler
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wasim Feroz
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Kate Kilroy
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Helena Yu
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Liu SV, Nagasaka M, Atz J, Solca F, Müllauer L. Oncogenic gene fusions in cancer: from biology to therapy. Signal Transduct Target Ther 2025; 10:111. [PMID: 40223139 PMCID: PMC11994825 DOI: 10.1038/s41392-025-02161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Oncogenic gene fusions occur across a broad range of cancers and are a defining feature of some cancer types. Cancers driven by gene fusion products tend to respond well to targeted therapies, where available; thus, detection of potentially targetable oncogenic fusions is necessary to select optimal treatment. Detection methods include non-sequencing methods, such as fluorescence in situ hybridization and immunohistochemistry, and sequencing methods, such as DNA- and RNA-based next-generation sequencing (NGS). While NGS is an efficient way to analyze multiple genes of interest at once, economic and technical factors may preclude its use in routine care globally, despite several guideline recommendations. The aim of this review is to present a summary of oncogenic gene fusions, with a focus on fusions that affect tyrosine kinase signaling, and to highlight the importance of testing for oncogenic fusions. We present an overview of the identification of oncogenic gene fusions and therapies approved for the treatment of cancers harboring gene fusions, and summarize data regarding treating fusion-positive cancers with no current targeted therapies and clinical studies of fusion-positive cancers. Although treatment options may be limited for patients with rare alterations, healthcare professionals should identify patients most likely to benefit from oncogenic gene fusion testing and initiate the appropriate targeted therapy to achieve optimal treatment outcomes.
Collapse
Affiliation(s)
- Stephen V Liu
- Division of Hematology and Oncology, Georgetown University, Washington, DC, USA.
| | - Misako Nagasaka
- Division of Hematology Oncology, Department of Medicine, University of California Irvine School of Medicine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Judith Atz
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co.KG, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
4
|
Muscarella LA, Di Maio M. eNRGy: Making progress toward a future for NRG1 fusion-positive cancer. MED 2025; 6:100641. [PMID: 40220746 DOI: 10.1016/j.medj.2025.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 04/14/2025]
Abstract
The eNRGy trial demonstrated zenocutuzumab's efficacy in advanced cancer with NRG1 fusion, mainly non-small cell lung and pancreatic cancers.1 Responses were observed across multiple tumor types identified through RNA-based next-generation sequencing, with low-grade adverse events. This suggests a potentially agnostic role of NRG1 fusions in solid tumors and underscores the need for comprehensive gene fusion testing in patients with cancer.
Collapse
Affiliation(s)
- Lucia Anna Muscarella
- Laboratory of Oncology, Foundation IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy.
| | - Massimo Di Maio
- Department of Oncology, University of Turin, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
5
|
Huang CY, Huang WK, Yeh KY, Chang JWC, Lin YC, Chou WC. Integrating comprehensive genomic profiling in the management of oncology patients: applications and challenges in Taiwan. Biomed J 2025:100851. [PMID: 40185203 DOI: 10.1016/j.bj.2025.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
Comprehensive genomic profiling (CGP) refers to the detailed genomic analysis of cancers for oncology patients. With the rapid development of next-generation sequencing (NGS) technologies, CGP has been widely applied to clinical practice and managing oncology patients. CGP can be performed on the tumor DNA and RNA, as well as non-tumor tissues (e.g., blood, pleural effusion, and ascites). In this article, we review the current evidence supporting the use of CGP in the management of oncology patients, both in real-world practice and the bridging to clinical trials. We also discuss the role of the molecular tumor board on the application of CGP in oncology patients. We provide an overview of the current scheme of CGP reimbursement in Taiwan and the precision oncology branch of the National Biobank Consortium of Taiwan. Finally, we discuss about the potential barriers and challenges of applying CGP in managing oncology patients and the future perspectives of CGP in precision oncology.
Collapse
Affiliation(s)
- Chen-Yang Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Yun Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Chang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Chi Chou
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
6
|
Chu YH, Katabi N, Sukhadia P, Mullaney KA, Zaidinski M, Cracchiolo JR, Xu B, Ghossein RA, Ho AL, DiNapoli SE, Ladanyi M, Dogan S. Targeted RNA sequencing in diagnostically challenging head and neck carcinomas identifies novel MON2::STAT6, NFATC2::NUTM2B, POC5::RAF1, and NSD3::NCOA2 gene fusions. Histopathology 2025; 86:728-741. [PMID: 39628352 DOI: 10.1111/his.15380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 03/14/2025]
Abstract
AIMS Although molecular tests developed for a growing list of oncogenic alterations have significantly aided in the classification of head and neck carcinomas, tumours in which prototypical histologic and immunophenotypic features are lacking or only partially developed continue to pose diagnostic challenges. Searching for known diagnostic and therapeutic targets by clinical next-generation sequencing (NGS) assays can often lead to new discoveries. METHODS AND RESULTS We present our institutional experience in applying targeted RNA NGS in 36 head and neck carcinomas that were morphologically difficult to classify between 2016 and 2023. The patients ranged in age from 5 to 83 years (median, 64), with the majority of tumors occurring in the major salivary glands and the sinonasal tract. Overall, seven (19%) cases showed unusual gene rearrangements, including five novel alterations: MON2::STAT6 in a hard palate adenocarcinoma with mucinous features, POC5::RAF1 in apocrine intraductal carcinoma of the lacrimal gland, EWSR1::CDADC1 fusion in a basaloid carcinoma of the submandibular gland, NFATC2::NUTM2B in myoepithelial carcinoma, and NSD3::NCOA2 fusion in a peculiar high-grade carcinoma with a peritheliomatous growth pattern, and focal myogenic differentiation. Potential therapeutic actionability was identified in three cases (RAF1 and FGFR2 fusions). CONCLUSION These findings broaden the current spectrum of gene rearrangements in head and neck carcinomas and support the utility of clinical NGS in identifying unusual, actionable alterations in diagnostically challenging cases.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kerry A Mullaney
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael Zaidinski
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeniffer R Cracchiolo
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ronald A Ghossein
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sara E DiNapoli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
7
|
Furukawa N, Hasegawa N, Kubota D, Nakamura Y, Tanaka H, Iwata S, Kawai A, Saito T, Takagi T, Kohsaka S, Ishijima M. Prognostic potential of fusion gene analysis using plasma cell-free RNA in malignant bone and soft tissue tumours. BMC Cancer 2025; 25:587. [PMID: 40170158 PMCID: PMC11963259 DOI: 10.1186/s12885-025-13950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Liquid biopsy, which facilitates minimally invasive analysis of body fluid samples, has considerable potential as a diagnostic and prognostic tool in various cancers. Analysis of circulating tumour cells, circulating tumour DNA, and exosomes in liquid biopsies has advantages and disadvantages. However, their utility in rare cancers, such as malignant bone and soft tissue tumours, remains unknown. In this study, we examined the levels of circulating cell-free tumour RNA (cfRNA) in the blood of patients with malignant bone and soft tissue tumours harbouring specific fusion genes, to explore the relationship between fusion gene expression in the blood and therapeutic response and disease status, and to validate the clinical utility of liquid biopsy. METHODS The study involved 3 cases (7 samples) of Ewing's sarcoma, 6 cases (12 samples) of myxoid liposarcoma, and 1 case (2 samples) of synovial sarcoma with specific fusion genes. Fusion gene analysis was performed using tumour tissue samples to identify breakpoints. Primers for liquid biopsy were designed based on the fusion genes identified. cfRNA was extracted from each patient's plasma and used for reverse transcription polymerase chain reaction (RT-PCR) with the designed primers. The RT-PCR product was subjected to Sanger sequencing. RESULTS Fusion gene breakpoints were identified in 10 samples from 6 cases. The fusion gene detection rate in the blood was 100% at both naïve status and symptom exacerbation in patients with Stage IV disease. In patients with Stage III disease progressing to Stage IV, the fusion gene was detected in the blood prior to imaging tests. CONCLUSIONS The detection of specific fusion genes from cfRNAs shows potential for monitoring the progression of fusion-related sarcomas in the context of chemotherapy.
Collapse
MESH Headings
- Humans
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/blood
- Soft Tissue Neoplasms/pathology
- Soft Tissue Neoplasms/diagnosis
- Female
- Male
- Bone Neoplasms/genetics
- Bone Neoplasms/blood
- Bone Neoplasms/pathology
- Prognosis
- Oncogene Proteins, Fusion/genetics
- Liquid Biopsy/methods
- Cell-Free Nucleic Acids/genetics
- Cell-Free Nucleic Acids/blood
- Adult
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/blood
- Sarcoma, Ewing/diagnosis
- Sarcoma, Ewing/pathology
- Middle Aged
- Adolescent
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Young Adult
- Sarcoma, Synovial/genetics
- Sarcoma, Synovial/blood
- Sarcoma, Synovial/pathology
- Sarcoma, Synovial/diagnosis
- Child
- Aged
- Liposarcoma, Myxoid/genetics
- Liposarcoma, Myxoid/pathology
- Liposarcoma, Myxoid/diagnosis
- Liposarcoma, Myxoid/blood
Collapse
Affiliation(s)
- Naoki Furukawa
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
| | - Daisuke Kubota
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Hirokazu Tanaka
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Community Medicine and Research in Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Community Medicine and Research in Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Chung C, Umoru G. Prognostic and predictive biomarkers with therapeutic targets in nonsmall-cell lung cancer: A 2023 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2025; 31:438-461. [PMID: 38576390 DOI: 10.1177/10781552241242684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BackgroundSince the publication of the original work in 2014, significant progress has been made in the characterization of genomic alterations that drive oncogenic addiction of nonsmall cell lung cancer (NSCLC) and how the immune system can leverage non-oncogenic pathways to modulate therapeutic outcomes. This update evaluates and validates the recent and emerging data for prognostic and predictive biomarkers with therapeutic targets in NSCLC.Data sourcesWe performed a literature search from January 2015 to October 2023 using the keywords non-small cell lung cancer, clinical practice guidelines, gene mutations, genomic assay, immune cancer therapy, circulating tumor DNA, predictive and prognostic biomarkers, and targeted therapies.Study selection and data extractionWe identified, reviewed, and evaluated relevant clinical trials, meta-analyses, seminal articles, and published clinical practice guidelines in the English language.Data synthesisRegulatory-approved targeted therapies include those somatic gene alterations of EGFR ("classic" mutations, exon 20 insertion, and rare EGFR mutations), ALK, ROS1, BRAF V600, RET, MET, NTRK, HER2, and KRAS G12C. Data for immunotherapy and circulating tumor DNA in next-generation sequencing are considered emerging, whereas the predictive role for PIK3CA gene mutation is insufficient.ConclusionsAdvances in sequencing and other genomic technologies have led to identifying novel oncogenic drivers, novel resistance mechanisms, and co-occurring mutations that characterize NSCLC, creating further therapeutic opportunities. The benefits associated with immunotherapy in the perioperative setting hold initial promise, with their long-term results awaiting.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Houston Methodist West Hospital, Houston, TX, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
9
|
Waliany S, Hung YP, Rous FA, Luo F, Capelletti M, Ressler S, Do A, Peterson J, Meservey C, Digumarthy SR, Ou SHI, Gadgeel SM, Lin JJ, Meador CB. Lung Carcinoid Tumors With Potentially Actionable Genomic Alterations and Responses to Targeted Therapies. Clin Lung Cancer 2025:S1525-7304(25)00055-5. [PMID: 40234130 DOI: 10.1016/j.cllc.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/26/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Effective treatments for patients with advanced lung carcinoids remain limited. The prevalence of potentially actionable genomic alterations (AGAs) among lung carcinoids is not well-understood. MATERIALS AND METHODS Lung carcinoids submitted for next-generation sequencing (NGS) at a Clinical Laboratory Improvement Amendments (CLIA)-certified genomics laboratory from September 2013 to March 2024 were retrospectively investigated to determine prevalence of AGAs. We evaluated outcomes with genotype-matched targeted therapies in patients with advanced lung carcinoids with AGAs identified across 3 institutions and comprehensive literature search. RESULTS Among 321 cases of lung carcinoids profiled by NGS, 8 (2.5%) harbored potential AGAs (4 [1.2%] with commercially available targeted therapies), including KRAS mutations (n = 4, 1.2%: G12C, G12D, G12R, G12V), ALK fusions (n = 2, 0.6%), BRAF D594N (n = 1, 0.3%), and RET fusion (n = 1, 0.3%). None of the 24 typical carcinoids harbored an AGA. Collectively across these database-identified patients, our multi-institutional cohort, and literature review, we identified 36 cases of lung carcinoids with potential AGAs (24 with commercially available targeted therapies), predominantly comprising fusions of ALK (n = 14), RET (n = 5), and NTRK (n = 2). Of 27 with known disease stage, 19 had stage 4 disease, and 13 (68.4%) had outcomes reported following targeted therapies. Median treatment duration was 12.0 months (95% CI: 6.7-16.0). Median progression-free survival (PFS) was 10.6 months (95% CI: 6.7-16.0) across all targeted therapy lines and 14.0 months (95% CI: 1.3-NA) with first-line targeted therapies. Objective response rate with at least one targeted therapy was 61.5%. CONCLUSIONS Patients with advanced lung carcinoids harboring AGAs can derive meaningful benefit from genotype-matched targeted therapies, highlighting potential role for NGS in patients with advanced carcinoids.
Collapse
Affiliation(s)
- Sarah Waliany
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Fawzi Abu Rous
- Henry Ford Cancer Institute/Henry Ford Health, Detroit, MI
| | - Faustine Luo
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA
| | | | | | - Andrew Do
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Jennifer Peterson
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA
| | | | | | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA
| | | | - Jessica J Lin
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA.
| | - Catherine B Meador
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
10
|
Dillard A, Xu K, Sun Y, Lin HH, Shen C, Song E, Saxena A, Hissong E, Yemelyanova A, Lindeman NI, Velu PD, Solomon JP. Comparison of Targeted RNA-Sequencing Platforms for Oncogenic Fusion Detection in Non-Small-Cell Lung Cancer. J Mol Diagn 2025:S1525-1578(25)00064-9. [PMID: 40122160 DOI: 10.1016/j.jmoldx.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Oncogenic fusion detection is an essential part of clinical diagnosis and management of non-small-cell lung carcinoma. Numerous methods are available for detection of oncogenic fusions in the clinical laboratory, although RNA sequencing has rapidly gained prominence. Accordingly, however, multiple different RNA-sequencing assays exist, with diverse methods and varying performance characteristics. Here, a single-institutional clinical experience with a testing algorithm for non-small-cell lung carcinoma that uses amplicon-based DNA/RNA sequencing, followed by reflex hybridization-capture-based RNA sequencing if the initial testing is negative for oncogenic drivers, is reported. A total of 1211 non-small-cell lung carcinoma specimens were received for molecular testing, and 120 (approximately 10%) were reflexed for hybridization-capture-based RNA sequencing. Of the 120 cases tested, oncogenic fusions were identified in 9 and included clinically actionable fusions involving ALK, BRAF, NRG1, NTRK3, ROS1, and RET. None of these fusions was detected by the amplicon-based assay. Review of the 20,900 non-small-cell lung cancer cases in the American Association for Cancer Research Project Genie version 15.1 publicly available database (registration required) revealed that of the 1081 cases harboring fusions, 893 (82.6%) could theoretically be detected by the amplicon-based assay. Overall, this study shows that the addition of reflex hybridization-capture-based RNA sequencing could improve detection of rare and novel oncogenic fusions, maximizing patient eligibility for appropriate targeted therapies or clinical trials.
Collapse
Affiliation(s)
- Alicia Dillard
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Kemin Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yichao Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Han-Hsuan Lin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Cong Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Eric Song
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Ashish Saxena
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Anna Yemelyanova
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Neal I Lindeman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Priya D Velu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - James P Solomon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
11
|
Penault-Llorca F, Socinski MA. Emerging molecular testing paradigms in non-small cell lung cancer management-current perspectives and recommendations. Oncologist 2025; 30:oyae357. [PMID: 40126879 PMCID: PMC11966107 DOI: 10.1093/oncolo/oyae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/20/2024] [Indexed: 03/26/2025] Open
Abstract
Advances in molecular testing and precision oncology have transformed the clinical management of lung cancer, especially non-small cell lung cancer, enhancing diagnosis, treatment, and outcomes. Practical guidelines offer insights into selecting appropriate biomarkers and assays, emphasizing the importance of comprehensive testing. However, real-world data reveal the underutilization of biomarker testing and consequently targeted therapies. Molecular testing often occurs late in diagnosis or not at all in clinical practice, leading to delayed or inadequate treatment. Enhancing precision requires adherence to best practices by all health care professionals involved, which can ultimately improve lung cancer patient outcomes. The future of precision oncology for lung cancer will likely involve a more personalized approach, starting increasingly from earlier disease settings, with novel and more complex targeted therapies, immunotherapies, and combination regimens, and relying on liquid biopsies, muti-detection advanced genomic technologies and data integration, with artificial intelligence as a central orchestrator. This review presents the currently known actionable mutations in lung cancer and new upcoming ones that are likely to enter clinical practice soon and provides an overview of established and emerging concepts in testing methodologies. Challenges are discussed and best practice recommendations are made that are relevant today, will continue to be relevant in the future, and are likely to be relevant for other cancer types too.
Collapse
Affiliation(s)
- Frédérique Penault-Llorca
- Department of Pathology, Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont Ferrand F-63000, France
| | - Mark A Socinski
- Oncology and Hematology, AdventHealth Cancer Institute, Orlando, FL 32804, United States
| |
Collapse
|
12
|
McEvoy CR, Mitchell C, Prall OWJ, Xu H, Fellowes AP, Choong DY, Buela E, Legaie R, Yu J, Lupat R, Angel CM, Khoo C, Pang JM, Snell C, Fox SB, Lewin J. The implementation of an RNA-based gene fusion assay into a diagnostic oncology department: an Australian perspective. Pathology 2025:S0031-3025(25)00094-7. [PMID: 40155263 DOI: 10.1016/j.pathol.2024.12.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 04/01/2025]
Abstract
Accurate detection of oncogenic gene fusions is important for histological diagnosis of a subset of tumours. Some fusions are also the target of precision therapies. We describe our validation and early diagnostic results for the detection of fusions using the commercially available Illumina TruSight RNA Fusion Panel (TRFP) and the Arriba fusion detection algorithm. Retrospective validation showed that this assay demonstrated high accuracy (94% positive predictive agreement) for a wide variety of fusions. Prospective diagnostic data comprised a cohort of 131 clinical samples (102 mesenchymal tumours, 29 epithelial tumours), of which 80 were excisional specimens and 51 were small specimens, predominantly core biopsies. The test failure rate was 10.7%. We detected 64 (54.7%) clinically-actionable fusions in passed samples, including 12 (10.3%) that either changed or were critical for the diagnosis and 14 (12.0%) that were potentially therapeutically targetable. Most samples (89.7%) fulfilled criteria for partial reimbursement by the Australian Government Medical Benefits Scheme. In addition to describing the utility of an RNA-based fusion assay in cancer diagnostics, it is hoped that this study will provide practical advice for other laboratories considering introducing such a test.
Collapse
Affiliation(s)
- Christopher R McEvoy
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia.
| | - Owen W J Prall
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Huiling Xu
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Vic, Australia
| | - Andrew P Fellowes
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - David Y Choong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Evangeline Buela
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Roxane Legaie
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Jiaan Yu
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Richard Lupat
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Christopher M Angel
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Christine Khoo
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Jia-Min Pang
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Cameron Snell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Vic, Australia
| | - Jeremy Lewin
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia; Department of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Victorian Adolescent & Young Adult Cancer Service, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| |
Collapse
|
13
|
Garinet S, Mansuet-Lupo A, Damotte D, Jondeau B, Gharbi A, Alitano M, Wislez M, Blons H, Leroy K. [Molecular characterization of lung cancers: up-date and recommendations]. Bull Cancer 2025; 112:3S16-3S23. [PMID: 40155072 DOI: 10.1016/s0007-4551(25)00153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Molecular testing of non-small cell lung cancers has become mandatory at all stages of the disease. National and international recommendations for molecular testing are up-dated regularly. In this review, we will summarize diagnostic approaches focusing on targetable oncogenic alterations (mutations, gene rearrangements) and we will indicate the limits currently associated with sample types and sequencing technologies. Biomarkers that have not showed routine clinical utility will not be presented here.
Collapse
Affiliation(s)
- Simon Garinet
- Faculté de médecine, université Paris Cité, Paris, France; Unité fonctionnelle d'oncogénétique somatique théranostique et pharmacogénétique, service de biochimie, AP-HP Centre, hôpital européen Georges-Pompidou, Paris, France
| | - Audrey Mansuet-Lupo
- Faculté de médecine, université Paris Cité, Paris, France; Service de pathologie, AP-HP Centre, hôpital Cochin, Paris, France; UMR_S 1138 INSERM, Team « Inflammation, Complement and Cancer », Centre de recherche des Cordeliers, Paris, France
| | - Diane Damotte
- Faculté de médecine, université Paris Cité, Paris, France; Service de pathologie, AP-HP Centre, hôpital Cochin, Paris, France; UMR_S 1138 INSERM, Team « Inflammation, Complement and Cancer », Centre de recherche des Cordeliers, Paris, France
| | - Bernard Jondeau
- Unité fonctionnelle d'oncogénétique somatique théranostique et pharmacogénétique, service de biochimie, AP-HP Centre, hôpital européen Georges-Pompidou, Paris, France
| | - Amira Gharbi
- Unité fonctionnelle d'oncogénétique somatique théranostique et pharmacogénétique, service de biochimie, AP-HP Centre, hôpital européen Georges-Pompidou, Paris, France
| | - Marco Alitano
- Faculté de médecine, université Paris Cité, Paris, France; UMR_S 1138 INSERM, Team « Inflammation, Complement and Cancer », Centre de recherche des Cordeliers, Paris, France; Service de chirurgie thoracique, AP-HP Centre, hôpital Cochin, Paris, France
| | - Marie Wislez
- Faculté de médecine, université Paris Cité, Paris, France; UMR_S 1138 INSERM, Team « Inflammation, Complement and Cancer », Centre de recherche des Cordeliers, Paris, France; Service de pneumologie - unité d'oncologie thoracique, AP-HP Centre, hôpital Cochin, Paris, France
| | - Hélène Blons
- Faculté de médecine, université Paris Cité, Paris, France; Unité fonctionnelle d'oncogénétique somatique théranostique et pharmacogénétique, service de biochimie, AP-HP Centre, hôpital européen Georges-Pompidou, Paris, France
| | - Karen Leroy
- Faculté de médecine, université Paris Cité, Paris, France; Unité fonctionnelle d'oncogénétique somatique théranostique et pharmacogénétique, service de biochimie, AP-HP Centre, hôpital européen Georges-Pompidou, Paris, France; UMR_S 1138 INSERM, Team « Inflammation, Complement and Cancer », Centre de recherche des Cordeliers, Paris, France.
| |
Collapse
|
14
|
Ji G, Yao Q, Ren M, Bai Q, Zhu X, Zhou X. An accurate DNA and RNA based targeted sequencing assay for clinical detection of gene fusions in solid tumors. Sci Rep 2025; 15:7223. [PMID: 40021757 PMCID: PMC11870997 DOI: 10.1038/s41598-025-91640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
Gene fusions are one of the most important molecular biomarkers for tumor diagnosis, classification and targeted therapy. How to accurately detect them is a key issue in clinical work. In this study, a custom-designed integration of DNA and RNA-based next generation sequencing (NGS) assay including 16 targeted therapy related genes was developed and validated to identify gene fusions in solid tumors. This assay accurately identified all 10 different types of fusion in 8 commercial fusion spiked-in reference standards and 29 fusions including 16 different fusion forms in 60 clinical solid tumor samples previously identified by clinical testing methods. In addition, a TPM3::NTRK1 fusion was additionally identified and validated by Sanger sequencing, which showed a false-negative result for the previous result. Mutational abundance limit of detection for the assay was assessed with a series of dilution experiments. These fusions can be stably detected when the mutational abundance is down to 5% for DNA and 250-400 copies/100 ng for RNA. The intra-assay and inter-assay reproducibility was observed in three samples and three replicates. This integration of DNA and RNA-based NGS assay shows excellent performance on formalin-fixed, paraffin-embedded samples, results at different levels can complement each other, thereby facilitating precise diagnosis and treatment.
Collapse
Affiliation(s)
- Gang Ji
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiaoli Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Schram AM, Goto K, Kim DW, Macarulla T, Hollebecque A, O'Reilly EM, Ou SHI, Rodon J, Rha SY, Nishino K, Duruisseaux M, Park JO, Neuzillet C, Liu SV, Weinberg BA, Cleary JM, Calvo E, Umemoto K, Nagasaka M, Springfeld C, Bekaii-Saab T, O'Kane GM, Opdam F, Reiss KA, Joe AK, Wasserman E, Stalbovskaya V, Ford J, Adeyemi S, Jain L, Jauhari S, Drilon A. Efficacy of Zenocutuzumab in NRG1 Fusion-Positive Cancer. N Engl J Med 2025; 392:566-576. [PMID: 39908431 PMCID: PMC11878197 DOI: 10.1056/nejmoa2405008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BACKGROUND Neuregulin 1 (NRG1) fusions are recurrent oncogenic drivers found in multiple solid tumors. NRG1 binds to human epidermal growth factor receptor 3 (HER3), leading to heterodimerization with HER2 and activation of downstream growth and proliferation pathways. The efficacy and safety of zenocutuzumab, a bispecific antibody against HER2 and HER3, in patients with NRG1 fusion-positive solid tumors are unclear. METHODS In this registrational, phase 2 clinical study, we assigned patients with advanced NRG1 fusion-positive cancer involving any tumor type to receive zenocutuzumab at a dose of 750 mg intravenously every 2 weeks. The primary end point was overall response (complete or partial response) according to investigator assessment. Secondary end points included duration of response, progression-free survival, and safety. RESULTS A total of 204 patients with 12 tumor types were enrolled and treated. Among 158 patients who had measurable disease and were enrolled at least 24 weeks before the data-cutoff date, a response occurred in 30% (95% confidence interval [CI], 23 to 37). The median duration of response was 11.1 months (95% CI, 7.4 to 12.9); 19% of responses were ongoing at the data-cutoff date. Responses were observed in multiple tumor types - including in 27 of 93 patients (29%; 95% CI, 20 to 39) with non-small-cell lung cancer (NSCLC) and 15 of 36 patients (42%; 95% CI, 25 to 59) with pancreatic cancer - and across multiple NRG1 fusion partners. The median progression-free survival was 6.8 months (95% CI, 5.5 to 9.1). Adverse events were primarily grade 1 or 2. The most common adverse events that were considered by the investigator to be related to zenocutuzumab were diarrhea (in 18% of the patients), fatigue (in 12%), and nausea (in 11%). Infusion-related reactions (composite term) were observed in 14% of the patients. One patient discontinued zenocutuzumab owing to a treatment-related adverse event. CONCLUSIONS Zenocutuzumab showed efficacy in patients with advanced NRG1 fusion-positive cancer, notably NSCLC and pancreatic cancer, with mainly low-grade adverse events. (Funded by Merus; eNRGy ClinicalTrials.gov number, NCT02912949.).
Collapse
MESH Headings
- Humans
- Female
- Male
- Middle Aged
- Aged
- Neuregulin-1/genetics
- Adult
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/mortality
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Receptor, ErbB-3/antagonists & inhibitors
- Progression-Free Survival
- Aged, 80 and over
- Receptor, ErbB-2/antagonists & inhibitors
- Oncogene Proteins, Fusion
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
Collapse
Affiliation(s)
- Alison M Schram
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York
| | - Koichi Goto
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Dong-Wan Kim
- Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Teresa Macarulla
- Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology, Barcelona
| | - Antoine Hollebecque
- Gustave Roussy, Département d'Innovation Thérapeutique et Essais Précoces, Villejuif, France
| | - Eileen M O'Reilly
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange
| | - Jordi Rodon
- the University of Texas M.D. Anderson Cancer Center, Houston
| | - Sun Young Rha
- Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | | | - Michaël Duruisseaux
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
- Oncopharmacology Laboratory, Cancer Research Center of Lyon, Unité Mixte de Recherche INSERM 1052 Centre National de la Recherche Scientifique 5286, Lyon, France
- Université Claude Bernard, Université de Lyon, Lyon, France
| | - Joon Oh Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Cindy Neuzillet
- Curie Institute, Versailles-Saint Quentin University, Saint-Cloud, France
| | - Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Benjamin A Weinberg
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - James M Cleary
- Dana-Farber Cancer Institute, Boston
- Harvard Medical School, Boston
| | - Emiliano Calvo
- START Madrid-Centro Integral Oncológico Clara Campal, Madrid
| | - Kumiko Umemoto
- St. Marianna University School of Medicine, Kawasaki, Japan
| | - Misako Nagasaka
- St. Marianna University School of Medicine, Kawasaki, Japan
- University of California, Irvine, School of Medicine, Irvine
| | - Christoph Springfeld
- Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | - Kim A Reiss
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | | | | | | | | | | | | | | | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York
| |
Collapse
|
16
|
Cao Z, Yang Y, Liu S, Sun L, Liu Y, Luo Y, Wang J, Sun Y. FGFR2 fusions assessed by NGS, FISH, and immunohistochemistry in intrahepatic cholangiocarcinoma. J Gastroenterol 2025; 60:235-246. [PMID: 39537893 DOI: 10.1007/s00535-024-02175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND FGFR2 fusion has become a promising therapeutic target in iCCAs; however, the procedure for screening FGFR2 fusion has not been conventionally developed. METHODS FGFR2 fusion was identified using DNA + RNA-based NGS and FISH, and the concordance between DNA + RNA-based NGS, FISH, and IHC was compared. RESULTS FGFR2 fusions were detected in 9 out of 76 iCCAs (11.8%). The consistency of FISH and DNA + RNA-based NGS for FGFR2 fusions was high (κ value = 0.867, P = 0.001), while the consistency of IHC and DNA + RNA-based NGS was lower (κ value = 0.464, P = 0.072). All nine FGFR2 fusion-positive iCCAs were MSS with a median TMB of 2.1 mut/Mb, and only one had a CPS (PD-L1) above 5. Two FGFR2 fusion-positive iCCA patients were treated with and benefited from FGFR inhibitor therapy. CONCLUSIONS FGFR2 fusion should be assessed for advanced iCCA patients. We recommend DNA + RNA-based NGS as the preferred option to supply all possible therapeutic targets. FISH should be preferred if the tumor sample is insufficient for NGS or if the patient is inclined to receive FGFR inhibitors promptly. Although IHC is not the preferred method to identify FGFR2 fusion, it might be used as preliminary screening for FGFR2 alterations if the hospital cannot offer NGS or FISH, and the results need to be validated before FGFR2 inhibitors treatment.
Collapse
Affiliation(s)
- Zi Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Huanhu West Road, Tianjin, 300060, Hexi, China
| | - Yichen Yang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Huanhu West Road, Tianjin, 300060, Hexi, China
| | - Shasha Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Huanhu West Road, Tianjin, 300060, Hexi, China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Huanhu West Road, Tianjin, 300060, Hexi, China
| | - Yanxue Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Huanhu West Road, Tianjin, 300060, Hexi, China
| | - Ye Luo
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Huanhu West Road, Tianjin, 300060, Hexi, China
| | - Jian Wang
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Huanhu West Road, Tianjin, 300060, Hexi, China.
| |
Collapse
|
17
|
Varghese AM, Perry MA, Chou JF, Nandakumar S, Muldoon D, Erakky A, Zucker A, Fong C, Mehine M, Nguyen B, Basturk O, Balogun F, Kelsen DP, Brannon AR, Mandelker D, Vakiani E, Park W, Yu KH, Stadler ZK, Schattner MA, Jarnagin WR, Wei AC, Chakravarty D, Capanu M, Schultz N, Berger MF, Iacobuzio-Donahue CA, Bandlamudi C, O'Reilly EM. Clinicogenomic landscape of pancreatic adenocarcinoma identifies KRAS mutant dosage as prognostic of overall survival. Nat Med 2025; 31:466-477. [PMID: 39753968 PMCID: PMC11835752 DOI: 10.1038/s41591-024-03362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025]
Abstract
Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify. Herein leveraging a cohort of 2,336 patients spanning all disease stages, we characterize the genomic and clinical correlates of outcomes in PDAC. We show that a genomic subtype of KRAS wild-type tumors is associated with early disease onset, distinct somatic and germline features, and significantly better overall survival. Allelic imbalances at the KRAS locus are widespread. KRAS mutant allele dosage gains, observed in one in five (20%) KRAS-mutated diploid tumors, are correlated with advanced disease and demonstrate prognostic potential across disease stages. With the rapidly expanding landscape of KRAS targeting, our findings have potential implications for clinical practice and for understanding de novo and acquired resistance to RAS therapeutics.
Collapse
Affiliation(s)
- Anna M Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Maria A Perry
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Subhiksha Nandakumar
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Daniel Muldoon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Amanda Erakky
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Amanda Zucker
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Christopher Fong
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Bastien Nguyen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Fiyinfolu Balogun
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - David P Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - A Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Efsevia Vakiani
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Kenneth H Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mark A Schattner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - William R Jarnagin
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alice C Wei
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Debyani Chakravarty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Chaitanya Bandlamudi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| |
Collapse
|
18
|
Gupta B, Borghaei L, Liu SV. NRG1 Fusions: The New Kid on the Block. Curr Oncol Rep 2025; 27:190-194. [PMID: 39888568 DOI: 10.1007/s11912-025-01640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE OF REVIEW Neuregulin 1 (NRG1) fusions are rare but actionable oncogenic drivers that occur in a variety of tumor types, including non-small cell lung cancer (NSCLC). These fusions lead to pathophysiologic activation of HER signaling pathways, promoting tumor growth, invasion, and metastasis. Current evidence suggests that NRG1 fusion-positive NSCLC does not respond well to conventional treatments such as immunotherapy and chemotherapy. This review focuses on the biology and detection of NRG1 fusions and the evolving therapeutic landscape of NSCLC harboring NRG1 fusions. RECENT FINDINGS Zenocutuzumab, a bispecific antibody targeting HER2 and HER3, is the first FDA approved treatment for previously treated NRG1 fusion-positive NSCLC and pancreatic cancer. Additional NRG1 fusion directed strategies are in development. NRG1 fusions are rare molecular drivers of NSCLC that can be effectively treated with targeted therapies. Here, we summarize the biology and detection of NRG1 fusions, the currently approved bispecific antibody used to treat NRG1 fusion-positive NSCLC, and new agents under investigation.
Collapse
Affiliation(s)
- Brinda Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | | | - Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC, 20007, USA.
| |
Collapse
|
19
|
Chen N, Zhang Q, Sun L, You X, Chen S, Chen D, Yang F. Comprehensive study of gene fusions in sarcomas. Invest New Drugs 2025; 43:3-17. [PMID: 39680198 DOI: 10.1007/s10637-024-01486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Sarcomas, including bone sarcomas and soft tissue sarcomas (STSs), are a heterogeneous group of mesenchymal malignancies. Recent advancements in next-generation sequencing (NGS) have enabled the identification of novel chromosomal translocations and fusion genes, which play a critical role in sarcoma subtypes. Our study focuses on gene fusions in sarcomas among Chinese patients, comparing their genomic profiles to those of Western populations. We analyzed 1048 sarcoma samples from Chinese patients using a panel of over 500 genes, identifying 481 gene fusions in 329 patients. The most common fusions included EWSR1, HMGA2, and SS18, with notable subtype-specific fusions such as EWSR1-FLI1 in Ewing sarcoma and NAB2-STAT6 in solitary fibrous tumors. In comparison to Chinese and Western populations, variations in fusion spectrum exist, potentially necessitating distinct treatment strategies; however, further validation of these fusions is warranted. Our findings highlight the importance of gene fusions as diagnostic markers and potential therapeutic targets. Actionable fusions, including kinase-related fusions like ALK, NTRK3, and BRAF, were detected in 67 patients (6.4%) and may guide precision therapies. Additionally, we observed the frequent co-occurrence of genomic alterations, particularly in cell cycle regulators such as CDK4 and MDM2. Genomic profiling of sarcomas offers valuable insights into their molecular drivers and can support personalized therapeutic approaches. Further research is needed to validate these findings and optimize treatment strategies for sarcoma patients.
Collapse
Affiliation(s)
- Nan Chen
- Pharmacy Department, Zhengzhou People's Hospital, Zhengzhou, Hennan Province, China
| | - Qin Zhang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Simcere Medical Laboratory Science Co., Ltd, NanjingNanjing, 210042, China
| | - Lei Sun
- Pharmacy Department, Tianjin Stomatological Hospital, Tianjian, China
| | - Xia You
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Simcere Medical Laboratory Science Co., Ltd, NanjingNanjing, 210042, China
| | - Siqi Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Simcere Medical Laboratory Science Co., Ltd, NanjingNanjing, 210042, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Simcere Medical Laboratory Science Co., Ltd, NanjingNanjing, 210042, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Fengkun Yang
- Pharmacy Department, Tianjin People's Hospital, Tianjin, 300122, China.
| |
Collapse
|
20
|
Yi N, Yin X, Feng X, Ren M, Ma C. Identification of gastric cancer subtypes based on disulfidptosis-related genes: GPC3 as a novel biomarker for prognosis prediction. Discov Oncol 2024; 15:810. [PMID: 39695020 DOI: 10.1007/s12672-024-01694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer type. "Disulfidptosis," a distinct form of cell death, is initiated through aberrant intracellular disulfide metabolism. Here, we identified various GC subtypes based on disulfidptosis-related genes (DRGs) and constructed a risk score model to identify relevant genes to help predict patient prognosis and guide treatment. We downloaded RNA sequencing (RNA-seq) data from the TCGA-STAD database, performed a difference analysis, and combined the data with GSE84437 to successfully perform an unsupervised clustering analysis based on DRGs and differentially expressed genes (DEGs). Risk-scoring models were established by screening prognosis-related DEGs. The GC samples were segregated into high-risk (HR) and low-risk (LR) groups according to their risk scores. We then evaluated the genes screened with the model in terms of prognosis, tumor, and immune cell infiltration. The response of patients with GC to immunological therapy was assessed using tumor mutational burden, microsatellite instability, and tumor immune dysfunction and exclusion scores. Using unsupervised cluster analysis, we identified two DRG clusters and two gene clusters that differed in prognosis and tumor microenvironment. A six-gene model was developed for risk score assessment. The LR group demonstrated superior performance compared to the HR group in terms of immunity, exhibiting greater sensitivity to immunotherapy. Thereafter, we selected the model gene GPC3 for single-gene analysis and verified it by experimental validation. The results demonstrated that GPC3 can serve as a standalone biomarker with promising clinical applicability in the prognostic prediction and clinical management of GC.
Collapse
Affiliation(s)
- Nan Yi
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xindong Yin
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiao Feng
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Ming Ren
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
21
|
Smesseim I, van der Wel T, Badrising SK. Intracranial Response to Selpercatinib After Pralsetinib-Induced Disease Progression in Rearranged During Transfection Fusion-Positive Non-Small-Cell Lung Cancer: Case Report. JTO Clin Res Rep 2024; 5:100730. [PMID: 39564095 PMCID: PMC11574800 DOI: 10.1016/j.jtocrr.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 11/21/2024] Open
Abstract
RET fusion-positive NSCLC accounts for 1% to 2% of lung carcinoma cases. Although two Food and Drug Administration-approved selective RET inhibitors, pralsetinib, and selpercatinib, have revealed efficacy in managing RET fusion-positive NSCLC, this case series is unique in its focus on the intracranial response to selpercatinib after disease progression during pralsetinib treatment. This report contributes to the literature by providing evidence of selpercatinib's potential as a treatment option in such refractory cases. The patients described in both cases were diagnosed with metastatic RET fusion-positive NSCLC and developed intracranial metastases during pralsetinib treatment. After switching to selpercatinib, both exhibited significant intracranial responses. The first patient reported a reduction in brain metastasis size and maintained a response for over 1.5 years. The second patient also responded intracranially to selpercatinib but unfortunately passed away 8 months later owing to pulmonary hemorrhage, possibly linked to prior radiation treatment. These cases highlight the potential efficacy of selpercatinib in treating intracranial metastases in RET fusion-positive patients with NSCLC after pralsetinib-refractory progression. The key takeaway is that selpercatinib may offer a viable treatment option in such scenarios, although more extensive studies are needed to determine its role as a monotherapy or in combination with other treatments.
Collapse
Affiliation(s)
- Illaa Smesseim
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tijmen van der Wel
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sushil K Badrising
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Kaluziak ST, Codd EM, Purohit R, Melli B, Kalyan P, Fordham JA, Kirkpatrick G, McShane LM, Chang TC, Yang G, Wang J, Williams PM, Karlovich C, Sklar J, Iafrate AJ. Discovery of Gene Fusions in Driver-Negative Cancer Samples From the National Cancer Institute-Molecular Analysis for Therapy Choice Screening Cohort. JCO Precis Oncol 2024; 8:e2400493. [PMID: 39637335 PMCID: PMC11634183 DOI: 10.1200/po-24-00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 10/13/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE The National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) trial was implemented to identify actionable genetic alterations across cancer types and enroll patients accordingly onto treatment arms, irrespective of tumor histology. Using multiplex polymerase chain reaction (PCR) next-generation sequencing, NCI-MATCH genotyped 5,540 patients, discovering gene fusions in 202/5,540 tumors (3.65%). This result, substantially lower than the fusion detection prevalence of 8.5% across all patients with cancer screened at Massachusetts General Hospital's (MGH) clinical laboratories, supported reanalysis of NCI-MATCH samples identified as mutations-of-interest (MOI)-negative. The assay used by NCI-MATCH requires previous knowledge of both fusion genes, cannot detect novel fusions, and may underestimate fusion-positive patients. Anchored multiplex PCR (AMP) technology permits fusion detection with knowledge of just one gene of the fusion partners. METHODS Using AMP-based kits, we reprocessed 663 MOI-negative samples. 200 ng of RNA per sample were shipped from the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network biorepository to MGH (n = 319) and Yale University (n = 344), processed, and sequenced on the NextSeq550. Reported fusions were manually reviewed, and novel fusions orthogonally verified via reverse-transcription PCR and Sanger sequencing. RESULTS AMP identified 148 fusions in 142/663 MOI-negative patients (21% [95% CI, 18 to 25]), of which 28 were covered by the Oncomine Comprehensive Assay (OCA) panel but missed, while 120 were not covered by OCA. Among AMP-identified positive patients, 32 had actionable fusions, 24 contained novel fusions, and six had two fusion events. We identified fusions in 12/34 (35% [95% CI, 20 to 54]) cholangiocarcinomas and 43/109 (39% [95% CI, 30 to 49]) sarcomas. CONCLUSION Technology and awareness of actionable fusions have improved since the NCI-MATCH trial. With AMP-based technology, we identified 142 patients with fusions not detected during NCI-MATCH screening, many potentially actionable. These striking data underscore the need to optimize the fusion-detection capabilities of genotyping assays used in precision medicine.
Collapse
Affiliation(s)
| | | | - Rashi Purohit
- Pathology Department, Massachusetts General Hospital, Boston, MA
| | - Beatrice Melli
- Pathology Department, Massachusetts General Hospital, Boston, MA
| | - Prinjali Kalyan
- Pathology Department, Massachusetts General Hospital, Boston, MA
| | - Jo Anne Fordham
- Pathology Department, Massachusetts General Hospital, Boston, MA
| | | | - Lisa M. McShane
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Ting-Chia Chang
- Leidos Biomedical Research, Inc, Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - P. Mickey Williams
- Leidos Biomedical Research, Inc, Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Chris Karlovich
- Leidos Biomedical Research, Inc, Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | - A. John Iafrate
- Pathology Department, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
23
|
Herlihy SE, Gentile C, Scott SJ, Smith BA, Stoll KA, Schilter KF, Mordaka JM, Palmer RN, Xyrafaki C, Gillon-Zhang E, King C, Evans RT, Green AS, Silva AL, Stolarek-Januszkiewicz M, von Bargen K, Turner I, Ho CH, Collazos A, Potts ND, Nugent D, Jose J, Gray ER, Shapiro E, Levin WJ, Cooke A, Balmforth BW, Osborne RJ, Reddi HV, Van Deerlin VM. Evaluation of the ASPYRE-Lung targeted variant panel: a rapid, low-input solution for non-small cell lung cancer biomarker testing and experience from three independent sites. Transl Lung Cancer Res 2024; 13:3083-3095. [PMID: 39670005 PMCID: PMC11632423 DOI: 10.21037/tlcr-24-525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024]
Abstract
Background Many patients with non-small cell lung cancer (NSCLC) lack access to highly effective approved targeted therapeutics due to multiple gaps in biomarker testing. Challenges in comprehensive molecular testing include complexities associated with the need to assess the presence of multiple variants, costs of running multiple sequential assays per sample, high assay quality control (QC) failure rates, clinical need for rapid turn-around time (TAT) to initiate therapy, and insufficient tissue samples. The ASPYRE-Lung NSCLC assay addresses gaps in multiplexed testing by simultaneously analyzing DNA and RNA, detecting 114 actionable genomic variants across 11 genes, consistent with current NSCLC treatment guidelines. This study was to assess the ease of adoption and performance of ASPYRE-Lung in third-party laboratories, comparing concordance across sites and with orthogonal methods. Methods ASPYRE-Lung was established at two academic centers with multiple operators per site. Assay concordance was evaluated across three sites using 77 patient samples [61 derived from formalin-fixed paraffin-embedded (FFPE) tissue and 16 from cytology specimens]. Results Reproducibility for all 77 samples yielded a positive percent agreement (PPA) of 100% and negative percent agreement (NPA) of 99.99%. Concordance with next-generation sequencing (NGS)-based methods across all three sites was high with PPA of 97.2% and NPA of 99.96%. Conclusions ASPYRE-Lung assay is a cost-effective, easy to adopt testing method requiring no specialized expertise or complicated bioinformatics, with the potential to inform genomic data on small tissue samples, thus enabling all patients with NSCLC to undergo biomarker testing in a timely manner and benefit from appropriate targeted therapies.
Collapse
Affiliation(s)
- Sarah E. Herlihy
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Caren Gentile
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha J. Scott
- Precision Medicine Laboratory, Division of Clinical Genomics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brandon A. Smith
- Precision Medicine Laboratory, Division of Clinical Genomics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kathryn A. Stoll
- Precision Medicine Laboratory, Division of Clinical Genomics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kala F. Schilter
- Precision Medicine Laboratory, Division of Clinical Genomics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Honey V. Reddi
- Precision Medicine Laboratory, Division of Clinical Genomics, Medical College of Wisconsin, Milwaukee, WI, USA
- Biofidelity Inc., Morrisville, NC, USA
| | - Vivianna M. Van Deerlin
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Suehara Y, Kitada R, Kamio S, Ogura K, Iwata S, Kobayashi E, Kawai A, Khosaka S. Analysis of cancer multigene panel testing for osteosarcoma in pediatric and adults using the center for cancer genomics and advanced therapeutics database in Japan. J Orthop Sci 2024:S0949-2658(24)00209-4. [PMID: 39562182 DOI: 10.1016/j.jos.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor. Despite advances in multimodal chemotherapy, prognosis for metastatic or recurrent OS remains poor. Next-generation sequencing (NGS) can uncover new therapeutic options by identifying potentially targetable alterations. This study analyzed NGS data from the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database in Japan, comparing findings with the Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) data from the United States. METHODS We sequenced tumor and/or germline DNA from 223 high-grade OS samples using the FoundationOne® CDx or OncoGuideTM NCC Oncopanel System, and the FoundationOne® Liquid CDx for multigene panel testing (2019-2023). Genomic alterations were interpreted using the Cancer Knowledge Database (CKDB), with potentially actionable genetic events categorized into A-F levels. RESULTS Analysis of 223 high-grade OS samples revealed 1684 somatic mutations in 167 genes and 1114 copy number alterations in 89 genes. Potentially actionable alterations were identified in 94 patients (42.2 %) at CKDB Levels A-C. These included 2 cases with NTRK fusions (0.9 %; Level A), one case with TMB-high (0.4 %; Level A), 3 with ERBB amplifications (1.3 %; Level B), and 88 cases (39.5 %) with alterations such as CDK4 amplification, PTEN deletion/mutation, and others (Level C). Co-occurring amplifications of KIT, KDR, and PDGFRA at the 4q12 locus were found in 8 cases (3.6 %), while VEGFA and CCND3 co-amplifications at the 6p12-21 locus were seen in 33 cases (14.8 %). These gene amplifications, also reported in US studies, are targetable by multi-kinase inhibitors, although the C-CAT cohort's profiles differed from US cohorts like MSK-IMPACT. CONCLUSIONS Precision medicine for rare tumors still poses challenges. In this Japanese cohort, 42.2 % of high-grade OSs had potentially actionable alterations per CKDB. Concurrent gene amplifications of KIT, KDR, and PDGFRA at 4q12, and VEGFA and CCND3 at 6p12-21, might offer promising therapeutic options for patients with recurrent/metastatic OS resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Yoshiyuki Suehara
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Kamio
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ogura
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Shinji Khosaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
25
|
Chu YH, Xu B, Sukhadia P, Mohanty AS, DiNapoli SE, Ho AL, Katabi N, Dogan S. Targeted RNA Sequencing of Head and Neck Adenoid Cystic Carcinoma Reveals SEC16A::NOTCH1 Fusion and MET Exon 14 Skipping as Potentially Actionable Alterations. Head Neck Pathol 2024; 18:119. [PMID: 39508931 PMCID: PMC11543961 DOI: 10.1007/s12105-024-01694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Adenoid cystic carcinoma (AdCC) of the head and neck harbors MYB/MYBL1::NFIB fusions in around 60% of cases, with unfavorable long-term survival due to frequent recurrences and metastases, currently lacking effective targeted therapy. The study aims to identify actionable alterations and to elucidate the molecular underpinnings of MYB/MYBL1::NFIB-negative AdCC using a large targeted RNA sequencing panel. METHODS AND RESULTS We retrospectively searched our MSK-Solid Fusion clinical sequencing database for head and neck AdCC sequenced between 2016 and 2023. Of a total of 55 cases, 28 showed MYB::NFIB, 7 showed MYBL1::NFIB, and one case each harbored MYB::MPDZ (case 1) and FUS::MYB (case 2). One base of tongue tumor expressed both MYB::NFIB fusion and MET exon 14 skipping transcripts due to concurrent MET splice site mutation, D1010N (case 3). One parotid tumor lacked MYB/MYBL1 rearrangement but instead showed an in-frame SEC16A::NOTCH1 fusion that preserved the secretase cleavage site (case 4). Clinical records on 4 cases with non-canonical sequencing findings were reviewed. Distant metastases were present at the initial diagnosis (case 2) or at recurrence (cases 1, 3, and 4). Disease-related mortality occurred in cases 2 and 4 despite radiotherapy and immunotherapy. CONCLUSIONS The study improved the understanding of AdCC providing the first documentation of tumor clinical behavior associated with MYB::MPDZ and FUS::MYB fusions and reporting potentially actionable SEC16A::NOTCH1 fusion and MET exon 14 skipping mutation. Further research is needed to explore the therapeutic utility of MET inhibition and the efficacy of γ-secretase inhibitors against rare NOTCH1 fusions in AdCC.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Abhinita S Mohanty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sara E DiNapoli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Wang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, et alWang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, Li W, Fu J, Wu L, Lan S, Ou J, Shi L, Zhai Z, Wang Y, Li B, Zhang Z, Wang K, Ma X, Li Z, Liu Z, Yang N, Wu L, Wang H, Jin G, Wang G, Wang J, Shi H, Fang M, Fang Y, Li Y, Wang X, Chen J, Zhang Y, Zhu X, Shen Y, Ma S, Wang B, Song Y, Song Z, Fang W, Lu Y, Si L. Expert consensus on the diagnosis and treatment of solid tumors with BRAF mutations. Innovation (N Y) 2024; 5:100661. [PMID: 39529955 PMCID: PMC11551471 DOI: 10.1016/j.xinn.2024.100661] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth, differentiation, and survival. When the BRAF gene mutates, it can lead to abnormal activation of the signaling pathway, which promotes cell proliferation, inhibits cell apoptosis, and ultimately contributes to the occurrence and development of cancer. BRAF mutations are widely present in various cancers, including malignant melanoma, thyroid cancer, colorectal cancer, non-small cell lung cancer, and hairy cell leukemia, among others. BRAF is an important target for the treatment of various solid tumors, and targeted combination therapies, represented by BRAF inhibitors, have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors. Dabrafenib plus trametinib, as the first tumor-agnostic therapy, has been approved by the US Food and Drug Administration for the treatment of adult and pediatric patients aged 6 years and older harboring a BRAF V600E mutation with unresectable or metastatic solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options. This is also the first time a BRAF/MEK inhibitor combination has been approved for use in pediatric patients. As research into the diagnosis and treatment of BRAF mutations advances, standardizing the detection of BRAF mutations and the clinical application of BRAF inhibitors becomes increasingly important. Therefore, we have established a universal and systematic strategy for diagnosing and treating solid tumors with BRAF mutations. In this expert consensus, we (1) summarize the epidemiology and clinical characteristics of BRAF mutations in different solid tumors, (2) provide recommendations for the selection of genetic testing methods and platforms, and (3) establish a universal strategy for the diagnosis and treatment of patients with solid tumors harboring BRAF mutations.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Nan Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 200030, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 200030, China
| | - Aijun Liu
- Senior Department of Pathology, the 7 Medical Center of PLA General Hospital, Beijing 100700, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Jilin, Changchun 130012, P.R. China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, West Lake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. ChinaP.R. China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical Area, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhansheng Jiang
- Derpartment of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongbo Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing 100035, P.R. China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900 Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100700, P.R. China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510300, P.R. China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, P.R. China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fan Xia
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P.R. China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 1550081, P.R. China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Fei Pang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Xin Huang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Meizhen Hu
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Qing Hao
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Kai Wang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Fan Wu
- Department of Medical, Menarini Silicon Biosystems Spa, Shanghai 400000, P.R. China
| | - Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014000, P.R. China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Xinqing Lin
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei, Anhui 230011, P.R. China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinnan, Shangdong 250012, P.R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200070, P.R. China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia Wei
- Department of the Comprehensive Cancer Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yue Feng
- Department of Gynecologic Radiation Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hong Wang
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bin Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Donglai Lv
- Department of Clinical Oncology, The 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, Yunnan 675000, P.R. China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lizhi Wu
- Department of Microsurgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Shijie Lan
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Huijuan Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hubing Shi
- Frontier Science Center for Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaojia Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
27
|
Owen D, Ben-Shachar R, Feliciano J, Gai L, Beauchamp KA, Rivers Z, Hockenberry AJ, Harrison G, Guittar J, Catela C, Parsons J, Cohen E, Sasser K, Nimeiri H, Guinney J, Patel J, Morgensztern D. Actionable Structural Variant Detection via RNA-NGS and DNA-NGS in Patients With Advanced Non-Small Cell Lung Cancer. JAMA Netw Open 2024; 7:e2442970. [PMID: 39495511 PMCID: PMC11536281 DOI: 10.1001/jamanetworkopen.2024.42970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
Importance The National Comprehensive Cancer Network (NCCN) guidelines for non-small cell lung cancer suggest that RNA next-generation sequencing (NGS) may improve the detection of fusions and splicing variants compared with DNA-NGS alone. However, there is limited adoption of RNA-NGS in routine oncology clinical care today. Objective To analyze clinical evidence from a diverse cohort of patients with advanced lung adenocarcinoma and compare the detection of NCCN-recommended actionable structural variants (aSVs; fusions and splicing variants) via concurrent DNA and RNA-NGS vs DNA-NGS alone. Design, Setting, and Participants This multisite, retrospective cohort study examined patients sequenced between February 2021 and October 2023 within the deidentified, Tempus multimodal database, consisting of linked molecular and clinical data. Participants included patients with advanced lung adenocarcinoma and sufficient tissue sample quantities for both RNA-NGS and DNA-NGS testing. Exposures Received results from RNA-NGS and DNA-NGS solid-tissue profiling assays. Main Outcomes and Measures Detection rates of NCCN guideline-based structural variants (ALK, ROS1, RET and NTRK1/2/3 fusions, as well as MET exon 14 skipping splicing alterations) found uniquely by RNA-NGS. Results In the evaluable cohort of 5570 patients, median (IQR) age was 67.8 (61.3-75.4) years, and 2989 patients (53.7%) were female. The prevalence of actionable structural variants detected by either RNA-NGS or DNA-NGS was 8.8% (n = 491), with 86.7% (n = 426) of these detected by DNA-NGS. Concurrent RNA-NGS and DNA-NGS identified 15.3% more patients harboring aSVs compared with DNA-NGS alone (491 vs 426 patients, respectively), including 14.3% more patients harboring actionable fusions (376 vs 329 patients) and 18.6% more patients harboring MET exon 14 skipping alterations (115 vs 97 patients). There was no significant association between the assay used for aSV detection and aSV-targeted therapeutic adoption or clinical outcome. Emerging structural variants (eSVs) were found to have a combined prevalence to be 0.7%, with only 47.5% of eSVs detected by DNA-NGS. Conclusions and Relevance In this cohort study, the detection of structural variants via concurrent RNA-NGS and DNA-NGS was higher across multiple NCCN-guideline recommended biomarkers compared with DNA-NGS alone, suggesting that RNA-NGS should be routinely implemented in the care of patients with advanced NSCLC.
Collapse
Affiliation(s)
- Dwight Owen
- Ohio State University School of Medicine, Columbus
| | | | | | - Lisa Gai
- Tempus AI Inc, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | - Jyoti Patel
- Northwestern University School of Medicine, Chicago, Illinois
| | | |
Collapse
|
28
|
Adams HP, Hiemenz MC, Hertel K, Fuhlbrück F, Thomas M, Oughton J, Sorensen H, Schlecht U, Allen JM, Cantone M, Osswald S, Gonzalez D, Pikarsky E, De Vos M, Schuuring E, Wieland T. Comparison of Results from Two Commercially Available In-House Tissue-Based Comprehensive Genomic Profiling Solutions: Research Use Only AVENIO Tumor Tissue Comprehensive Genomic Profiling Kit and TruSight Oncology 500 Assay. J Mol Diagn 2024; 26:1018-1033. [PMID: 39270817 DOI: 10.1016/j.jmoldx.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Increased adoption of personalized medicine has brought comprehensive genomic profiling (CGP) to the forefront. However, differences in assay, bioinformatics, and reporting systems and lack of understanding of their complex interplay are a challenge for implementation and achieving uniformity in CGP testing. Two commercially available, tissue-based, in-house CGP assays were compared, in combination with a tertiary analysis solution in a research use only (RUO) context: the AVENIO Tumor Tissue CGP RUO Kit paired with navify Mutation Profiler (RUO) software and the TruSight Oncology 500 RUO assay paired with PierianDx Clinical Genomics Workspace software. Agreements and differences between the assays were assessed for short variants, copy number alterations, rearrangements, tumor mutational burden, and microsatellite instability, including variant categorization and clinical trial-matching (CTM) recommendations. Results showed good overall agreement for short variant, known gene fusion, and microsatellite instability detection. Important differences were obtained in tumor mutational burden scoring, copy number alteration detection, and CTM. Differences in variant and biomarker detection could be explained by bioinformatic approaches to variant calling, filtering, tiering, and normalization; differences in CTM, by underlying reported variants and conceptual differences in system parameters. Thus, distinctions between different approaches may lead to inconsistent results. Complexities in calling, filtering, and interpreting variants illustrate key considerations for implementation of any high-quality CGP in the laboratory and bringing uniformity to genomic insight results.
Collapse
Affiliation(s)
| | | | - Kay Hertel
- Helios MVZ Pathologie Erfurt GmbH, Erfurt, Germany
| | | | | | | | - Helle Sorensen
- Roche Diagnostics Solutions, Inc., Santa Clara, California
| | | | | | | | - Sophie Osswald
- Lab Operations, Foundation Medicine GmbH, Penzberg, Germany
| | - David Gonzalez
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Eli Pikarsky
- The Lautenberg Center for Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Ed Schuuring
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thomas Wieland
- Lab Operations, Foundation Medicine GmbH, Penzberg, Germany.
| |
Collapse
|
29
|
Zhang T, Febres-Aldana CA, Liu Z, Dix JM, Cheng R, Dematteo RG, Lui AJW, Khodos I, Gili L, Mattar MS, Lisanti J, Kwong C, Linkov I, Tipping MJ, de Stanchina E, Odintsov I, Ladanyi M, Somwar R. HER2 Antibody-Drug Conjugates Are Active against Desmoplastic Small Round Cell Tumor. Clin Cancer Res 2024; 30:4701-4713. [PMID: 39120576 PMCID: PMC11479846 DOI: 10.1158/1078-0432.ccr-24-1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE Desmoplastic small round cell tumor (DSRCT) is a rare but highly aggressive soft tissue sarcoma that arises in the abdominopelvic cavity of young males. Since the discovery of EWSR1::WT1 fusion as the driver of DSRCT, no actionable genomic alterations have been identified, limiting disease management to a combination of surgery, chemotherapy, and radiation, with very poor outcomes. Herein, we evaluated ERBB2/HER2 expression in DSRCT as a therapeutic target. EXPERIMENTAL DESIGN ERBB2/HER2 expression was assessed in clinical samples and patient-derived xenografts (PDX) using RNA sequencing, RT-qPCR, and a newly developed HER2 IHC assay (clone 29D8). Responses to HER2 antibody-drug conjugates (ADC)-trastuzumab deruxtecan (T-DXd) and trastuzumab emtansine-were evaluated in DSRCT PDX, cell line, and organoid models. Drug internalization was demonstrated by live microscopy. Apoptosis was evaluated by Western blotting and caspase activity assays. RESULTS ERBB2/HER2 was detectable in DSRCT samples from patients and PDXs, with higher sensitivity RNA assays and improved IHC detectability using clone 29D8. Treatment of ERBB2/HER2-expressing DSRCT PDX, cell line, and organoid models with T-DXd or trastuzumab emtansine resulted in tumor regression. This therapeutic response was long-lasting in T-DXd-treated xenografts and was mediated by rapid HER2 ADC complex internalization and cytotoxicity, triggering p53-mediated apoptosis and growth arrest. Xenograft regression was associated with bystander payload effects triggering global tumor niche responses proportional to HER2 status. CONCLUSIONS ERBB2/HER2 is a therapeutic target in DSRCT. HER2 ADCs may represent novel options for managing this exceptionally aggressive sarcoma, possibly fulfilling an urgent and historically unmet need for more effective clinical therapy.
Collapse
Affiliation(s)
- Tom Zhang
- New York Medical College, Valhalla, NY, 10595, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christopher A. Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Zebing Liu
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jenna-Marie Dix
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ryan Cheng
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Raymond G. Dematteo
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Allan JW Lui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Cancer Research UK, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Inna Khodos
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Leo Gili
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marissa S. Mattar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Irina Linkov
- Pathology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Murray J. Tipping
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Igor Odintsov
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 021105, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
30
|
Gupta B, Gosa Barrett L, Liu SV. NRG1 Fusions in NSCLC: Being eNRGy Conscious. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:143-148. [PMID: 39376790 PMCID: PMC11457762 DOI: 10.2147/lctt.s464626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024]
Abstract
Fusions in neuregulin 1 (NRG1) are rare oncogenic drivers that occur across a number of tumor types, including non-small cell lung cancer (NSCLC). NRG1 has an EGF-like domain that serves as a ligand for HER3 receptors, inducing heterodimerization, usually with HER2, and subsequent activation of oncogenic downstream signaling pathways. Emerging evidence suggests that NSCLC harboring NRG1 fusions do not respond as well to standard therapeutic options including chemotherapy and immunotherapy, and prognosis is poor. Novel treatment approaches targeting the HER2/HER3 pathway are under investigation. Here, we discuss the biology and detection of NRG1 fusions in NSCLC and promising targeted treatment strategies for tumors harboring the mutation.
Collapse
Affiliation(s)
- Brinda Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Laura Gosa Barrett
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
31
|
Marks JA, Gandhi N, Halmos B, Marmarelis ME, Yeon Kim S, Bazhenova L, Ramalingam SS, Xiu J, Walker P, Oberley MJ, Ma PC, Liu SV. Molecular profiling METex14+ non-small cell lung cancer (NSCLC): Impact of histology. Lung Cancer 2024; 196:107935. [PMID: 39241297 DOI: 10.1016/j.lungcan.2024.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES MET exon 14 skipping alterations (METex14+) represent a heterogeneous subgroup of non-small cell lung cancer (NSCLC) with distinct biological and genomic features. We characterized this heterogeneity in a large cohort, integrating genomic and transcriptomic profiling with clinical outcomes, to elucidate the histologic and molecular traits and survival patterns of METex14+ NSCLC. MATERIALS AND METHODS NSCLC tissue samples (n = 28,739) underwent DNA-based next-generation sequencing (592 genes, NextSeq) or whole-exome sequencing (NovaSeq), RNA-sequencing including whole transcriptome sequencing (WTS, NovaSeq), and PD-L1 IHC (Dako 22C3) at Caris Life Sciences. Immune cell fractions were estimated from bulk RNA sequencing (quanTIseq). Real-world survival data (mOS) was calculated from insurance claims. Statistical analyses employed Chi-square, Fisher's exact, or Mann-Whitney U and log-rank tests and were corrected for hypothesis testing where applicable. RESULTS A total of 711 METex14+ cases were detected. Of 575 cases of defined histology, 77 (13.6 %) were squamous (Sq), 474 (82.3 %) were nSq (non-squamous), and 24 (4.1 %) were adenosquamous. Mutations in POT1 and BRCA2 were enriched, and amplifications in MDM2, HMGA2, CDK4, and MET were common in METex14+ tumors. TMB-high and TP53 mutated tumors were reduced in METex14+ independent of histology. KEAP1 (2.1 vs 14.7 %) and STK11 mutations (0.8 vs 17.1 %) were reduced only in METex14+ nSq (vs METex14+ Sq, q < 0.05). While the prevalence of PD-L1 high tumors was enriched in METex14+ independent of histology, T-cell inflamed tumors were enriched only in nSq METex14+. B-cells and CD8+ T-cells (1.07-1.43-fold) were enriched in nSq METex14+, and dendritic cells (0.32 fold) were reduced only in METex14+ Sq. METex14+ tumors had a modest improvement in mOS compared to METex14- tumors (mOS = 22.9 m vs 18.6 m, HR = 0.914, p = 0.04). Moreover, METex14+ tumors who received immunotherapy (IO) had a modest improvement in survival (mOS = 27.5 m vs 21.8 m; HR = 0.803, p = 0.03) compared to those who did not receive IO. METex14+ nSq tumors were associated with improved mOS compared to METex14+ Sq tumors (mOS = 27.7 vs 8.9 m, HR = 0.493, p < 0.0001). CONCLUSION METex14+ alterations are a heterogeneous subgroup of NSCLC. Our analysis reveals that METex14+ nSq exhibit improved survival compared to METex14+ Sq. The distinct genomic and transcriptomic variations across histologies warrant clinical consideration.
Collapse
Affiliation(s)
- Jennifer A Marks
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Nishant Gandhi
- Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ 85040 USA.
| | - Balazs Halmos
- Montefiore Medical Center, Albert Einstein Cancer Center, 1575 Blondell Ave, Bronx, NY 10461, USA.
| | - Melina E Marmarelis
- University of Pennsylvania, 3400 Civic Center Boulevard West Pavilion, 2nd Floor, Philadelphia, PA 19104, USA.
| | - So Yeon Kim
- Yale University, 333 Cedar St, New Haven, CT 06510, USA.
| | - Lyudmila Bazhenova
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, San Diego, CA 92037, USA.
| | - Suresh S Ramalingam
- Winship Cancer Institute of Emory University, 1365 Clifton Rd NE Building C, Atlanta, GA 30322, USA.
| | - Joanne Xiu
- Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ 85040 USA.
| | - Phillip Walker
- Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ 85040 USA.
| | | | - Patrick C Ma
- Penn State Cancer Institute, 400 University Dr, Hershey, PA 17033, USA.
| | - Stephen V Liu
- Georgetown University, 3800 Reservoir Rd NW, Washington, D.C 20007, USA.
| |
Collapse
|
32
|
Chen MF, Yang SR, Tao JJ, Desilets A, Diamond EL, Wilhelm C, Rosen E, Gong Y, Mullaney K, Torrisi J, Young RJ, Somwar R, Yu HA, Kris MG, Riely GJ, Arcila ME, Ladanyi M, Donoghue MT, Rosen N, Yaeger R, Drilon A, Murciano-Goroff YR, Offin M. Tumor-Agnostic Genomic and Clinical Analysis of BRAF Fusions Identifies Actionable Targets. Clin Cancer Res 2024; 30:3812-3823. [PMID: 38922339 PMCID: PMC11371517 DOI: 10.1158/1078-0432.ccr-23-3981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Even though BRAF fusions are increasingly detected in standard multigene next-generation sequencing panels, few reports have explored their structure and impact on clinical course. EXPERIMENTAL DESIGN We collected data from patients with BRAF fusion-positive cancers identified through a genotyping protocol of 97,024 samples. Fusions were characterized and reviewed for oncogenic potential (in-frame status, non-BRAF partner gene, and intact BRAF kinase domain). RESULTS We found 241 BRAF fusion-positive tumors from 212 patients with 82 unique 5' fusion partners spanning 52 histologies. Thirty-nine fusion partners were not previously reported, and 61 were identified once. BRAF fusion incidence was enriched in pilocytic astrocytomas, gangliogliomas, low-grade neuroepithelial tumors, and acinar cell carcinoma of the pancreas. Twenty-four patients spanning multiple histologies were treated with MAPK-directed therapies, of which 20 were evaluable for RECIST. Best response was partial response (N = 2), stable disease (N = 11), and progressive disease (N = 7). The median time on therapy was 1 month with MEK plus BRAF inhibitors [(N = 11), range 0-18 months] and 8 months for MEK inhibitors [(N = 14), range 1-26 months]. Nine patients remained on treatment for longer than 6 months [pilocytic astrocytomas (N = 6), Erdheim-Chester disease (N = 1), extraventricular neurocytoma (N = 1), and melanoma (N = 1)]. Fifteen patients had acquired BRAF fusions. CONCLUSIONS BRAF fusions are found across histologies and represent an emerging actionable target. BRAF fusions have a diverse set of fusion partners. Durable responses to MAPK therapies were seen, particularly in pilocytic astrocytomas. Acquired BRAF fusions were identified after targeted therapy, underscoring the importance of postprogression biopsies to optimize treatment at relapse in these patients.
Collapse
Affiliation(s)
- Monica F. Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica J. Tao
- Department of Medicine, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Antoine Desilets
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eli L. Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Clare Wilhelm
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ezra Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yixiao Gong
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kerry Mullaney
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jean Torrisi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J. Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helena A. Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mark G. Kris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Gregory J. Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria E. Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T.A. Donoghue
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yonina R. Murciano-Goroff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
33
|
Chen MF, Repetto M, Wilhelm C, Drilon A. RET Inhibitors in RET Fusion-Positive Lung Cancers: Past, Present, and Future. Drugs 2024; 84:1035-1053. [PMID: 38997570 PMCID: PMC11977511 DOI: 10.1007/s40265-024-02040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 07/14/2024]
Abstract
While activating RET fusions are identified in various cancers, lung cancer represents the most common RET fusion-positive tumor. The clinical drug development of RET inhibitors in RET fusion-positive lung cancers naturally began after RET fusions were first identified in patient tumor samples in 2011, and thereafter paralleled drug development in RET fusion-positive thyroid cancers. Multikinase inhibitors were initially tested with limited efficacy and substantial toxicity. RET inhibitors were then designed with improved selectivity, central nervous system penetrance, and activity against RET fusions and most RET mutations, including resistance mutations. Owing their success to these rationally designed features, the first-generation selective RET tyrosine kinase inhibitors (TKIs) had higher response rates, more durable disease control, and an improved safety profile compared to the multikinase inhibitors. This led to lung and thyroid cancer, and later tumor-agnostic regulatory approvals. While next-generation RET TKIs were designed to abrogate uncommon on-target (e.g., solvent front mutation) resistance to selpercatinib and pralsetinib, many of these drugs lacked the selectivity of the first-generation TKIs, raising the question of what the future holds for drug development in RET-dependent cancers.
Collapse
Affiliation(s)
- Monica F Chen
- Thoracic Oncology, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Matteo Repetto
- Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Clare Wilhelm
- Thoracic Oncology, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexander Drilon
- Thoracic Oncology, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
- Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
34
|
Piecoro DW, Allison DB. Precision Medicine in Cytopathology. Surg Pathol Clin 2024; 17:329-345. [PMID: 39129134 DOI: 10.1016/j.path.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the last decade, cancer diagnostics has undergone a notable transformation with increasing complexity. Minimally invasive diagnostic tests, driven by advanced imaging and early detection protocols, are redefining patient care and reducing the need for more invasive procedures. Modern cytopathologists now safeguard patient samples for vital biomarker and molecular testing. In this article, we explore ancillary testing modalities and the role of biomarkers in organ-specific contexts, underscoring the transformative impact of precision medicine. Finally, the advent of more than 80 Food and Drug Administration-approved predictive biomarkers signals a new era, guiding cancer care toward personalized and targeted strategies.
Collapse
Affiliation(s)
- Dava W Piecoro
- Department of Pathology and Laboratory Medicine, 800 Rose Street, MS117, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, 800 Rose Street, MS117, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Markey Cancer Center, Lexington, KY 40536, USA; Department of Urology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
35
|
Spitaleri G, Trillo Aliaga P, Attili I, Del Signore E, Corvaja C, Pellizzari G, Katrini J, Passaro A, de Marinis F. Non-Small-Cell Lung Cancers (NSCLCs) Harboring RET Gene Fusion, from Their Discovery to the Advent of New Selective Potent RET Inhibitors: "Shadows and Fogs". Cancers (Basel) 2024; 16:2877. [PMID: 39199650 PMCID: PMC11352804 DOI: 10.3390/cancers16162877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
RET fusions are relatively rare in Non-Small-Cell Lung Cancers (NSCLCs), being around 1-2% of all NSCLCs. They share the same clinical features as the other fusion-driven NSCLC patients, as follows: younger age, adenocarcinoma histology, low exposure to tobacco, and high risk of spreading to the brain. Chemotherapy and immunotherapy have a low impact on the prognosis of these patients. Multitargeted RET inhibitors have shown modest activity jeopardized by high toxicity. New potent and selective RET inhibitors (RET-Is) (pralsetinib and selpercatinib) have achieved a higher efficacy minimizing the known toxicities of the multitargeted agents. This review will describe the sensitivity of immune-checkpoint inhibitors (ICIs) in RET fusion + NSCLC patients, as well their experiences with the 'old' multi-targeted RET inhibitors. This review will focus on the advent of new potent and selective RET-Is. We will describe their efficacy as well as the main mechanisms of resistance to them. We will further proceed to deal with the new drugs and strategies proposed to overcome the resistance to RET-Is. In the last section, we will also focus on the safety profile of RET-Is, dealing with the main toxicities as well as the rare but severe adverse events.
Collapse
Affiliation(s)
- Gianluca Spitaleri
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Gloria Pellizzari
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Jalissa Katrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
36
|
Chen LN, Keating C, Leb J, Saqi A, Shu CA. Unusual presentation of ROS1 rearranged metastatic non-small cell lung cancer. Respir Med Case Rep 2024; 51:102091. [PMID: 39257471 PMCID: PMC11386496 DOI: 10.1016/j.rmcr.2024.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
The spectrum of clinical and radiographic presentations of lung adenocarcinoma is increasingly broad, including in the metastatic setting. Here, we report on a patient who initially presented with a mild chronic cough that remained stable over a decade, with serial CT scans showing gradual worsening of multifocal areas of consolidation and ground-glass opacities of the bilateral lungs. The patient was ultimately diagnosed with ROS1 rearranged lung adenocarcinoma and achieved a dramatic response with entrectinib. This case highlights the variable presentation of non-small cell lung cancer (NSCLC) and the importance of comprehensive molecular testing for newly diagnosed metastatic NSCLC.
Collapse
Affiliation(s)
- Lanyi Nora Chen
- Division of Hematology and Oncology, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
| | - Claire Keating
- Division of Pulmonary Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
| | - Anjali Saqi
- Department of Pathology, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
| | - Catherine A Shu
- Division of Hematology and Oncology, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
| |
Collapse
|
37
|
Garinet S, Lupo A, Denize T, Loyaux R, Timsit S, Gazeau B, Fabre E, Maaradji Z, Gibault L, Giroux-Leprieur E, Duchemann B, Monnet I, Jouveshomme S, Aldea M, Besse B, Le Pimpec-Barthes F, Leroy K, Wislez M, Blons H. Successive next-generation sequencing strategy for optimal fusion gene detection in non-small-cell lung cancer in clinical practice. Pathology 2024; 56:702-709. [PMID: 38834439 DOI: 10.1016/j.pathol.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/19/2023] [Accepted: 02/12/2024] [Indexed: 06/06/2024]
Abstract
Metastatic non-small-cell lung cancer (NSCLC) displays various molecular alterations in the RAS-MAPK pathway. In particular, NSCLCs show high rates of targetable gene fusion in ALK, RET, ROS1, NRG1 and NTRK, or MET exon 14 skipping. Rapid and accurate detection of gene fusion in EGFR/KRAS/BRAF mutations is important for treatment selection especially for first-line indications. RNA-based next-generation sequencing (NGS) panels appear to be the most appropriate as all targets are multiplexed in a single run. While comprehensive NGS panels remain costly for daily practice, optimal sequencing strategies using targeted DNA/RNA panel approaches need to be validated. Here, we describe our lung cancer screening strategy using DNA and RNA targeted approaches in a real-life cohort of 589 NSCLC patients assessed for molecular testing. Gene fusions were analysed in 174 patients negative for oncogene driver mutations or ALK immunohistochemistry in a two-step strategy. Targetable alterations were identified in 28% of contributive samples. Non-smokers had a 63.7% probability to have a targetable alteration as compared to 21.5% for smokers. Overall survival was significantly higher (p=0.03) for patients who received a molecularly matched therapy. Our study shows the feasibility in routine testing of NSCLC DNA/RNA molecular screening for all samples in a cost- and time-controlled manner. The significant high fusion detection rate in patients with wild-type RAS-MAPK tumours highlights the importance of amending testing strategies in NSCLC.
Collapse
Affiliation(s)
- Simon Garinet
- Department of Biochemistry and Molecular Oncology, Hopital Européen Georges Pompidou, APHP Centre, Paris, France; Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Paris, France.
| | - Audrey Lupo
- Department of Pathology, Hopital Cochin, APHP.Centre, Université Paris Cité, Paris, France
| | - Thomas Denize
- Department of Biochemistry and Molecular Oncology, Hopital Européen Georges Pompidou, APHP Centre, Paris, France
| | - Romain Loyaux
- Department of Biochemistry and Molecular Oncology, Hopital Européen Georges Pompidou, APHP Centre, Paris, France
| | - Sarah Timsit
- Department of Biochemistry and Molecular Oncology, Hopital Européen Georges Pompidou, APHP Centre, Paris, France
| | - Benoit Gazeau
- Department of Thoracic Oncology, Hopital Européen Georges Pompidou, APHP.Centre, Paris, France
| | - Elizabeth Fabre
- Department of Thoracic Oncology, Hopital Européen Georges Pompidou, APHP.Centre, Paris, France
| | - Zineb Maaradji
- Department of Thoracic Oncology, Hopital Européen Georges Pompidou, APHP.Centre, Paris, France
| | - Laure Gibault
- Department of Pathology, Hopital Européen Georges Pompidou, APHP.Centre, Paris, France
| | | | - Boris Duchemann
- Department of Thoracic Oncology, Hopital Avicenne, APHP, Aubervilliers, France
| | - Isabelle Monnet
- Department of Thoracic Oncology, Hopital Intercommunal Créteil, Créteil, France
| | | | - Mihaela Aldea
- Cancer Medicine Department, Institut Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Cancer Medicine Department, Institut Gustave Roussy, Villejuif, France
| | | | - Karen Leroy
- Department of Biochemistry and Molecular Oncology, Hopital Européen Georges Pompidou, APHP Centre, Paris, France
| | - Marie Wislez
- Department of Thoracic Oncology, Hopital Cochin, APHP.Centre, Paris, France
| | - Hélène Blons
- Department of Biochemistry and Molecular Oncology, Hopital Européen Georges Pompidou, APHP Centre, Paris, France; Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Paris, France
| |
Collapse
|
38
|
Ahmed J, Torrado C, Chelariu A, Kim SH, Ahnert JR. Fusion Challenges in Solid Tumors: Shaping the Landscape of Cancer Care in Precision Medicine. JCO Precis Oncol 2024; 8:e2400038. [PMID: 38986029 PMCID: PMC11371109 DOI: 10.1200/po.24.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Targeting actionable fusions has emerged as a promising approach to cancer treatment. Next-generation sequencing (NGS)-based techniques have unveiled the landscape of actionable fusions in cancer. However, these approaches remain insufficient to provide optimal treatment options for patients with cancer. This article provides a comprehensive overview of the actionability and clinical development of targeted agents aimed at driver fusions. It also highlights the challenges associated with fusion testing, including the evaluation of patients with cancer who could potentially benefit from testing and devising an effective strategy. The implementation of DNA NGS for all tumor types, combined with RNA sequencing, has the potential to maximize detection while considering cost effectiveness. Herein, we also present a fusion testing strategy aimed at improving outcomes in patients with cancer.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anca Chelariu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center, German Cancer Consortium (DKTK), Munich, Germany
| | - Sun-Hee Kim
- Precision Oncology Decision Support, Khalifa Institute for Personalized Cancer Therapy, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
39
|
Yu L, Liu J, Jia J, Yang J, Tong R, Zhang X, Zhang Y, Yin S, Li J, Sun D. Fusion Genes Landscape of Lung Cancer Patients From Inner Mongolia, China. Genes Chromosomes Cancer 2024; 63:e23258. [PMID: 39011998 DOI: 10.1002/gcc.23258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths globally. Gene fusion, a key driver of tumorigenesis, has led to the identification of numerous driver gene fusions for lung cancer diagnosis and treatment. However, previous studies focused on Western populations, leaving the possibility of unrecognized lung cancer-associated gene fusions specific to Inner Mongolia due to its unique genetic background and dietary habits. To address this, we conducted DNA sequencing analysis on tumor and adjacent nontumor tissues from 1200 individuals with lung cancer in Inner Mongolia. Our analysis established a comprehensive fusion gene landscape specific to lung cancer in Inner Mongolia, shedding light on potential region-specific molecular mechanisms underlying the disease. Compared to Western cohorts, we observed a higher occurrence of ALK and RET fusions in Inner Mongolian patients. Additionally, we discovered eight novel fusion genes in three patients: SLC34A2-EPHB1, CCT6P3-GSTP1, BARHL2-APC, HRAS-MELK, FAM134B-ERBB2, ABCB1-GIPC1, GPR98-ALK, and FAM134B-SALL1. These previously unreported fusion genes suggest potential regional specificity. Furthermore, we characterized the fusion genes' structures based on breakpoints and described their impact on major functional gene domains. Importantly, the identified novel fusion genes exhibited significant clinical and pathological relevance. Notably, patients with SLC34A2-EPHB1, CCT6P3-GSTP1, and BARHL2-APC fusions showed sensitivity to the combination of chemotherapy and immunotherapy. Patients with HRAS-MELK, FAM134B-ERBB2, and ABCB1-GIPC1 fusions showed sensitivity to chemotherapy. In summary, our study provides novel insights into the frequency, distribution, and characteristics of specific fusion genes, offering valuable guidance for the development of effective clinical treatments, particularly in Inner Mongolia.
Collapse
Affiliation(s)
- Lan Yu
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Jinyang Liu
- Department of Sciences, Geneis Beijing Co. Ltd., Beijing, China
- Department of Data Mining, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jianchao Jia
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Jie Yang
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Ruiying Tong
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Yun Zhang
- Department of Sciences, Geneis Beijing Co. Ltd., Beijing, China
- Department of Data Mining, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Songtao Yin
- Department of Medical Imaging, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Junlin Li
- Department of Medical Imaging, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Dejun Sun
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Pulmonary and Critical Care Medicine, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
40
|
Kim M, Shim HS, Kim S, Lee IH, Kim J, Yoon S, Kim HD, Park I, Jeong JH, Yoo C, Cheon J, Kim IH, Lee J, Hong SH, Park S, Jung HA, Kim JW, Kim HJ, Cha Y, Lim SM, Kim HS, Lee CK, Kim JH, Chun SH, Yun J, Park SY, Lee HS, Cho YM, Nam SJ, Na K, Yoon SO, Lee A, Jang KT, Yun H, Lee S, Kim JH, Kim WS. Clinical practice recommendations for the use of next-generation sequencing in patients with solid cancer: a joint report from KSMO and KSP. J Pathol Transl Med 2024; 58:147-164. [PMID: 39026440 PMCID: PMC11261170 DOI: 10.4132/jptm.2023.11.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 07/20/2024] Open
Abstract
In recent years, next-generation sequencing (NGS)-based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
Collapse
Affiliation(s)
- Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - In Hee Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inkeun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaekyung Cheon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Han Jo Kim
- Division of Oncology and Hematology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yongjun Cha
- Division of Medical Oncology, Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jina Yun
- Division of Hematology/Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Kim M, Shim HS, Kim S, Lee IH, Kim J, Yoon S, Kim HD, Park I, Jeong JH, Yoo C, Cheon J, Kim IH, Lee J, Hong SH, Park S, Jung HA, Kim JW, Kim HJ, Cha Y, Lim SM, Kim HS, Lee CK, Kim JH, Chun SH, Yun J, Park SY, Lee HS, Cho YM, Nam SJ, Na K, Yoon SO, Lee A, Jang KT, Yun H, Lee S, Kim JH, Kim WS. Clinical Practice Recommendations for the Use of Next-Generation Sequencing in Patients with Solid Cancer: A Joint Report from KSMO and KSP. Cancer Res Treat 2024; 56:721-742. [PMID: 38037319 PMCID: PMC11261187 DOI: 10.4143/crt.2023.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, next-generation sequencing (NGS)-based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
Collapse
Affiliation(s)
- Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - In Hee Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Don Kim
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inkeun Park
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaekyung Cheon
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Han Jo Kim
- Division of Oncology and Hematology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yongjun Cha
- Division of Medical Oncology, Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Choong-kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jina Yun
- Division of Hematology/Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Mosele MF, Westphalen CB, Stenzinger A, Barlesi F, Bayle A, Bièche I, Bonastre J, Castro E, Dienstmann R, Krämer A, Czarnecka AM, Meric-Bernstam F, Michiels S, Miller R, Normanno N, Reis-Filho J, Remon J, Robson M, Rouleau E, Scarpa A, Serrano C, Mateo J, André F. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2024; 35:588-606. [PMID: 38834388 DOI: 10.1016/j.annonc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Advancements in the field of precision medicine have prompted the European Society for Medical Oncology (ESMO) Precision Medicine Working Group to update the recommendations for the use of tumour next-generation sequencing (NGS) for patients with advanced cancers in routine practice. METHODS The group discussed the clinical impact of tumour NGS in guiding treatment decision using the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) considering cost-effectiveness and accessibility. RESULTS As for 2020 recommendations, ESMO recommends running tumour NGS in advanced non-squamous non-small-cell lung cancer, prostate cancer, colorectal cancer, cholangiocarcinoma, and ovarian cancer. Moreover, it is recommended to carry out tumour NGS in clinical research centres and under specific circumstances discussed with patients. In this updated report, the consensus within the group has led to an expansion of the recommendations to encompass patients with advanced breast cancer and rare tumours such as gastrointestinal stromal tumours, sarcoma, thyroid cancer, and cancer of unknown primary. Finally, ESMO recommends carrying out tumour NGS to detect tumour-agnostic alterations in patients with metastatic cancers where access to matched therapies is available. CONCLUSION Tumour NGS is increasingly expanding its scope and application within oncology with the aim of enhancing the efficacy of precision medicine for patients with cancer.
Collapse
Affiliation(s)
- M F Mosele
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - C B Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, University Hospital, LMU Munich, Munich
| | - A Stenzinger
- Institute of Pathology, University Hospital Heidelberg and Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - F Barlesi
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre
| | - A Bayle
- Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre; Drug Development Department (DITEP), Gustave Roussy, Villejuif; Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif
| | - I Bièche
- Department of Genetics, Institut Curie, INSERM U1016, Université Paris Cité, Paris, France
| | - J Bonastre
- Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif
| | - E Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid
| | - R Dienstmann
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona; University of Vic-Central University of Catalonia, Vic, Spain; Oncoclínicas, São Paulo, Brazil
| | - A Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg; Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - A M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw; Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - F Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Michiels
- Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif
| | - R Miller
- Department of Medical Oncology, University College London, London; Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - N Normanno
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - J Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - J Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - M Robson
- Breast Medicine and Clinical Genetics Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Rouleau
- Tumor Genetics Service, Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
| | - A Scarpa
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona-School of Medicine, Verona, Italy
| | - C Serrano
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona
| | - J Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona
| | - F André
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre.
| |
Collapse
|
43
|
XU Y, MU N, LIU M, WU S, MA C. [A Case of EML4-ALK Fusion V1 Subtype Lung Adenocarcinoma
Detected by RNA-based NGS]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:480-484. [PMID: 39026500 PMCID: PMC11258648 DOI: 10.3779/j.issn.1009-3419.2024.102.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Indexed: 07/20/2024]
Abstract
Lung cancer is the malignant tumor with the highest incidence and mortality rate worldwide. For lung adenocarcinoma, identifying specific gene mutations, fusions, and giving corresponding targeted drugs can greatly improve the survival time of the patients. Among them, anaplastic lymphoma kinase (ALK) fusion occurs in 3%-7% of non-small cell lung cancer (NSCLC). In clinical practice, a variety of detection methods can be used to determine the ALK fusion status, but false negative test results are possible. This paper retrospectively analyzed the diagnosis and treatment of a patient with lung adenocarcinoma, judged the ALK fusion status by various detection methods. Among them, immunohistochemistry (IHC)(Ventana D5F3), RNA based next-generation sequencing (RNA-based NGS) confirmed positive echinoderm microtubule associated protein like 4 (EML4)-ALK fusion, while DNA-based NGS was negative. This paper analyzed the detection methods of ALK fusion, in order to clarify which detection method is the most accurate and simple to choose in different clinical cases and guide the subsequent treatment.
.
Collapse
|
44
|
Li H, Xu L, Cao H, Wang T, Yang S, Tong Y, Wang L, Liu Q. Analysis on the pathogenesis and treatment progress of NRG1 fusion-positive non-small cell lung cancer. Front Oncol 2024; 14:1405380. [PMID: 38957319 PMCID: PMC11217482 DOI: 10.3389/fonc.2024.1405380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Lung cancer persistently leads as the primary cause of morbidity and mortality among malignancies. A notable increase in the prevalence of lung adenocarcinoma has become evident in recent years. Although targeted therapies have shown in treating certain subsets of non-small cell lung cancers (NSCLC), a significant proportion of patients still face suboptimal therapeutic outcomes. Neuregulin-1 (NRG1), a critical member of the NRG gene family, initially drew interest due to its distribution within the nascent ventricular endocardium, showcasing an exclusive presence in the endocardium and myocardial microvessels. Recent research has highlighted NRG1's pivotal role in the genesis and progression across a spectrum of tumors, influencing molecular perturbations across various tumor-associated signaling pathways. This review provides a concise overview of NRG1, including its expression patterns, configuration, and fusion partners. Additionally, we explore the unique features and potential therapeutic strategies for NRG1 fusion-positive occurrences within the context of NSCLC.
Collapse
Affiliation(s)
- Hongyan Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Lina Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Hongshun Cao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Tianyi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Siwen Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Yixin Tong
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Linlin Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Qiang Liu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| |
Collapse
|
45
|
Ilié M, Goffinet S, Rignol G, Lespinet-Fabre V, Lalvée S, Bordone O, Zahaf K, Bonnetaud C, Washetine K, Lassalle S, Long-Mira E, Heeke S, Hofman V, Hofman P. Shifting from Immunohistochemistry to Screen for ALK Rearrangements: Real-World Experience in a Large Single-Center Cohort of Patients with Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:2219. [PMID: 38927925 PMCID: PMC11201761 DOI: 10.3390/cancers16122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The identification of ALK fusions in advanced non-small-cell lung carcinoma (aNSCLC) is mandatory for targeted therapy. The current diagnostic approach employs an algorithm using ALK immunohistochemistry (IHC) screening, followed by confirmation through ALK FISH and/or next-generation sequencing (NGS). Challenges arise due to the infrequency of ALK fusions (3-7% of aNSCLC), the suboptimal specificity of ALK IHC and ALK FISH, and the growing molecular demands placed on small tissue samples, leading to interpretative, tissue availability, and time-related issues. This study investigates the effectiveness of RNA NGS as a reflex test for identifying ALK fusions in NSCLC, with the goal of replacing ALK IHC in the systematic screening process. The evaluation included 1246 NSCLC cases using paired techniques: ALK IHC, ALK FISH, and ALK NGS. ALK IHC identified 51 positive cases (4%), while RNA NGS detected ALK alterations in 59 cases (4.8%). Of the 59 ALK-positive cases identified via NGS, 53 (89.8%) were confirmed to be positive. This included 51 cases detected via both FISH and IHC, and 2 cases detected only via FISH, as they were completely negative according to IHC. The combined reporting time for ALK IHC and ALK FISH averaged 13 days, whereas ALK IHC and RNA NGS reports were obtained in an average of 4 days. These results emphasize the advantage of replacing systematic ALK IHC screening with RNA NGS reflex testing for a more comprehensive and accurate assessment of ALK status.
Collapse
Affiliation(s)
- Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Samantha Goffinet
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Guylène Rignol
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Salomé Lalvée
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Olivier Bordone
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Kevin Washetine
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| |
Collapse
|
46
|
Choudhury NJ, Woo HJ, Chen M, Shah R, Donoghue M, Berger M, Drilon A. Serial Cell-Free DNA Sequencing in ROS1 Fusion-Positive Lung Cancers During Treatment With Entrectinib. JCO Precis Oncol 2024; 8:e2300721. [PMID: 38848521 PMCID: PMC11545664 DOI: 10.1200/po.23.00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
PURPOSE Patients with metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC) are effectively treated with entrectinib, a multikinase inhibitor. Whether serial targeted gene panel sequencing of cell-free DNA (cfDNA) can identify response and progression along with mechanisms of acquired resistance to entrectinib is underexplored. METHODS In patients with ROS1 fusion-positive NSCLC, coclinical trial plasma samples were collected before treatment, after two cycles, and after progression on entrectinib (global phase II clinical trial, ClinicalTrials.gov identifier: NCT02568267). Samples underwent cfDNA analysis using MSK-ACCESS. Variant allele frequencies of detectable alterations were correlated with objective response per RECIST v1.1 criteria. RESULTS Twelve patients were included, with best response as partial response (n = 9, 75%), stable disease (n = 2, 17%), and progressive disease (PD; n = 1, 8%). A ROS1 fusion was variably detected in cfDNA; however, patients without a ROS1 fusion in cfDNA had no other somatic alterations detected, indicative of possible low cfDNA shedding. Clearance of the enrolling ROS1 fusion or concurrent non-ROS1 alterations (TP53, CDH1, NF1, or ARID1A mutations) was observed in response to entrectinib therapy. Radiologic PD was accompanied by redemonstration of a ROS1 fusion or non-ROS1 alterations. On-target resistance was rare; only one patient acquired ROS1 G2032R at the time of progression. Several patients acquired new off-target likely oncogenic alterations, including a truncating alteration in NF1. CONCLUSION Serial cfDNA monitoring may complement radiographic assessments as determinants of response and resistance to entrectinib in ROS1 fusion-positive lung cancers in addition to detecting putative resistance mechanisms on progression.
Collapse
Affiliation(s)
- Noura J. Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Hyung Jun Woo
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Monica Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronak Shah
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Donoghue
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Berger
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
47
|
Murciano-Goroff YR, Uppal M, Chen M, Harada G, Schram AM. Basket Trials: Past, Present, and Future. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:59-80. [PMID: 38938274 PMCID: PMC11210107 DOI: 10.1146/annurev-cancerbio-061421-012927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Large-scale tumor molecular profiling has revealed that diverse cancer histologies are driven by common pathways with unifying biomarkers that can be exploited therapeutically. Disease-agnostic basket trials have been increasingly utilized to test biomarker-driven therapies across cancer types. These trials have led to drug approvals and improved the lives of patients while simultaneously advancing our understanding of cancer biology. This review focuses on the practicalities of implementing basket trials, with an emphasis on molecularly targeted trials. We examine the biologic subtleties of genomic biomarker and patient selection, discuss previous successes in drug development facilitated by basket trials, describe certain novel targets and drugs, and emphasize practical considerations for participant recruitment and study design. This review also highlights strategies for aiding patient access to basket trials. As basket trials become more common, steps to ensure equitable implementation of these studies will be critical for molecularly targeted drug development.
Collapse
Affiliation(s)
| | - Manik Uppal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Monica Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guilherme Harada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
48
|
Hirsch FR, Kim C. The Importance of Biomarker Testing in the Treatment of Advanced Non-Small Cell Lung Cancer: A Podcast. Oncol Ther 2024; 12:223-231. [PMID: 38536631 PMCID: PMC11187040 DOI: 10.1007/s40487-024-00271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/06/2024] [Indexed: 06/20/2024] Open
Abstract
The identification of actionable biomarkers and development of targeted therapies have revolutionized the field of lung cancer treatment. In patients with advanced non-small cell lung cancer (NSCLC), biomarker testing can inform selection of effective targeted therapies as well as avoid therapies that are less likely to be effective in certain populations. A growing number of actionable targets, including those involving EGFR, ALK, ROS1, BRAF, MET, KRAS, NTRK, RET, HER2, and PD-L1, can be identified with biomarker testing. More than half of patients with advanced NSCLC have tumors that harbor genetic alterations that can be targeted. When these patients are treated with targeted therapy, survival and quality of life may be significantly improved. In addition, broad-based molecular testing may detect alterations identifying patients who are potentially eligible for current or future clinical trials. Comprehensive biomarker testing rates in communities are often low, and turnaround times for results can be unacceptably long. There is an unmet need for widespread, efficient, and routine testing of all biomarkers recommended by clinical guidelines. New testing techniques and technologies can make this an attainable goal. Panel-based sequencing platforms are becoming more accessible, and molecular biomarker analysis of circulating tumor DNA is becoming more common. In this podcast, we discuss the importance of biomarker testing in advanced NSCLC and explore topics such as testing methodologies, effect of biomarker testing on patient outcomes, emerging technologies, and strategies for improving testing rates in the United States. Supplementary file1 (MP4 121301 KB).
Collapse
Affiliation(s)
- Fred R Hirsch
- Icahn School of Medicine, Center for Thoracic Oncology, Tisch Cancer Center, Mount Sinai, New York, NY, USA.
| | - Chul Kim
- Georgetown University, Washington, DC, USA
| |
Collapse
|
49
|
Momeni-Boroujeni A, Mullaney K, DiNapoli SE, Leitao MM, Hensley ML, Katabi N, Allison DHR, Park KJ, Antonescu CR, Chiang S. Expanding the Spectrum of NR4A3 Fusion-Positive Gynecologic Leiomyosarcomas. Mod Pathol 2024; 37:100474. [PMID: 38508521 DOI: 10.1016/j.modpat.2024.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Recurrent gene fusions have been observed in epithelioid and myxoid variants of uterine leiomyosarcoma. PGR::NR4A3 fusions were recently described in a subset of epithelioid leiomyosarcomas exhibiting rhabdoid morphology. In this study, we sought to expand the clinical, morphologic, immunohistochemical, and genetic features of gynecologic leiomyosarcomas harboring NR4A3 rearrangements with PGR and novel fusion partners. We identified 9 gynecologic leiomyosarcomas harboring PGR::NR4A3, CARMN::NR4A3, ACTB::NR4A3, and possible SLCO5A1::NR4A3 fusions by targeted RNA sequencing. Tumors frequently affected premenopausal women, involving the uterine corpus, uterine cervix, or pelvis. All were similarly characterized by lobules of monomorphic epithelioid and/or spindled cells arranged in sheets, cords, trabeculae, and micro- and macrocysts associated with abundant myxoid matrix and hemorrhage, creating labyrinth-like or pulmonary edema-like architecture. Myogenic differentiation with frequent estrogen receptor and progesterone receptor staining and no CD10 expression characterized all tumors. All cases showed high NR4A3 RNA expression levels and NOR1 (NR4A3) nuclear staining similar to salivary gland acinic cell carcinomas and a subset of extraskeletal myxoid chondrosarcomas harboring NR4A3 rearrangements. NOR1 (NR4A3) immunohistochemistry may serve as a useful diagnostic marker of NR4A3 fusion-positive gynecologic leiomyosarcomas.
Collapse
Affiliation(s)
- Amir Momeni-Boroujeni
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kerry Mullaney
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara E DiNapoli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mario M Leitao
- Department of Surgery, Gynecologic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martee L Hensley
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Douglas H R Allison
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kay J Park
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
50
|
Conde E, Hernandez S, Rodriguez Carrillo JL, Martinez R, Alonso M, Curto D, Jimenez B, Caminoa A, Benito A, Garrido P, Clave S, Arriola E, Esteban-Rodriguez I, De Castro J, Sansano I, Felip E, Rojo F, Dómine M, Abdulkader I, Garcia-Gonzalez J, Teixido C, Reguart N, Compañ D, Insa A, Mancheño N, Palanca S, Juan-Vidal O, Baixeras N, Nadal E, Cebollero M, Calles A, Martin P, Salas C, Provencio M, Aranda I, Massuti B, Lopez-Vilaro L, Majem M, Paz-Ares L, Lopez-Rios F. RET Fusion Testing in Patients With NSCLC: The RETING Study. JTO Clin Res Rep 2024; 5:100653. [PMID: 38525319 PMCID: PMC10957499 DOI: 10.1016/j.jtocrr.2024.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction RET inhibitors with impressive overall response rates are now available for patients with NSCLC, yet the identification of RET fusions remains a difficult challenge. Most guidelines encourage the upfront use of next-generation sequencing (NGS), or alternatively, fluorescence in situ hybridization (FISH) or reverse transcriptase-polymerase chain reaction (RT-PCR) when NGS is not possible or available. Taken together, the suboptimal performance of single-analyte assays to detect RET fusions, although consistent with the notion of encouraging universal NGS, is currently widening some of the clinical practice gaps in the implementation of predictive biomarkers in patients with advanced NSCLC. Methods This situation prompted us to evaluate several RET assays in a large multicenter cohort of RET fusion-positive NSCLC (n = 38) to obtain real-world data. In addition to RNA-based NGS (the criterion standard method), all positive specimens underwent break-apart RET FISH with two different assays and were also tested by an RT-PCR assay. Results The most common RET partners were KIF5B (78.9%), followed by CCDC6 (15.8%). The two RET NGS-positive but FISH-negative samples contained a KIF5B(15)-RET(12) fusion. The three RET fusions not identified with RT-PCR were AKAP13(35)-RET(12), KIF5B(24)-RET(9) and KIF5B(24)-RET(11). All three false-negative RT-PCR cases were FISH-positive, exhibited a typical break-apart pattern, and contained a very high number of positive tumor cells with both FISH assays. Signet ring cells, psammoma bodies, and pleomorphic features were frequently observed (in 34.2%, 39.5%, and 39.5% of tumors, respectively). Conclusions In-depth knowledge of the advantages and disadvantages of the different RET testing methodologies could help clinical and molecular tumor boards implement and maintain sensible algorithms for the rapid and effective detection of RET fusions in patients with NSCLC. The likelihood of RET false-negative results with both FISH and RT-PCR reinforces the need for upfront NGS in patients with NSCLC.
Collapse
Affiliation(s)
- Esther Conde
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Complutense, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Susana Hernandez
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | | | | | - Marta Alonso
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Daniel Curto
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | - Pilar Garrido
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Sergi Clave
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Hospital del Mar, Barcelona, Spain
| | - Edurne Arriola
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Hospital del Mar, Barcelona, Spain
| | | | - Javier De Castro
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigacion Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Irene Sansano
- Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | | | - Federico Rojo
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
| | - Manuel Dómine
- Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Ihab Abdulkader
- Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Cristina Teixido
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Noemi Reguart
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | - Amelia Insa
- Hospital Clinico Universitario, Valencia, Spain
| | - Nuria Mancheño
- Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Sarai Palanca
- Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | | | - Nuria Baixeras
- Hospital Universitari de Bellvitge, L’Hospitalet, Barcelona, Spain
| | - Ernest Nadal
- Catalan Institute of Oncology, L’Hospitalet, Barcelona, Spain
| | - Maria Cebollero
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Calles
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paloma Martin
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Clara Salas
- Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | - Ignacio Aranda
- Hospital General Universitario Dr. Balmis – Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Bartomeu Massuti
- Hospital General Universitario Dr. Balmis – Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | | | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Complutense, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Fernando Lopez-Rios
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Complutense, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| |
Collapse
|