1
|
Schlögl E, Hürner-Unterberger H, Simonitsch-Klupp I, Amann G, Blank-Foltin J, Neudert B, Wozelka-Oltjan L, Haberler C, Ebetsberger-Dachs G, Müllauer L. NTRK1 Gene Fusions Are Frequent in Juvenile Xanthogranuloma. Am J Surg Pathol 2025:00000478-990000000-00510. [PMID: 40235191 DOI: 10.1097/pas.0000000000002405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Juvenile Xanthogranuloma (JXG) is a rare form of non-Langerhans cell histiocytosis. The most common known gene mutations affect the mitogen-activated protein (MAP) kinase, phosphoinositide 3-kinase (PI3K), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. We present a case of congenital JXG in a premature newborn from a dicygotic twin pregnancy with subdermal infiltrates on the chest, hepatosplenomegaly, ascites, pancytopenia, and petechiae on the abdomen and extremities. Next-generation sequencing of tissue from a subdermal infiltrate revealed a tropomyosin 3::neurotrophic tyrosine kinase receptor (TPM3::NTRK1) gene fusion. Therefore, a retrospective analysis of 34 additional non-Langerhans cell histiocytoses (16 JXG, 3 adult xanthogranuloma and 1 benign cephalic histiocytosis, both clinical subtypes of JXG, as well as 13 Rosai-Dorfman and 1 Erdheim-Chester disease) for NTRK1, 2 and 3 aberrations was performed. This analysis revealed an NTRK1 gene fusion in 4 additional JXGs and 1 adult xanthogranuloma. In conclusion, NTRK1 gene fusions are moderately common in JXG (6/21; 28.6% in our series). This finding places JXG in the category of proliferative diseases with one of the highest frequencies of NTRK gene rearrangements. Therefore, NTRK gene fusions should be included in a gene panel test for difficult-to-treat JXG. Given the potential of NTRK gene fusions as a therapeutic target, NTRK inhibitors may represent a novel effective treatment for JXG with a challenging clinical course.
Collapse
Affiliation(s)
- Elisabeth Schlögl
- Department of Pathology
- Division of Hematology and Oncology, Department of Internal Medicine III, Klinik Favoriten, Vienna
| | - Helga Hürner-Unterberger
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria
| | | | | | | | | | | | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna
| | - Georg Ebetsberger-Dachs
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria
| | | |
Collapse
|
2
|
Kubota Y, Kawano M, Iwasaki T, Itonaga I, Kaku N, Ozaki T, Tanaka K. Current management of neurotrophic receptor tyrosine kinase fusion-positive sarcoma: an updated review. Jpn J Clin Oncol 2025; 55:313-326. [PMID: 39895082 PMCID: PMC11973637 DOI: 10.1093/jjco/hyaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
In recent years, pembrolizumab has demonstrated significant efficacy in treating tumors characterized by a high tumor mutational burden and high microsatellite instability. Tropomyosin receptor kinase (TRK) inhibitors have shown considerable efficacy against tumors harboring neurotrophic receptor tyrosine kinase (NTRK) fusion genes, highlighting the growing importance of personalized medicine in cancer treatment. Advanced sequencing technologies enable the rapid analysis of numerous genetic abnormalities in tumors, facilitating the identification of patients with positive biomarkers. These advances have increased the likelihood of providing effective, tailored treatments. NTRK fusion genes are present in various cancer types, including sarcomas, and the TRK inhibitors larotrectinib and entrectinib have been effectively used for these malignancies. Consequently, the treatment outcomes for NTRK fusion-positive tumors have improved significantly, reflecting a shift toward more personalized therapeutic approaches. This review focuses on NTRK fusion-positive sarcomas and comprehensively evaluates their epidemiology, clinical features, and radiological and histological characteristics. We also investigated the treatment landscape, including the latest methodologies involving TRK inhibitors, and discussed the long-term efficacy of these inhibitors, and their optimal order of use. Notably, larotrectinib has demonstrated a high response rate in infantile fibrosarcoma, and its efficacy has been confirmed even in advanced cases. However, further research is warranted to optimize treatment duration and subsequent management strategies. The accumulation of clinical cases worldwide will play a pivotal role in refining the treatment approaches for tumors associated with NTRK fusion genes.
Collapse
Affiliation(s)
- Yuta Kubota
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Nobuhiro Kaku
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
- Department of Advanced Medical Sciences, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| |
Collapse
|
3
|
Umphress B, Li A, Kuhar M, Kowal R, Alomari AK, Baldridge L, Ross AJ, Warren SJ. NTRK Fusions in Xanthogranuloma, a Clinicopathologic and Molecular Analysis of 23 Cases. Am J Surg Pathol 2025:00000478-990000000-00498. [PMID: 40162548 DOI: 10.1097/pas.0000000000002394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Xanthogranuloma is the most common category of histiocytic neoplasia, with a range of clinical behaviors from solitary cutaneous lesions to multiple cutaneous lesions and less frequent cases with evolution to disseminated disease. Solitary lesions make up 78% to 81% of total cases. We encountered 2 consecutive index patients with solitary cutaneous xanthogranuloma with NTRK overexpression by immunostaining and confirmed the presence of an NTRK1 fusion with both RNA and DNA sequencing. We screened 55 additional patients by pan-TRK immunostain, and found that 26 of 48 (54%) with solitary xanthogranulomas had TRK overexpression, whereas 0 of 7 (0%) multifocal or disseminated xanthogranulomas had TRK overexpression. We sequenced a subset of 23 patients with solitary xanthogranuloma. In all 16 patients with a positive pan-TRK immunostain, we confirmed the presence of an NTRK1 fusion using RNA and DNA sequencing. In all 7 patients that were negative by immunostain we identified no NTRK fusion by sequencing. All patients with a fusion identified by sequencing had overexpression of the NTRK1 RNA transcript relative to wild-type tumors with a mean 58-fold increase over wild-type tumors (P=8.77e-15). Further, all cases with fusions had a loss of the extracellular portion of NTRK1, and fusion partners were limited to TPM3, PRDX1, IRF2BP2, LRRIP1, and SQSTM1. DNA sequencing identified additional recurrent loss of function mutations in DNA methylation genes DNMT3A, KDM5D, and SETD2, as well as the MTOR-PI3K pathway gene FLCN. Recurrent copy number gains were detected in MTOR-PI3K pathway genes PIK3CG, IL10Ra, as well as transcriptional regulator PAX8. The frequency of NTRK1 fusions appears markedly higher in solitary compared with multifocal and disseminated xanthogranuloma (54% vs. 0%). The reduced proportion of NTRK1 fusions in disseminated cases relative to solitary cases suggests that NTRK1 fusions are less efficient than MAP kinase pathway point mutations at driving tumor evolution towards disseminated disease. As NTRK1 fusions are uncommon in other histiocytoses, pan-TRK immunostain may have utility to confirm the diagnosis of xanthogranuloma in a histiocytic lineage tumor and to screen for low-risk xanthogranuloma.
Collapse
Affiliation(s)
| | - Aofei Li
- Department of Pathology and Laboratory Medicine
| | - Matthew Kuhar
- Department of Pathology and Laboratory Medicine
- Department of Dermatology
| | - Rachel Kowal
- Department of Pathology and Laboratory Medicine
- Department of Dermatology
| | - Ahmed K Alomari
- Department of Pathology and Laboratory Medicine
- Department of Dermatology
| | | | - Anthony J Ross
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Simon J Warren
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
4
|
Chang MJ, Stamos DB, Urtis C, Bowers NL, Schmalz LM, Deyo LJ, Porebski MF, Jabir AR, Bunch PM, Lycan TW, Buchanan Doerfler L, Patwa HS, Waltonen JD, Sullivan CA, Browne JD, Zhang W, Porosnicu M. Mutational Profile of Blood and Tumor Tissue and Biomarkers of Response to PD-1 Inhibitors in Patients with Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2025; 17:1172. [PMID: 40227722 PMCID: PMC11987913 DOI: 10.3390/cancers17071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cutaneous squamous cell carcinoma (cSCC) harbors one of the most mutated genomes. There are limited data on the genomic profile and its predictive potential for response to immunotherapy with PD-1 inhibitors in cSCC. METHODS This study retrospectively reviewed cSCC patients treated with PD-1 inhibitor monotherapy at a single institution. Clinical characteristics, treatment outcomes, PD-L1 expression, tumor mutation burden (TMB), and genomic profile in tumor and blood were analyzed. Logistic regression and a support vector classifier were used to validate identified biomarkers of significance. RESULTS Twenty-five patients were evaluable for response and had genomics tested in tumor and/or blood. Of the total, 80% of patients achieved an objective response: 40% complete response (CR), 32% partial response (PR) for more than 6 months, and 8% stable disease (SD) for more than 1 year; 20% of patients progressed on treatment. With a median follow-up of 21 months, progression-free survival (PFS) was 28 months in responders vs. 3 months in non-responders (p = 0.00001). Median PD-L1 was 25% in responders vs. 10% in non-responders (p = 0.39). There was no difference in median TMB between responders and non-responders. Eight gene mutations were significantly more frequent in non-responders than in responders: CDK12 (p = 0.005), CTCF (p = 0.033), CTNNB1 (p = 0.033), IGF1R (p = 0.038), IKBKE (p = 0.016), MLH1 (0.033), QKI (p = 0.016), and TIPARP (p = 0.033). A support vector model of these genes classified responders and non-responders with an accuracy of 0.88 in the training data and 1.0 in the testing data. CONCLUSIONS PD-1 inhibitor monotherapy produces an impressive response. Eight gene mutations were significantly more frequent in non-responders. PD-L1 and TMB were inconclusive in predicting treatment response to anti-PD-L1.
Collapse
Affiliation(s)
- Mark J. Chang
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (M.J.C.); (D.B.S.); (L.J.D.); (M.F.P.); (A.R.J.); (T.W.L.J.)
| | - Daniel B. Stamos
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (M.J.C.); (D.B.S.); (L.J.D.); (M.F.P.); (A.R.J.); (T.W.L.J.)
| | - Cetin Urtis
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.U.); (L.M.S.); (W.Z.)
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
| | | | - Lauren M. Schmalz
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.U.); (L.M.S.); (W.Z.)
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
| | - Logan J. Deyo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (M.J.C.); (D.B.S.); (L.J.D.); (M.F.P.); (A.R.J.); (T.W.L.J.)
| | - Martin F. Porebski
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (M.J.C.); (D.B.S.); (L.J.D.); (M.F.P.); (A.R.J.); (T.W.L.J.)
| | - Abdur Rahman Jabir
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (M.J.C.); (D.B.S.); (L.J.D.); (M.F.P.); (A.R.J.); (T.W.L.J.)
| | - Paul M. Bunch
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas W. Lycan
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (M.J.C.); (D.B.S.); (L.J.D.); (M.F.P.); (A.R.J.); (T.W.L.J.)
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
| | - Laura Buchanan Doerfler
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| | - Hafiz S. Patwa
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
- Department of Otolaryngology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Joshua D. Waltonen
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
- Department of Otolaryngology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Christopher A. Sullivan
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
- Department of Otolaryngology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J. Dale Browne
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
- Department of Otolaryngology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Wei Zhang
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.U.); (L.M.S.); (W.Z.)
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
| | - Mercedes Porosnicu
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (M.J.C.); (D.B.S.); (L.J.D.); (M.F.P.); (A.R.J.); (T.W.L.J.)
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA (H.S.P.); (J.D.W.); (C.A.S.); (J.D.B.)
| |
Collapse
|
5
|
Jafari P, Forrest M, Segal J, Wang P, Tjota MY. Pan-Cancer Molecular Biomarkers: Practical Considerations for the Surgical Pathologist. Mod Pathol 2025; 38:100752. [PMID: 40058460 DOI: 10.1016/j.modpat.2025.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Traditional anatomic pathologic classification of cancer is based on tissue of origin and morphologic and immunohistochemical characterization of the malignant cells. With the technological improvements of massively parallel or next-generation sequencing, oncogenic drivers that are shared across different tumor types are increasingly being identified and used as pan-cancer biomarkers. This approach is reflected in the growing list of Food and Drug Administration-approved tumor-agnostic therapies, including pembrolizumab in the setting of microsatellite instability and high tumor mutational burden, larotrectinib and entrectinib for solid tumors with NTRK fusions, and combined dabrafenib-trametinib for BRAF V600E-mutated neoplasms. Several other biomarkers are currently under investigation, including fibroblast growth factor receptor (FGFR), RET, and ROS1 fusions; ERBB2 amplification; and mutations in the AKT1/2/3, NF1, RAS pathway and (mitogen-activated protein kinase (MAPK) pathway. As molecular assays are increasingly incorporated into routine tumor workup, the emergence of additional pan-cancer biomarkers is likely to be a matter more of "when" than "if." In this review, we first explore some of the conceptual and technical considerations at the intersection of surgical and molecular pathology, followed by a brief overview of both established and emerging molecular pan-cancer biomarkers and their diagnostic and clinical applications.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Megan Forrest
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Jeremy Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
6
|
Whaley RD, Tekin B, McCarthy MR, Zia HM, Pitel BA, Al-Kateb H, Cheville JC, Gupta S. NTRK3-Rearranged Prostatic Acinar Adenocarcinoma: Report of a Patient and Review of the Literature. Int J Surg Pathol 2025; 33:204-208. [PMID: 38772598 DOI: 10.1177/10668969241253197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Molecular investigations have led to increased therapeutic options for prostatic adenocarcinoma. A single case report of a PRPSAP1::NTRK3 gene fusion occurring in prostate cancer was previously reported. A review of the literature revealed that NTRK gene rearrangements are exceedingly rare molecular events in prostate cancer. NTRK gene fusions can be oncogenic drivers or develop as resistance mechanisms. The tumor-agnostic approvals of TRK inhibitors by the FDA provide additional rationale for molecular investigations of aggressive prostatic adenocarcinomas. This may prove to be an additional therapeutic option for patients with aggressive prostatic carcinomas refractory to initial therapy. We report a case of an aggressive castrate-resistant prostatic adenocarcinoma with a BMP6::NTRK3 gene fusion.
Collapse
Affiliation(s)
- Rumeal D Whaley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Burak Tekin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael R McCarthy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hamid M Zia
- Department of Pathology, OSF HealthCare System Laboratory, Peoria, IL, USA
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hussam Al-Kateb
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
SONG S, YANG Y, LUO W, LIANG Y, LI Q, ZHUO T, XIONG W, HUANG J. [A Case Report of Lung Adenocarcinoma with EGFR G719A Mutation
and LMNA-NTRK1 Fusion]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:75-80. [PMID: 39988443 PMCID: PMC11848618 DOI: 10.3779/j.issn.1009-3419.2025.106.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 02/25/2025]
Abstract
Fusion variations of neurotrophic receptor tyrosine kinase (NTRK) are oncogenic drivers in various solid tumors such as breast cancer, salivary gland carcinoma, infant fibrosarcoma, etc. Gene rearrangements involving NTRK1/2/3 lead to constitutive activation of the tropomyosin receptor kinase (TRK) domain, and the expressed fusion proteins drive tumor growth and survival. NTRK fusions are estimated to occur at a frequency of approximately 0.1% to 1% in non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutations are prevalent in NSCLC, but the frequency of EGFR G719A mutation is relatively low (about 2%), and EGFR mutations are typically mutually exclusive with NTRK fusion variants. The study presented the first documented case of lung adenocarcinoma harboring both EGFR G719A mutation and LMNA-NTRK1 fusion. A review of the literature was conducted to elucidate the role of NTRK fusion mutations in NSCLC and their relationship with EGFR mutations, aiming to enhance the understanding of NTRK fusion mutations in NSCLC.
.
Collapse
|
8
|
Marczyk VR, Fazeli S, Dadu R, Busaidy NL, Iyer P, Hu MI, Sherman SI, Hamidi S, Hosseini SM, Williams MD, Ahmed S, Routbort MJ, Luthra R, Roy-Chowdhuri S, San Lucas FA, Patel KP, Hong DS, Zafereo M, Wang JR, Maniakas A, Waguespack SG, Cabanillas ME. NTRK Fusion-Positive Thyroid Carcinoma: From Diagnosis to Targeted Therapy. JCO Precis Oncol 2025; 9:e2400321. [PMID: 39983078 PMCID: PMC11867807 DOI: 10.1200/po.24.00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025] Open
Abstract
PURPOSE Neurotrophic tropomyosin receptor kinase (NTRK) fusions may act as an oncogenic driver in thyroid carcinomas. Given their low frequency, clinical, pathological, and molecular data on these patients and their responses to targeted therapies are limited. METHODS This is an observational retrospective study conducted at a single high-volume cancer center in the United States. Data were retrospectively collected from medical records. RESULTS We included 65 patients (37 adult, 28 pediatric) with an NTRK fusion-positive thyroid carcinoma (24 NTRK1, 41 NTRK3), of which 54 were papillary thyroid carcinomas (PTC), four poorly differentiated thyroid carcinomas (PDTC), and seven anaplastic thyroid carcinomas (ATC). In PTC, an extensive follicular growth pattern was seen in 22 (41%) patients. In adults, NTRK3 fusions were 3 times more frequent (nine NTRK1, 28 NTRK3), whereas in pediatric patients their frequencies were similar (15 NTRK1, 13 NTRK3; P = .021). In patients with PDTC/ATC treated with larotrectinib, we detected four emergent solvent front mutations (three NTRK3 G623R, one NTRK1 G595R) causing resistance to drug and disease progression. Three of them (two ATC, one PDTC) received second-line selitrectinib on a clinical trial. Partial responses were seen in all three patients, but both patients with ATC progressed within a year. CONCLUSION NTRK1/3 fusions are seen in PTC, PDTC, and ATC, and a follicular growth pattern was observed in a high proportion of cases. In patients treated with larotrectinib, NTRK solvent front mutations are the main resistance mechanism, frequently occurring in PDTC/ATC. Responses to single-agent TRK inhibitor are short-lived in patients with ATC; thus, these drugs should be used with caution in this population.
Collapse
Affiliation(s)
- Vicente R. Marczyk
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | - Sasan Fazeli
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | - Naifa L. Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | - Priyanka Iyer
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | - Mimi I. Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | - Steven I. Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | | | - Michelle D. Williams
- Department of Pathology, The University of Texas MD Anderson Cancer, Houston, TX
| | - Salmaan Ahmed
- Department of Neuroradiology, The University of Texas MD Anderson Cancer, Houston, TX
| | - Mark J. Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer, Houston, TX
| | - Raja Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer, Houston, TX
| | | | | | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer, Houston, TX
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer, Houston, TX
| | - Mark Zafereo
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer, Houston, TX
| | - Jennifer R. Wang
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer, Houston, TX
| | - Anastasios Maniakas
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer, Houston, TX
| | - Steven G. Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX
| |
Collapse
|
9
|
Kim S, Itani M, Liu X, Sun L, Krysiak K, Fox N, Firwana B, Al Diffalha S, Manne U, Seeber A, Karl M, Frank M, Stubblefield H, Pedersen K, Lim KH, Abushukair H, Khushman M. Tailored Approaches in the Treatment of Patients With Colorectal Cancer Harboring Tropomyosin Receptor Kinase Fusion and Microsatellite Instability-High: A Case Report and Literature Review. JCO Precis Oncol 2025; 9:e2400305. [PMID: 39889241 DOI: 10.1200/po.24.00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 02/02/2025] Open
Affiliation(s)
- Samuel Kim
- University of Missouri-Kansas City, Kansas City, MO
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO
| | - Xiuli Liu
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO
| | - Lulu Sun
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO
| | - Kilannin Krysiak
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO
| | - Nicole Fox
- Lead Medical Science Liaison-Oncology, Bayer Pharmaceuticals, Whippany, NJ
| | - Belal Firwana
- Medical Oncology, Heartland Cancer Research, Missouri Baptist Medical Center, St Louis, MO
| | - Sameer Al Diffalha
- Pathology, The University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL
| | - Upender Manne
- Pathology, The University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL
| | - Andreas Seeber
- Hematology-Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck, Austria
| | - Molly Karl
- Medical Oncology, Washington University in St Louis/Siteman Cancer Center, St Louis, MO
| | - Michele Frank
- Medical Oncology, Washington University in St Louis/Siteman Cancer Center, St Louis, MO
| | - Hannah Stubblefield
- Medical Oncology, Washington University in St Louis/Siteman Cancer Center, St Louis, MO
| | - Katrina Pedersen
- Medical Oncology, Washington University in St Louis/Siteman Cancer Center, St Louis, MO
| | - Kian-Huat Lim
- Medical Oncology, Washington University in St Louis/Siteman Cancer Center, St Louis, MO
| | | | - Moh'd Khushman
- Medical Oncology, Washington University in St Louis/Siteman Cancer Center, St Louis, MO
| |
Collapse
|
10
|
Xue X, Gajic ZZ, Caragine CM, Legut M, Walker C, Kim JYS, Wang X, Yan RE, Wessels HH, Lu C, Bapodra N, Gürsoy G, Sanjana NE. Paired CRISPR screens to map gene regulation in cis and trans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625752. [PMID: 39651170 PMCID: PMC11623649 DOI: 10.1101/2024.11.27.625752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent massively-parallel approaches to decipher gene regulatory circuits have focused on the discovery of either cis -regulatory elements (CREs) or trans -acting factors. Here, we develop a scalable approach that pairs cis - and trans -regulatory CRISPR screens to systematically dissect how the key immune checkpoint PD-L1 is regulated. In human pancreatic ductal adenocarcinoma (PDAC) cells, we tile the PD-L1 locus using ∼25,000 CRISPR perturbations in constitutive and IFNγ-stimulated conditions. We discover 67 enhancer- or repressor-like CREs and show that distal CREs tend to contact the promoter of PD-L1 and related genes. Next, we measure how loss of all ∼2,000 transcription factors (TFs) in the human genome impacts PD-L1 expression and, using this, we link specific TFs to individual CREs and reveal novel PD-L1 regulatory circuits. For one of these regulatory circuits, we confirm the binding of predicted trans -factors (SRF and BPTF) using CUT&RUN and show that loss of either the CRE or TFs potentiates the anti-cancer activity of primary T cells engineered with a chimeric antigen receptor. Finally, we show that expression of these TFs correlates with PD-L1 expression in vivo in primary PDAC tumors and that somatic mutations in TFs can alter response and overall survival in immune checkpoint blockade-treated patients. Taken together, our approach establishes a generalizable toolkit for decoding the regulatory landscape of any gene or locus in the human genome, yielding insights into gene regulation and clinical impact.
Collapse
|
11
|
Okubo Y, Toda S, Kadoya M, Sato S, Yoshioka E, Hasegawa C, Ono K, Washimi K, Yokose T, Miyagi Y, Masudo K, Iwasaki H, Hayashi H. Clinicopathological analysis of thyroid carcinomas with the RET and NTRK fusion genes: characterization for genetic analysis. Virchows Arch 2024; 485:509-518. [PMID: 38472412 PMCID: PMC11415398 DOI: 10.1007/s00428-024-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Thyroid carcinomas exhibit various genetic alterations, including the RET and NTRK fusion genes that are targets for molecular therapies. Thus, detecting fusion genes is crucial for devising effective treatment plans. This study characterized the pathological findings associated with these genes to identify the specimens suitable for genetic analysis. Thyroid carcinoma cases positive for the fusion genes were analyzed using the Oncomine Dx Target Test. Clinicopathological data were collected and assessed. Among the 74 patients tested, 8 had RET and 1 had NTRK3 fusion gene. Specifically, of the RET fusion gene cases, 6 exhibited "BRAF-like" atypia and 2 showed "RAS-like" atypia, while the single case with an NTRK3 fusion gene presented "RAS-like" atypia. Apart from one poorly differentiated thyroid carcinoma, most cases involved papillary thyroid carcinomas (PTCs). Primary tumors showed varied structural patterns and exhibited a high proportion of non-papillary structures. Dysmorphic clear cells were frequently observed. BRAF V600E immunoreactivity was negative in all cases. Interestingly, some cases exhibited similarities to diffuse sclerosing variant of PTC characteristics. While calcification in lymph node metastases was mild, primary tumors typically required hydrochloric acid-based decalcification for tissue preparation. This study highlights the benefits of combining morphological and immunohistochemical analyses for gene detection and posits that lymph node metastases are more suitable for genetic analysis owing to their mild calcification. Our results emphasize the importance of accurate sample processing in diagnosing and treating thyroid carcinomas.
Collapse
Affiliation(s)
- Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| | - Soji Toda
- Department of Endocrine Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Mei Kadoya
- Department of Endocrine Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Shinya Sato
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2Asahi-Ku, NakaoYokohama, Kanagawa, 241-8515, Japan
| | - Emi Yoshioka
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Chie Hasegawa
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Kyoko Ono
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2Asahi-Ku, NakaoYokohama, Kanagawa, 241-8515, Japan
| | - Katsuhiko Masudo
- Department of Endocrine Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Iwasaki
- Department of Endocrine Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Hayashi
- Department of Pathology, Yokohama Municipal Citizen's Hospital, 1-1 Mitsuzawanishimachi, Kanagawa-Ku, Yokohama, Kanagawa, 221-0855, Japan
| |
Collapse
|
12
|
Ma Y, Wang Y, He L, Du J, Li L, Bie Z, Li Y, Xu X, Zhou W, Wu X, Yang L, Di J, Li C, Li X, Liu D, Wang Z. Preservation of cfRNA in cytological supernatants for cfDNA & cfRNA double detection in non-small cell lung cancer patients. Cancer Med 2024; 13:e70197. [PMID: 39233657 PMCID: PMC11375324 DOI: 10.1002/cam4.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUD Supernatants from various cytological samples, including body cavity effusion, sputum, bronchoalveolar lavage fluid (BALF), and needle aspiration, have been validated for detecting genetic alterations using cell-free DNA (cfDNA) in patients with non-small cell lung cancer (NSCLC). However, the sensitivity of fusion variations detection remains challenging. The protection of cell-free RNA (cfRNA) is critical for resolving the issue. METHODS A protective solution (PS) was applied for preserving cfRNA in cytological supernatant (CS), and the quality of protected cfRNA was assessed by cycle threshold (CT) values from reverse transcription quantitative polymerase chain reaction (RT-qPCR). Furthermore, we collected an additional set of malignant cytological and matched tumor samples from 84 NSCLC patients, cfDNA & cfRNA extraction and double detection for driver gene mutations was validated using the multi-gene mutations detection by RT-qPCR. RESULTS Under the optimal protection system, 91.0% (101/111) of cfRNA were protected effectively. Among the 84 NSCLC patient samples, seven cytological samples failed the tests. In comparison with tumor samples, the overall sensitivity and specificity of detecting driver genes of supernatant cfDNA and cfRNA were 93.8% (74/77) and 100% (77/77), respectively. Notably, when focusing exclusively on patients with fusion gene changes, both sensitivity and specificity reached 100% (11/11) for EML4-ALK, ROS1, RET fusions, and MET ex14 skipping. CONCLUSION These findings suggest that cfDNA & cfRNA extraction and double detection strategy recommended in this study improve the accuracy of driver genes mutations test, especially for RNA-based assay.
Collapse
Affiliation(s)
- Yidan Ma
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yifei Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lei He
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jun Du
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhixin Bie
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuanming Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaomao Xu
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaonan Wu
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Li Yang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Di
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chenyang Li
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaoguang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dongge Liu
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zheng Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Lu B, Liu Y, Yao Y, Zhu D, Zhang X, Dong K, Xu X, Lv D, Zhao Z, Zhang H, Yang X, Fu W, Huang R, Cao J, Chu J, Pan X, Cui X. Unveiling the unique role of TSPAN7 across tumors: a pan-cancer study incorporating retrospective clinical research and bioinformatic analysis. Biol Direct 2024; 19:72. [PMID: 39175035 PMCID: PMC11340126 DOI: 10.1186/s13062-024-00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND TSPAN7 is an important factor in tumor progression. However, the precise function of TSPAN7 and its role in pan-cancer are not clear. METHODS Based on Xinhua cohort incorporating 370 patients with kidney neoplasm, we conducted differential expression analysis by immunohistochemistry between tumor and normal tissues, and explored correlations of TSPAN7 with patients' survival. Subsequently, we conducted a pan-cancer study, and successively employed differential expression analysis, competing endogenous RNA (ceRNA) analysis, protein-protein interaction (PPI) analysis, correlation analysis of TSPAN7 with clinical characteristics, tumor purity, tumor genomics, tumor immunity, and drug sensitivity. Last but not least, gene set enrichment analysis was applied to identify enriched pathways of TSPAN7. RESULTS In Xinhua cohort, TSPAN7 expression was significantly up-regulated (P-value = 0.0019) in tumor tissues of kidney neoplasm patients. High TSPAN7 expression was associated with decreases in overall survival (OS) (P-value = 0.009) and progression-free survival (P-value = 0.009), and it was further revealed as an independent risk factor for OS (P-value = 0.0326, HR = 5.66, 95%CI = 1.155-27.8). In pan-cancer analysis, TSPAN7 expression was down-regulated in most tumors, and it was associated with patients' survival, tumor purity, tumor genomics, tumor immunity, and drug sensitivity. The ceRNA network and PPI network of TSPAN7 were also constructed. Last but not least, the top five enriched pathways of TSPAN7 in various tumors were identified. CONCLUSION TSPAN7 served as a promising biomarker of various tumors, especially kidney neoplasms, and it was closely associated with tumor purity, tumor genomics, tumor immunology, and drug sensitivity in pan-cancer level.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Dawei Zhu
- Department of Urology, the Second People's Hospital of Pinghu, Zhejiang, 314200, China
| | - Xiangmin Zhang
- Department of Urology, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao Xu
- Department of Urology, the Second People's Hospital of Pinghu, Zhejiang, 314200, China
| | - Donghao Lv
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Haoyu Zhang
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Xinyue Yang
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Wenjia Fu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Runzhi Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Jianwei Cao
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Urology, the Second People's Hospital of Pinghu, Zhejiang, 314200, China.
| | - Jian Chu
- Department of Urology, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
14
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
15
|
Metellus P, Camilla C, Bialecki E, Beaufils N, Vellutini C, Pellegrino E, Tomasini P, Ahluwalia MS, Mansouri A, Nanni I, Ouafik L. The landscape of cancer-associated transcript fusions in adult brain tumors: a longitudinal assessment in 140 patients with cerebral gliomas and brain metastases. Front Oncol 2024; 14:1382394. [PMID: 39087020 PMCID: PMC11288828 DOI: 10.3389/fonc.2024.1382394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Background Oncogenic fusions of neurotrophic receptor tyrosine kinase NTRK1, NTRK2, or NTRK3 genes have been found in different types of solid tumors. The treatment of patients with TRK fusion cancer with a first-generation TRK inhibitor (such as larotrectinib or entrectinib) is associated with high response rates (>75%), regardless of tumor histology and presence of metastases. Due to the efficacy of TRK inhibitor therapy of larotrectinib and entrectinib, it is clinically important to identify patients accurately and efficiently with TRK fusion cancer. In this retrospective study, we provide unique data on the incidence of oncogenic NTRK gene fusions in patients with brain metastases (BM) and gliomas. Methods 140 samples fixed and paraffin-embedded tissue (FFPE) of adult patients (59 of gliomas [17 of WHO grade II, 20 of WHO grade III and 22 glioblastomas] and 81 of brain metastasis (BM) of different primary tumors) are analyzed. Identification of NTRK gene fusions is performed using next-generation sequencing (NGS) technology using Focus RNA assay kit (Thermo Fisher Scientific). Results We identified an ETV6 (5)::NTRK3 (15) fusion event using targeted next-generation sequencing (NGS) in one of 59 glioma patient with oligodendroglioma-grade II, IDH-mutated and 1p19q co-deleted at incidence of 1.69%. Five additional patients harboring TMPRSS (2)::ERG (4) were identified in pancreatic carcinoma brain metastasis (BM), prostatic carcinoma BM, endometrium BM and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted. A FGFR3 (17)::TACC3 (11) fusion was identified in one carcinoma breast BM. Aberrant splicing to produce EGFR exons 2-7 skipping mRNA, and MET exon 14 skipping mRNA were identified in glioblastoma and pancreas carcinoma BM, respectively. Conclusions This study provides data on the incidence of NTRK gene fusions in brain tumors, which could strongly support the relevance of innovative clinical trials with specific targeted therapies (larotrectinib, entrectinib) in this population of patients. FGFR3 (17)::TACC3 (11) rearrangement was detected in breast carcinoma BM with the possibility of using some specific targeted therapies and TMPRSS (2)::ERG (4) rearrangements occur in a subset of patients with, prostatic carcinoma BM, endometrium BM, and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted, where there are yet no approved ERG-directed therapies.
Collapse
Affiliation(s)
- Philippe Metellus
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Clara Camilla
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Emilie Bialecki
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
| | - Eric Pellegrino
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Oncologie multidisciplinaire et innovations thérapeutiques, Marseille, France
- Aix-Marseille Univ, Centre national de Recherche Scientifique (CNRS), Inserm, CRCM, Marseille, France
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, PA, United States
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| |
Collapse
|
16
|
Willis C, Au T, Hejazi A, Griswold C, Schabath MB, Thompson J, Malhotra J, Federman N, Ko G, Appukkuttan S, Warnock N, Kong SX, Hocum B, Brixner D, Stenehjem D. Clinical characteristics and treatment patterns of patients with NTRK fusion-positive solid tumors: A multisite cohort study at US academic cancer centers. J Manag Care Spec Pharm 2024; 30:672-683. [PMID: 38950155 PMCID: PMC11217863 DOI: 10.18553/jmcp.2024.30.7.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
BACKGROUND Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are rare oncogenic drivers prevalent in 0.3% of solid tumors. They are most common in salivary gland cancer (2.6%), thyroid cancer (1.6%), and soft-tissue sarcoma (1.5%). Currently, there are 2 US Food and Drug Administration-approved targeted therapies for NTRK gene fusions: larotrectinib, approved in 2018, and entrectinib, approved in 2019. To date, the real-world uptake of tyrosine receptor kinase inhibitor (TRKi) use for NTRK-positive solid tumors in academic cancer centers remains largely unknown. OBJECTIVE To describe the demographics, clinical and genomic characteristics, and testing and treatment patterns of patients with NTRK-positive solid tumors treated at US academic cancer centers. METHODS This was a retrospective chart review study conducted in academic cancer centers in the United States. All patients diagnosed with an NTRK fusion-positive (NTRK1, NTRK2, NTRK3) solid tumor (any stage) and who received cancer treatment at participating sites between January 1, 2012, and July 1, 2023, were included in this study. Patient demographics, clinical characteristics, genomic characteristics, NTRK testing data, and treatment patterns were collected from electronic medical records and analyzed using descriptive statistics as appropriate. RESULTS In total, 6 centers contributed data for 55 patients with NTRK-positive tumors. The mean age was 49.3 (SD = 20.5) years, 51% patients were female, and the majority were White (78%). The median duration of time from cancer diagnosis to NTRK testing was 85 days (IQR = 44-978). At the time of NTRK testing, 64% of patients had stage IV disease, compared with 33% at cancer diagnosis. Prevalent cancer types in the overall cohort included head and neck (15%), thyroid (15%), brain (13%), lung (13%), and colorectal (11%). NTRK1 fusions were most common (45%), followed by NTRK3 (40%) and NTRK2 (15%). Across all lines of therapy, 51% of patients (n = 28) received a TRKi. Among TRKi-treated patients, 71% had stage IV disease at TRKi initiation. The median time from positive NTRK test to initiation of TRKi was 48 days (IQR = 9-207). TRKis were commonly given as first-line (30%) or second-line (48%) therapies. Median duration of therapy was 610 (IQR = 182-764) days for TRKi use and 207.5 (IQR = 42-539) days for all other first-line therapies. CONCLUSIONS This study reports on contemporary real-world NTRK testing patterns and use of TRKis in solid tumors, including time between NTRK testing and initiation of TRKi therapy and duration of TRKi therapy.
Collapse
Affiliation(s)
- Connor Willis
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City
| | - Trang Au
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City
| | - Andre Hejazi
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City
| | | | | | | | | | - Noah Federman
- University of California, Los Angeles, Jonsson Comprehensive Cancer Center
| | | | | | | | | | | | - Diana Brixner
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City
| | - David Stenehjem
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth
| |
Collapse
|
17
|
CHMIEL PAULINA, SłOWIKOWSKA ALEKSANDRA, BANASZEK ŁUKASZ, SZUMERA-CIEćKIEWICZ ANNA, SZOSTAKOWSKI BART, SPAłEK MATEUSZJ, ŚWITAJ TOMASZ, RUTKOWSKI PIOTR, CZARNECKA ANNAM. Inflammatory myofibroblastic tumor from molecular diagnostics to current treatment. Oncol Res 2024; 32:1141-1162. [PMID: 38948020 PMCID: PMC11209743 DOI: 10.32604/or.2024.050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 07/02/2024] Open
Abstract
Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm with intermediate malignancy characterized by a propensity for recurrence but a low metastatic rate. Diagnostic challenges arise from the diverse pathological presentation, variable symptomatology, and lack of different imaging features. However, IMT is identified by the fusion of the anaplastic lymphoma kinase (ALK) gene, which is present in approximately 70% of cases, with various fusion partners, including ran-binding protein 2 (RANBP2), which allows confirmation of the diagnosis. While surgery is the preferred approach for localized tumors, the optimal long-term treatment for advanced or metastatic disease is difficult to define. Targeted therapies are crucial for achieving sustained response to treatment within the context of genetic alteration in IMT. Crizotinib, an ALK tyrosine kinase inhibitor (TKI), was officially approved by the US Food and Drug Administration (FDA) in 2020 to treat IMT with ALK rearrangement. However, most patients face resistance and disease progression, requiring consideration of sequential treatments. Combining radiotherapy with targeted therapy appears to be beneficial in this indication. Early promising results have also been achieved with immunotherapy, indicating potential for combined therapy approaches. However, defined recommendations are still lacking. This review analyzes the available research on IMT, including genetic disorders and their impact on the course of the disease, data on the latest targeted therapy regimens and the possibility of developing immunotherapy in this indication, as well as summarizing general knowledge about prognostic and predictive factors, also in terms of resistance to systemic therapy.
Collapse
Affiliation(s)
- PAULINA CHMIEL
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - ALEKSANDRA SłOWIKOWSKA
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - ŁUKASZ BANASZEK
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - ANNA SZUMERA-CIEćKIEWICZ
- Department of Pathology, Maria Sklodowska Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
| | - BARTłOMIEJ SZOSTAKOWSKI
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
| | - MATEUSZ J. SPAłEK
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
| | - TOMASZ ŚWITAJ
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
| | - PIOTR RUTKOWSKI
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
| | - ANNA M. CZARNECKA
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, 02-781, Poland
| |
Collapse
|
18
|
Nakata E, Osone T, Ogawa T, Taguchi T, Hattori K, Kohsaka S. Prevalence of neurotrophic tropomyosin receptor kinase (NTRK) fusion gene positivity in patients with solid tumors in Japan. Cancer Med 2024; 13:e7351. [PMID: 38925616 PMCID: PMC11199329 DOI: 10.1002/cam4.7351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors. METHODS This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test. RESULTS In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma. CONCLUSIONS NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy.
Collapse
Affiliation(s)
- Eiji Nakata
- Department of Orthopedic SurgeryOkayama UniversityOkayamaJapan
- Center for Comprehensive Genomic MedicineOkayama University HospitalOkayamaJapan
| | - Tatsunori Osone
- Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Toru Ogawa
- Medical Affairs & PharmacovigilanceBayer Yakuhin, LtdOsakaJapan
| | | | - Kana Hattori
- Medical Affairs & PharmacovigilanceBayer Yakuhin, LtdOsakaJapan
| | | |
Collapse
|
19
|
Repetto M, Chiara Garassino M, Loong HH, Lopez-Rios F, Mok T, Peters S, Planchard D, Popat S, Rudzinski ER, Drilon A, Zhou C. NTRK gene fusion testing and management in lung cancer. Cancer Treat Rev 2024; 127:102733. [PMID: 38733648 DOI: 10.1016/j.ctrv.2024.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024]
Abstract
Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are recurrent oncogenic drivers found in a variety of solid tumours, including lung cancer. Several tropomyosin receptor kinase (TRK) inhibitors have been developed to treat tumours with NTRK gene fusions. Larotrectinib and entrectinib are first-generation TRK inhibitors that have demonstrated efficacy in patients with TRK fusion lung cancers. Genomic testing is recommended for all patients with metastatic non-small cell lung cancer for optimal drug therapy selection. Multiple testing methods can be employed to identify NTRK gene fusions in the clinic and each has its own advantages and limitations. Among these assays, RNA-based next-generation sequencing (NGS) can be considered a gold standard for detecting NTRK gene fusions; however, several alternatives with minimally acceptable sensitivity and specificity are also available in areas where widespread access to NGS is unfeasible. This review highlights the importance of testing for NTRK gene fusions in lung cancer, ideally using the gold-standard method of RNA-based NGS, the various assays that are available, and treatment algorithms for patients.
Collapse
Affiliation(s)
- Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| | - Marina Chiara Garassino
- Department of Medicine, Thoracic Oncology Program, The University of Chicago, Chicago, IL, USA
| | | | | | - Tony Mok
- The Chinese University of Hong Kong, Hong Kong, China
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | | | - Sanjay Popat
- Royal Marsden NHS Foundation Trust, London, UK; Institute of Cancer Research, London, UK
| | - Erin R Rudzinski
- Seattle Children's Hospital and University of Washington Medical Center, Seattle, WA, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Caicun Zhou
- Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Ju SH, Song M, Lim JY, Kang YE, Yi HS, Shong M. Metabolic Reprogramming in Thyroid Cancer. Endocrinol Metab (Seoul) 2024; 39:425-444. [PMID: 38853437 PMCID: PMC11220218 DOI: 10.3803/enm.2023.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 06/11/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy with increasing incidence globally. Although most cases can be treated effectively, some cases are more aggressive and have a higher risk of mortality. Inhibiting RET and BRAF kinases has emerged as a potential therapeutic strategy for the treatment of thyroid cancer, particularly in cases of advanced or aggressive disease. However, the development of resistance mechanisms may limit the efficacy of these kinase inhibitors. Therefore, developing precise strategies to target thyroid cancer cell metabolism and overcome resistance is a critical area of research for advancing thyroid cancer treatment. In the field of cancer therapeutics, researchers have explored combinatorial strategies involving dual metabolic inhibition and metabolic inhibitors in combination with targeted therapy, chemotherapy, and immunotherapy to overcome the challenge of metabolic plasticity. This review highlights the need for new therapeutic approaches for thyroid cancer and discusses promising metabolic inhibitors targeting thyroid cancer. It also discusses the challenges posed by metabolic plasticity in the development of effective strategies for targeting cancer cell metabolism and explores the potential advantages of combined metabolic targeting.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
21
|
Nguyen PN. Biomarker discovery with quantum neural networks: a case-study in CTLA4-activation pathways. BMC Bioinformatics 2024; 25:149. [PMID: 38609844 PMCID: PMC11265126 DOI: 10.1186/s12859-024-05755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Biomarker discovery is a challenging task due to the massive search space. Quantum computing and quantum Artificial Intelligence (quantum AI) can be used to address the computational problem of biomarker discovery from genetic data. METHOD We propose a Quantum Neural Networks architecture to discover genetic biomarkers for input activation pathways. The Maximum Relevance-Minimum Redundancy criteria score biomarker candidate sets. Our proposed model is economical since the neural solution can be delivered on constrained hardware. RESULTS We demonstrate the proof of concept on four activation pathways associated with CTLA4, including (1) CTLA4-activation stand-alone, (2) CTLA4-CD8A-CD8B co-activation, (3) CTLA4-CD2 co-activation, and (4) CTLA4-CD2-CD48-CD53-CD58-CD84 co-activation. CONCLUSION The model indicates new genetic biomarkers associated with the mutational activation of CLTA4-associated pathways, including 20 genes: CLIC4, CPE, ETS2, FAM107A, GPR116, HYOU1, LCN2, MACF1, MT1G, NAPA, NDUFS5, PAK1, PFN1, PGAP3, PPM1G, PSMD8, RNF213, SLC25A3, UBA1, and WLS. We open source the implementation at: https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks .
Collapse
Affiliation(s)
- Phuong-Nam Nguyen
- Faculty of Computer Science, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Vietnam.
| |
Collapse
|
22
|
Hernandez S, Conde E, Molero A, Suarez-Gauthier A, Martinez R, Alonso M, Plaza C, Camacho C, Chantada D, Juaneda-Magdalena L, Garcia-Toro E, Saiz-Lopez P, Rojo F, Abad M, Boni V, Del Carmen S, Regojo RM, Sanchez-Frias ME, Teixido C, Paz-Ares L, Lopez-Rios F. Efficient Identification of Patients With NTRK Fusions Using a Supervised Tumor-Agnostic Approach. Arch Pathol Lab Med 2024; 148:318-326. [PMID: 37270803 DOI: 10.5858/arpa.2022-0443-oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— The neurotrophic tropomyosin receptor kinase (NTRK) family gene rearrangements have been recently incorporated as predictive biomarkers in a "tumor-agnostic" manner. However, the identification of these patients is extremely challenging because the overall frequency of NTRK fusions is below 1%. Academic groups and professional organizations have released recommendations on the algorithms to detect NTRK fusions. The European Society for Medical Oncology proposal encourages the use of next-generation sequencing (NGS) if available, or alternatively immunohistochemistry (IHC) could be used for screening with NGS confirmation of all positive IHC results. Other academic groups have included histologic and genomic information in the testing algorithm. OBJECTIVE.— To apply some of these triaging strategies for a more efficient identification of NTRK fusions within a single institution, so pathologists can gain practical insight on how to start looking for NTRK fusions. DESIGN.— A multiparametric strategy combining histologic (secretory carcinomas of the breast and salivary gland; papillary thyroid carcinomas; infantile fibrosarcoma) and genomic (driver-negative non-small cell lung carcinomas, microsatellite instability-high colorectal adenocarcinomas, and wild-type gastrointestinal stromal tumors) triaging was put forward. RESULTS.— Samples from 323 tumors were stained with the VENTANA pan-TRK EPR17341 Assay as a screening method. All positive IHC cases were simultaneously studied by 2 NGS tests, Oncomine Comprehensive Assay v3 and FoundationOne CDx. With this approach, the detection rate of NTRK fusions was 20 times higher (5.57%) by only screening 323 patients than the largest cohort in the literature (0.30%) comprising several hundred thousand patients. CONCLUSIONS.— Based on our findings, we propose a multiparametric strategy (ie, "supervised tumor-agnostic approach") when pathologists start searching for NTRK fusions.
Collapse
Affiliation(s)
- Susana Hernandez
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Esther Conde
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| | - Aida Molero
- the Department of Pathology, Segovia General Hospital, Segovia, Spain (Molero)
| | - Ana Suarez-Gauthier
- the Department of Pathology, Jimenez Diaz Foundation University Hospital, Madrid, Spain (Suarez-Gauthier)
| | - Rebeca Martinez
- the Department of Pathology, Health Diagnostic-Grupo Quiron Salud, Madrid, Spain (Martinez)
| | - Marta Alonso
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Carlos Plaza
- the Department of Pathology, Clinico San Carlos University Hospital, Madrid, Spain (Plaza)
| | - Carmen Camacho
- the Department of Pathology, Insular Materno-Infantil University Hospital, Las Palmas de Gran Canaria, Spain (Camacho)
| | - Debora Chantada
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Laura Juaneda-Magdalena
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Enrique Garcia-Toro
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Patricia Saiz-Lopez
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Federico Rojo
- the Institute of Health Research-Jimenez Diaz Foundation, CIBERONC, Madrid, Spain (Rojo)
| | - Mar Abad
- the Department of Pathology, Salamanca University Hospital, Salamanca, Spain (Abad)
| | - Valentina Boni
- NEXT Oncology Madrid, Quiron Salud Madrid University Hospital, Madrid, Spain (Boni)
| | - Sofia Del Carmen
- the Department of Pathology, Marques de Valdecilla University Hospital, Santander, Spain (del Carmen)
| | - Rita Maria Regojo
- the Department of Pathology, La Paz University Hospital, Madrid, Spain (Regojo)
| | | | - Cristina Teixido
- the Department of Pathology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain (Teixido)
| | - Luis Paz-Ares
- the Department of Oncology, 12 de Octubre University Hospital, Department of Medicine, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Paz-Ares)
| | - Fernando Lopez-Rios
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| |
Collapse
|
23
|
Ahluwalia MS, Khosla AA, Ozair A, Gouda MA, Subbiah V. Impact of tissue-agnostic approvals on management of primary brain tumors. Trends Cancer 2024; 10:256-274. [PMID: 38245379 DOI: 10.1016/j.trecan.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 01/22/2024]
Abstract
Novel tissue-agnostic therapeutics targeting driver mutations in tumor cells have been recently approved by FDA, driven by basket trials that have demonstrated their efficacy and safety across diverse tumor histology. However, the relative rarity of primary brain tumors (PBTs) has limited their representation in early trials of tissue-agnostic medications. Thus, consensus continues to evolve regarding utility of tissue-agnostic medications in routine practice for PBTs, a diverse group of neoplasms characterized by limited treatment options and unfavorable prognoses. We describe current and potential impact of tissue-agnostic approvals on management of PBTs. We discuss data from clinical trials for PBTs regarding tissue-agnostic targets, including BRAFV600E, neurotrophic tyrosine receptor kinase (NTRK) fusions, microsatellite instability-high (MSI-High), mismatch repair deficiency (dMMR), and high tumor mutational burden (TMB-H), in context of challenges in managing PBTs. Described are additional tissue-agnostic targets that hold promise for benefiting patients with PBTs, including RET fusion, fibroblast growth factor receptor (FGFR), ERBB2/HER2, and KRASG12C, and TP53Y220C.
Collapse
Affiliation(s)
- Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Atulya A Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Internal Medicine, William Beaumont University Hospital, Royal Oak, MI, USA
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Early Phase Drug Development Program, Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
24
|
Zhang W, Schmitz AA, Kallionpää RE, Perälä M, Pitkänen N, Tukiainen M, Alanne E, Jöhrens K, Schulze-Rath R, Farahmand B, Zong J. Neurotrophic-tyrosine receptor kinase gene fusion in papillary thyroid cancer: A clinicogenomic biobank and record linkage study from Finland. Oncotarget 2024; 15:106-116. [PMID: 38329731 PMCID: PMC10852057 DOI: 10.18632/oncotarget.28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
Selective tropomyosin receptor kinase (TRK) inhibitors are approved targeted therapies for patients with solid tumors harboring a neurotrophic tyrosine receptor kinase (NTRK) gene fusion. Country-specific estimates of NTRK gene fusion frequency, and knowledge on the characteristics of affected patients, are limited. We identified patients with histologically-confirmed papillary thyroid cancer (PTC) from Finland's Auria Biobank. TRK protein expression was determined by pan-TRK immunohistochemistry. Immuno-stained tumor samples were scored by a certified pathologist. Gene fusions and other co-occurring gene alterations were identified by next generation sequencing. Patient characteristics and vital status were determined from linked hospital electronic health records (EHRs). Patients were followed from 1 year before PTC diagnosis until death. 6/389 (1.5%) PTC patients had an NTRK gene fusion (all NTRK3); mean age 43.8 years (and none had comorbidities) at PTC diagnosis. Gene fusion partners were EML4 (n = 3), ETV6 (n = 2), and RBPMS (n = 1). Of 3/6 patients with complete EHRs, all received radioactive iodine ablation only and were alive at end of follow-up (median observation, 9.12 years). In conclusion, NTRK gene fusion is infrequent in patients with PTC. Linkage of biobank samples to EHRs is feasible in describing the characteristics and outcomes of patients with PTC and potentially other cancer types.
Collapse
Affiliation(s)
- Wei Zhang
- Bayer HealthCare Pharmaceuticals Inc, Whippany, NJ 07981, USA
| | | | - Roosa E. Kallionpää
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Merja Perälä
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Niina Pitkänen
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Mikko Tukiainen
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Erika Alanne
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
- Western Finland Cancer Centre, Turku, Finland
| | - Korinna Jöhrens
- Dresden University Hospital, Technical University Dresden, Dresden, Germany
| | | | | | - Jihong Zong
- Bayer HealthCare Pharmaceuticals Inc, Whippany, NJ 07981, USA
| |
Collapse
|
25
|
Riedl JM, Moik F, Esterl T, Kostmann SM, Gerger A, Jost PJ. Molecular diagnostics tailoring personalized cancer therapy-an oncologist's view. Virchows Arch 2024; 484:169-179. [PMID: 37982847 PMCID: PMC10948510 DOI: 10.1007/s00428-023-03702-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Medical oncology is rapidly evolving with the implementation of personalized, targeted therapies. Advances in molecular diagnostics and the biologic understanding of cancer pathophysiology led to the identification of specific genetic alterations as drivers of cancer progression. Further, improvements in drug development enable the direct interference with these pathways, which allow tailoring personalized treatments based on a distinct molecular characterization of tumors. Thereby, we are currently experiencing a paradigm-shift in the treatment of cancers towards cancer-type agnostic, molecularly targeted, personalized therapies. However, this concept has several important hurdles and limitations to overcome to ultimately increase the proportion of patients benefitting from the precision oncology approach. These include the assessment of clinical relevancy of identified alterations, capturing and interpreting levels of heterogeneity based on intra-tumoral or time-dependent molecular evolution, and challenges in the practical implementation of precision oncology in routine clinical care. In the present review, we summarize the current state of cancer-agnostic precision oncology, discuss the concept of molecular tumor boards, and consider current limitations of personalized cancer therapy. Further, we provide an outlook towards potential future developments including the implementation of functionality assessments of identified genetic alterations and the broader use of liquid biopsies in order to obtain more comprehensive and longitudinal genetic information that might guide personalized cancer therapy in the future.
Collapse
Affiliation(s)
- Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Moik
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tamara Esterl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sarah M Kostmann
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp J Jost
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
- Medical Department III for Haematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
26
|
Dyrbekk APH, Warsame AA, Suhrke P, Ludahl MO, Zecic N, Moe JO, Lund-Iversen M, Brustugun OT. Evaluation of NTRK expression and fusions in a large cohort of early-stage lung cancer. Clin Exp Med 2024; 24:10. [PMID: 38240952 PMCID: PMC10798916 DOI: 10.1007/s10238-023-01273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Tropomyosin receptor kinases (TRK) are attractive targets for cancer therapy. As TRK-inhibitors are approved for all solid cancers with detectable fusions involving the Neurotrophic tyrosine receptor kinase (NTRK)-genes, there has been an increased interest in optimizing testing regimes. In this project, we wanted to find the prevalence of NTRK fusions in a cohort of various histopathological types of early-stage lung cancer in Norway and to investigate the association between TRK protein expression and specific histopathological types, including their molecular and epidemiological characteristics. We used immunohistochemistry (IHC) as a screening tool for TRK expression, and next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) as confirmatory tests for underlying NTRK-fusion. Among 940 cases, 43 (4.6%) had positive TRK IHC, but in none of these could a NTRK fusion be confirmed by NGS or FISH. IHC-positive cases showed various staining intensities and patterns including cytoplasmatic or nuclear staining. IHC-positivity was more common in squamous cell carcinoma (LUSC) (10.3%) and adenoid cystic carcinoma (40.0%), where the majority showed heterogeneous staining intensity. In comparison, only 1.1% of the adenocarcinomas were positive. IHC-positivity was also more common in men, but this association could be explained by the dominance of LUSC in TRK IHC-positive cases. Protein expression was not associated with differences in time to relapse or overall survival. Our study indicates that NTRK fusion is rare in early-stage lung cancer. Due to the high level of false positive cases with IHC, Pan-TRK IHC is less suited as a screening tool for NTRK-fusions in LUSC and adenoid cystic carcinoma.
Collapse
Affiliation(s)
- Anne Pernille Harlem Dyrbekk
- University of Oslo, NO-0316, Oslo, Norway.
- Department of Pathology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway.
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, NO-0310, Oslo, Norway.
| | - Abdirashid Ali Warsame
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
| | - Pål Suhrke
- Department of Pathology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Marianne Odnakk Ludahl
- Department of Microbiology/Division for Gene-Technology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Nermin Zecic
- Department of Microbiology/Division for Gene-Technology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Joakim Oliu Moe
- Department of Internal Medicine, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Marius Lund-Iversen
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
| | - Odd Terje Brustugun
- University of Oslo, NO-0316, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
- Department of Oncology, Vestre Viken Hospital Trust, NO-3004, Drammen, Norway
| |
Collapse
|
27
|
Sayin AZ, Abali Z, Senyuz S, Cankara F, Gursoy A, Keskin O. Conformational diversity and protein-protein interfaces in drug repurposing in Ras signaling pathway. Sci Rep 2024; 14:1239. [PMID: 38216592 PMCID: PMC10786864 DOI: 10.1038/s41598-023-50913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
We focus on drug repurposing in the Ras signaling pathway, considering structural similarities of protein-protein interfaces. The interfaces formed by physically interacting proteins are found from PDB if available and via PRISM (PRotein Interaction by Structural Matching) otherwise. The structural coverage of these interactions has been increased from 21 to 92% using PRISM. Multiple conformations of each protein are used to include protein dynamics and diversity. Next, we find FDA-approved drugs bound to structurally similar protein-protein interfaces. The results suggest that HIV protease inhibitors tipranavir, indinavir, and saquinavir may bind to EGFR and ERBB3/HER3 interface. Tipranavir and indinavir may also bind to EGFR and ERBB2/HER2 interface. Additionally, a drug used in Alzheimer's disease can bind to RAF1 and BRAF interface. Hence, we propose a methodology to find drugs to be potentially used for cancer using a dataset of structurally similar protein-protein interface clusters rather than pockets in a systematic way.
Collapse
Affiliation(s)
- Ahenk Zeynep Sayin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey
| | - Zeynep Abali
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Simge Senyuz
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Fatma Cankara
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
28
|
Germani MM, Boccaccio C, Matrone A, Molinaro E, Alì G, Giordano M, Elisei R, Fontanini G, Cremolini C. A Misleading Case of NTRK-Rearranged Papillary Thyroid Carcinoma. Oncologist 2024; 29:84-88. [PMID: 38037189 PMCID: PMC10769806 DOI: 10.1093/oncolo/oyad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Herein, we present a misleading case of advanced papillary thyroid carcinoma with lung, node, and pleural metastases, initially diagnosed as metastatic lung adenocarcinoma with papillary features, based on the histological and immunohistochemical analysis of a pleural biopsy. Between August 2019 and August 2020, the patient received 2 ineffective lines of systemic therapy, including a first line of chemotherapy with cisplatin and pemetrexed, and a second line of immunotherapy with atezolizumab. Comprehensive genomic profiling by next-generation sequencing on the archival pleural biopsy revealed an NTRK1-TMP3 fusion and comutation of the TERT promoter, commonly found in papillary thyroid carcinoma. After palliative partial thyroidectomy that confirmed the diagnosis of papillary thyroid carcinoma, in February 2021, the patient was enrolled in the STARTRK-2 GO40782 basket trial and received entrectinib, an oral pan-TRK inhibitor specifically targeting NTRK-rearranged tumors. After initially experiencing drug-related grade 2 anorexia, dysgeusia, and neurotoxicity and grade 3 asthenia, the dose was reduced, and an excellent and durable objective response was observed.
Collapse
Affiliation(s)
- Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Boccaccio
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Matrone
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, Pisa University Hospital, Pisa, Italy
| | - Eleonora Molinaro
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, Pisa University Hospital, Pisa, Italy
| | - Greta Alì
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Mirella Giordano
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Rossella Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, Pisa University Hospital, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Conde E, Hernandez S, Alonso M, Lopez-Rios F. Pan-TRK Immunohistochemistry to Optimize the Detection of NTRK Fusions: Removing the Hay When Looking for the Needle. Mod Pathol 2023; 36:100346. [PMID: 37757968 DOI: 10.1016/j.modpat.2023.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Esther Conde
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Madrid, Spain
| | - Susana Hernandez
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Alonso
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Madrid, Spain.
| |
Collapse
|
30
|
Qi C, Zhou T, Bai Y, Chen H, Yuan J, Zhao F, Liu C, Ma M, Bei T, Chen S, Zhao X, Chen C, Shen L. China special issue on gastrointestinal tumors-NTRK fusion in a large real-world population and clinical utility of circulating tumor DNA genotyping to guide TRK inhibitor treatment. Int J Cancer 2023; 153:1916-1927. [PMID: 36946696 DOI: 10.1002/ijc.34522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are rare oncogenic drivers and targets of TRK inhibitors in solid tumors. Little is known about NTRK fusion in Chinese patients with pan-cancer. Our study investigated the prevalence and genomic features of NTRK1/2/3 gene fusions in 67 883 Chinese patients with pan-cancer using next-generation sequencing (NGS) data and circulating tumor DNA (ctDNA) NGS to guide TRK inhibitor treatment and resistance monitoring. The prevalence of NTRK fusion (tissue NGS) in the pan-cancer population was 0.18%, with 46 unique NTRK-fusion partner pairs, of which 33 were not previously reported. NTRK2 breakpoint occurred more frequently in intron 15 than intron 12. In colorectal cancers (CRCs), compared to NTRK-negative tumors, NTRK-positive tumors displayed higher tumor mutational burden (TMB) levels (54.6 vs 17.7 mut/Mb, P < .0001). In microsatellite instability-high (MSI-H) CRC, patients with NTRK fusion had a significantly lower TMB than NTRK-negative cases (69.3 vs 79.9 mut/Mb, P = .012). The frequency of NTRK fusion in a ctDNA NGS cohort of 20 954 patients with cancer was similar to that of the tissue NGS cohort. In eight NTRK fusion ctDNA-positive patients, larotrectinib induced objective response in 75% of patients and median progression-free survival was 16.3 months. Blood samples collected from a patient with disease progression after larotrectinib treatment revealed NTRK3 G623R as the potential resistance mechanism. Our study revealed previously unreported NTRK fusion partners, associations of NTRK fusion with MSI and TMB, and the potential utility of ctDNA to screen candidates for TRK inhibitors and monitor drug resistance.
Collapse
Affiliation(s)
- Changsong Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuezong Bai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Hui Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Feilong Zhao
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mingyang Ma
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Bei
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | | | - Chunzhu Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
31
|
de Oliveira Cavagna R, de Andrade ES, Tadin Reis M, de Paula FE, Noriz Berardinelli G, Bonatelli M, Ramos Teixeira G, Garbe Zaniolo B, Mourão Dias J, da Silva FAF, Baston Silva CE, Xavier Reis M, Lopes Maia E, de Alencar TS, Jacinto AA, da Nóbrega Oliveira REN, Molina-Vila MA, Ferro Leal L, Reis RM. Detection of NTRK fusions by RNA-based nCounter is a feasible diagnostic methodology in a real-world scenario for non-small cell lung cancer assessment. Sci Rep 2023; 13:21168. [PMID: 38036758 PMCID: PMC10689426 DOI: 10.1038/s41598-023-48613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
NTRK1, 2, and 3 fusions are important therapeutic targets for NSCLC patients, but their prevalence in South American admixed populations needs to be better explored. NTRK fusion detection in small biopsies is a challenge, and distinct methodologies are used, such as RNA-based next-generation sequencing (NGS), immunohistochemistry, and RNA-based nCounter. This study aimed to evaluate the frequency and concordance of positive samples for NTRK fusions using a custom nCounter assay in a real-world scenario of a single institution in Brazil. Out of 147 NSCLC patients, 12 (8.2%) cases depicted pan-NTRK positivity by IHC. Due to the absence of biological material, RNA-based NGS and/or nCounter could be performed in six of the 12 IHC-positive cases (50%). We found one case exhibiting an NTRK1 fusion and another an NTRK3 gene fusion by both RNA-based NGS and nCounter techniques. Both NTRK fusions were detected in patients diagnosed with lung adenocarcinoma, with no history of tobacco consumption. Moreover, no concomitant EGFR, KRAS, and ALK gene alterations were detected in NTRK-positive patients. The concordance rate between IHC and RNA-based NGS was 33.4%, and between immunohistochemistry and nCounter was 40%. Our findings indicate that NTRK fusions in Brazilian NSCLC patients are relatively rare (1.3%), and RNA-based nCounter methodology is a suitable approach for NRTK fusion identification in small biopsies.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Cavagna
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331, Antenor Duarte Villela, Barretos, São Paulo, 14784-400, Brazil
| | - Edilene Santos de Andrade
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331, Antenor Duarte Villela, Barretos, São Paulo, 14784-400, Brazil
- Molecular Diagnostic Laboratory, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | - Murilo Bonatelli
- Molecular Diagnostic Laboratory, Barretos Cancer Hospital, Barretos, Brazil
| | - Gustavo Ramos Teixeira
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil
| | - Beatriz Garbe Zaniolo
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331, Antenor Duarte Villela, Barretos, São Paulo, 14784-400, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil
| | | | | | | | - Marina Xavier Reis
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | - Erika Lopes Maia
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | - Miguel A Molina-Vila
- Laboratory of Oncology/Pangaea Oncology, Dexeus University Hospital, Barcelona, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331, Antenor Duarte Villela, Barretos, São Paulo, 14784-400, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331, Antenor Duarte Villela, Barretos, São Paulo, 14784-400, Brazil.
- Molecular Diagnostic Laboratory, Barretos Cancer Hospital, Barretos, Brazil.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
32
|
Rosen EY, Shukla NN, Glade Bender JL. EZH2 inhibition: it's all about the context. J Natl Cancer Inst 2023; 115:1246-1248. [PMID: 37682251 PMCID: PMC10637027 DOI: 10.1093/jnci/djad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023] Open
Affiliation(s)
- Ezra Y Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia L Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
Koehler VF, Achterfeld J, Sandner N, Koch C, Wiegmann JP, Ivanyi P, Käsmann L, Pusch R, Wolf D, Chirica M, Knösel T, Demes MC, Kumbrink J, Vogl TJ, Meyer G, Spitzweg C, Bojunga J, Kroiss M. NTRK fusion events and targeted treatment of advanced radioiodine refractory thyroid cancer. J Cancer Res Clin Oncol 2023; 149:14035-14043. [PMID: 37548775 PMCID: PMC10590332 DOI: 10.1007/s00432-023-05134-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE Pathogenic fusion events involving neurotrophic receptor tyrosine kinase (NTRK) have been described in ~ 2% of differentiated thyroid cancer (DTC). The selective tropomyosin receptor kinase (TRK) inhibitors entrectinib and larotrectinib have been approved in a tumor agnostic manner based on phase 1/2 clinical trials. In a real-world setting at five referral centers, we aimed to describe the prevalence of NTRK gene fusions and the efficacy and safety of TRK inhibitor treatment for non-medullary, advanced thyroid cancer (TC). METHODS A total of 184 TC patients with testing for NTRK gene fusions were included. Progression-free survival (PFS) and overall survival (OS) probabilities were estimated using the Kaplan-Meier method in six patients with NTRK fusion-positive TC who underwent TRK inhibitor therapy. RESULTS 8/184 (4%) patients harbored NTRK gene fusions. Six patients with radioiodine (RAI)-refractory TC harboring NTRK1 (n = 4) and NTRK3 (n = 2) gene fusions were treated with larotrectinib. Five patients (83%) had received ≥ 1 prior systemic therapy and one patient did not receive prior systemic therapy. All patients had morphologically progressive disease before treatment initiation. Objective response rate was 83%, including two complete remissions. Median PFS from start of TRK inhibitor treatment was 23 months (95% confidence interval [CI], 0-57.4) and median OS was not reached (NR) (95% CI, NR). Adverse events were of grade 1-3. CONCLUSION The prevalence of NTRK gene fusions in our cohort of RAI-refractory TC is slightly higher than reported for all TC patients. Larotrectinib is an effective treatment option in the majority of NTRK gene fusion-positive advanced TC patients after prior systemic treatment and has a favorable safety profile.
Collapse
Affiliation(s)
| | - Josefine Achterfeld
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Natalie Sandner
- Department of Medicine I, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christine Koch
- Department of Medicine I, Goethe University Hospital, Frankfurt am Main, Germany
| | - Jonas Paul Wiegmann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Philipp Ivanyi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lukas Käsmann
- Department of Radiotherapy and Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Renate Pusch
- Department of Oncology and Hematology, Ordensklinikum Linz, Barmherzige Schwestern, Linz, Austria
| | - Dominik Wolf
- Department of Haematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Thomas Knösel
- Department of Pathology, LMU Munich, Munich, Germany
| | - Melanie-Christin Demes
- Senckenbergisches Institut für Pathologie, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Joerg Kumbrink
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Pathology, LMU Munich, Munich, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Gesine Meyer
- Department of Medicine I, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christine Spitzweg
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Adjunct Academic Appointment, Mayo Clinic Rochester, Rochester, MN USA
| | - Joerg Bojunga
- Department of Medicine I, Goethe University Hospital, Frankfurt am Main, Germany
| | - Matthias Kroiss
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Internal Medicine I, Division of Endocrinology/Diabetology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Palmerini E, Frega G, Gambarotti M, Frisoni T, Cesari M, Bazzocchi A, Miceli M, Donati DM, Fanti S, Nanni C, Benini S, Longhi A, Paioli A, Marrari A, Hakim R, Righi A, Ibrahim T. NTRK rearranged sarcoma of the bone. Role for larotrectinib in the neoadjuvant setting of an ultra-rare tumor: a case report. Front Oncol 2023; 13:1252359. [PMID: 37876963 PMCID: PMC10591071 DOI: 10.3389/fonc.2023.1252359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Neurotrophic tyrosine receptor kinase (NTRK) gene-fusion targeted molecules revolutionized the paradigm of treatment of a limited subgroup of cancers of various histologies. Entrectinib and larotrectinib obtained unprecedented response rates in patients with cancer harboring NTRK rearrangements. This evidence recently led to the agnostic approval of these drugs, and evidence (confirmation) of their activity in a broader disease setting is emerging. Here, we report the case of a patient affected by EML4-NTRK3 rearranged undifferentiated spindle cell bone sarcoma treated with larotrectinib, and we argue (discuss about) the incidence and clinical presentation of NTRK gene-fusion positive bone sarcomas, the potential use of upfront treatment with NTRK inhibitors in neoadjuvant setting, and the role of a multidisciplinary tumor board. Despite the rarity of these rearrangements in patients with primitive bone sarcomas, the therapy with NTRK inhibitors represents a highly effective strategy to be pursued in selected cases even in neoadjuvant settings. The management of these very rare cancers should always be discussed in a multidisciplinary board of reference centers.
Collapse
Affiliation(s)
- Emanuela Palmerini
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgio Frega
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tommaso Frisoni
- Third Orthopaedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marilena Cesari
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Third Orthopaedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Fanti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Di Sant’Orsola, Bologna, Italy
| | - Cristina Nanni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Di Sant’Orsola, Bologna, Italy
| | - Stefania Benini
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Longhi
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Anna Paioli
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Marrari
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rossella Hakim
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
35
|
McLaughlin J, Berkman J, Nana-Sinkam P. Targeted therapies in non-small cell lung cancer: present and future. Fac Rev 2023; 12:22. [PMID: 37675274 PMCID: PMC10477963 DOI: 10.12703/r/12-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Lung cancer is the leading cause of malignancy-related death in the United States and the second most common cancer diagnosis worldwide. In the last two decades, lung cancer treatment has evolved to include advances in the development of mutation-based targeting, immunotherapy, radiation therapy, and minimally invasive surgical techniques. The discovery of lung cancer as a molecularly heterogeneous disease has driven investigation into the development of targeted therapies resulting in improved patient outcomes. Despite these advances, there remain opportunities, through further investigation of mechanisms of resistance, to develop novel therapeutics that better direct the personalization of lung cancer therapy. In this review, we highlight developments in the evolution of targeted therapies in non-small cell lung cancer, as well as future directions shaped by emerging patterns of resistance.
Collapse
Affiliation(s)
- Jessica McLaughlin
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University Health System, Richmond, VA 23298
| | - Jonathan Berkman
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University Health System, Richmond, VA 23298
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University Health System, Richmond, VA 23298
| |
Collapse
|
36
|
Zito Marino F, Buono S, Montella M, Giannatiempo R, Messina F, Casaretta G, Arpino G, Vita G, Fiorentino F, Insabato L, Sgambato A, Orditura M, Franco R, Accardo M. NTRK gene aberrations in triple-negative breast cancer: detection challenges using IHC, FISH, RT-PCR, and NGS. J Pathol Clin Res 2023; 9:367-377. [PMID: 37143440 PMCID: PMC10397374 DOI: 10.1002/cjp2.324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is usually an aggressive disease with a poor prognosis and limited treatment options. The neurotrophic tyrosine receptor kinase (NTRK) gene fusions are cancer type-agnostic emerging biomarkers approved by the Food and Drug Administration (FDA), USA, for the selection of patients for targeted therapy. The main aim of our study was to investigate the frequency of NTRK aberrations, i.e. fusions, gene copy number gain, and amplification, in a series of TNBC using different methods. A total of 83 TNBCs were analyzed using pan-TRK immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), real-time polymerase chain reaction (RT-PCR), and RNA-based next-generation sequencing (NGS). Of 83 cases, 16 showed pan-TRK positivity although no cases had NTRK-fusions. Indeed, FISH showed four cases carrying an atypical NTRK1 pattern consisting of one fusion signal and one/more single green signals, but all cases were negative for fusion by NGS and RT-PCR testing. In addition, FISH analysis showed six cases with NTRK1 amplification, one case with NTRK2 copy number gain, and five cases with NTRK3 copy number gain, all negative for pan-TRK IHC. Our data demonstrate that IHC has a high false-positive rate for the detection of fusions and molecular testing is mandatory; there is no need to perform additional molecular tests in cases negativity for NTRK by IHC. In conclusion, the NTRK genes are not involved in fusions in TNBC, but both copy number gain and amplification are frequent events, suggesting a possible predictive role for other NTRK aberrations.
Collapse
Affiliation(s)
- Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Simona Buono
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | | | | | | | - Grazia Arpino
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Giulia Vita
- Anatomical Pathology Department, IRCCS CROBRionero in VultureItaly
| | | | - Luigi Insabato
- Department of Advanced Biomedical Sciences, Pathology SectionUniversity of Naples “Federico II”NaplesItaly
| | - Alessandro Sgambato
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS‐CROB)Rionero in VultureItaly
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, School of MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| |
Collapse
|
37
|
Xu Y, Shi X, Wang W, Zhang L, Cheung S, Rudolph M, Brega N, Dong X, Qian L, Wang L, Yuan S, Tan DSW, Wang K. Prevalence and clinico-genomic characteristics of patients with TRK fusion cancer in China. NPJ Precis Oncol 2023; 7:75. [PMID: 37567953 PMCID: PMC10421940 DOI: 10.1038/s41698-023-00427-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Neurotrophic tyrosine kinase (NTRK) fusions involving NTRK1, NTRK2, and NTRK3 were found in a broad range of solid tumors as driver gene variants. However, the prevalence of NTRK fusions in Chinese solid tumor patients is rarely reported. Based on the next-generation sequencing data from 10,194 Chinese solid tumor patients, we identified approximately 0.4% (40/10,194) of Chinese solid tumor patients with NTRK fusion. NTRK fusions were most frequently detected in soft tissue sarcoma (3.0%), especially in the fibrosarcoma subtype (12.7%). A total of 29 NTRK fusion patterns were identified, of which 11 were rarely reported. NTRK fusion mostly co-occurred with TP53 (38%), CDKN2A (23%), and ACVR2A (18%) and rarely with NTRK amplification (5.0%) and single nucleotide variants (2.5%). DNA-based NTRK fusion sequencing exhibited a higher detection rate than pan-TRK immunohistochemistry (100% vs. 87.5%). Two patients with NTRK fusions showed clinical responses to larotrectinib, supporting the effective response of NTRK fusion patients to TRK inhibitors.
Collapse
Affiliation(s)
- Yujun Xu
- Department of Imaging Interventional Therapy, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University; Department of Imaging Interventional Therapy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | | | | | - Lin Zhang
- OrigiMed Co. Ltd, 201114, Shanghai, China
| | - Shinghu Cheung
- Precision Molecular Oncology, Research and Early Development - Oncology, Pharmaceuticals, Bayer U.S. LLC, Cambridge, USA
| | - Marion Rudolph
- Translational Sciences Oncology, Research and Early Development - Oncology, Pharmaceuticals, Bayer AG, Berlin, Germany
| | | | | | - Lili Qian
- OrigiMed Co. Ltd, 201114, Shanghai, China
| | - Liwei Wang
- OrigiMed Co. Ltd, 201114, Shanghai, China
| | | | - Daniel Shao Weng Tan
- National Cancer Centre Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore.
| | - Kai Wang
- OrigiMed Co. Ltd, 201114, Shanghai, China.
| |
Collapse
|
38
|
Lemelle L, Guillemot D, Hermann AL, Gauthier A, Carton M, Corradini N, Rome A, Berlanga P, Jourdain A, Marie Cardine A, Jannier S, Boutroux H, Defachelles AS, Aerts I, Geoerger B, Karanian M, Doz F, Brisse HJ, Schleiermacher G, Delattre O, Pierron G, Orbach D. Neurotrophic tropomyosin receptor kinase (NTRK) fusion positive tumors: a historical cohort analysis. Expert Rev Anticancer Ther 2023; 23:865-874. [PMID: 37434345 DOI: 10.1080/14737140.2023.2236305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND NTRK gene fusions have been identified in various tumors; some requiring aggressive therapy and sometimes new TRK inhibitors (TRKi). We aimed to describe a national, unselected, retrospective, multicenter cohort. RESEARCH DESIGN AND METHODS Patients were identified through the French sarcoma diagnostic laboratory at Institut Curie through samples analyzed by RT-qPCR or whole-transcriptome sequencing. RESULTS From 2001 to 2019, 65 NTRK fusion tumors were identified within 2120 analyses (3.1%): 58 by RNA sequencing (including 20 after RT-qPCR analysis) and 7 exclusively by RT-qPCR. Of the 61 patients identified, 37 patients had infantile soft tissue or kidney fibrosarcomas (IFS), 15 other mesenchymal (Other-MT) and nine central nervous system (CNS) tumors. They encompassed 14 different tumor types with variable behaviors. Overall, 53 patients had surgery (3 mutilating), 38 chemotherapy (20 alkylating agents/anthracycline), 11 radiotherapy, two 'observation strategy' and 13 received TRKi. After a median follow-up of 61.0 months [range, 2.5-226.0], 10 patients died. Five-year overall survival is, respectively, 91.9% [95%CI, 83.5-100.0], 61.1% [95%CI, 34.2-100.0] and 64.8% [95%CI, 39.3-100.0] for IFS, Other-MT, and CNS groups. CONCLUSIONS NTRK-fusion positive tumors are rare but detection is improved through RNA sequencing. TRKi could be considered at diagnosis for CNS NTRK-fusion positive tumors, some IFS, and Other-MT. TRIAL REGISTRATION Not adapted.
Collapse
Affiliation(s)
- Lauriane Lemelle
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France
| | | | | | | | - Matthieu Carton
- Department of Biostatistics, Institut Curie, PSL University, Paris, France
| | - Nadège Corradini
- Institut d'Hematologie Et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Angélique Rome
- Department of Pediatric Oncology, Assistance Publique des Hopitaux de Marseille, Marseille, France
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Anne Jourdain
- Department of Pediatric Oncology and Haematology, University Hospital of Tours, Tours, France
| | - Aude Marie Cardine
- Pediatric Immuno-Hematology-Oncology Unit, University Hospital of Rouen, Rouen, France
| | - Sarah Jannier
- Pediatric Oncology Department, University Hospital of Strasbourg, Strasbourg, France
| | - Hélène Boutroux
- Department of Pediatric Onco-Hematology, Armand Trousseau Hospital, Paris, France
| | | | - Isabelle Aerts
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Marie Karanian
- Department of Pathology, Centre Leon Bérard, Lyon, France
| | - François Doz
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Gudrun Schleiermacher
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France
| | - Olivier Delattre
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France
- Department of Somatic Genetics, Institut Curie, Paris, France
| | - Gaëlle Pierron
- Department of Somatic Genetics, Institut Curie, Paris, France
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France
| |
Collapse
|
39
|
Schiller J, Eckhardt H, Schmitter S, Alber VA, Rombey T. Challenges and Solutions for the Benefit Assessment of Tumor-Agnostic Therapies in Germany. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2023; 26:854-864. [PMID: 36709043 DOI: 10.1016/j.jval.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Precision medicine is increasingly important in cancer treatment. Tumor-agnostic therapies are used regardless of tumor entity because they target specific biomarkers in tumors. In Germany, the benefit assessment of oncological pharmaceuticals has traditionally been entity specific. Thus, the assessment of tumor-agnostic therapies leaves stakeholders with various challenges. Our aim was to systematically identify challenges and possible solutions for the benefit assessment of therapies in tumor-agnostic indications using a 2-step sequential qualitative approach. METHODS To identify relevant challenges, we conducted qualitative interviews with different stakeholders who were involved in previous benefit assessments of tumor-agnostic therapies in Germany. To identify possible solutions for these challenges, we systematically searched MEDLINE, Embase, and the websites of European health technology assessment bodies for relevant literature. RESULTS We identified 9 categories of challenges of which the following were deemed particularly relevant: the absence of direct comparative studies, challenges regarding the use of basket studies and indirect comparisons, challenges in determining the appropriate comparative therapy in a tumor-agnostic indication, and challenges on the system side. Seven categories of solutions were identified, including an increased use of real-world evidence, making conditional decisions in the context of systematic reassessments, splitting the field of application, and finding (new) ways to design and analyze basket studies. CONCLUSION A range of possible solutions, which can help to meet the identified challenges in Germany, have been found. Future research should investigate the acceptance and feasibility of these solutions.
Collapse
Affiliation(s)
- Juliane Schiller
- Department of Health Care Management, Technische Universität Berlin, Berlin, Germany; Pfizer Pharma GmbH, Berlin, Germany.
| | - Helene Eckhardt
- Department of Health Care Management, Technische Universität Berlin, Berlin, Germany
| | | | - Valerie A Alber
- Department of Health Care Management, Technische Universität Berlin, Berlin, Germany
| | - Tanja Rombey
- Department of Health Care Management, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
40
|
Overbeck TR, Reiffert A, Schmitz K, Rittmeyer A, Körber W, Hugo S, Schnalke J, Lukat L, Hugo T, Hinterthaner M, Reuter-Jessen K, Schildhaus HU. NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients. Cancers (Basel) 2023; 15:cancers15112966. [PMID: 37296928 DOI: 10.3390/cancers15112966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
(1) Background: The main objectives of our study are (i) to determine the prevalence of NTRK (neurotrophic tyrosine kinase) fusions in a routine diagnostic setting in NSCLC (non-small cell lung cancer) and (ii) to investigate the feasibility of screening approaches including immunohistochemistry (IHC) as a first-line test accompanied by fluorescence in situ hybridization (FISH) and RNA-(ribonucleic acid-)based next-generation sequencing (RNA-NGS). (2) Methods: A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). (3) Results: One hundred and thirty-three patients (14.8%) were IHC positive; consecutive RNA-NGS testing revealed two patients (0.2%) with NTRK fusions (NTRK1-EPS15 (epidermal growth factor receptor pathway substrate 15) and NTRK1-SQSTM1 (sequestosome 1)). Positive RNA-NGS was confirmed by FISH, and NTRK-positive patients benefited from targeted treatment. All patients with direct FISH testing were negative. RNA-NGS- or FISH-positive results were mutually exclusive with alterations in EGFR (epidermal growth factor receptor), ALK (anaplastic lymphoma kinase), ROS1 (ROS proto-oncogene 1), BRAF (proto-oncogene B-Raf), RET (rearranged during transfection) or KRAS (kirsten rat sarcoma viral oncogene). Excluding patients with one of these alterations raised the prevalence of NTRK-fusion positivity among panTrk-(tropomyosin receptor kinase-) IHC positive samples to 30.5%. (4) Conclusions: NTRK fusion-positive lung cancers are exceedingly rare and account for less than 1% of patients in unselected all-comer populations. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. We suggest including panTrk-IHC in a diagnostic workflow followed by RNA-NGS. Excluding patients with concurrent molecular alterations to EGFR/ALK/ROS1/BRAF/RET or KRAS might narrow the target population.
Collapse
Affiliation(s)
- Tobias Raphael Overbeck
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Göttingen Comprehensive Cancer Center (G-CCC), Lungentumorzentrum Universität Göttingen, 37075 Göttingen, Germany
| | - Annika Reiffert
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Katja Schmitz
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Tyrolpath Obrist Brunhuber GmbH and Krankenhaus St. Vinzenz, 6511 Zams, Austria
| | - Achim Rittmeyer
- Göttingen Comprehensive Cancer Center (G-CCC), Lungentumorzentrum Universität Göttingen, 37075 Göttingen, Germany
- Lungenfachklinik Immenhausen, 34376 Immenhausen, Germany
| | - Wolfgang Körber
- Göttingen Comprehensive Cancer Center (G-CCC), Lungentumorzentrum Universität Göttingen, 37075 Göttingen, Germany
- Department of Pneumology Evangelisches Krankenhaus Weende, 37075 Göttingen, Germany
| | - Sara Hugo
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Juliane Schnalke
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Laura Lukat
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Tabea Hugo
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Discovery Life Sciences, 34119 Kassel, Germany
| | - Marc Hinterthaner
- Göttingen Comprehensive Cancer Center (G-CCC), Lungentumorzentrum Universität Göttingen, 37075 Göttingen, Germany
- Department of Heart, Thoracic and Vascular Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Kirsten Reuter-Jessen
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hans-Ulrich Schildhaus
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Discovery Life Sciences, 34119 Kassel, Germany
| |
Collapse
|
41
|
Nguyen MA, Colebatch AJ, Van Beek D, Tierney G, Gupta R, Cooper WA. NTRK fusions in solid tumours: what every pathologist needs to know. Pathology 2023:S0031-3025(23)00128-9. [PMID: 37330338 DOI: 10.1016/j.pathol.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
Fusions involving the Neurotrophic tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2 and NTRK3) are targetable oncogenic alterations that are found in a diverse range of tumours. There is an increasing demand to identify tumours which harbour these fusions to enable treatment with selective tyrosine kinase inhibitors such as larotrectinib and entrectinib. NTRK fusions occur in a wide range of tumours including rare tumours such as infantile fibrosarcoma and secretory carcinomas of the salivary gland and breast, as well as at low frequencies in more common tumours including melanoma, colorectal, thyroid and lung carcinomas. Identifying NTRK fusions is a challenging task given the different genetic mechanisms underlying NTRK fusions, their varying frequency across different tumour types, complicated by other factors such as tissue availability, optimal detection methods, accessibility and costs of testing methods. Pathologists play a key role in navigating through these complexities by determining optimal approaches to NTRK testing which has important therapeutic and prognostic implications. This review provides an overview of tumours harbouring NTRK fusions, the importance of identifying these fusions, available testing methods including advantages and limitations, and generalised and tumour-specific approaches to testing.
Collapse
Affiliation(s)
- Minh Anh Nguyen
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Van Beek
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geraldine Tierney
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Wu S, Liu Y, Li K, Liang Z, Zeng X. Molecular and cytogenetic features of NTRK fusions enriched in BRAF and RET double-negative papillary thyroid cancer. J Mol Diagn 2023:S1525-1578(23)00106-X. [PMID: 37236546 DOI: 10.1016/j.jmoldx.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/17/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Rare NTRK-driven malignant neoplasms can be effectively inhibited by anti-TRK agents. The discovery of NTRK1/2/3-rich tumours in papillary thyroid cancer (PTC) patients is a precondition for the rapid identification of NTRK fusion tumours. Knowledge of NTRK gene activation is critical to accurately detect NTRK status. A total of 229 BRAF V600E-negative samples from PTC patients were analysed in this study. Break-apart fluorescence in situ hybridisation (FISH) was performed to detect RET fusion. NTRK status was analysed using FISH, DNA- and RNA-based next-generation sequencing (NGS), and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In 128 BRAF and RET double-negative cases, 56 (43.8%, 56/128) NTRK rearrangement tumours were found, including 1 NTRK2, 16 NTRK1, and 39 NTRK3 fusions. Two novel NTRK fusions, EZR::NTRK1 and EML4::NTRK2, was found in the NTRK rearrangement tumors.Dominant break-apart and extra 3' signal patterns accounted for 89.3% (50/56) and 5.4% (3/56) of all NTRK-positive cases, respectively, as determined by FISH. In our cohort, there were 2.3% (3/128) FISH false-negative and 3.1% (4/128) FISH false-positive cases identified. NTRK fusions are highly recurrent in BRAF and RET double-negative PTCs. FISH or RNA-based NGS is a reliable detection approach. NTRK rearrangement can be precisely, rapidly, and economically detected based on the developed optimal algorithm.
Collapse
Affiliation(s)
- Shafei Wu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanyuan Liu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Kaimi Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Xuan Zeng
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
43
|
Ma Y, Zhang Q, Zhang K, Liang Y, Ren F, Zhang J, Kan C, Han F, Sun X. NTRK fusions in thyroid cancer: Pathology and clinical aspects. Crit Rev Oncol Hematol 2023; 184:103957. [PMID: 36907364 DOI: 10.1016/j.critrevonc.2023.103957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Thyroid cancer is the most common endocrine cancer. Neurotrophic tyrosine receptor kinase (NTRK) fusions are oncogenic drivers in multiple solid tumors, including thyroid cancer. NTRK fusion thyroid cancer has unique pathological features such as mixed structure, multiple nodes, lymph node metastasis, and a background of chronic lymphocytic thyroiditis. Currently, RNA-based next-generation sequencing is the gold standard for the detection of NTRK fusions. Tropomyosin receptor kinase inhibitors have shown promising efficacy in patients with NTRK fusion-positive thyroid cancer. Efforts to overcome acquired drug resistance are the focus of research concerning next-generation TRK inhibitors. However, there are no authoritative recommendations or standardized procedures for the diagnosis and treatment of NTRK fusions in thyroid cancer. This review discusses current research progress regarding NTRK fusion-positive thyroid cancer, summarizes the clinicopathological features of the disease, and outlines the current statuses of NTRK fusion detection and targeted therapeutic agents.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qi Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yunzi Liang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fangbing Ren
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
44
|
Harada G, Yang SR, Cocco E, Drilon A. Rare molecular subtypes of lung cancer. Nat Rev Clin Oncol 2023; 20:229-249. [PMID: 36806787 PMCID: PMC10413877 DOI: 10.1038/s41571-023-00733-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
Oncogenes that occur in ≤5% of non-small-cell lung cancers have been defined as 'rare'; nonetheless, this frequency can correspond to a substantial number of patients diagnosed annually. Within rare oncogenes, less commonly identified alterations (such as HRAS, NRAS, RIT1, ARAF, RAF1 and MAP2K1 mutations, or ERBB family, LTK and RASGRF1 fusions) can share certain structural or oncogenic features with more commonly recognized alterations (such as KRAS, BRAF, MET and ERBB family mutations, or ALK, RET and ROS1 fusions). Over the past 5 years, a surge in the identification of rare-oncogene-driven lung cancers has challenged the boundaries of traditional clinical grade diagnostic assays and profiling algorithms. In tandem, the number of approved targeted therapies for patients with rare molecular subtypes of lung cancer has risen dramatically. Rational drug design has iteratively improved the quality of small-molecule therapeutic agents and introduced a wave of antibody-based therapeutics, expanding the list of actionable de novo and resistance alterations in lung cancer. Getting additional molecularly tailored therapeutics approved for rare-oncogene-driven lung cancers in a larger range of countries will require ongoing stakeholder cooperation. Patient advocates, health-care agencies, investigators and companies with an interest in diagnostics, therapeutics and real-world evidence have already taken steps to surmount the challenges associated with research into low-frequency drivers.
Collapse
Affiliation(s)
- Guilherme Harada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soo-Ryum Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, FL, USA.
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
45
|
O'Haire S, Franchini F, Kang YJ, Steinberg J, Canfell K, Desai J, Fox S, IJzerman M. Systematic review of NTRK 1/2/3 fusion prevalence pan-cancer and across solid tumours. Sci Rep 2023; 13:4116. [PMID: 36914665 PMCID: PMC10011574 DOI: 10.1038/s41598-023-31055-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
NTRK gene fusions are rare somatic mutations found across cancer types with promising targeted therapies emerging. Healthcare systems face significant challenges in integrating these treatments, with uncertainty in prevalence and optimal testing methods to identify eligible patients. We performed a systematic review of NTRK fusion prevalence to inform efficient diagnostic screening and scale of therapeutic uptake. We searched Medline, Embase and Cochrane databases on 31/03/2021. Inclusion criteria were studies reporting fusion rates in solid tumours, English language, post-2010 publication and minimum sample size. Critical appraisal was performed using a custom 11-item checklist. Rates were collated by cancer type and pooled if additional synthesis criteria were met. 160 studies were included, with estimates for 15 pan-cancer and 429 specific cancer types (63 paediatric). Adult pan-cancer estimates ranged 0.03-0.70%, with higher rates found in RNA-based assays. In common cancers, rates were consistently below 0.5%. Rare morphological subtypes, colorectal microsatellite instability, and driver mutation exclusion cancers had higher rates. Only 35.6% of extracted estimates used appropriate methods and sample size to identify NTRK fusions. NTRK fusion-positive cancers are rare and widely distributed across solid tumours. Small-scale, heterogeneous data confound prevalence prediction. Further large-scale, standardised genomic data are needed to characterise NTRK fusion epidemiology.
Collapse
Affiliation(s)
- Sophie O'Haire
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
| | - Fanny Franchini
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Yoon-Jung Kang
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council New South Wales, Sydney, Australia
| | - Julia Steinberg
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council New South Wales, Sydney, Australia
| | - Karen Canfell
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council New South Wales, Sydney, Australia
| | - Jayesh Desai
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen Fox
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Maarten IJzerman
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Erasmus School of Health Policy and Management, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Zhou KI, Vashistha V, Guo A, Ahmed S, Kelley MJ. Real-world Experience With Neurotrophic Tyrosine Receptor Kinase Fusion-positive Tumors and Tropomyosin Receptor Kinase Inhibitors in Veterans. JCO Precis Oncol 2023; 7:e2200692. [PMID: 36926986 DOI: 10.1200/po.22.00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/18/2023] Open
Abstract
PURPOSE Neurotrophic tyrosine receptor kinase 1-3 (NTRK1-3) gene fusions are found in a broad range of tumor types. Clinical trials demonstrated high response rates to tropomyosin receptor kinase (TRK) inhibitors in NTRK fusion-positive cancers, but few reports have described real-world experience with these targeted agents. We evaluated the prevalence of NTRK fusions and the outcomes with TRK inhibitor therapy in a real-world population of patients in the Veterans Health Administration. METHODS Patients with NTRK fusions or rearrangements were identified from the Veterans Affairs (VA) National Precision Oncology Program (NPOP), and patients who were prescribed TRK inhibitors were identified from the Corporate Data Warehouse. Baseline data and clinical outcomes were obtained by retrospective review of medical records. RESULTS A total of 33 patients with NTRK fusions or rearrangements were identified, including 25 patients comprising 0.12% of all patients with solid tumors sequenced through VA NPOP. Twelve patients with NTRK fusions or rearrangements were treated with TRK inhibitors, none of whom had objective responses. Eight patients experienced toxicities leading to drug interruption, dose reduction, or discontinuation. CONCLUSION In this retrospective study of VA patients, NTRK fusions and rearrangements were less common than in previous studies, and objective responses to TRK inhibitors were not observed. Real-world experience with TRK inhibitors differs markedly from clinical trial findings, possibly due to differences in patient demographics, tumor types, and sequencing methods. Our findings highlight the need to study TRK inhibitors in the real-world setting and in populations underrepresented in clinical trials.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, NC
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
| | - Vishal Vashistha
- Section of Hematology-Oncology, New Mexico VA Medical Center, Albuquerque, NM
| | - Aixia Guo
- National Oncology Program, Department of Veterans Affairs, Durham, NC
| | - Sara Ahmed
- National Oncology Program, Department of Veterans Affairs, Durham, NC
| | - Michael J Kelley
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, NC
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
- National Oncology Program, Department of Veterans Affairs, Durham, NC
| |
Collapse
|
47
|
Stockley TL, Lo B, Box A, Corredor AG, DeCoteau J, Desmeules P, Feilotter H, Grafodatskaya D, Greer W, Hawkins C, Huang WY, Izevbaye I, Lépine G, Martins Filho SN, Papadakis AI, Park PC, Riviere JB, Sheffield BS, Spatz A, Spriggs E, Tran-Thanh D, Yip S, Zhang T, Torlakovic E, Tsao MS. CANTRK: A Canadian Ring Study to Optimize Detection of NTRK Gene Fusions by Next-Generation RNA Sequencing. J Mol Diagn 2023; 25:168-174. [PMID: 36586421 DOI: 10.1016/j.jmoldx.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
The Canadian NTRK (CANTRK) study is an interlaboratory comparison ring study to optimize testing for neurotrophic receptor tyrosine kinase (NTRK) fusions in Canadian laboratories. Sixteen diagnostic laboratories used next-generation sequencing (NGS) for NTRK1, NTRK2, or NTRK3 fusions. Each laboratory received 12 formalin-fixed, paraffin-embedded tumor samples with unique NTRK fusions and two control non-NTRK fusion samples (one ALK and one ROS1). Laboratories used validated protocols for NGS fusion detection. Panels included Oncomine Comprehensive Assay v3, Oncomine Focus Assay, Oncomine Precision Assay, AmpliSeq for Illumina Focus, TruSight RNA Pan-Cancer Panel, FusionPlex Lung, and QIAseq Multimodal Lung. One sample was withdrawn from analysis because of sample quality issues. Of the remaining 13 samples, 6 of 11 NTRK fusions and both control fusions were detected by all laboratories. Two fusions, WNK2::NTRK2 and STRN3::NTRK2, were not detected by 10 laboratories using the Oncomine Comprehensive or Focus panels, due to absence of WNK2 and STRN3 in panel designs. Two fusions, TPM3::NTRK1 and LMNA::NTRK1, were challenging to detect on the AmpliSeq for Illumina Focus panel because of bioinformatics issues. One ETV6::NTRK3 fusion at low levels was not detected by two laboratories using the TruSight Pan-Cancer Panel. Panels detecting all fusions included FusionPlex Lung, Oncomine Precision, and QIAseq Multimodal Lung. The CANTRK study showed competency in detection of NTRK fusions by NGS across different panels in 16 Canadian laboratories and identified key test issues as targets for improvements.
Collapse
Affiliation(s)
- Tracy L Stockley
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Bryan Lo
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Adrian Box
- Alberta Precision Labs, Calgary, Alberta, Canada
| | | | - John DeCoteau
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patrice Desmeules
- IUCPQ-UL, Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Harriet Feilotter
- Kingston Health Sciences Centre, Kingston, Ontario, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Daria Grafodatskaya
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wenda Greer
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Weei Yuarn Huang
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Iyare Izevbaye
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Sebastiao N Martins Filho
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Paul C Park
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Alan Spatz
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Danh Tran-Thanh
- CHUM-Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Stephen Yip
- BC Cancer, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tong Zhang
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Emina Torlakovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ming Sound Tsao
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Medford AJ, Oshry L, Boyraz B, Kiedrowski L, Menshikova S, Butusova A, Dai CS, Gogakos T, Keenan JC, Occhiogrosso RH, Ryan P, Lennerz JK, Spring LM, Moy B, Ellisen LW, Bardia A. TRK inhibitor in a patient with metastatic triple-negative breast cancer and NTRK fusions identified via cell-free DNA analysis. Ther Adv Med Oncol 2023; 15:17588359231152844. [PMID: 36743521 PMCID: PMC9893401 DOI: 10.1177/17588359231152844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Tissue-agnostic indications for targeted therapies have expanded options for patients with advanced solid tumors. The Food and Drug Administration approvals of the programmed death-ligand 1 inhibitor pembrolizumab and the TRK inhibitors larotrectinib and entrectinib provide rationale for next-generation sequencing (NGS) in effectively all advanced solid tumor patients given potential for clinical responses even in otherwise refractory disease. As proof of concept, this case report describes a 64-year-old woman with triple-negative breast cancer refractory to multiple lines of therapy, found to have a rare mutation on NGS which led to targeted therapy with meaningful response. She initially presented with metastatic recurrence 5 years after treatment for a localized breast cancer, with rapid progression through four lines of therapy in the metastatic setting, including immunotherapy, antibody-drug conjugate-based therapy, and chemotherapy. Germline genetic testing was normal. Ultimately, NGS evaluation of cell-free DNA via an 83-gene assay (Guardant Health, Inc.) identified two NTRK3 fusions: an ETV6-NTRK3 fusion associated with the rare secretory breast carcinoma, and CRTC3-NTRK3, a novel fusion partner not previously described in breast cancer. Liver biopsy was sent for whole exome sequencing and RNA-seq analysis of tissue (BostonGene, Inc., Boston, MA, USA), which provided orthogonal confirmation of both the ETV6-NTRK3 and CRTC3-NTRK3 fusions. She was started on the TRK inhibitor larotrectinib with a marked clinical and radiographic response after only 2 months of therapy. The patient granted verbal consent to share her clinical story, images, and data in this case report. This case demonstrates the significant potential benefits of NGS testing in advanced cancer and the lessons we may learn from individual patient experiences.
Collapse
Affiliation(s)
| | - Lauren Oshry
- Boston Medical Center, Boston, MA, USA,Boston University School of Medicine, Boston, MA, USA
| | - Baris Boyraz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | | | | | | | - Charles S. Dai
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Dana Farber Cancer Institute, Boston, MA, USA
| | - Tasos Gogakos
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | | | - Rachel H. Occhiogrosso
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Dana Farber Cancer Institute, Boston, MA, USA
| | - Phoebe Ryan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jochen K. Lennerz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Laura M. Spring
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Wu WC, Chen MH. Case report: Acquired neurotrophic tyrosine receptor kinase inhibitor resistance in a patient with pancreatic neuroendocrine carcinoma receiving entrectinib. Front Oncol 2023; 12:1031396. [PMID: 36703785 PMCID: PMC9871888 DOI: 10.3389/fonc.2022.1031396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Pancreatic neuroendocrine carcinoma (panNEC) is a rare disease. The rearrangements of neurotrophic tropomyosin receptor kinase (NTRK) genes are oncogenic. And in the existed literatures, the prevalence of NTRK3 was only 0.1% in neuroendocrine tumors. NTRK inhibitor was approved for refractory and recurrence NTRK fusion-positive solid tumors did not respond to standard treatment. We described a patient with panNEC who was confirmed to have ETV6-NTRK3 fusion gene by liquid biopsy. The patient initially responded well to entrectinib, a first-generation NTRK inhibitor, but developed resistance with two acquired NTRK3-G623R and NTRK3-G623E mutations detected by a second liquid biopsy. Kirsten rat sarcoma vial oncogene (KRAS) K117N mutation was found initially but became undetectable after resistance. This was the first report demonstrating the novel agent, entrectinib, used for the NTRK3-fusion gene found by the liquid biopsy in panNEC. Our report provides evidence of not only the effectiveness but also the acquired resistance of entrectinib. Also, we highlighted the potential role of genomic sequencing after entrectinib failure. Furthermore, liquid biopsy should be considered if acquiring tissue from the patient is challenging. Further studies regarding NTRK inhibitors in panNEC were needed.
Collapse
Affiliation(s)
- Wen-Chi Wu
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan,Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,*Correspondence: Wen-Chi Wu,
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
50
|
Hua H, He W, Chen N, He Y, Wu G, Ye F, Zhou X, Li Y, Ding Y, Zhong W, Teng L, Jiang W, Sheng Q. Genomic and transcriptomic analysis of MSI-H colorectal cancer patients with targetable alterations identifies clinical implications for immunotherapy. Front Immunol 2023; 13:974793. [PMID: 36700211 PMCID: PMC9870311 DOI: 10.3389/fimmu.2022.974793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Targetable alterations such as BRAFV600E mutation and NTRK fusion are enriched in microsatellite instability-high (MSI-H) colorectal cancer (CRC). MSI-H with targetable alterations (MSI-H altered) might present unique opportunities for both targeted therapy and immunotherapy. We systematically evaluated the molecular characteristics and immune-related features of MSI-H altered and MSI-H without targetable alterations (MSI-H wt) CRC patients in our study. Methods Among 1938 continuously enrolled CRC patients, 126 patients with MSI-H status (6.50%) were included in this retrospective study. Genomic and transcriptomic data were investigated by next-generation sequencing (NGS) and gene expression profiling (GEP), respectively. Results BRAFV600E, NTRK1, and FGFR2 mutations were the most frequent targetable alterations in MSI-H CRC patients. The MSI-H altered phenotype was significantly associated with older age (p< 0.001), right side (p=0.024) and females (p= 0.036). No lynch syndrome (LS) patients were identified in MSI-H altered group. The tumor mutational burden (TMB), and tumor neoantigen burden (TNB) of MSI-H altered and wt subgroups were comparable (p<0.05). Subsequently, transcriptomic study analysis further revealed MSI-H altered CRC patients were linked to an immune-active tumor microenvironment with higher levels of Teff IFN-gamma, CYT, and MERCK 18 signatures, and lower levels of the IPRES gene signature, EMT and TGF Beta signatures. In addition, case study supported MSI-H CRC patient harboring targetable alterations might also achieved a long-term disease-free survival benefit from immunotherapy. Discussion Our study preliminary revealed MSI-H altered as a novel subtype of MSI-H CRC patients with unique molecular signatures and immune-active tumor microenvironment. Given the accessibility of immune checkpoint inhibitors (ICIs) treatment, our results might provide clinical evidence for immunotherapy in MSI-H CRC patients with targetable alterations.
Collapse
Affiliation(s)
- Hanju Hua
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wenguang He
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Chen
- Department of Colorectal Surgery, Yuyao Hospital of Traditional Chinese Medicine, Yuyao, China
| | - Yinjun He
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Guosheng Wu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Feng Ye
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yandong Li
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weixiang Zhong
- Department of Pathology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Qinsong Sheng, ; Weiqin Jiang, ; Lisong Teng,
| | - Weiqin Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China,*Correspondence: Qinsong Sheng, ; Weiqin Jiang, ; Lisong Teng,
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China,*Correspondence: Qinsong Sheng, ; Weiqin Jiang, ; Lisong Teng,
| |
Collapse
|