1
|
Jiang M, Ma S, Xuan Y, Chen K. Synthetic approaches and clinical application of KRAS inhibitors for cancer therapy. Eur J Med Chem 2025; 291:117626. [PMID: 40252381 DOI: 10.1016/j.ejmech.2025.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are among the most common oncogenic alterations in various cancers, including pancreatic, colorectal, and non-small cell lung cancer (NSCLC). Targeting KRAS has long been considered a difficult challenge due to its high affinity for guanosine triphosphate (GTP) and the lack of a druggable binding site. However, recent advancements in small-molecule inhibitor design have led to the development of targeted therapies aimed at KRAS mutations, particularly the KRASG12C mutation. Inhibitors such as Sotorasib and Adagrasib have shown promise in preclinical and clinical studies by irreversibly binding to the mutant KRAS protein, locking it in an inactive state and disrupting downstream signaling pathways critical for tumor growth and survival. These inhibitors have demonstrated clinical efficacy in treating patients with KRASG12C-mutated cancers, leading to tumor regression, prolonged progression-free survival, and improved patient outcomes. This review discusses the synthetic strategies employed to develop these KRAS inhibitor and also examines the clinical application of these inhibitors, highlighting the challenges and successes encountered during clinical trials. Ultimately, KRAS inhibitors represent a breakthrough in cancer therapy, offering a promising new treatment option for patients with KRAS-driven tumors.
Collapse
Affiliation(s)
- Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shaowei Ma
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kuanbing Chen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Attili I, Corvaja C, Trillo Aliaga P, Del Signore E, Spitaleri G, Passaro A, de Marinis F. Dealing with KRAS G12C inhibition in non-small cell lung cancer (NSCLC) - biology, clinical results and future directions. Cancer Treat Rev 2025; 137:102957. [PMID: 40381528 DOI: 10.1016/j.ctrv.2025.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
KRAS G12C mutation occurs in ∼ 14 % of non-small cell lung cancer (NSCLC) patients and has been historically deemed undruggable, with immune-checkpoint inhibitors (ICIs) and platinum-based chemotherapy (PBC) representing the standard-of-care in the advanced setting. First-in-class, covalent KRAS G12C OFF-inhibitors sotorasib and adagrasib have revolutionized the therapeutic landscape and recently entered clinical practice. However, limited efficacy alongside toxicity profiles strengthen the need to design novel molecules and to optimize therapeutic strategies to address and overcome intrinsic and acquired resistance mechanisms. Moreover, KRAS G12C frequently co-occurs with STK11/KEAP1 mutations, that represent a negative prognostic factor, being associated with increased metastatic potential and reduced overall survival and poorer outcomes with ICIs. Furthermore, the high incidence of brain metastases is common in KRAS G12C-mutant NSCLC, and the efficacy of standard therapies and KRAS G12C inhibitors in treating or preventing central nervous system involvement is still suboptimal. In this context, novel inhibitors, such as broad-spectrum inhibitors targeting the active GTP-bound ON-state, pan-RAS ON inhibitors and allele-selective tricomplex inhibitors, have showed promising early clinical activity although their clinical utility needs to be further elucidated. In addition, targeting upstream, downstream and parallel signaling pathways through combination strategies might enhance the activity of KRAS G12C inhibitors and eventually improve clinical outcomes in this subset of NSCLC patients. Several combinations are currently under clinical investigation and promising approaches include combinations of KRAS G12C inhibitors with ICIs, SOS1, SHP2 inhibitors and PBC. Notwithstanding the potential improved efficacy of combination strategies, tolerability remains a critical challenge that must be carefully assessed and managed.
Collapse
Affiliation(s)
- Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
3
|
Riedl JM, Fece de la Cruz F, Lin JJ, Parseghian C, Kim JE, Matsubara H, Barnes H, Caughey B, Norden BL, Morales-Giron AA, Kushner EW, Ehnstrom S, Nakamura H, Patel PS, Ellis H, Pappas L, Vakaris A, Gainor JF, Kopetz S, Klempner SJ, Parikh AR, Hata AN, Heist RS, Corcoran RB. Genomic landscape of clinically acquired resistance alterations in patients treated with KRAS G12C inhibitors. Ann Oncol 2025; 36:682-692. [PMID: 39914665 PMCID: PMC12097956 DOI: 10.1016/j.annonc.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Mutant-selective inhibitors of KRASG12C (KRASG12Ci) have demonstrated efficacy in KRASG12C cancers. However, resistance invariably develops, resulting in short-lived responses. We aimed to define the genomic landscape of acquired resistance to KRASG12Ci and to elucidate whether novel classes of KRAS inhibitors can overcome these resistance mechanisms. METHODS To assess clinical frequencies of acquired resistance alterations, we evaluated genomic sequencing data from postprogression cell-free DNA samples in patients treated with KRASG12Ci at two United States cancer centers, alongside data from six previously published studies. Cell viability assays using engineered cell models were employed to functionally validate candidate resistance drivers and to evaluate novel classes of KRAS inhibitors. RESULTS A total of 143 patients were analyzed. Most patients had non-small-cell lung cancer (NSCLC, n = 68) or colorectal cancer (CRC, n = 58) and were treated with single-agent KRASG12Ci (n = 109) or combined with anti-EGFR antibodies (n = 30). RAS/MAPK alterations emerged in 46% of patients (n = 66), with 39% developing one or more new KRAS alterations (n = 56) and 23% (n = 33) showing multiple concurrent alterations. The genomic landscape of acquired alterations included KRAS-activating mutations (25% of patients), KRAS amplifications (22%), RAF/MAPK mutations/fusions (21%), KRAS switch-II pocket mutations (14%), and NRAS/HRAS mutations (8%). Notably, the proportion of patients with one or more acquired RAS/MAPK alteration was significantly higher in CRC compared with NSCLC (69% versus 26%, P < 0.001). Functional studies confirmed most alterations as resistance drivers. Sotorasib, adagrasib, and divarasib demonstrated distinct activity against KRAS switch-II pocket mutations, yet all were responsive to the RAS(ON) G12C-selective tri-complex inhibitor RM-018. The KRAS-selective inhibitor Pan KRAS-IN-1 effectively targeted KRAS-activating mutations, and the RAS(ON) multiselective tri-complex inhibitor RMC-7797 demonstrated high potency across all RAS alterations. CONCLUSIONS Acquired RAS/MAPK alterations are recurrent drivers of resistance to KRASG12Ci detected in CRC and, less frequently, in NSCLC. Preclinical data suggest that novel (K)RAS inhibitors may overcome many of these resistance alterations.
Collapse
Affiliation(s)
- J M Riedl
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA; Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - F Fece de la Cruz
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - J J Lin
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - C Parseghian
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - J E Kim
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA; Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - H Matsubara
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - H Barnes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - B Caughey
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - B L Norden
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - A A Morales-Giron
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - E W Kushner
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - S Ehnstrom
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - H Nakamura
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - P S Patel
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - H Ellis
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - L Pappas
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - A Vakaris
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - J F Gainor
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - S Kopetz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - S J Klempner
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - A R Parikh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - A N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - R S Heist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - R B Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA.
| |
Collapse
|
4
|
Yanada H, Yoshida R, Kida R, Nitanai K, Ikeda M, Nagasue K, Naraoka T, Ueda M, Watanabe T, Shigaki R, Umekage Y, Minami Y, Nagato T, Hayashi M, Yuzawa S, Tanino M, Sasaki T. Sotorasib resistance in KRAS G12C-mutant invasive mucinous adenocarcinoma with implications for VEGF-A. NPJ Precis Oncol 2025; 9:154. [PMID: 40419662 DOI: 10.1038/s41698-025-00953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Invasive mucinous adenocarcinoma (IMA) is a rare subtype of lung adenocarcinoma with a poor prognosis. Compared to non-small cell lung cancer, IMA more frequently harbors KRAS mutations in the order p.G12V, p.G12D, and p.G12C. This report describes a patient with a KRAS p.G12C-mutant IMA treated with sotorasib. To date, no studies have investigated the therapeutic efficacy or resistance mechanisms of sotorasib in IMA. The patient was treated with carboplatin and pemetrexed, followed by sotorasib upon disease progression. While the primary lung lesions responded well, metastatic thoracic lymph node lesions continued to increase. A pathological autopsy was performed with the family's consent to investigate potential resistance mechanisms. RNA sequencing and additional analyses revealed increased VEGF-A expression in metastatic lymph node lesions, suggesting a role in sotorasib resistance. These findings provide insights into the potential molecular mechanisms underlying treatment resistance in KRAS p.G12C-mutant IMA.
Collapse
Affiliation(s)
- Hiraku Yanada
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
- Clinical Research Center, Keiyukai Yoshida Hospital, Asahikawa, Hokkaido, 070-0054, Japan
| | - Ryohei Yoshida
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
- Clinical Research Center, Keiyukai Yoshida Hospital, Asahikawa, Hokkaido, 070-0054, Japan.
| | - Ryotaro Kida
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kiichi Nitanai
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Maya Ikeda
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kazunori Nagasue
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Taeka Naraoka
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masashi Ueda
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Takashi Watanabe
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Ryota Shigaki
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yasuhiro Umekage
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yoshinori Minami
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Manami Hayashi
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Hokkaido, 078-8510, Japan
| | - Sayaka Yuzawa
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mishie Tanino
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Hokkaido, 078-8510, Japan
| | - Takaaki Sasaki
- Department of Internal Medicine, Division of Respiratory Medicine and Neurology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
5
|
Ito M, Miyata Y, Hirano S, Morihara N, Takemoto M, Irisuna F, Kushitani K, Suda K, Soh J, Takeshima Y, Tsutani Y, Okada M. Dual inhibition of GTP-bound KRAS and mTOR in lung adenocarcinoma and squamous cell carcinoma harboring KRAS G12C. Cell Commun Signal 2025; 23:220. [PMID: 40350441 PMCID: PMC12067872 DOI: 10.1186/s12964-025-02187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Kirsten rat sarcoma (KRAS) mutations are somatic variants in lung adenocarcinoma. One of the most prevalent mutations, G12C, has led to the clinical approval of targeted inhibitors for advanced stages in lung cancer. Research has increasingly focused on the efficacy of combination therapies that target multiple tumorigenic pathways. Cases harboring KRAS G12C mutation are heterogenous. We explored alternative changes in genetic pathways and evaluated the effectiveness of combination therapy using several types of cell lines and KRAS inhibitors. METHODS We comprehensively investigated genetic changes induced by KRAS G12C inhibition using RNA sequences and the candidate to inhibit in combination therapy was explored. Three lung cancer cell lines (two adenocarcinoma and one squamous cell carcinoma) and three KRAS G12C inhibitors (AMG 510, MRTX849, and ARS-1620) were used. KRAS G12C and candidate gene were simultaneously inhibited in cell lines and the efficiency of combination therapy was evaluated using clonogenic assays and MTS assay. Pathway activation was assessed via western blotting. A combination index (CI) < 0.8 was considered statistically synergistic. RESULTS RNA sequences revealed treatment with two of the three KRAS G12C inhibitors led to a significant increase in mTOR expression across all three cell lines. mTOR was targeted in combination therapy; each KRAS G12C inhibitor and mTOR inhibitor (RAD001) combination exhibited synergism (CI < 0.8) in MTS and clonogenic assays. Single inhibition of mTOR induced activation of guanosine triphosphate (GTP)-RAS, thereby activating the RAS-MEK-ERK and PI3K-AKT-mTOR pathways in WB, suggesting mTOR activation is crucial for KRAS-driving lung cancer. A combination strategy targeting KRAS G12C and mTOR abrogated GTP-RAS, pmTOR (Ser2448), and pERK (Thr202/Tyr204) more efficiently. CONCLUSIONS KRAS G12C inhibitor plus RAD001 consistently revealed synergism. Targeting KRAS G12C and mTOR abrogates the RAS-MEK-ERK and PI3K-AKT-mTOR pathways. Our data suggests that a combined strategy targeting GTP-bound KRAS G12C and mTOR shows promise for primary lung cancers with KRAS G12C mutations. This approach may also be effective even for lung cancers harboring KRAS G12C mutation but having different profiles.
Collapse
Affiliation(s)
- Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shoko Hirano
- Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Nagisa Morihara
- Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Misako Takemoto
- Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Fumiko Irisuna
- Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Kei Kushitani
- Department of Pathology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Junichi Soh
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Tsutani
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
6
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. KRAS G12C/mTORC1 inhibition: a powerful duo in NSCLC therapeutics. Trends Pharmacol Sci 2025; 46:389-391. [PMID: 40234119 DOI: 10.1016/j.tips.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025]
Abstract
In a recent report in Nature Communications, Kitai et al. designed a combinational treatment based on targeting the active-state KRASG12C-mutant variant that characterizes a substantial subset of non-small-cell lung cancer (NSCLC) cases. The authors highlighted that dual targeting with KRASG12C (ON) and mammalian target of rapamycin (mTOR) complex (mTORC)-1-selective inhibition potentially provides a new strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, 'Attikon' University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Chest Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
7
|
Mateo-Victoriano B, Samaranayake GJ, Pokharel S, Sahayanathan GJ, Jayaraj C, Troccoli CI, Watson DC, Mohsen MG, Guo Y, Kool ET, Rai P. Oncogenic KRAS addiction states differentially influence MTH1 expression and 8-oxodGTPase activity in lung adenocarcinoma. Redox Biol 2025; 82:103610. [PMID: 40184641 PMCID: PMC11999683 DOI: 10.1016/j.redox.2025.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
The efficacy of strategies targeting oncogenic RAS, prevalent in lung adenocarcinoma (LUAD), is limited by rapid adaptive resistance mechanisms. These include loss of RAS addiction and hyperactivation of downstream signaling pathways, such as PI3K/AKT. We previously reported that oncogenic RAS-driven LUAD cells possess an enhanced reliance on MTH1, the mammalian 8-oxodGTPase, to prevent genomic incorporation of oxidized nucleotides, and that MTH1 depletion compromises tumorigenesis and oncogenic signaling. Here, we show that elevated MTH1 correlates with poor prognosis in LUAD and that its redox-protective 8-oxodGTPase activity is variably regulated in KRAS-addicted vs. non-addicted states. Multiple oncogenic KRAS mutants or overexpression of wildtype (wt) KRAS increased MTH1 expression. Conversely, KRAS depletion or its inhibition by AMG-510 (sotorasib) decreased MTH1 in KRASG12C-addicted LUAD cells. Separation-of-function MEK/ERK1/2-activating mutants recapitulated the elevated MTH1 expression induced by oncogenic RAS in wt KRAS LUAD cells. However, upon inhibition of the MEK/ERK1/2 pathway, compensatory AKT activation maintained MTH1 expression. Indeed, elevated AKT signaling maintained high MTH1 expression even when KRAS oncoprotein was low. We previously reported that cancer cells possess variable MTH1-specific and MTH1-independent 8-oxodGTPase activity levels. Whereas both ERK1/2 and AKT could regulate MTH1 protein levels in KRAS-addicted cells, only AKT signaling was associated with elevated MTH1-specific 8-oxodGTPase activity under KRAS-low or KRAS non-addicted states. Our studies suggest that despite loss of KRAS dependency, LUAD cells retain the requirement for high MTH1 8-oxodGTPase activity due to redox vulnerabilities associated with AKT signaling. Thus, MTH1 may serve as a novel orthogonal vulnerability in LUAD that has lost KRAS addiction.
Collapse
Affiliation(s)
- Beatriz Mateo-Victoriano
- Department of Radiation Oncology, Division of Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Govindi J Samaranayake
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sheela Pokharel
- Department of Radiation Oncology, Division of Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gracy Jenifer Sahayanathan
- Department of Radiation Oncology, Division of Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christina Jayaraj
- College of Arts and Sciences, University of Miami, Coral Gables, FL, 33146, USA
| | - Clara I Troccoli
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dionysios C Watson
- Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Michael G Mohsen
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yan Guo
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Priyamvada Rai
- Department of Radiation Oncology, Division of Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
Shin H, Hwang S, Jeong JH, Shin SC, Oh Y, Kim J, Hwang I, Kim EE, Choo H, Song EJ. Targeting USP47 enhances the efficacy of KRAS inhibitor in KRAS G12C mutated non-small cell lung cancer by controlling deubiquitination of c-Myc. Pharmacol Res 2025; 215:107722. [PMID: 40180254 DOI: 10.1016/j.phrs.2025.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
FDA-approved KRASG12C inhibitors, like Sotorasib, target G12C-mutated KRAS in NSCLC. However, issues with insensitivity and drug resistance have emerged, requiring the development of new combination therapies to overcome these limitations. USP47 has been identified as a regulator of cancer-related signaling pathways such as Wnt, Hippo, and p53. However, its role in the KRAS signaling pathway remains largely unexplored and USP47 inhibitors are less developed than those targeting its homolog, USP7. Here, we identify USP47 as a novel therapeutic target in KRASG12C-mutated NSCLC and report K-552, a selective USP47 inhibitor, as a potential treatment strategy. We demonstrate that USP47 stabilizes c-Myc by preventing its proteasomal degradation through deubiquitination, thereby promoting NSCLC cell proliferation. Additionally, the compound K-552, a USP47 inhibitor identified through virtual screening, effectively destabilizes c-Myc and inhibits KRASG12C-mutated NSCLC cell proliferation. Furthermore, USP47 inhibition-either by siRNA knockdown or K-552 treatment-enhances the efficacy of Sotorasib in vitro and in vivo. Together, our findings establish USP47 as a promising therapeutic target in KRASG12C-mutated NSCLC and introduce K-552 as a USP47 inhibitor with potential for combination therapy with KRASG12C inhibitors.
Collapse
Affiliation(s)
- Hyungkyung Shin
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - SuA Hwang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Hyun Jeong
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeonji Oh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyeok Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Inah Hwang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Eunice EunKyeong Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Hyunah Choo
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Liu Z, Lenz HJ, Yu J, Zhang L. Differential Response and Resistance to KRAS-Targeted Therapy. Mol Carcinog 2025. [PMID: 40256920 DOI: 10.1002/mc.23908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 04/22/2025]
Abstract
KRAS is the most frequently mutated oncogene. In epithelial malignancies such as lung, colorectal, and pancreatic tumors, KRAS is mutated in 25 to above 90% cases. KRAS was considered undruggable for over three decades until the recent development of covalent inhibitors targeting the KRAS G12C mutant. The recent approval of the KRAS G12C inhibitors sotorasib and adagrasib has ushered in a new era of KRAS-targeted therapy. Despite this success, a major challenge in KRAS-targeted therapy is intrinsic and acquired resistance to KRAS inhibitors. Clinical studies have shown that many patients with KRAS G12C cancers did not respond to sotorasib and adagrasib. Colorectal cancer, in particular, has a markedly lower response rate to KRAS G12C inhibitors compared to non-small cell lung cancer. Furthermore, the therapeutic response to KRAS G12C inhibition was short-lived, with quick emergence of acquired resistance. In this review, we summarize several major themes that have emerged from recent clinical and preclinical studies on the mechanisms of intrinsic and acquired resistance to KRAS-targeted therapy in colorectal, lung, and pancreatic cancers. We also discuss various combination strategies for targeting these mechanisms to overcome resistance to KRAS inhibitors.
Collapse
Affiliation(s)
- Zhaojin Liu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Jian Yu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
10
|
Zhang F, Wang B, Wu M, Zhang L, Ji M. Current status of KRAS G12C inhibitors in NSCLC and the potential for combination with anti-PD-(L)1 therapy: a systematic review. Front Immunol 2025; 16:1509173. [PMID: 40303413 PMCID: PMC12037499 DOI: 10.3389/fimmu.2025.1509173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
In recent years, precision medicine for non-small cell lung cancer (NSCLC) has made significant strides, particularly with advancements in diagnostic and therapeutic technologies. Targeted 7therapies and Anti-PD-(L)1 Therapies have emerged as vital treatment options, yet KRAS mutations, especially KRAS G12C, have been historically difficult to address. Due to the unique activation mechanism of KRAS G12C has led to the development of specific inhibitors, such as AMG 510 and MRTX849, which show promising therapeutic potential. However, results from the CodeBreaK 200 Phase III trial indicated that AMG 510 did not significantly improve overall survival compared to docetaxel. Resistance after prolonged use of KRAS G12C inhibitors continues to pose a challenge, prompting interest in new drugs and combination strategies. KRAS mutations can impair tumor-infiltrating T cell function and create an immunosuppressive tumor microenvironment, making the combination of KRAS G12C inhibitors with anti-PD-(L)1 therapies particularly appealing. Preliminary data suggest these combinations may enhance both survival and quality of life, though safety concerns remain a barrier. Ongoing research is crucial to refine treatment regimens and identify suitable patient populations. This review focuses on the development of KRAS G12C inhibitors in monotherapy and combination therapies for NSCLC, discussing major clinical trials and future research directions.
Collapse
Affiliation(s)
| | | | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
11
|
Zhou K, Liu Y, Tang C, Zhu H. Pancreatic Cancer: Pathogenesis and Clinical Studies. MedComm (Beijing) 2025; 6:e70162. [PMID: 40182139 PMCID: PMC11965705 DOI: 10.1002/mco2.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy, with pancreatic ductal adenocarcinoma (PDAC) being the most common and aggressive subtype, characterized by late diagnosis, aggressive progression, and resistance to conventional therapies. Despite advances in understanding its pathogenesis, including the identification of common genetic mutations (e.g., KRAS, TP53, CDKN2A, SMAD4) and dysregulated signaling pathways (e.g., KRAS-MAPK, PI3K-AKT, and TGF-β pathways), effective therapeutic strategies remain limited. Current treatment modalities including chemotherapy, targeted therapy, immunotherapy, radiotherapy, and emerging therapies such as antibody-drug conjugates (ADCs), chimeric antigen receptor T (CAR-T) cells, oncolytic viruses (OVs), cancer vaccines, and bispecific antibodies (BsAbs), face significant challenges. This review comprehensively summarizes these treatment approaches, emphasizing their mechanisms, limitations, and potential solutions, to overcome these bottlenecks. By integrating recent advancements and outlining critical challenges, this review aims to provide insights into future directions and guide the development of more effective treatment strategies for PC, with a specific focus on PDAC. Our work underscores the urgency of addressing the unmet needs in PDAC therapy and highlights promising areas for innovation in this field.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yingping Liu
- Department of RadiotherapyCancer HospitalChinese Academy of Medical SciencesBeijingChina
| | - Chuanyun Tang
- The First Clinical Medical College of Nanchang UniversityNanchang UniversityNanchangChina
| | - Hong Zhu
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Park S, Haam K, Heo H, Kim D, Kim M, Jung H, Cha S, Kim M, Lee H. Integrative transcriptomic analysis identifies emetine as a promising candidate for overcoming acquired resistance to ALK inhibitors in lung cancer. Mol Oncol 2025; 19:1155-1169. [PMID: 39540457 PMCID: PMC11977641 DOI: 10.1002/1878-0261.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Anaplastic lymphoma kinase (ALK; also known as ALK tyrosine kinase receptor) inhibitors (ALKi) are effective in treating lung cancer patients with chromosomal rearrangement of ALK. However, continuous treatment with ALKis invariably leads to acquired resistance in cancer cells. In this study, we propose an efficient strategy to suppress ALKi resistance through a meta-analysis of transcriptome data from various cell models of acquired resistance to ALKis. We systematically identified gene signatures that consistently showed altered expression during the development of resistance and conducted computational drug screening using these signatures. We identified emetine as a promising candidate compound to inhibit the growth of ALKi-resistant cells. We demonstrated that emetine exhibited effectiveness in inhibiting the growth of ALKi-resistant cells, and further interpreted its impact on the resistant signatures through drug-induced RNA-sequencing data. Our transcriptome-guided systematic approach paves the way for efficient drug discovery to overcome acquired resistance to cancer therapy.
Collapse
Affiliation(s)
- Sang‐Min Park
- College of PharmacyChungnam National UniversityDaejeonKorea
| | - Keeok Haam
- Aging Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
| | - Haejeong Heo
- Personalized Genomic Medicine Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Functional GenomicsUniversity of Science and Technology (UST)DaejeonKorea
| | - Doyeong Kim
- College of PharmacyChungnam National UniversityDaejeonKorea
| | - Min‐Ju Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug DevelopmentPusan National UniversityBusanKorea
| | - Hyo‐Jung Jung
- Aging Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
| | - Seongwon Cha
- Korean Medicine (KM) Data DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Mirang Kim
- Aging Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Personalized Genomic Medicine Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Functional GenomicsUniversity of Science and Technology (UST)DaejeonKorea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug DevelopmentPusan National UniversityBusanKorea
| |
Collapse
|
13
|
Yang P, Li Y. Progress of KRAS G12C inhibitors in the treatment of refractory colorectal cancer and strategies for drug resistance response. Invest New Drugs 2025; 43:357-364. [PMID: 39956882 DOI: 10.1007/s10637-025-01514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Colorectal cancer is the third most prevalent cancer in the world. Early screening and detection of tumours, active surgical radical treatment, postoperative adjuvant chemotherapy, targeted therapy, and immunotherapy are performed based on pathological staging and immunohistochemistry. Even with these measures, the 5-year survival rate of colorectal cancer is only 65%, and a considerable number of patients still experience tumour recurrence or even metastasis. The KRAS G12C mutation accounts for 3 to 4% of refractory colorectal cancer (advanced or metastatic colorectal cancer), and it was once believed that KRAS did not have a drug target until the emergence of KRAS G12C inhibitors provided targeted treatment for KRAS-mutated colorectal cancer. However, KRAS G12C inhibitors only produce moderate efficacy, and resistance occurs after a short remission. The mechanism of drug resistance in tumour cells is complex and diverse, and existing research has limited understanding of it. This review aims to elucidate the clinical trial progress of KRAS G12C inhibitors in refractory colorectal cancer, the research progress of drug resistance mechanisms, and the combined treatment strategies for drug resistance.
Collapse
Affiliation(s)
- Peiyuan Yang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Xiantai Street, Changchun, 130000, Jilin, China
| | - Yongchao Li
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Xiantai Street, Changchun, 130000, Jilin, China.
| |
Collapse
|
14
|
Kato R, Solanki HS, Ozakinci H, Desai B, Gundlapalli H, Yang YC, Aronchik I, Singh M, Johnson J, Marusyk A, Boyle TA, Haura EB. In Situ RAS:RAF Binding Correlates with Response to KRASG12C Inhibitors in KRASG12C-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2025; 31:1150-1162. [PMID: 39836411 PMCID: PMC11924342 DOI: 10.1158/1078-0432.ccr-24-3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared with tumors with lower RAS-RAF interactions. EXPERIMENTAL DESIGN We developed a method for measuring in situ RAS binding to RAF in cancer samples using proximity ligation assays (PLA) designed to detect panRAS-CRAF interactions. RESULTS The panRAS-CRAF PLA signal correlated with levels of both RAS-GTP and phosphorylated ERK protein, suggesting that this assay can effectively assess active RAS signaling. We found that elevated panRAS-CRAF PLA signals were associated with increased sensitivity to KRASG12Ci in KRASG12C-mutant NSCLC cell lines, xenograft models, and patient samples. Applying a similar PLA approach to measure the interactions between EGFR and its adapter protein growth factor receptor-bound protein 2 as a surrogate for EGFR activity, we found no relationship between EGFR activity and response to KRASG12Ci in the same samples. CONCLUSIONS Our study highlights the importance of evaluating in situ RAS-RAF interactions as a potential predictive biomarker for identifying patients with NSCLC most likely to benefit from KRASG12Ci. The PLA developed for quantifying these interactions represents a valuable tool for guiding treatment strategies.
Collapse
Affiliation(s)
- Ryoji Kato
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hitendra S. Solanki
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hilal Ozakinci
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bina Desai
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA
| | - Harika Gundlapalli
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Yu Chi Yang
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Ida Aronchik
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Mallika Singh
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Joseph Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andriy Marusyk
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Theresa A. Boyle
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
15
|
Bandi DSR, Nagaraju GP, Sarvesh S, Carstens JL, Foote JB, Graff EC, Fang YHD, Keeton AB, Chen X, Valiyaveettil J, Berry KL, Bae S, Akce M, Gorman G, Yoon KJ, Manne U, Boyd MR, Buchsbaum DJ, Azmi AS, Maxuitenko YY, Piazza GA, El-Rayes BF. ADT-1004: a first-in-class, oral pan-RAS inhibitor with robust antitumor activity in preclinical models of pancreatic ductal adenocarcinoma. Mol Cancer 2025; 24:76. [PMID: 40082968 PMCID: PMC11905721 DOI: 10.1186/s12943-025-02288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Oncogenic KRAS mutations occur in nearly, 90% of patients with pancreatic ductal adenocarcinoma (PDAC). Targeting KRAS has been complicated by mutational heterogeneity and rapid resistance. We developed a novel pan-RAS inhibitor, ADT-1004 (an oral prodrug of ADT-007) and evaluated antitumor activity in murine and human PDAC models. METHODOLOGY Murine PDAC cells with KRASG12D mutation (KPC-luc or 2838c3-luc) were orthotopically implanted into the pancreas of C57BL/6J mice, and four PDX PDAC tumors with KRAS mutations were implanted subcutaneously in NSG mice. To assess potential to overcome RAS inhibitor resistance, parental and resistant MIA PaCa-2 PDAC cells (KRASG12C mutation) were implanted subcutaneously. Subcutaneously implanted RASWT BxPC-3 cells were used to assess the selectivity of ADT-1004. RESULTS ADT-1004 potently blocked tumor growth and RAS activation in mouse PDAC models without discernable toxicity with target engagement and reduced activated RAS and ERK phosphorylation. In addition, ADT-1004 suppressed tumor growth in PDX PDAC models with KRASG12D, KRASG12V, KRASG12C, or KRASG13Q mutations and increased CD4+ and CD8+ T cells in the TME consistent with exhaustion and increased MHCII+ M1 macrophage and dendritic cells. ADT-1004 demonstrated superior efficacy over sotorasib and adagrasib in tumor models resistant to these KRASG12C inhibitors and MRTX1133 resistant KRASG12D mutant cells. As evidence of selectivity for tumors with mutant KRAS, ADT-1004 did not impact the growth of tumors from RASWT PDAC cells. CONCLUSION/SIGNIFICANCE ADT-1004 has strong antitumor activity in aggressive and clinically relevant PDAC models with unique selectivity to block RAS-mediated signaling in RAS mutant cells. As a pan-RAS inhibitor, ADT-1004 has broad activity and potential efficacy advantages over allele-specific KRAS inhibitors. These findings support clinical trials of ADT-1004 for KRAS mutant PDAC.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Julienne L Carstens
- Department of Hematology and Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama, Birmingham, AL, 35294, USA
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Yu-Hua D Fang
- Radiology and Neurology, University of Alabama, Birmingham, AL, 35233, USA
| | - Adam B Keeton
- Drug Discovery and Development Department, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- ADT Pharmaceuticals, LLC, Orange Beach, AL, 31691, USA
| | - Xi Chen
- Drug Discovery and Development Department, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- ADT Pharmaceuticals, LLC, Orange Beach, AL, 31691, USA
| | - Jacob Valiyaveettil
- Drug Discovery and Development Department, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- ADT Pharmaceuticals, LLC, Orange Beach, AL, 31691, USA
| | - Kristy L Berry
- Drug Discovery and Development Department, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Sejong Bae
- Division of General Internal Medicine and Population Science, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Mehmet Akce
- Department of Hematology and Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Greg Gorman
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, AL, 35229, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL, 35233, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL, 35294, USA
| | - Upender Manne
- Department of Pathology, University of Alabama, Birmingham, AL, 35233, USA
| | | | - Donald J Buchsbaum
- Department of Obstetrics and Gynecology, University of Alabama, Birmingham, AL, 35233, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yulia Y Maxuitenko
- Drug Discovery and Development Department, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Gary A Piazza
- Drug Discovery and Development Department, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- ADT Pharmaceuticals, LLC, Orange Beach, AL, 31691, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA.
| |
Collapse
|
16
|
Isermann T, Sers C, Der CJ, Papke B. KRAS inhibitors: resistance drivers and combinatorial strategies. Trends Cancer 2025; 11:91-116. [PMID: 39732595 DOI: 10.1016/j.trecan.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/30/2024]
Abstract
In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRASG12C inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively. However, rather than marking the end of a successful assault on the Mount Everest of cancer research, this landmark only revealed new challenges in RAS drug discovery. In this review, we highlight the progress on defining resistance mechanisms and developing combination treatment strategies to improve patient responses to KRAS therapies.
Collapse
Affiliation(s)
- Tamara Isermann
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Channing J Der
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bjoern Papke
- Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Nakagawa R, Beardsley A, Durney S, Hayward MK, Subramanyam V, Meyer NP, Wismer H, Goodarzi H, Weaver VM, Van de Mark D, Goga A. Tumor Cell Spatial Organization Directs EGFR/RAS/RAF Pathway Primary Therapy Resistance through YAP Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.26.615226. [PMID: 39386679 PMCID: PMC11463411 DOI: 10.1101/2024.09.26.615226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-small cell lung cancers (NSCLC) harboring common mutations in EGFR and KRAS characteristically respond transiently to targeted therapies against those mutations, but invariably, tumors recur and progress. Resistance often emerges through mutations in the therapeutic target or activation of alternative signaling pathways. Mechanisms of acute tumor cell resistance to initial EGFR (EGFRi) or KRASG12C (G12Ci) pathway inhibition remain poorly understood. Our study reveals that acute response to EGFR/RAS/RAF-pathway inhibition is spatial and culture context specific. In vivo, EGFR mutant tumor xenografts shrink by > 90% following acute EGFRi therapy, and residual tumor cells are associated with dense stroma and have increased nuclear YAP. Interestingly, in vitro EGFRi induced cell cycle arrest in NSCLC cells grown in monolayer, while 3D spheroids preferentially die upon inhibitor treatment. We find differential YAP nuclear localization and activity, driven by the distinct culture conditions, as a common resistance mechanism for selective EGFR/KRAS/BRAF pathway therapies. Forced expression of the YAPS127A mutant partially protects cells from EGFR-mediated cell death in spheroid culture. These studies identify YAP activation in monolayer culture as a non-genetic mechanism of acute EGFR/KRAS/BRAF therapy resistance, highlighting that monolayer vs spheroid cell culture systems can model distinct stages of patient cancer progression.
Collapse
Affiliation(s)
- Rachel Nakagawa
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrew Beardsley
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
- Department Of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Sophia Durney
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Mary-Kate Hayward
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Nathaniel P. Meyer
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Harrison Wismer
- Biological Imaging Development CoLab, UCSF, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Daniel Van de Mark
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
- Department Of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
18
|
Takeda M, Yoshida S, Inoue T, Sekido Y, Hata T, Hamabe A, Ogino T, Miyoshi N, Uemura M, Yamamoto H, Doki Y, Eguchi H. The Role of KRAS Mutations in Colorectal Cancer: Biological Insights, Clinical Implications, and Future Therapeutic Perspectives. Cancers (Basel) 2025; 17:428. [PMID: 39941797 PMCID: PMC11816235 DOI: 10.3390/cancers17030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer mortality globally, with KRAS mutations occurring in 30-40% of cases, contributing to poor prognosis and resistance to anti-EGFR therapy. This review explores the biological significance, clinical implications, and therapeutic targeting of KRAS mutations in CRC. Methods: A comprehensive analysis of the existing literature and clinical trials was performed, highlighting the role of KRAS mutations in CRC pathogenesis, their impact on prognosis, and recent advancements in targeted therapies. Specific attention was given to emerging therapeutic strategies and resistance mechanisms. Results: KRAS mutations drive tumor progression through persistent activation of MAPK/ERK and PI3K/AKT signaling pathways. These mutations influence the tumor microenvironment, cancer stem cell formation, macropinocytosis, and cell competition. KRAS-mutant CRC exhibits poor responsiveness to anti-EGFR monoclonal antibodies and demonstrates primary and acquired resistance to KRAS inhibitors. Recent breakthroughs include the development of KRAS G12C inhibitors (sotorasib and adagrasib) and promising agents targeting G12D mutations. However, response rates in CRC remain suboptimal compared to other cancers, necessitating combination therapies and novel approaches, such as vaccines, nucleic acid-based therapeutics, and macropinocytosis inhibitors. Conclusions: KRAS mutations are central to CRC pathogenesis and present a significant therapeutic challenge. Advances in KRAS-targeted therapies offer hope for improved outcomes, but resistance mechanisms and organ-specific differences limit efficacy. Continued efforts in personalized treatment strategies and translational research are critical for overcoming these challenges and improving patient survival.
Collapse
Affiliation(s)
- Mitsunobu Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Maruyama K, Shimizu Y, Nomura Y, Oh-Hara T, Takahashi Y, Nagayama S, Fujita N, Katayama R. Mechanisms of KRAS inhibitor resistance in KRAS-mutant colorectal cancer harboring Her2 amplification and aberrant KRAS localization. NPJ Precis Oncol 2025; 9:4. [PMID: 39762482 PMCID: PMC11704227 DOI: 10.1038/s41698-024-00793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
KRAS-specific inhibitors have shown promising antitumor effects, especially in non-small cell lung cancer, but limited efficacy in colorectal cancer (CRC) patients. Recent studies have shown that EGFR-mediated adaptive feedback mediates primary resistance to KRAS inhibitors, but the other resistance mechanisms have not been identified. In this study, we investigated intrinsic resistance mechanisms to KRAS inhibitors using patient-derived CRC cells (CRC-PDCs). We found that KRAS-mutated CRC-PDCs can be divided into at least an EGFR pathway-activated group and a PI3K/AKT pathway-activated group. In the latter group, PDCs with PIK3CA major mutation showed high sensitivity to PI3K+mTOR co-inhibition, and a PDC with Her2 amplification with PIK3CA minor mutation showed PI3K-AKT pathway dependency but lost KRAS-MAPK dependency by cytoplasmic localization of KRAS. In the PDC, Her2 knockout restored KRAS plasma membrane localization and KRAS inhibitor sensitivity. The current study provides insight into the mechanisms of primary resistance to KRAS inhibitors, including aberrant KRAS localization.
Collapse
Affiliation(s)
- Kohei Maruyama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Shimizu
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yumi Nomura
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama, Japan
- Division of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomoko Oh-Hara
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuki Takahashi
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama, Japan
- Division of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Chen Y, Yin Z, Westover KD, Zhou Z, Shu L. Advances and Challenges in RAS Signaling Targeted Therapy in Leukemia. Mol Cancer Ther 2025; 24:33-46. [PMID: 39404173 DOI: 10.1158/1535-7163.mct-24-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025]
Abstract
RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. Although much is known about RAS function in the last 40 years, a substantial knowledge gap remains in understanding the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA-approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D, in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supported by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss the recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhenghao Yin
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Kenneth D Westover
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Zhiwei Zhou
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Liping Shu
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China
| |
Collapse
|
21
|
Yamamoto G, Tanaka K, Kamata R, Saito H, Yamamori-Morita T, Nakao T, Liu J, Mori S, Yagishita S, Hamada A, Shinno Y, Yoshida T, Horinouchi H, Ohe Y, Watanabe SI, Yatabe Y, Kitai H, Konno S, Kobayashi SS, Ohashi A. WEE1 confers resistance to KRAS G12C inhibitors in non-small cell lung cancer. Cancer Lett 2024; 611:217414. [PMID: 39725152 DOI: 10.1016/j.canlet.2024.217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
KRASG12C inhibitors sotorasib and adagrasib have been approved for the treatment of KRASG12C-mutant non-small cell lung cancer (NSCLC). However, the efficacy of single-agent treatments is limited, presumably due to multiple resistance mechanisms. To overcome these therapeutic limitations, combination strategies that potentiate the antitumor efficacy of KRASG12C inhibitors must be developed. Through unbiased high-throughput screening of 1395 kinase inhibitors, we identified adavosertib, a WEE1 inhibitor, as a promising combination partner of sotorasib. The combination of sotorasib and adavosertib exhibited synergistic antiproliferative activities both in vitro and in vivo, irrespective of TP53, STK11, and KEAP1 co-mutation profiles. WEE1 inhibition potentiated MCL-1-mediated apoptosis in sotorasib-treated cancer cells. Mechanistically, the combination downregulated MCL-1 protein levels by attenuating de novo translation and enhancing its degradation. WEE1 overexpression conferred resistance against sotorasib via MCL-1 upregulation. Moreover, cells that acquired sotorasib resistance profoundly upregulated both WEE1 and MCL-1 proteins, highlighting WEE1 as a crucial driver of sotorasib resistance. Importantly, WEE1 inhibition re-sensitized resistant cells to sotorasib treatment. The current findings demonstrate that combined inhibition of KRASG12C and WEE1 not only exhibits synergistic antitumor efficacy but also overcomes resistance to KRASG12C inhibitors, thus representing a novel therapeutic strategy for KRASG12C-mutant NSCLC.
Collapse
Affiliation(s)
- Gaku Yamamoto
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Informatics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kosuke Tanaka
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Cancer Immunology, National Cancer Center Research Institute, Tokyo, Japan.
| | - Ryo Kamata
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hitoshi Saito
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tomoko Yamamori-Morita
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Takehiro Nakao
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Jie Liu
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shunta Mori
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Division of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Hidenori Kitai
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Akihiro Ohashi
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan.
| |
Collapse
|
22
|
Song X, Zhou Z, Elmezayen A, Wu R, Yu C, Gao B, Minna JD, Westover KD, Zeh HJ, Kroemer G, Heasley LE, Kang R, Tang D. SRC kinase drives multidrug resistance induced by KRAS-G12C inhibition. SCIENCE ADVANCES 2024; 10:eadq4274. [PMID: 39661665 PMCID: PMC11633746 DOI: 10.1126/sciadv.adq4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Direct targeting of the KRAS-G12C-mutant protein using covalent inhibitors (G12Ci) acts on human non-small cell lung cancer (NSCLC). However, drug resistance is an emerging concern in this approach. Here, we show that MRTX849, a covalent inhibitor targeting the KRAS-G12C mutation, leads to the reactivation of the mitogen-activated protein kinase signaling pathway in MRTX849-resistant NSCLC and pancreatic ductal adenocarcinoma. A genome-wide CRISPR screen revealed that the adenosine triphosphate binding cassette transporter ABCC1 mediates MRTX849 resistance. Functional studies demonstrated that the transcription factor JUN drives ABCC1 expression, resulting in multidrug resistance. An unbiased drug screen identified the tyrosine kinase inhibitor dasatinib that potentiates MRTX849 efficacy by inhibiting SRC-dependent JUN activation, avoiding multidrug resistance and tumor suppression in vitro as well as in suitable preclinical mouse models and patient-derived organoids. SRC inhibitors (DGY-06-116, dasatinib, and bosutinib) also exhibit synergistic effects with MRTX849 in eliminating various tumor cell lines carrying KRAS-G12C mutations. Thus, SRC inhibitors amplify the therapeutic utility of G12Ci.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ammar Elmezayen
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Wang K, Zhang X, Fan Y, Zhou L, Duan Y, Li S, Sun Z, Zhang C, Yang H, Yuan W, Peng L, Ma X, Xiang S, Wang T, Yang M, Zhang Z, Wang J, Wang Z, Qian M. Reactivation of MAPK-SOX2 pathway confers ferroptosis sensitivity in KRAS G12C inhibitor resistant tumors. Redox Biol 2024; 78:103419. [PMID: 39527862 PMCID: PMC11585794 DOI: 10.1016/j.redox.2024.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The clinical success of KRASG12C inhibitors (G12Ci) including AMG510 and MRTX849 is limited by the eventual development of acquired resistance. A novel and effective treatment to revert or target this resistance is urgent. To this end, we established G12Ci (AMG510 and MRTX849) resistant KRASG12C mutant cancer cell lines and screened with an FDA-approved drug library. We found the ferroptosis inducers including sorafenib and lapatinib stood out with an obvious growth inhibition in the G12Ci resistant cells. Mechanistically, the G12Ci resistant cells exhibited reactivation of MAPK signaling, which repressed SOX2-mediated expression of cystine transporter SLC7A11 and iron exporter SLC40A1. Consequently, the low intracellular GSH level but high iron content engendered hypersensitivity of these resistant tumors to ferroptosis inducers. Ectopic overexpression of SOX2 or SLC7A11 and SLC40A1 conferred resistance to ferroptosis in the G12Ci resistant cells. Ferroptosis induced by sulfasalazine (SAS) achieved obvious inhibition on the tumor growth of xenografts derived from AMG510-resistant KRASG12C-mutant cells. Collectively, our results suggest a novel therapeutic strategy to treat patients bearing G12Ci resistant cancers with ferroptosis inducers.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufei Fan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Liang Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yajun Duan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Su Li
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongkan Sun
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chunqian Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Haoyu Yang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenxiu Yuan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Linyuan Peng
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoyu Ma
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Siliang Xiang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianzhi Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Mei Yang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhenyuan Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxuan Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongyuan Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Minxian Qian
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
24
|
Li T, Gu C, Zhou C, Mao C, Yang K, Xu J, Lu T, Chen J. Insights into direct KRAS inhibition strategies for cancer treatment. Future Med Chem 2024; 16:2411-2429. [PMID: 39569642 PMCID: PMC11622815 DOI: 10.1080/17568919.2024.2424149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
KRAS is the most commonly mutated isoform in RAS-driven cancers. In the early stage, KRAS was deemed as an "undruggable" cancer target due to the lack of suitable binding pockets. With the development of KRAS inhibitors in recent years, strategies that directly suppress oncogenic KRAS have achieved significant breakthroughs. In this review, we summarize recent advances in direct small-molecule KRAS inhibitors used for cancer therapy, highlighting their medicinal chemistry optimization processes. Moreover, new PROTACs targeting the KRAS mutation are also presented. Additionally, we put forward the challenges and prospects for the development of future KRAS inhibitors.
Collapse
Affiliation(s)
- Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL32610, United States
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines & Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
25
|
Novoplansky O, Jagadeeshan S, Prasad M, Yegodayev KM, Marripati D, Shareb RA, Greenshpan Y, Mathukkada S, Ben-Lulu T, Bhattacharya B, Porgador A, Kong D, Brägelmann J, Gutkind JS, Elkabets M. Dual inhibition of HERs and PD-1 counteract resistance in KRAS G12C-mutant head and neck cancer. J Exp Clin Cancer Res 2024; 43:308. [PMID: 39567998 PMCID: PMC11577641 DOI: 10.1186/s13046-024-03227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Basket clinical trials targeting the KRASG12C-mutation in solid tumors have shown initial promise, including in orphan KRASG12C head and neck cancer (HNC). However, development of resistance to KRASG12C-mutant-specific inhibitors (KRASG12Ci) remains a major obstacle. Here, we investigated the intrinsic (tumor-cell autonomus) and tumor-microenvironment (TME) mechanisms of resistance to the KRASG12Ci-MRTX849 and AMG510 in a unique syngenic murine KRASG12C-mutated HNC cell line. METHODS Western-blotting was used for protein abundance and activation, overexpression, and ligand activation studies to verify the intrinsic mechanism of resistance to KRASG12Ci in KRASG12C-mutated HNC cell line, 4NQO-L. In vitro KRASG12C-acquired-resistant cells were developed from 4NQO-L (4NQO-L-AcR). MRTX849/lapatinib combination efficacy, and CD8+ T-cells depletion, were assessed in C57BL/6 J mice and supplementation of anti-PD-1 (αPD-1) to MRTX849/lapatinib was also performed in 4NQO-L- KRASG12Ci-senisitve and 4NQO-L-AcR tumors. Immunohistochemistry (IHC) and Immunoflourescence (IF) analyses were performed to profile the TME and programmed death-ligand 1 (PD-L1) expression in tumors. RESULTS Activation and upregulation of EGFR and HER2/3 (pan-HERs) are the intrinsic mechanism of resistance to KRASG12Ci in 4NQO-L cells, and blocking pan-HERs signaling with lapatinib enhanced MRTX849 efficacy in vitro by inhibiting the MAPK and AKT/mTOR pathways. 4NQO-L-AcR upregulated the expression of pan-HERs, and lapatinib treatment re-sensitized 4NQO-L-AcR to MRTX849. In mice, MRTX849 showed a slight anti-tumor effect, but in combination with lapatinib a significant tumor growth delay was observed, but all tumors progressed over time. Histopathology analysis of the TME revealed infiltration of CD8+ T-cells after treatment combination, and these CD8+ T-cells play a key role in MRTX849/lapatinib efficacy. MRTX849/lapatinib treatment upregulated PD-L1 overexpression in both stromal and tumor cells, which presumably suppressed CD8+ T-cells and enabled immune escape and tumor progression. Supplementation of αPD-1 prolonged the progression-free survival of 4NQO-L-bearing mice treated with MRTX849/lapatinib. MRTX849/lapatinib treatment delayed tumor growth of 4NQO-L-AcR in mice; however, the percentages of CD8+ T-cells in 4NQO-L-AcR were low, and supplementation of MRTX849/lapatinib with αPD-1 did not improve the outcome. CONCLUSIONS Our study highlights the critical need for blocking both intrinsic and extrinsic mechanisms of resistance for the prolonged response and shows that such treatment is ineffective in KRASG12Ci-AcR tumors.
Collapse
Affiliation(s)
- Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia M Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Divyasree Marripati
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Raghda Abu Shareb
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sooraj Mathukkada
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Talal Ben-Lulu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Baisali Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Johannes Brägelmann
- Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, 50937, Cologne, Germany
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
26
|
Zhao X, Zheng Y, Wang Y, Zhang M, Dong Z, Liu Y, Sun M. The Potential Treatment Options and Combination Strategies of KRAS-Mutated Lung Cancer. Onco Targets Ther 2024; 17:1041-1057. [PMID: 39564454 PMCID: PMC11575457 DOI: 10.2147/ott.s484209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
In non-small cell lung cancer (NSCLC), Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are found in up to 30% of all cases, with the most prevalent mutations occurring in codons 12 and 13. The development of KRAS-targeted drugs like sotorasib and adagrasib has generated significant excitement in the clinical arena, offering new therapeutic options. Their potential for combination with other treatments broadens the scope for clinical exploration. Acquired resistance to KRAS exon 2 p.G12C inhibitors is a significant challenge, with several reported mechanisms. In this scenario, combination therapy strategies that include targeting Src Homology Region 2 Domain-Containing Phosphatase-2 (SHP2), Son of Sevenless Homolog 1 (SOS1), or downstream effectors of KRAS exon 2 p.G12C are showing promise in overcoming such resistance. However, the efficacy of immune checkpoint inhibitors in this context still requires comprehensive evaluation. The response to anti-Programmed Cell Death Protein 1/Programmed Cell Death Protein 1 Ligand (anti-PD-1/PD-L1) drugs in NSCLC may be significantly influenced by co-occurring mutations, underscoring the need for a personalized approach to treatment based on the specific genetic profile of each tumor.
Collapse
Affiliation(s)
- Xinchao Zhao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Yawen Zheng
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Yufeng Wang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Mingyan Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Zhilin Dong
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Yanan Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
27
|
Deng D, Begum H, Liu T, Zhang J, Zhang Q, Chu TY, Li H, Lemenze A, Hoque M, Soteropoulos P, Hou P. NFAT5 governs cellular plasticity-driven resistance to KRAS-targeted therapy in pancreatic cancer. J Exp Med 2024; 221:e20240766. [PMID: 39432061 PMCID: PMC11497412 DOI: 10.1084/jem.20240766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Resistance to KRAS therapy in pancreatic ductal adenocarcinoma (PDAC) involves cellular plasticity, particularly the epithelial-to-mesenchymal transition (EMT), which poses challenges for effective targeting. Chronic pancreatitis, a known risk factor for PDAC, elevates TGFβ levels in the tumor microenvironment (TME), promoting resistance to KRAS therapy. Mechanistically, TGFβ induces the formation of a novel protein complex composed of SMAD3, SMAD4, and the nuclear factor NFAT5, triggering EMT and resistance by activating key mediators such as S100A4. Inhibiting NFAT5 attenuates pancreatitis-induced resistance to KRAS inhibition and extends mouse survival. Additionally, TGFβ stimulates PDAC cells to secrete CCL2, recruiting macrophages that contribute to KRAS bypass through paracrine S100A4. Our findings elucidate the role of TGFβ signaling in EMT-associated KRAS therapy resistance and identify NFAT5 as a druggable target. Targeting NFAT5 could disrupt this regulatory network, offering a potential avenue for preventing resistance in PDAC.
Collapse
Affiliation(s)
- Daiyong Deng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University New Jersey Medical School, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Habeebunnisa Begum
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University New Jersey Medical School, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Tong Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University New Jersey Medical School, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Jiangyan Zhang
- Center for Immunity and Inflammation, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting-yu Chu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University New Jersey Medical School, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University New Jersey Medical School, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Patricia Soteropoulos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - Pingping Hou
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University New Jersey Medical School, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University New Jersey Medical School, Newark, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Anastasiou P, Moore C, Rana S, Tomaschko M, Pillsbury CE, de Castro A, Boumelha J, Mugarza E, de Carné Trécesson S, Mikolajczak A, Blaj C, Goldstone R, Smith JAM, Quintana E, Molina-Arcas M, Downward J. Combining RAS(ON) G12C-selective inhibitor with SHP2 inhibition sensitises lung tumours to immune checkpoint blockade. Nat Commun 2024; 15:8146. [PMID: 39322643 PMCID: PMC11424635 DOI: 10.1038/s41467-024-52324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Mutant selective drugs targeting the inactive, GDP-bound form of KRASG12C have been approved for use in lung cancer, but resistance develops rapidly. Here we use an inhibitor, (RMC-4998) that targets RASG12C in its active, GTP-bound form, to treat KRAS mutant lung cancer in various immune competent mouse models. RAS pathway reactivation after RMC-4998 treatment could be delayed using combined treatment with a SHP2 inhibitor, which not only impacts tumour cell RAS signalling but also remodels the tumour microenvironment to be less immunosuppressive. In an immune inflamed model, RAS and SHP2 inhibitors in combination drive durable responses by suppressing tumour relapse and inducing development of immune memory. In an immune excluded model, combined RAS and SHP2 inhibition sensitises tumours to immune checkpoint blockade, leading to efficient tumour immune rejection. These preclinical results demonstrate the potential of the combination of RAS(ON) G12C-selective inhibitors with SHP2 inhibitors to sensitize tumours to immune checkpoint blockade.
Collapse
Affiliation(s)
| | | | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Andrea de Castro
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Ania Mikolajczak
- Experimental Histopathology, Francis Crick Institute, London, UK
| | | | - Robert Goldstone
- Bioinformatics & Biostatistics Science Technology Platform, Francis Crick Institute, London, UK
| | | | | | | | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
29
|
Chour A, Toffart AC, Berton E, Duruisseaux M. Mechanisms of resistance to KRASG12C inhibitors in KRASG12C-mutated non-small cell lung cancer. Front Oncol 2024; 14:1328728. [PMID: 39301544 PMCID: PMC11410594 DOI: 10.3389/fonc.2024.1328728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/25/2024] [Indexed: 09/22/2024] Open
Abstract
The KRAS protein, a product of the KRAS gene (V-ki-ras2 Kirsten rat sarcoma viral oncogene homolog), functions as a small GTPase that alternates between an active GTP-bound state (KRAS(ON)) and an inactive GDP-bound state (KRAS(OFF)). The KRASG12C mutation results in the accumulation of KRASG12C(OFF), promoting cell cycle survival and proliferation primarily through the canonical MAPK and PI3K pathways. The KRASG12C mutation is found in 13% of lung adenocarcinomas. Previously considered undruggable, sotorasib and adagrasib are the first available OFF-state KRASG12C inhibitors, but treatment resistance is frequent. In this review, after briefly summarizing the KRAS pathway and the mechanism of action of OFF-state KRASG12C inhibitors, we discuss primary and acquired resistance mechanisms. Acquired resistance is the most frequent, with "on-target" mechanisms such as a new KRAS mutation preventing inhibitor binding; and "off-target" mechanisms leading to bypass of KRAS through gain-of-function mutations in other oncogenes such as NRAS, BRAF, and RET; or loss-of-function mutations in tumor suppressor genes such as PTEN. Other "off-target" mechanisms described include epithelial-to-mesenchymal transition and histological transformation. Multiple co-existing mechanisms can be found in patients, but few cases have been published. We highlight the lack of data on non-genomic resistance and the need for comprehensive clinical studies exploring histological, genomic, and non-genomic changes at resistance. This knowledge could help foster new treatment initiatives in this challenging context.
Collapse
Affiliation(s)
- Ali Chour
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
- Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Lyon, France
- Université Claude Bernard, Université de Lyon, Lyon, France
| | - Anne-Claire Toffart
- Service de Pneumologie et Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, Grenoble, France
| | - Elodie Berton
- Service de Pneumologie et Physiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Michael Duruisseaux
- Respiratory Department and Early Phase (EPSILYON), Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
- Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Lyon, France
- Université Claude Bernard, Université de Lyon, Lyon, France
| |
Collapse
|
30
|
Xiao A, Fakih M. KRAS G12C Inhibitors in the Treatment of Metastatic Colorectal Cancer. Clin Colorectal Cancer 2024; 23:199-206. [PMID: 38825433 DOI: 10.1016/j.clcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
KRAS mutations contribute substantially to the overall colorectal cancer burden and have long been a focus of drug development efforts. After a lengthy preclinical road, KRAS inhibition via the G12C allele has finally become a therapeutic reality. Unlike in NSCLC, early studies of KRAS inhibitors in CRC struggled to demonstrate single agent activity. Investigation into these tissue-specific treatment differences has led to a deeper understanding of the complexities of MAPK signaling and the diverse adaptive feedback responses to KRAS inhibition. EGFR reactivation has emerged as a principal resistance mechanism to KRAS inhibitor monotherapy. Thus, the field has pivoted to dual EGFR/KRAS blockade with promising efficacy. Despite significant strides in the treatment of KRAS G12C mutated CRC, new challenges are on the horizon. Alternative RTK reactivation and countless acquired molecular resistance mechanisms have shifted the treatment goalpost. This review focuses on the historical and contemporary clinical strategies of targeting KRAS G12C alterations in CRC and highlights future directions to overcome treatment challenges.
Collapse
Affiliation(s)
- Annie Xiao
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd. Duarte, CA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd. Duarte, CA.
| |
Collapse
|
31
|
Thatikonda V, Lyu H, Jurado S, Kostyrko K, Bristow CA, Albrecht C, Alpar D, Arnhof H, Bergner O, Bosch K, Feng N, Gao S, Gerlach D, Gmachl M, Hinkel M, Lieb S, Jeschko A, Machado AA, Madensky T, Marszalek ED, Mahendra M, Melo-Zainzinger G, Molkentine JM, Jaeger PA, Peng DH, Schenk RL, Sorokin A, Strauss S, Trapani F, Kopetz S, Vellano CP, Petronczki M, Kraut N, Heffernan TP, Marszalek JR, Pearson M, Waizenegger IC, Hofmann MH. Co-targeting SOS1 enhances the antitumor effects of KRAS G12C inhibitors by addressing intrinsic and acquired resistance. NATURE CANCER 2024; 5:1352-1370. [PMID: 39103541 PMCID: PMC11424490 DOI: 10.1038/s43018-024-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Combination approaches are needed to strengthen and extend the clinical response to KRASG12C inhibitors (KRASG12Ci). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12Ci seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12Ci treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12Ci naive and relapsed KRASG12C-mutant tumors.
Collapse
Affiliation(s)
- Venu Thatikonda
- Boehringer Ingelheim RCV, Vienna, Austria.
- Exscientia, Vienna, Austria.
| | - Hengyu Lyu
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Christopher A Bristow
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Ningping Feng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Annette A Machado
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ethan D Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jessica M Molkentine
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - David H Peng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Timothy P Heffernan
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
32
|
Takeda M, Theardy MS, Sorokin A, Coker O, Kanikarla P, Chen S, Yang Z, Nguyen P, Wei Y, Yao J, Wang X, Yan L, Jin Y, Cai Y, Paku M, Chen Z, Li KZ, Citron F, Tomihara H, Gao S, Deem AK, Zhao J, Wang H, Hanash S, DePinho RA, Maitra A, Draetta GF, Ying H, Kopetz S, Yao W. Therapeutic targeting of Syndecan-1 axis overcomes acquired resistance to KRAS-targeted therapy in gastrointestinal cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606865. [PMID: 39211217 PMCID: PMC11361106 DOI: 10.1101/2024.08.06.606865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The therapeutic benefit of recently developed mutant KRAS (mKRAS) inhibitors has been limited by the rapid onset of resistance. Here, we aimed to delineate the mechanisms underlying acquired resistance to mKRAS inhibition and identify actionable targets for overcoming this clinical challenge. Previously, we identified Syndecan-1 (SDC1) as a key effector for pancreatic cancer progression whose surface expression is driven by mKRAS. By leveraging both pancreatic and colorectal cancer models, we found that surface SDC1 expression was initially diminished upon mKRAS inhibition, but recovered in tumor cells that bypass mKRAS dependency. Functional studies showed that these tumors depended on SDC1 for survival, further establishing SDC1 as a driver for the acquired resistance to mKRAS inhibition. Mechanistically, we revealed that the YAP1-SDC1 axis was the major driving force for bypassing mKRAS dependency to sustain nutrient salvage machinery and tumor maintenance. Specifically, YAP1 activation mediated the recovery of SDC1 localization on cell surface that sustained macropinocytosis and enhanced the activation of multiple RTKs, promoting resistance to KRAS-targeted therapy. Overall, our study has provided the rationale for targeting the YAP-SDC1 axis to overcome resistance to mKRAS inhibition, thereby revealing new therapeutic opportunities for improving the clinical outcome of patients with KRAS-mutated cancers.
Collapse
|
33
|
Harris E, Thawani R. Current perspectives of KRAS in non-small cell lung cancer. Curr Probl Cancer 2024; 51:101106. [PMID: 38879917 DOI: 10.1016/j.currproblcancer.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
NSCLC has a diverse genomic background with mutations in key proto-oncogenic drivers including Kirsten rat sarcoma (KRAS) and epidermal growth factor receptor (EGFR). Roughly 40% of adenocarcinoma harbor Kras activating mutations regardless of smoking history. Most KRAS mutations are located at G12, which include G12C (roughly 40%), G12V (roughly 20%), and G12D (roughly 15%). KRAS mutated NSCLC have higher tumor mutational burden and some have increased PD-1 expression, which has resulted in better responses to immunotherapy than other oncogenes. While initial treatment for metastatic NSCLC still relies on chemo-immunotherapy, directly targeting KRAS has proven to be efficacious in treating patients with KRAS mutated metastatic NSCLC. To date, two G12C inhibitors have been FDA-approved, namely sotorasib and adagrasib. In this review, we summarize the different drug combinations used to target KRAS G12c, upcoming G12D inhibitors and novel therapies targeting KRAS.
Collapse
Affiliation(s)
- Ethan Harris
- Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637. USA
| | - Rajat Thawani
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637. USA.
| |
Collapse
|
34
|
Oliveira SM, Carvalho PD, Serra-Roma A, Oliveira P, Ribeiro A, Carvalho J, Martins F, Machado AL, Oliveira MJ, Velho S. Fibroblasts Promote Resistance to KRAS Silencing in Colorectal Cancer Cells. Cancers (Basel) 2024; 16:2595. [PMID: 39061234 PMCID: PMC11274566 DOI: 10.3390/cancers16142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) responses to KRAS-targeted inhibition have been limited due to low response rates, the mechanisms of which remain unknown. Herein, we explored the cancer-associated fibroblasts (CAFs) secretome as a mediator of resistance to KRAS silencing. CRC cell lines HCT15, HCT116, and SW480 were cultured either in recommended media or in conditioned media from a normal colon fibroblast cell line (CCD-18Co) activated with rhTGF-β1 to induce a CAF-like phenotype. The expression of membrane stem cell markers was analyzed by flow cytometry. Stem cell potential was evaluated by a sphere formation assay. RNAseq was performed in KRAS-silenced HCT116 colonospheres treated with either control media or conditioned media from CAFs. Our results demonstrated that KRAS-silencing up-regulated CD24 and down-regulated CD49f and CD104 in the three cell lines, leading to a reduction in sphere-forming efficiency. However, CAF-secreted factors restored stem cell marker expression and increased stemness. RNA sequencing showed that CAF-secreted factors up-regulated genes associated with pro-tumorigenic pathways in KRAS-silenced cells, including KRAS, TGFβ, NOTCH, WNT, MYC, cell cycle progression and exit from quiescence, epithelial-mesenchymal transition, and immune regulation. Overall, our results suggest that resistance to KRAS-targeted inhibition might derive not only from cell-intrinsic causes but also from external elements, such as fibroblast-secreted factors.
Collapse
Affiliation(s)
- Susana Mendonça Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Patrícia Dias Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André Serra-Roma
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Patrícia Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Andreia Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Flávia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Luísa Machado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria José Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-177 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
35
|
Kitai H, Choi PH, Yang YC, Boyer JA, Whaley A, Pancholi P, Thant C, Reiter J, Chen K, Markov V, Taniguchi H, Yamaguchi R, Ebi H, Evans J, Jiang J, Lee B, Wildes D, de Stanchina E, Smith JAM, Singh M, Rosen N. Combined inhibition of KRAS G12C and mTORC1 kinase is synergistic in non-small cell lung cancer. Nat Commun 2024; 15:6076. [PMID: 39025835 PMCID: PMC11258147 DOI: 10.1038/s41467-024-50063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Current KRASG12C (OFF) inhibitors that target inactive GDP-bound KRASG12C cause responses in less than half of patients and these responses are not durable. A class of RASG12C (ON) inhibitors that targets active GTP-bound KRASG12C blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity. We have previously shown that PI3K/mTOR and ERK-signaling pathways converge on key cellular processes and that inhibition of both pathways is required for inhibition of these processes and for significant antitumor activity. We find here that the combination of a KRASG12C inhibitor with a selective mTORC1 kinase inhibitor causes synergistic inhibition of Cyclin D1 expression and cap-dependent translation. Moreover, BIM upregulation by KRASG12C inhibition and inhibition of MCL-1 expression by the mTORC1 inhibitor are both required to induce significant cell death. In vivo, this combination causes deep, durable tumor regressions and is well tolerated. This study suggests that the ERK and PI3K/mTOR pathways each mitigate the effects of inhibition of the other and that combinatorial inhibition is a potential strategy for treating KRASG12C-dependent lung cancer.
Collapse
Affiliation(s)
- Hidenori Kitai
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip H Choi
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu C Yang
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Jacob A Boyer
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adele Whaley
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priya Pancholi
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire Thant
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Reiter
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Chen
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - James Evans
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Jingjing Jiang
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Bianca Lee
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - David Wildes
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mallika Singh
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA.
| | - Neal Rosen
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Diao Y, Huang S, Liu F, Liao S, Guan C, Xiong X, Zhang P, Li J, Zhang W, Ying Y. CCL2 promotes EGFR-TKIs resistance in non-small cell lung cancer via the AKT-EMT pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1549-1560. [PMID: 38961814 PMCID: PMC11532253 DOI: 10.3724/abbs.2024106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 07/05/2024] Open
Abstract
Acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) represents a primary cause of treatment failure in non-small cell lung cancer (NSCLC) patients. Chemokine (C-C motif) ligand 2 (CCL2) is recently found to play a pivotal role in determining anti-cancer treatment response. However, the role and mechanism of CCL2 in the development of EGFR-TKIs resistance have not been fully elucidated. In the present study, we focus on the function of CCL2 in the development of acquired resistance to EGFR-TKIs in NSCLC cells. Our results show that CCL2 is aberrantly upregulated in EGFR-TKIs-resistant NSCLC cells and that CCL2 overexpression significantly diminishes sensitivity to EGFR-TKIs. Conversely, CCL2 suppression by CCL2 synthesis inhibitor, bindarit, or CCL2 knockdown can reverse this resistance. CCL2 upregulation can also lead to enhanced migration and increased expressions of epithelial-mesenchymal transition (EMT) markers in EGFR-TKI-resistant NSCLC cells, which could also be rescued by CCL2 knockdown or inhibition. Furthermore, our findings suggest that CCL2-dependent EGFR-TKIs resistance involves the AKT-EMT signaling pathway; inhibition of this pathway effectively attenuates CCL2-induced cell migration and EMT marker expression. In summary, CCL2 promotes the development of acquired EGFR-TKIs resistance and EMT while activating AKT signaling in NSCLC. These insights suggest a promising avenue for the development of CCL2-targeted therapies that prevent EGFR-TKIs resistance in NSCLC.
Collapse
Affiliation(s)
- Yunlian Diao
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious DiseasesJiangxi Medical Center for Major Public Health Eventsthe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Shibo Huang
- The Clinical Trial Research Centerthe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Fangpeng Liu
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Shu Liao
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Chenxi Guan
- Department of PhysiologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Xiaojian Xiong
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious DiseasesJiangxi Medical Center for Major Public Health Eventsthe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Ping Zhang
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious DiseasesJiangxi Medical Center for Major Public Health Eventsthe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Junyao Li
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious DiseasesJiangxi Medical Center for Major Public Health Eventsthe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Wei Zhang
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious DiseasesJiangxi Medical Center for Major Public Health Eventsthe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious DiseasesJiangxi Medical Center for Major Public Health Eventsthe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
| |
Collapse
|
37
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
38
|
Zhou Z, Lin T, Chen S, Zhang G, Xu Y, Zou H, Zhou A, Zhang Y, Weng S, Han X, Liu Z. Omics-based molecular classifications empowering in precision oncology. Cell Oncol (Dordr) 2024; 47:759-777. [PMID: 38294647 DOI: 10.1007/s13402-023-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND In the past decades, cancer enigmatical heterogeneity at distinct expression levels could interpret disparities in therapeutic response and prognosis. It built hindrances to precision medicine, a tactic to tailor customized treatment informed by the tumors' molecular profile. Single-omics analysis dissected the biological features associated with carcinogenesis to some extent but still failed to revolutionize cancer treatment as expected. Integrated omics analysis incorporated tumor biological networks from diverse layers and deciphered a holistic overview of cancer behaviors, yielding precise molecular classification to facilitate the evolution and refinement of precision medicine. CONCLUSION This review outlined the biomarkers at multiple expression layers to tutor molecular classification and pinpoint tumor diagnosis, and explored the paradigm shift in precision therapy: from single- to multi-omics-based subtyping to optimize therapeutic regimens. Ultimately, we firmly believe that by parsing molecular characteristics, omics-based typing will be a powerful assistant for precision oncology.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
39
|
Shen H, Li C. Global research trends in immunotherapy for non-small cell lung cancer patients with KRAS mutations: a bibliometric analysis. Front Oncol 2024; 14:1385761. [PMID: 38817907 PMCID: PMC11137258 DOI: 10.3389/fonc.2024.1385761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Background Immunotherapy, frequently combined with conventional chemotherapy, is crucial for treating NSCLC. Kirsten rat sarcoma virus (KRAS) is a poor prognostic factor in patients with NSCLC, particularly lung adenocarcinoma, where binding of conventional inhibitors to mutated KRAS proteins is challenging. Field profiles, research hotspots, and prospects for immunotherapy for patients with NSCLC-carrying KRAS mutations were uncovered in this study. Methods Microsoft Excel 2019, Bibliometrix, VOSviewer software, and Citespace were utilized to conduct a comprehensive scientometric analysis and understand a specific research field's knowledge base and frontiers aided by bibliometrics. Results Between 2014 and 2023, 398 eligible documents in the English language were acquired using the WoSCC database, of which 113 and 285 were reviews and articles, respectively. The growth rate per year was 34.25 %. The most cited articles were from the United States, and China published the highest number of articles. Cancers was the journal, with increased publications in recent years. The keywords with the strongest citation bursts were analyzed using Citespace. "Immune checkpoint inhibitors," "co-occurring genomic alterations," and "KRAS" are among the research hotspots in this field. Conclusion Using bibliometric and visual analyses, we examined immunotherapy for patients with KRAS-mutant NSCLC over the previous decade. The whole analysis showed a steady, quick increase in yearly publications in this area. Our findings will provide a roadmap for future research on the mechanisms of immunotherapy and immune checkpoint inhibitor action in treating KRAS-mutant NSCLC.
Collapse
Affiliation(s)
- Hanyu Shen
- Department of Clinical Laboratory, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People’s Hospital, Wuxi, Jiangsu, China
| | - Chunxiao Li
- Department of Surgery, Wuxi Huishan No.2 People’s Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
40
|
Torres-Jiménez J, Espinar JB, de Cabo HB, Berjaga MZ, Esteban-Villarrubia J, Fraile JZ, Paz-Ares L. Targeting KRAS G12C in Non-Small-Cell Lung Cancer: Current Standards and Developments. Drugs 2024; 84:527-548. [PMID: 38625662 DOI: 10.1007/s40265-024-02030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Among the most common molecular alterations detected in non-small-cell lung cancer (NSCLC) are mutations in Kristen Rat Sarcoma viral oncogene homolog (KRAS). KRAS mutant NSCLC is a heterogenous group of diseases, different from other oncogene-driven tumors in terms of biology and response to therapies. Despite efforts to develop drugs aimed at inhibiting KRAS or its signaling pathways, KRAS had remained undruggable for decades. The discovery of a small pocket in the binding switch II region of KRASG12C has revolutionized the treatment of KRASG12C-mutated NSCLC patients. Sotorasib and adagrasib, direct KRASG12C inhibitors, have been approved by the US Food and Drug Administration (FDA) and other regulatory agencies for patients with previously treated KRASG12C-mutated NSCLC, and these advances have become practice changing. However, first-line treatment in KRASG12C-mutated NSCLC does not differ from NSCLC without actionable driver genomic alterations. Treatment with KRASG12C inhibitors is not curative and patients develop progressive disease, so understanding associated mechanisms of drug resistance is key. New KRASG12C inhibitors and several combination therapy strategies, including with immune checkpoint inhibitors, are being studied in clinical trials. The aim of this review is to explore the clinical impact of KRAS, and outline different treatment approaches, focusing on the novel treatment of KRASG12C-mutated NSCLC.
Collapse
Affiliation(s)
- Javier Torres-Jiménez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain.
| | - Javier Baena Espinar
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Helena Bote de Cabo
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - María Zurera Berjaga
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Jorge Esteban-Villarrubia
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Jon Zugazagoitia Fraile
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO (Centro Nacional de Investigaciones Oncológicas) and Instituto de Investigación i+12, Madrid, Spain
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO (Centro Nacional de Investigaciones Oncológicas) and Instituto de Investigación i+12, Madrid, Spain
| |
Collapse
|
41
|
Morimoto K, Yamada T, Hirai S, Katayama Y, Fukui S, Sawada R, Tachibana Y, Matsui Y, Nakamura R, Ishida M, Kawachi H, Kunimasa K, Sasaki T, Nishida M, Furuya N, Watanabe S, Shiotsu S, Nishioka N, Horinaka M, Sakai T, Uehara H, Yano S, Son BK, Tokuda S, Takayama K. AXL signal mediates adaptive resistance to KRAS G12C inhibitors in KRAS G12C-mutant tumor cells. Cancer Lett 2024; 587:216692. [PMID: 38342232 DOI: 10.1016/j.canlet.2024.216692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
Recently, novel Kirsten rat sarcoma viral oncogene homolog (KRAS) inhibitors have been clinically developed to treat KRAS G12C-mutated non-small cell lung cancer (NSCLC) patients. However, achieving complete tumor remission is challenging. Therefore, the optimal combined therapeutic intervention with KRAS G12C inhibitors has a potentially crucial role in the clinical outcomes of patients. We investigated the underlying molecular mechanisms of adaptive resistance to KRAS G12C inhibitors in KRAS G12C-mutated NSCLC cells to devise a strategy preventing drug-tolerant cell emergence. We demonstrate that AXL signaling led to the adaptive resistance to KRAS G12C inhibitors in KRAS G12C-mutated NSCLC, activation of which is induced by GAS6 production via YAP. AXL inhibition reduced the viability of AXL-overexpressing KRAS G12C-mutated lung cancer cells by enhancing KRAS G12C inhibition-induced apoptosis. In xenograft models of AXL-overexpressing KRAS G12C-mutated lung cancer treated with KRAS G12C inhibitors, initial combination therapy with AXL inhibitor markedly delayed tumor regrowth compared with KRAS G12C inhibitor alone or with the combination after acquired resistance to KRAS G12C inhibitor. These results indicated pivotal roles for the YAP-GAS6-AXL axis and its inhibition in the intrinsic resistance to KRAS G12C inhibitor.
Collapse
Affiliation(s)
- Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Sarina Fukui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryo Sawada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yusuke Tachibana
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yohei Matsui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryota Nakamura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Sasaki
- First Department of Internal Medicine, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Makoto Nishida
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Respiratory Medicine, Fukuchiyama City Hospital, Kyoto, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan; Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; WPI-Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Japan
| | - Bo-Kyung Son
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan; Institute of Gerontology, The University of Tokyo, Tokyo, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
42
|
Karachaliou A, Kotteas E, Fiste O, Syrigos K. Emerging Therapies in Kirsten Rat Sarcoma Virus (+) Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:1447. [PMID: 38672529 PMCID: PMC11048139 DOI: 10.3390/cancers16081447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Kirsten rat sarcoma virus (KRAS) is the most frequently found oncogene in human cancers, including non-small-cell lung cancer (NSCLC). For many years, KRAS was considered "undruggable" due to its structure and difficult targeting. However, the discovery of the switch II region in the KRAS-G12C-mutated protein has changed the therapeutic landscape with the design and development of novel direct KRAS-G12C inhibitors. Sotorasib and adagrasib are FDA-approved targeted agents for pre-treated patients with KRAS-G12C-mutated NSCLC. Despite promising results, the efficacy of these novel inhibitors is limited by mechanisms of resistance. Ongoing studies are evaluating combination strategies for overcoming resistance. In this review, we summarize the biology of the KRAS protein and the characteristics of KRAS mutations. We then present current and emerging therapeutic approaches for targeting KRAS mutation subtypes intending to provide individualized treatment for lung cancer harboring this challenging driver mutation.
Collapse
Affiliation(s)
- Anastasia Karachaliou
- Oncology Unit, Third Department of Internal Medicine and Laboratory, Medical School, National and Kapodistrian University of Athens, “Sotiria” General Hospital, 11527 Athens, Greece; (E.K.); (O.F.); (K.S.)
| | | | | | | |
Collapse
|
43
|
Singhal A, Li BT, O'Reilly EM. Targeting KRAS in cancer. Nat Med 2024; 30:969-983. [PMID: 38637634 PMCID: PMC11845254 DOI: 10.1038/s41591-024-02903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
RAS family variants-most of which involve KRAS-are the most commonly occurring hotspot mutations in human cancers and are associated with a poor prognosis. For almost four decades, KRAS has been considered undruggable, in part due to its structure, which lacks small-molecule binding sites. But recent developments in bioengineering, organic chemistry and related fields have provided the infrastructure to make direct KRAS targeting possible. The first successes occurred with allele-specific targeting of KRAS p.Gly12Cys (G12C) in non-small cell lung cancer, resulting in regulatory approval of two agents-sotorasib and adagrasib. Inhibitors targeting other variants beyond G12C have shown preliminary antitumor activity in highly refractory malignancies such as pancreatic cancer. Herein, we outline RAS pathobiology with a focus on KRAS, illustrate therapeutic approaches across a variety of malignancies, including emphasis on the 'on' and 'off' switch allele-specific and 'pan' RAS inhibitors, and review immunotherapeutic and other key combination RAS targeting strategies. We summarize mechanistic understanding of de novo and acquired resistance, review combination approaches, emerging technologies and drug development paradigms and outline a blueprint for the future of KRAS therapeutics with anticipated profound clinical impact.
Collapse
Affiliation(s)
- Anupriya Singhal
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Chen Y, Liu QP, Xie H, Ding J. From bench to bedside: current development and emerging trend of KRAS-targeted therapy. Acta Pharmacol Sin 2024; 45:686-703. [PMID: 38049578 PMCID: PMC10943119 DOI: 10.1038/s41401-023-01194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most frequently mutated oncogene in human cancers with mutations predominantly occurring in codon 12. These mutations disrupt the normal function of KRAS by interfering with GTP hydrolysis and nucleotide exchange activity, making it prone to the GTP-bound active state, thus leading to sustained activation of downstream pathways. Despite decades of research, there has been no progress in the KRAS drug discovery until the groundbreaking discovery of covalently targeting the KRASG12C mutation in 2013, which led to revolutionary changes in KRAS-targeted therapy. So far, two small molecule inhibitors sotorasib and adagrasib targeting KRASG12C have received accelerated approval for the treatment of non-small cell lung cancer (NSCLC) harboring KRASG12C mutations. In recent years, rapid progress has been achieved in the KRAS-targeted therapy field, especially the exploration of KRASG12C covalent inhibitors in other KRASG12C-positive malignancies, novel KRAS inhibitors beyond KRASG12C mutation or pan-KRAS inhibitors, and approaches to indirectly targeting KRAS. In this review, we provide a comprehensive overview of the molecular and mutational characteristics of KRAS and summarize the development and current status of covalent inhibitors targeting the KRASG12C mutation. We also discuss emerging promising KRAS-targeted therapeutic strategies, with a focus on mutation-specific and direct pan-KRAS inhibitors and indirect KRAS inhibitors through targeting the RAS activation-associated proteins Src homology-2 domain-containing phosphatase 2 (SHP2) and son of sevenless homolog 1 (SOS1), and shed light on current challenges and opportunities for drug discovery in this field.
Collapse
Affiliation(s)
- Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu-Pei Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Chemical and Environment Engineering, Science and Engineering Building, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Baranyi M, Molnár E, Hegedűs L, Gábriel Z, Petényi FG, Bordás F, Léner V, Ranđelović I, Cserepes M, Tóvári J, Hegedűs B, Tímár J. Farnesyl-transferase inhibitors show synergistic anticancer effects in combination with novel KRAS-G12C inhibitors. Br J Cancer 2024; 130:1059-1072. [PMID: 38278976 PMCID: PMC10951297 DOI: 10.1038/s41416-024-02586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Inhibition of mutant KRAS challenged cancer research for decades. Recently, allele-specific inhibitors were approved for the treatment of KRAS-G12C mutant lung cancer. However, de novo and acquired resistance limit their efficacy and several combinations are in clinical development. Our study shows the potential of combining G12C inhibitors with farnesyl-transferase inhibitors. METHODS Combinations of clinically approved farnesyl-transferase inhibitors and KRAS G12C inhibitors are tested on human lung, colorectal and pancreatic adenocarcinoma cells in vitro in 2D, 3D and subcutaneous xenograft models of lung adenocarcinoma. Treatment effects on migration, proliferation, apoptosis, farnesylation and RAS signaling were measured by histopathological analyses, videomicroscopy, cell cycle analyses, immunoblot, immunofluorescence and RAS pulldown. RESULTS Combination of tipifarnib with sotorasib shows synergistic inhibitory effects on lung adenocarcinoma cells in vitro in 2D and 3D. Mechanistically, we present antiproliferative effect of the combination and interference with compensatory HRAS activation and RHEB and lamin farnesylation. Enhanced efficacy of sotorasib in combination with tipifarnib is recapitulated in the subcutaneous xenograft model of lung adenocarcinoma. Finally, combination of additional KRAS G1C and farnesyl-transferase inhibitors also shows synergism in lung, colorectal and pancreatic adenocarcinoma cellular models. DISCUSSION Our findings warrant the clinical exploration of KRAS-G12C inhibitors in combination with farnesyl-transferase inhibitors.
Collapse
Affiliation(s)
- Marcell Baranyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091, Budapest, Hungary
- KINETO Lab Ltd, H-1037, Budapest, Hungary
| | - Eszter Molnár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091, Budapest, Hungary
| | - Luca Hegedűs
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, D-45239, Essen, Germany
| | - Zsófia Gábriel
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091, Budapest, Hungary
- Pázmány Péter Catholic University Faculty of Information Technology and Bionics, H-1083, Budapest, Hungary
| | - Flóra Gréta Petényi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091, Budapest, Hungary
- Pázmány Péter Catholic University Faculty of Information Technology and Bionics, H-1083, Budapest, Hungary
| | - Fanni Bordás
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091, Budapest, Hungary
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117, Budapest, Hungary
| | | | - Ivan Ranđelović
- KINETO Lab Ltd, H-1037, Budapest, Hungary
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, H-1122, Budapest, Hungary
| | - Mihály Cserepes
- KINETO Lab Ltd, H-1037, Budapest, Hungary
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, H-1122, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, H-1122, Budapest, Hungary
| | - Balázs Hegedűs
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091, Budapest, Hungary.
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, D-45239, Essen, Germany.
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091, Budapest, Hungary
| |
Collapse
|
46
|
Linehan A, O’Reilly M, McDermott R, O’Kane GM. Targeting KRAS mutations in pancreatic cancer: opportunities for future strategies. Front Med (Lausanne) 2024; 11:1369136. [PMID: 38576709 PMCID: PMC10991798 DOI: 10.3389/fmed.2024.1369136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Targeting the RAS pathway remains the holy grail of precision oncology. In the case of pancreatic ductal adenocarcinomas (PDAC), 90-92% harbor mutations in the oncogene KRAS, triggering canonical MAPK signaling. The smooth structure of the altered KRAS protein without a binding pocket and its affinity for GTP have, in the past, hampered drug development. The emergence of KRASG12C covalent inhibitors has provided renewed enthusiasm for targeting KRAS. The numerous pathways implicated in RAS activation do, however, lead to the development of early resistance. In addition, the dense stromal niche and immunosuppressive microenvironment dictated by oncogenic KRAS can influence treatment responses, highlighting the need for a combination-based approach. Given that mutations in KRAS occur early in PDAC tumorigenesis, an understanding of its pleiotropic effects is key to progress in this disease. Herein, we review current perspectives on targeting KRAS with a focus on PDAC.
Collapse
Affiliation(s)
- Anna Linehan
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Mary O’Reilly
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Grainne M. O’Kane
- Department of Medical Oncology, St James’s Hospital, Dublin, Ireland
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
47
|
Tong X, Patel AS, Kim E, Li H, Chen Y, Li S, Liu S, Dilly J, Kapner KS, Zhang N, Xue Y, Hover L, Mukhopadhyay S, Sherman F, Myndzar K, Sahu P, Gao Y, Li F, Li F, Fang Z, Jin Y, Gao J, Shi M, Sinha S, Chen L, Chen Y, Kheoh T, Yang W, Yanai I, Moreira AL, Velcheti V, Neel BG, Hu L, Christensen JG, Olson P, Gao D, Zhang MQ, Aguirre AJ, Wong KK, Ji H. Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer. Cancer Cell 2024; 42:413-428.e7. [PMID: 38402609 DOI: 10.1016/j.ccell.2024.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.
Collapse
Affiliation(s)
- Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ayushi S Patel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eejung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongjun Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yueqing Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and biomedical sciences program, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin S Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ningxia Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Laura Hover
- Monoceros Biosystems, LLC, San Diego, CA 92129, USA
| | - Suman Mukhopadhyay
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Khrystyna Myndzar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juntao Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing 100084, China
| | - Minglei Shi
- Institute of Medical Innovation, Peking University Third Hospital, Beijing 100191, China
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Thian Kheoh
- Mirati Therapeutics, San Diego, CA 92121, USA
| | | | - Itai Yanai
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Institute of Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Andre L Moreira
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Peter Olson
- Mirati Therapeutics, San Diego, CA 92121, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China.
| |
Collapse
|
48
|
Hu F, Lito P. Insights into how adeno-squamous transition drives KRAS inhibitor resistance. Cancer Cell 2024; 42:330-332. [PMID: 38471455 DOI: 10.1016/j.ccell.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The histologic transformation of adenocarcinoma (ADC) to squamous cell carcinoma (SCC), known as adeno-squamous transition or AST, is frequently observed in patients with lung cancer undergoing cancer therapy. In this issue, Tong and colleagues investigate genetic and epigenetic mechanisms that drive AST to confer resistance to KRAS inhibitors in preclinical models and patients.
Collapse
Affiliation(s)
- Feng Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
49
|
Morel M, Long W. FBXL16 promotes cell growth and drug resistance in lung adenocarcinomas with KRAS mutation by stabilizing IRS1 and upregulating IRS1/AKT signaling. Mol Oncol 2024; 18:762-777. [PMID: 37983945 PMCID: PMC10920083 DOI: 10.1002/1878-0261.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Lung adenocarcinomas (LUADs) are a major subtype of non-small-cell lung cancers (NSCLCs). About 25% of LUADs harbor GTPase KRAS mutations associated with poor prognosis and limited treatment options. While encouraging tumor response to novel covalent inhibitors specifically targeting KRASG12C has been shown in the clinic, either intrinsic resistance exists or acquired therapeutic resistance arises upon treatment. There is an unmet need to identify new therapeutic targets for treating LUADs with activating KRAS mutations, particularly those with resistance to KRASG12C inhibitor(s). In this study, we have revealed that F-box/LRR-repeat protein 16 (FBXL16) is selectively upregulated in LUAD with KRAS mutations. It promotes LUAD cell growth and transforms lung epithelial cells. Importantly, FBXL16 depletion greatly enhances sensitivity to the KRASG12C inhibitor (sotorasib) in resistant cells by downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB; also known as AKT) signaling. Mechanistically, FBXL16 upregulates insulin receptor substrate 1 (IRS1) protein stability, leading to an increase of IGF1/AKT signaling, thereby promoting cell growth and migration. Taken together, our study highlights the potential of FBXL16 as a therapeutic target for treating LUAD with KRAS activating mutations.
Collapse
Affiliation(s)
- Marion Morel
- Department of Biochemistry and Molecular Biology, Boonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of MedicineWright State UniversityDaytonOHUSA
| |
Collapse
|
50
|
Lv Y, Yang Z, Chen Y, Ma X, Guo M, Zhang C, Jiang X, Wang C, Li Z, Tai Z, Wang X, Zhang S, Ma S, Qin C. A Potent SOS1 PROTAC Degrader with Synergistic Efficacy in Combination with KRAS G12C Inhibitor. J Med Chem 2024; 67:2487-2511. [PMID: 38316747 DOI: 10.1021/acs.jmedchem.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
AMG510, as the first approved inhibitor for KRASG12C mutation, has shown promising efficacy in nonsmall-cell lung cancer and colorectal cancer harboring KRASG12C mutation. However, the moderate response rate and the rapid emergence of acquired resistance limit the therapeutic potential of AMG510, highlighting the need for the development of combination strategies. Here, we observed the suppression of RAS-MAPK signaling induced by AMG510 was prolonged and enhanced by SOS1 knockdown. Thus, we design, synthesize, and characterize a potent and specific SOS1 degrader 23. Compound 23 showed efficient SOS1 degradation in KRAS-driven cancer cells and achieved significant antiproliferative potency. Importantly, the combination of 23 with AMG510 suppressed RAS signaling feedback activation, showing synergistic effects against KRASG12C mutant cells in vitro and in vivo. Our findings demonstrated that KRASG12C inhibition plus SOS1 degradation as a potential therapeutic strategy to improve antitumor response and overcome acquired resistance to KRASG12C inhibitor.
Collapse
Affiliation(s)
- Yan Lv
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zixuan Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yiming Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xuepei Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Mengqi Guo
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chengwei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaolin Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chengli Wang
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhuoyue Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhengfu Tai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shumin Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|