1
|
Nishimura FG, Sampaio BB, Komoto TT, da Silva WJ, da Costa MMG, Haddad GI, Peronni KC, Evangelista AF, Hossain M, Dimmock JR, Bandy B, Beleboni RO, Marins M, Fachin AL. Exploring CDKN1A Upregulation Mechanisms: Insights into Cell Cycle Arrest Induced by NC2603 Curcumin Analog in MCF-7 Breast Cancer Cells. Int J Mol Sci 2024; 25:4989. [PMID: 38732206 PMCID: PMC11084481 DOI: 10.3390/ijms25094989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 μM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.
Collapse
Affiliation(s)
- Felipe Garcia Nishimura
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Beatriz Borsani Sampaio
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Tatiana Takahasi Komoto
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Wanessa Julia da Silva
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Mariana Mezencio Gregório da Costa
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Gabriela Inforçatti Haddad
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | | | - Adriane Feijó Evangelista
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-900, Brazil;
| | - Mohammad Hossain
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46904, USA;
| | - Jonathan R. Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan (USask), Saskatoon, SK S7N 5A2, Canada; (J.R.D.); (B.B.)
| | - Brian Bandy
- College of Pharmacy and Nutrition, University of Saskatchewan (USask), Saskatoon, SK S7N 5A2, Canada; (J.R.D.); (B.B.)
| | - Rene Oliveira Beleboni
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| | - Ana Lucia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (F.G.N.); (B.B.S.); (T.T.K.); (W.J.d.S.); (M.M.G.d.C.); (G.I.H.); (R.O.B.); (M.M.)
| |
Collapse
|
2
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Xie W, Delebinski C, Gürgen D, Schröder M, Seifert G, Melzig MF. Inhibition of osteosarcoma by European Mistletoe derived val-miR218. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:306-322. [PMID: 39698025 PMCID: PMC11651123 DOI: 10.20517/evcna.2023.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Aim In recent years, there has been a growing interest in the therapeutic potential of plant-derived miRNAs, which have been considered new bioactive ingredients in medicinal plants. Viscum album L., commonly used as an adjuvant cancer therapy in central Europe, contains a large number of miRNAs associated with human diseases such as cancer, cardiovascular diseases, and neurological disorders. This study aimed to investigate whether mistletoe miRNAs, specifically val-miR218, exert anti-cancer activity against osteosarcoma. Methods The anti-cancer effects of miRNAs from V. album L. were evaluated. The targets of val-miR218 were identified by RNA-seq. The mRNA and protein expression of the targets was confirmed by RT-qPCR and western blot analyses. The interaction between the val-miR218 and miRNA recognition elements (MREs) was validated by the dual-luciferase assay. The inhibitory effect of val-miR218 against osteosarcoma was investigated in vivo. Results Among these abundant miRNAs in V. album L., val-miR218 showed high potential anti-cancer effects against osteosarcoma. To clarify its molecular mechanism of action, we sequenced val-miR218 associated RNAs and their down-regulated RNAs. As a result, 61 genes were considered the direct targets of val-miR218. Interestingly, these targets were related to essential cellular functions such as cell cycle, DNA replication, and cell morphology, suggesting that val-miR218 significantly inhibited cell growth and arrested osteosarcoma cells in G0/G1 phase by influencing basic cell activities. Mistletoe extracellular vesicles offered val-miR218 adequate protection and facilitated the uptake of val-miR281 by human cells. Moreover, val-miR218 showed significant anti-tumor effects in vivo. Conclusion This study demonstrated the significant potential of val-miR218 regarding proliferation inhibition in various tumor cell lines in vitro and for osteosarcoma in vivo. Due to the increasing problems during chemotherapy, new therapeutic approaches are becoming more critical. The significant anti-cancer effects of medicinal plants derived miRNAs indicate a promising therapeutic strategy for treating cancer.
Collapse
Affiliation(s)
- Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Catharina Delebinski
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
| | | | - Maik Schröder
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
| | - Georg Seifert
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Centre for Pediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
- Authors contributed equally
| | - Matthias F. Melzig
- Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
- Authors contributed equally
| |
Collapse
|
4
|
Sfaxi R, Biswas B, Boldina G, Cadix M, Servant N, Chen H, Larson DR, Dutertre M, Robert C, Vagner S. Post-transcriptional polyadenylation site cleavage maintains 3'-end processing upon DNA damage. EMBO J 2023; 42:e112358. [PMID: 36762421 PMCID: PMC10068322 DOI: 10.15252/embj.2022112358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
The recognition of polyadenylation signals (PAS) in eukaryotic pre-mRNAs is usually coupled to transcription termination, occurring while pre-mRNA is chromatin-bound. However, for some pre-mRNAs, this 3'-end processing occurs post-transcriptionally, i.e., through a co-transcriptional cleavage (CoTC) event downstream of the PAS, leading to chromatin release and subsequent PAS cleavage in the nucleoplasm. While DNA-damaging agents trigger the shutdown of co-transcriptional chromatin-associated 3'-end processing, specific compensatory mechanisms exist to ensure efficient 3'-end processing for certain pre-mRNAs, including those that encode proteins involved in the DNA damage response, such as the tumor suppressor p53. We show that cleavage at the p53 polyadenylation site occurs in part post-transcriptionally following a co-transcriptional cleavage event. Cells with an engineered deletion of the p53 CoTC site exhibit impaired p53 3'-end processing, decreased mRNA and protein levels of p53 and its transcriptional target p21, and altered cell cycle progression upon UV-induced DNA damage. Using a transcriptome-wide analysis of PAS cleavage, we identify additional pre-mRNAs whose PAS cleavage is maintained in response to UV irradiation and occurring post-transcriptionally. These findings indicate that CoTC-type cleavage of pre-mRNAs, followed by PAS cleavage in the nucleoplasm, allows certain pre-mRNAs to escape 3'-end processing inhibition in response to UV-induced DNA damage.
Collapse
Affiliation(s)
- Rym Sfaxi
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Biswendu Biswas
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U981, Gustave Roussy, Gustave Roussy, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Galina Boldina
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mandy Cadix
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Nicolas Servant
- INSERM U900, Institut Curie, PSL Research University, Mines ParisTech, Paris, France
| | - Huimin Chen
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Martin Dutertre
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy, Gustave Roussy, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
5
|
Fuller AM, DeVine A, Murazzi I, Mason NJ, Weber K, Eisinger-Mathason TSK. Comparative oncology reveals DNMT3B as a molecular vulnerability in undifferentiated pleomorphic sarcoma. Cell Oncol (Dordr) 2022; 45:1277-1295. [PMID: 36181640 PMCID: PMC9772002 DOI: 10.1007/s13402-022-00717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Undifferentiated pleomorphic sarcoma (UPS), an aggressive subtype of soft-tissue sarcoma (STS), is exceedingly rare in humans and lacks effective, well-tolerated therapies. In contrast, STS are relatively common in canine companion animals. Thus, incorporation of veterinary patients into studies of UPS offers an exciting opportunity to develop novel therapeutic strategies for this rare human disease. Genome-wide studies have demonstrated that UPS is characterized by aberrant patterns of DNA methylation. However, the mechanisms and impact of this epigenetic modification on UPS biology and clinical behavior are poorly understood. METHODS DNA methylation in mammalian cells is catalyzed by the canonical DNA methyltransferases DNMT1, DNMT3A and DNMT3B. Therefore, we leveraged cell lines and tissue specimens from human and canine patients, together with an orthotopic murine model, to probe the functional and clinical significance of DNMTs in UPS. RESULTS We found that the DNA methyltransferase DNMT3B is overexpressed in UPS relative to normal mesenchymal tissues and is associated with a poor prognosis. Consistent with these findings, genetic DNMT3B depletion strongly inhibited UPS cell proliferation and tumor progression. However, existing hypomethylating agents, including the clinically approved drug 5-aza-2'-deoxycytidine (DAC) and the DNMT3B-inhibiting tool compound nanaomycin A, were ineffective in UPS due to cellular uptake and toxicity issues. CONCLUSIONS DNMT3B represents a promising molecular susceptibility in UPS, but further development of DNMT3B-targeting strategies for these patients is required.
Collapse
Affiliation(s)
- Ashley M Fuller
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann DeVine
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ileana Murazzi
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristy Weber
- Penn Sarcoma Program, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Zhao X, Yang K, Song Z, He H, Zhang W. [Juglone induces proliferation inhibition and apoptosis of cervical cancer cells via promoting c-Myc ubiquitination]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1026-1031. [PMID: 35869765 DOI: 10.12122/j.issn.1673-4254.2022.07.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To observe the expression of c-Myc protein in cervical cancer HeLa cells and explore the effect of juglone on the proliferation and apoptosis of HeLa cells by affecting c-Myc ubiquitination. METHODS HeLa cells treated with different concentrations (0, 10, 20, or 50 μmol/L) of juglone or with 20 μmol/L juglone for different time lengths were examined for expression of c-Myc protein with Western blotting. The half-life of c-Myc protein was determined using cycloheximide (CHX) and c-Myc protein degradation was detected using coimmunoprecipitation. We also assessed the effects of 20 μmol/L juglone combined with 0, 1.0 or 2.0 μmol/L MG132 (a proteasome inhibitor) on c-Myc expression. The effects of 20 μmol/L juglone on the proliferation and apoptosis of HeLa cells with RNA interference-mediated knockdown of c-Myc were evaluated with MTT assay and flow cytometry. RESULTS Treatment with juglone significantly lowered c-Myc protein expression in HeLa cells in a concentration-and time-dependent manner (P < 0.05). Juglone obviously shortened the half-life of c-Myc protein, and the addition of MG132 significantly up-regulated the expression level of c-Myc protein (P < 0.05). Juglone treatment also promoted ubiquitination of c-Myc protein in HeLa cells. Compared with the cells transfected with a negative control construct, the cells transfected with si-c-Myc showed significantly decreased proliferation inhibition and a lowered cell rate with early apoptosis after juglone treatment (P < 0.05). CONCLUSION Juglone inhibits proliferation and promotes apoptosis of HeLa cells by affecting the ubiquitination of c-Myc protein.
Collapse
Affiliation(s)
- X Zhao
- Department of Biochemistry, Jilin Medical College, Jilin 132013, China
| | - K Yang
- Department of Biochemistry, Jilin Medical College, Jilin 132013, China
| | - Z Song
- Department of Biochemistry, Jilin Medical College, Jilin 132013, China
| | - H He
- Department of Biochemistry, School of Basic Medicine, Yanbian University, Yanbian 133000, China
| | - W Zhang
- Department of Biochemistry, Jilin Medical College, Jilin 132013, China
| |
Collapse
|
7
|
Chia SY, Vipin A, Ng KP, Tu H, Bommakanti A, Wang BZ, Tan YJ, Zailan FZ, Ng ASL, Ling SC, Okamura K, Tan EK, Kandiah N, Zeng L. Upregulated Blood miR-150-5p in Alzheimer’s Disease Dementia Is Associated with Cognition, Cerebrospinal Fluid Amyloid-β, and Cerebral Atrophy. J Alzheimers Dis 2022; 88:1567-1584. [DOI: 10.3233/jad-220116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: There is an urgent need for noninvasive, cost-effective biomarkers for Alzheimer’s disease (AD), such as blood-based biomarkers. They will not only support the clinical diagnosis of dementia but also allow for timely pharmacological and nonpharmacological interventions and evaluations. Objective: To identify and validate a novel blood-based microRNA biomarker for dementia of the Alzheimer’s type (DAT). Methods: We conducted microRNA sequencing using peripheral blood mononuclear cells isolated from a discovery cohort and validated the identified miRNAs in an independent cohort and AD postmortem tissues. miRNA correlations with AD pathology and AD clinical-radiological imaging were conducted. We also performed bioinformatics and cell-based assay to identify miRNA target genes. Results: We found that miR-150-5p expression was significantly upregulated in DAT compared to mild cognitive impairment and healthy subjects. Upregulation of miR-150-5p was observed in AD hippocampus. We further found that higher miR-150-5p levels were correlated with the clinical measures of DAT, including lower global cognitive scores, lower CSF Aβ 42, and higher CSF total tau. Interestingly, we observed that higher miR-150-5p levels were associated with MRI brain volumes within the default mode and executive control networks, two key networks implicated in AD. Furthermore, pathway analysis identified the targets of miR-150-5p to be enriched in the Wnt signaling pathway, including programmed cell death 4 (PDCD4). We found that PDCD4 was downregulated in DAT blood and was downregulated by miR-150-5p at both the transcriptional and protein levels Conclusion: Our findings demonstrated that miR-150-5p is a promising clinical blood-based biomarker for DAT
Collapse
Affiliation(s)
- Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Ashwati Vipin
- Department of Neurology, National Neuroscience Institute, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Ananth Bommakanti
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore
| | | | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Fatin Zahra Zailan
- Department of Neurology, National Neuroscience Institute, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Adeline Su-Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | - Shuo-Chian Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
- Research Department, National Neuroscience Institute, Singapore General Hospital Campus, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| |
Collapse
|
8
|
Gupta S, Silveira DA, Hashimoto RF, Mombach JCM. A Boolean Model of the Proliferative Role of the lncRNA XIST in Non-Small Cell Lung Cancer Cells. BIOLOGY 2022; 11:biology11040480. [PMID: 35453680 PMCID: PMC9024590 DOI: 10.3390/biology11040480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
Abstract
The long non-coding RNA X inactivate-specific transcript (lncRNA XIST) has been verified as an oncogenic gene in non-small cell lung cancer (NSCLC) whose regulatory role is largely unknown. The important tumor suppressors, microRNAs: miR-449a and miR-16 are regulated by lncRNA XIST in NSCLC, these miRNAs share numerous common targets and experimental evidence suggests that they synergistically regulate the cell-fate regulation of NSCLC. LncRNA XIST is known to sponge miR-449a and miR-34a, however, the regulatory network connecting all these non-coding RNAs is still unknown. Here we propose a Boolean regulatory network for the G1/S cell cycle checkpoint in NSCLC contemplating the involvement of these non-coding RNAs. Model verification was conducted by comparison with experimental knowledge from NSCLC showing good agreement. The results suggest that miR-449a regulates miR-16 and p21 activity by targeting HDAC1, c-Myc, and the lncRNA XIST. Furthermore, our circuit perturbation simulations show that five circuits are involved in cell fate determination between senescence and apoptosis. The model thus allows pinpointing the direct cell fate mechanisms of NSCLC. Therefore, our results support that lncRNA XIST is an attractive target of drug development in tumor growth and aggressive proliferation of NSCLC, and promising results can be achieved through tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| | - Daner A. Silveira
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| |
Collapse
|
9
|
Fan J, Chen M, Cao S, Yao Q, Zhang X, Du S, Qu H, Cheng Y, Ma S, Zhang M, Huang Y, Zhang N, Shi K, Zhan S. Identification of a ferroptosis-related gene pair biomarker with immune infiltration landscapes in ischemic stroke: a bioinformatics-based comprehensive study. BMC Genomics 2022; 23:59. [PMID: 35033021 PMCID: PMC8761271 DOI: 10.1186/s12864-022-08295-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Ischemic stroke (IS) is a principal contributor to long-term disability in adults. A new cell death mediated by iron is ferroptosis, characterized by lethal aggregation of lipid peroxidation. However, a paucity of ferroptosis-related biomarkers early identify IS until now. This study investigated potential ferroptosis-related gene pair biomarkers in IS and explored their roles in immune infiltration. Results In total, we identified 6 differentially expressed ferroptosis-related genes (DEFRGs) in the metadata cohort. Of these genes, 4 DEFRGs were incorporated into the competitive endogenous RNA (ceRNA) network, including 78 lncRNA-miRNA and 16 miRNA-mRNA interactions. Based on relative expression values of DEFRGs, we constructed gene pairs. An integrated scheme consisting of machine learning algorithms, ceRNA network, and gene pair was proposed to screen the key DEFRG biomarkers. The receiver operating characteristic (ROC) curve witnessed that the diagnostic performance of DEFRG pair CDKN1A/JUN was superior to that of single gene. Moreover, the CIBERSORT algorithm exhibited immune infiltration landscapes: plasma cells, resting NK cells, and resting mast cells infiltrated less in IS samples than controls. Spearman correlation analysis confirmed a significant correlation between plasma cells and CDKN1A/JUN (CDKN1A: r = − 0.503, P < 0.001, JUN: r = − 0.330, P = 0.025). Conclusions Our findings suggested that CDKN1A/JUN could be a robust and promising gene-pair diagnostic biomarker for IS, regulating ferroptosis during IS progression via C9orf106/C9orf139-miR-22-3p-CDKN1A and GAS5-miR-139-5p/miR-429-JUN axes. Meanwhile, plasma cells might exert a vital interplay in IS immune microenvironment, providing an innovative insight for IS therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08295-0.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Mengying Chen
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Qingling Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Xiaodong Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuang Du
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Huiyang Qu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Yuxuan Cheng
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuyin Ma
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Meijuan Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Yizhou Huang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Nan Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Kaili Shi
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuqin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China.
| |
Collapse
|
10
|
Rassamegevanon T, Feindt L, Koi L, Müller J, Freudenberg R, Löck S, Sihver W, Çevik E, Kühn AC, von Neubeck C, Linge A, Pietzsch HJ, Kotzerke J, Baumann M, Krause M, Dietrich A. Molecular Response to Combined Molecular- and External Radiotherapy in Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2021; 13:cancers13225595. [PMID: 34830750 PMCID: PMC8615625 DOI: 10.3390/cancers13225595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Our previous preclinical trial in a head and neck squamous cell carcinoma (HNSCC) xenograft model showed a high potential for the improvement of curative treatment outcome upon the combination treatment of a radiolabeled (Yttrium-90) anti-EGFR antibody (Cetuximab) and external radiotherapy. We aim to elucidate the molecular response of HNSCC tumors upon this combination. Here, we show that the combination treatment leads to an increasing number and complexity of DNA double strand breaks. The upregulation of p21cip1/waf1 expression and cleaved caspase-3 suggest a blockage of cell cycle transition and an induction of programmed cell death. Collectively, a complex interplay between molecular mechanisms involved in cell death induction, cell cycle arrest, and DNA double strand break repair accounts for the beneficial potential using Yttrium-90-Cetuximab in combination with external radiotherapy. Abstract Combination treatment of molecular targeted and external radiotherapy is a promising strategy and was shown to improve local tumor control in a HNSCC xenograft model. To enhance the therapeutic value of this approach, this study investigated the underlying molecular response. Subcutaneous HNSCC FaDuDD xenografts were treated with single or combination therapy (X-ray: 0, 2, 4 Gy; anti-EGFR antibody (Cetuximab) (un-)labeled with Yttrium-90 (90Y)). Tumors were excised 24 h post respective treatment. Residual DNA double strand breaks (DSB), mRNA expression of DNA damage response related genes, immunoblotting, tumor histology, and immunohistological staining were analyzed. An increase in number and complexity of residual DNA DSB was observed in FaDuDD tumors exposed to the combination treatment of external irradiation and 90Y-Cetuximab relative to controls. The increase was observed in a low oxygenated area, suggesting the expansion of DNA DSB damages. Upregulation of genes encoding p21cip1/waf1 (CDKN1A) and GADD45α (GADD45A) was determined in the combination treatment group, and immunoblotting as well as immunohistochemistry confirmed the upregulation of p21cip1/waf1. The increase in residual γH2AX foci leads to the blockage of cell cycle transition and subsequently to cell death, which could be observed in the upregulation of p21cip1/waf1 expression and an elevated number of cleaved caspase-3 positive cells. Overall, a complex interplay between DNA damage repair and programmed cell death accounts for the potential benefit of the combination therapy using 90Y-Cetuximab and external radiotherapy.
Collapse
Affiliation(s)
- Treewut Rassamegevanon
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
| | - Louis Feindt
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Lydia Koi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Johannes Müller
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Robert Freudenberg
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.F.); (J.K.)
| | - Steffen Löck
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wiebke Sihver
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (W.S.); (H.-J.P.)
| | - Enes Çevik
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Ariane Christel Kühn
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- B CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Annett Linge
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (W.S.); (H.-J.P.)
| | - Jörg Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.F.); (J.K.)
| | - Michael Baumann
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Correspondence: ; Tel.: +49-351-458-7404
| |
Collapse
|
11
|
Chang-Chien J, Huang JL, Tsai HJ, Wang SL, Kuo ML, Yao TC. Particulate matter causes telomere shortening and increase in cellular senescence markers in human lung epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112484. [PMID: 34237641 DOI: 10.1016/j.ecoenv.2021.112484] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Exposure to particulate matter (PM) has been associated with DNA damage, but the relationships between PM, telomere length and cellular senescence remain unclear. This study aimed to investigate the effects and potential mechanisms of PM on telomere length and cellular senescence in human lung epithelial cells. Human lung epithelial A549 cells were exposed to PM for 24 h. Cell viability and cytotoxicity were measured by the WST-1 assay and the lactate dehydrogenase release, respectively. Cellular uptake of PM was observed using transmission electron microscopy. Telomere length was measured using qPCR and expressed as T/S ratio. Cell cycle progression was analyzed by flow cytometry. Expression of human telomerase reverse transcriptase (hTERT) and cell cycle regulators was measured using mRNA by qPCR and protein levels by Western blot. Cellular senescence was determined by the expression of senescence-associated β-galactosidase (SA-β-Gal) with fluorescent microscopy and flow cytometry. Exposed to PM at the concentration of 200 μg/ml decreased cell viability and increased LDH levels in culture medium. Remarkably increased uptake of PM, shortening of telomere length, induction of G0/G1 phase arrest, and increased expression of senescence hallmarks were observed after exposure to PM in A549 cells. PM exposure induced upregulation of p21 and downregulation of proliferating cell nuclear antigen (PCNA) and hTERT expression, but no significant change in p53 expression, in A549 cells. Overall, exposure to PM may downregulate hTERT and PCNA through p53-independent induction of p21 expression, leading to telomere shortening, G0/G1 arrest and the onset of cellular senescence in human lung epithelial cells.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan
| | - Jing-Long Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Ling Wang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan 33302, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|
12
|
Bich-Loan NT, Kien KT, Thanh NL, Kim-Thanh NT, Huy NQ, The-Hai P, Muller M, Nachtergael A, Duez P, Thang ND. Toxicity and Anti-Proliferative Properties of Anisomeles indica Ethanol Extract on Cervical Cancer HeLa Cells and Zebrafish Embryos. Life (Basel) 2021; 11:257. [PMID: 33804714 PMCID: PMC8003830 DOI: 10.3390/life11030257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023] Open
Abstract
In this study, we showed that crude extract of Anisomeles indica (AI-EtE) expressed its toxicity to HeLa cells with an IC50 dose of 38.8 µg/mL and to zebrafish embryos with malformations, lethality and hatching inhibition at 72-hpf at doses higher than 75 µg/mL. More interestingly, flow cytometry revealed that AI-EtE significantly promoted the number of cells entering apoptotic. Accordingly, the transcript levels of BAX, CASPASE-8, and CASPASE-3 in the cells treated with AI-EtE at IC50 dose were 1.55-, 1.62-, and 2.45-fold higher than those in the control cells, respectively. Moreover, treatment with AI-EtE caused cell cycle arrest at the G1 phase in a p53-independent manner. Particularly, percentages of AI-EtE-treated cells in G1, S, G2/M were, respectively 85%, 6.7% and 6.4%; while percentages of control cells in G1, S, G2/M were 64%, 15% and 19%, respectively. Consistent with cell cycle arrest, the expressions of CDKN1A and CDNK2A in AI-EtE-treated cells were up-regulated 1.9- and 1.64-fold, respectively. Significantly, treatment with AI-EtE also decreased anchorage-independent growth of HeLa cells. In conclusion, we suggest that Anisomeles indica can be considered as a medicinal plant with a possible use against cervical cancer cells; however, the used dose should be carefully monitored, especially when applying to pregnant women.
Collapse
Affiliation(s)
- Nguyen T. Bich-Loan
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (A.N.); (P.D.)
| | - Kieu Trung Kien
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Nguyen Lai Thanh
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Nguyen T. Kim-Thanh
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Nguyen Quang Huy
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Pham The-Hai
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA-R, Department Life Sciences, University of Liege, 4000 Liege, Belgium;
| | - Amandine Nachtergael
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (A.N.); (P.D.)
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (A.N.); (P.D.)
| | - Nguyen Dinh Thang
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| |
Collapse
|
13
|
Maser T, Zagorski J, Kelly S, Ostrander A, Goodyke A, Nagulapally A, Bond J, Park Y, Saulnier Sholler G. The MDM2 inhibitor CGM097 combined with the BET inhibitor OTX015 induces cell death and inhibits tumor growth in models of neuroblastoma. Cancer Med 2020; 9:8144-8158. [PMID: 33034426 PMCID: PMC7643634 DOI: 10.1002/cam4.3407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 01/04/2023] Open
Abstract
Background Neuroblastoma (NB) is the most common extracranial solid tumor in infants and children, with amplification of the oncogene MYCN being a hallmark of high‐risk disease and poor prognosis. Although less frequent, overexpression of MYC is similarly an indicator of poor prognosis. Most NB tumors initially respond to chemotherapy, however, most will relapse, resulting in chemoresistant disease. After relapse, there is growing evidence of p53 inactivation. MYC/MYCN and MDM2 have been shown to interact and contribute to NB growth and disease progression. MDM2 inhibitors and Bromodomain and Extra‐Terminal domain (BET) inhibitors have both shown promise in treating NB by increasing the expression of p53 and decreasing MYC/MYCN expression, respectively. Our study focuses on the combined treatment of a MDM2 inhibitor (CGM097) with a BET inhibitor (OTX015) in neuroblastoma. Methods Two p53 wild‐type and two p53 mutant established neuroblastoma cells lines were used to test this combination. Ray design assays were used to test whether this combination was synergistically cytotoxic to NB cells. Western blots were performed to check signaling pathways of interest after drug treatment. IncuCyte imaging and flow cytometry were utilized to quantify the apoptotic and cytostatic effects of these drugs on NB cells. In vivo studies were carried out to test the antitumor effect of this combination in a living host. Results The combination of CGM097 and OTX015 resulted in p53 activation, decreased expression of MYC family proteins and a subsequent synergistic increase in NB cell death. Conclusion This study warrants further investigation into the combination of MDM2 inhibitors and BET inhibitors for the treatment in NB.
Collapse
Affiliation(s)
- Tyler Maser
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Joseph Zagorski
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Shannon Kelly
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Anna Ostrander
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Austin Goodyke
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Abhinav Nagulapally
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Jeffrey Bond
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Yeonhee Park
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Giselle Saulnier Sholler
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA.,College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
14
|
Kim HW, Jeong YJ, Hwang SK, Park YY, Choi YH, Kim CH, Magae J, Chang YC. Ascofuranone inhibits epidermal growth factor-induced cell migration by blocking epithelial-mesenchymal transition in lung cancer cells. Eur J Pharmacol 2020; 880:173199. [PMID: 32439259 DOI: 10.1016/j.ejphar.2020.173199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
Ascofuranone, an isoprenoid antibiotic initially purified from a culture broth of Ascochyta viciae, has multiple anticancer effects. However, the impacts of ascofuranone on the epithelial-mesenchymal transition (EMT) and epidermal growth factor (EGF)-induced effects on human lung cancer cell lines have not been previously reported. Here, we show that ascofuranone exerts its anticancer effects by inhibiting the EGF-induced EMT and cell migration in human lung cancer cell lines. Ascofuranone significantly inhibited EGF-induced migration and invasion by lung cancer cells, and suppressed EGF-induced morphologic changes by regulating the expression of EMT-associated proteins. In addition, ascofuranone upregulated E-cadherin, and downregulated fibronectin, vimentin, Slug, Snail, and Twist. Inhibition of ERK/AKT/mTOR promoted EGF-induced E-cadherin downregulation and inhibited EGF-induced vimentin upregulation in response to ascofuranone, implying that inhibition of the EGF-induced EMT by ascofuranone was mediated by the ERK and AKT/mTOR pathways. Inhibition of c-Myc suppressed EGF-induced vimentin upregulation, suggesting the involvement of c-Myc. Collectively, these findings suggest that ascofuranone inhibits tumor growth by blocking the EGF-induced EMT through a regulatory mechanism involving ERK, AKT/mTOR, and c-Myc in lung cancer cells.
Collapse
Affiliation(s)
- Hyo-Weon Kim
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea
| | - Soon-Kyung Hwang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea
| | - Yoon-Yub Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-Do, 440-746, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba, 300-1263, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea.
| |
Collapse
|
15
|
Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur J Med Chem 2020; 202:112502. [PMID: 32652407 DOI: 10.1016/j.ejmech.2020.112502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Many fungal metabolites show promising anticancer properties both in vitro and in animal models, and some synthetic analogs of those metabolites have progressed into clinical trials. However, currently, there are still no fungi-derived agents approved as anticancer drugs. Two potential reasons could be envisioned: 1) lacking a clear understanding of their anticancer mechanism of action, 2) unable to supply enough materials to support the preclinical and clinic developments. In this review, we will summarize recent efforts on elucidating the anticancer mechanisms and biosynthetic pathways of several promising anticancer fungal natural products.
Collapse
Affiliation(s)
- Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jannu Vinay Gopal
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Litong Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
16
|
Jeong YJ, Hwang SK, Magae J, Chang YC. Ascofuranone suppresses invasion and F-actin cytoskeleton organization in cancer cells by inhibiting the mTOR complex 1 signaling pathway. Cell Oncol (Dordr) 2020; 43:793-805. [PMID: 32488849 DOI: 10.1007/s13402-020-00520-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Ascofuranone is an antiviral antibiotic that is known to exert multiple anti-tumor effects, including cell cycle arrest, inhibition of mitochondrial respiration, and inhibition of angiogenesis. In this study, we investigated the molecular mechanisms underlying the anti-metastatic effects of ascofuranone in insulin-like growth factor-I (IGF-1)-responsive cancer cells. METHODS The inhibitory effect of ascofuranone on cancer cell migration and invasion was assessed using scratch wound healing and Matrigel invasion assays, respectively. F-actin cytoskeleton organization was assessed using FITC conjugated phalloidin staining. Target gene expression was evaluated using Western blotting and gene silencing was performed using siRNA transfections. Finally, the anti-metastatic effect of ascofuranone was investigated in vivo. RESULTS We found that ascofuranone suppressed IGF-1-induced cell migration, invasion and motility in multiple cancer cell lines. The effects of ascofuranone on actin cytoskeleton organization were found to be mediated by suppression of the mTOR/p70S6K/4EBP1 pathway. Ascofuranone inhibited IGF-1-induced mTOR phosphorylation and actin cytoskeleton organization via upregulation of AMPK and downregulation of Akt phosphorylation. It also selectively suppressed the IGF-1-induced mTOR complex (mTORC)1 by phosphorylation of Raptor, but did not affect mTORC2. Furthermore, we found that focal adhesion kinase (FAK) activation decreased in response to ascofuranone, rapamycin, compound C and wortmannin treatment. Finally, we found that ascofuranone suppressed phosphorylation of FAK and mTOR and dephosphorylation of Raptor in cancerous metastatic lung tissues in vivo. CONCLUSIONS Our data indicate that ascofuranone suppresses IGF-1-induced cancer cell migration and invasion by blocking actin cytoskeleton organization and FAK activation through inhibition of the mTORC1 pathway, and reveal a novel anti-metastatic function of this compound.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea
| | - Soon-Kyung Hwang
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, 300-1263, Tsukuba, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea. .,Department of Cell Biology, Catholic University of Daegu School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, 42472, Daegu, Korea.
| |
Collapse
|
17
|
Down-Regulation of miR-23a-3p Mediates Irradiation-Induced Neuronal Apoptosis. Int J Mol Sci 2020; 21:ijms21103695. [PMID: 32456284 PMCID: PMC7279507 DOI: 10.3390/ijms21103695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced central nervous system toxicity is a significant risk factor for patients receiving cancer radiotherapy. Surprisingly, the mechanisms responsible for the DNA damage-triggered neuronal cell death following irradiation have yet to be deciphered. Using primary cortical neuronal cultures in vitro, we demonstrated that X-ray exposure induces the mitochondrial pathway of intrinsic apoptosis and that miR-23a-3p plays a significant role in the regulation of this process. Primary cortical neurons exposed to irradiation show the activation of DNA-damage response pathways, including the sequential phosphorylation of ATM kinase, histone H2AX, and p53. This is followed by the p53-dependent up-regulation of the pro-apoptotic Bcl2 family molecules, including the BH3-only molecules PUMA, Noxa, and Bim, leading to mitochondrial outer membrane permeabilization (MOMP) and the release of cytochrome c, which activates caspase-dependent apoptosis. miR-23a-3p, a negative regulator of specific pro-apoptotic Bcl-2 family molecules, is rapidly decreased after neuronal irradiation. By increasing the degradation of PUMA and Noxa mRNAs in the RNA-induced silencing complex (RISC), the administration of the miR-23a-3p mimic inhibits the irradiation-induced up-regulation of Noxa and Puma. These changes result in an attenuation of apoptotic processes such as MOMP, the release of cytochrome c and caspases activation, and a reduction in neuronal cell death. The neuroprotective effects of miR-23a-3p administration may not only involve the direct inhibition of pro-apoptotic Bcl-2 molecules downstream of p53 but also include the attenuation of secondary DNA damage upstream of p53. Importantly, we demonstrated that brain irradiation in vivo results in the down-regulation of miR-23a-3p and the elevation of pro-apoptotic Bcl2-family molecules PUMA, Noxa, and Bax, not only broadly in the cortex and hippocampus, except for Bax, which was up-regulated only in the hippocampus but also selectively in isolated neuronal populations from the irradiated brain. Overall, our data suggest that miR-23a-3p down-regulation contributes to irradiation-induced intrinsic pathways of neuronal apoptosis. These regulated pathways of neurodegeneration may be the target of effective neuroprotective strategies using miR-23a-3p mimics to block their development and increase neuronal survival after irradiation.
Collapse
|
18
|
Wang S, Shen D, Zhao L, Yuan X, Cheng J, Yu B, Zheng Y, Liu H. Discovery of [1,2,4]triazolo[1,5-a]pyrimidine derivatives as new bromodomain-containing protein 4 (BRD4) inhibitors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Jeong YJ, Park YY, Park KK, Choi YH, Kim CH, Chang YC. Bee Venom Suppresses EGF-Induced Epithelial-Mesenchymal Transition and Tumor Invasion in Lung Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1869-1883. [PMID: 31786944 DOI: 10.1142/s0192415x19500952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bee venom of Apis mellifera is a traditional medicine in Asia. It has been used with promoting results for the treatment of pain, rheumatoid, and cancer disease. The purpose of this study was to investigate the effects of bee venom on epidermal growth factor (EGF)-induced epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) and determine possible signaling pathway affected in EGF-induced EMT in A549 cells. Bee venom inhibited EGF-induced F-actin reorganization and cell invasion, and suppressed EGF-induced EMT, processes associated with tumor metastasis in NSCLC. Bee venom enhanced the upregulation of E-cadherin and the downregulation of vimentin and inhibited EGF-induced ERK, JNK, FAK, and mTOR phosphorylation in A549 cells. However, the inhibition of JNK phosphorylation by bee venom was not related to the inhibitory effects of EMT. Furthermore, we found that bee venom suppressed the EMT-related transcription factors ZEB2 and Slug by blocking EGF-induced ERK, FAK and mTOR phosphorylation. Bee venom inhibits EGF-induced EMT by blocking the phosphorylation of ERK, FAK, and mTOR, resulting in the suppression of ZEB2 and Slug. These data suggest bee venom as a potential antimetastatic agent for NSCLC.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| | - Yoon-Yub Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-Do 16419, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| |
Collapse
|
20
|
Gupta S, Silveira DA, Mombach JCM. ATM/miR‐34a‐5p axis regulates a p21‐dependent senescence‐apoptosis switch in non‐small cell lung cancer: a Boolean model of G1/S checkpoint regulation. FEBS Lett 2019; 594:227-239. [DOI: 10.1002/1873-3468.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/16/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Shantanu Gupta
- Department of Physics Universidade Federal de Santa Maria Brazil
| | | | | |
Collapse
|
21
|
Mrozek-Wilczkiewicz A, Kuczak M, Malarz K, Cieślik W, Spaczyńska E, Musiol R. The synthesis and anticancer activity of 2-styrylquinoline derivatives. A p53 independent mechanism of action. Eur J Med Chem 2019; 177:338-349. [DOI: 10.1016/j.ejmech.2019.05.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
|
22
|
Bjelogrlić SK, Todorović TR, Kojić M, Senćanski M, Nikolić M, Višnjevac A, Araškov J, Miljković M, Muller CD, Filipović NR. Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification. J Inorg Biochem 2019; 199:110758. [PMID: 31299379 DOI: 10.1016/j.jinorgbio.2019.110758] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
Anticancer activity of Pd complexes 1-5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-formylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.
Collapse
Affiliation(s)
- Snežana K Bjelogrlić
- National Cancer Research Center of Serbia, Pasterova 14, 11000 Belgrade, Serbia; Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Tamara R Todorović
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, V. Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandar Višnjevac
- Physical Chemistry Division, Ruđer Bošković Institute, Bijenička c. 54, HR-10000 Zagreb, Croatia
| | - Jovana Araškov
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, V. Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Christian D Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Nenad R Filipović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia.
| |
Collapse
|
23
|
Chatterjee R, Law S. Genomic insult oriented mitochondrial instability and proliferative hindrance in the bone marrow of aplastic mice including stem/progenitor population. Pathol Res Pract 2019; 215:784-793. [PMID: 30683472 DOI: 10.1016/j.prp.2019.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Aplastic anemia is the bone marrow failure condition characterized by the development of hypocellularity in both marrow and peripheral blood compartments. Anti-tumor chemotherapeutic agents often exert secondary effect on hematopoietic system leading to aplastic anemia by marrow failure. The precise mechanisms behind the marrow ablative effects of the drugs remain yet to be established. The present study holds a mechanistic approach to unveil the mystery. Aplastic anemia was generated in mice with the administration of busulfan and cyclophosphamide followed by the characterization of the disease with peripheral blood hemogram, histopathological and cytochemical examinations of bone marrow. To gain deep knowledge about the molecular mechanisms of the hematopoietic disruption, cytotoxicity assay, DNA damage measurement, apoptosis study, replicative senescence analysis, redox balance study, mitochondrial membrane potential change assessment, flowcytometric expressional analysis of p21, p53, ATM, Chk-2, Necdin, Gfi-1, c-myc, KU-80 and Sod-2 were done with marrow hematopoietic stem/ progenitor cells (HSPCs). Severe blood pancytopenia and marrow hypocellularity was found in aplastic mice. Proliferative hindrance and apoptosis of marrow cells were identified as the cause behind the hematopoietic catastrophe. The genotoxic effects of the drugs triggered chromatin damage and induced replicative senescence in aplastic HSPCs by upregulating p21 in a p53 independent manner. Moreover, accumulation of genomic insults also caused apoptotic elimination of marrow cells due to disruption of mitochondrial membrane potential by generating redox imbalance. The study established the underlying mechanisms behind hematopoietic disruption during drug induced marrow aplasia. Outcome of the study may be helpful in successful designing of therapeutic strategies for the disease concerned.
Collapse
Affiliation(s)
- Ritam Chatterjee
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
24
|
Guo J, Ozaki I, Xia J, Kuwashiro T, Kojima M, Takahashi H, Ashida K, Anzai K, Matsuhashi S. PDCD4 Knockdown Induces Senescence in Hepatoma Cells by Up-Regulating the p21 Expression. Front Oncol 2019; 8:661. [PMID: 30687637 PMCID: PMC6334536 DOI: 10.3389/fonc.2018.00661] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
While the over-expression of tumor suppressor programmed cell death 4 (PDCD4) induces apoptosis, it was recently shown that PDCD4 knockdown also induced apoptosis. In this study, we examined the cell cycle regulators whose activation is affected by PDCD4 knockdown to investigate the contribution of PDCD4 to cell cycle regulation in three types of hepatoma cells: HepG2, Huh7 (mutant p53 and p16-deficient), and Hep3B (p53- and Rb-deficient). PDCD4 knockdown suppressed cell growth in all three cell lines by inhibiting Rb phosphorylation via down-regulating the expression of Rb itself and CDKs, which phosphorylate Rb, and up-regulating the expression of the CDK inhibitor p21 through a p53-independent pathway. We also found that apoptosis was induced in a p53-dependent manner in PDCD4 knockdown HepG2 cells (p53+), although the mechanism of cell death in PDCD4 knockdown Hep3B cells (p53-) was different. Furthermore, PDCD4 knockdown induced cellular senescence characterized by β-galactosidase staining, and p21 knockdown rescued the senescence and cell death as well as the inhibition of Rb phosphorylation induced by PDCD4 knockdown. Thus, PDCD4 is an important cell cycle regulator of hepatoma cells and may be a promising therapeutic target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jing Guo
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Iwata Ozaki
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan.,Health Administration Centre, Saga Medical School, Saga University, Saga, Japan
| | - Jinghe Xia
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Takuya Kuwashiro
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Motoyasu Kojima
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Hirokazu Takahashi
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Kenji Ashida
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Sachiko Matsuhashi
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| |
Collapse
|
25
|
Cheng SY, Vargas A, Lee JY, Clement CC, Champeil E. Involvement of Akt in mitomycin C and its analog triggered cytotoxicity in MCF-7 and K562 cancer cells. Chem Biol Drug Des 2018; 92:2022-2034. [PMID: 30091208 PMCID: PMC6251731 DOI: 10.1111/cbdd.13374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Accepted: 07/22/2018] [Indexed: 01/13/2023]
Abstract
Mitomycin C (MC) is a well-known DNA alkylating agent. MC analog, 10-decarbamoyl mitomycin C (DMC), unlike MC, has stronger effects on cancer with p53 mutation. We previously demonstrated that MC/DMC could activate p21WAF1/CIP1 in MCF-7 (p53-proficient) and K562 (p53-deficient) cells in a p53-independent mode. This study aimed to elucidate the upstream signaling pathway of p21WAF1/CIP1 activation triggered by MC/DMC. Besides p53, Akt plays an important role on deactivating p21WAF1/CIP1 . The results showed that MC/DMC inhibited Akt in MCF-7 cells, but not in K562 cells. By knocking down p53, the Akt inhibition in MCF-7 cells was alleviated. This implied that the deactivated Akt caused by MC/DMC was p53-dependent. With Akt activator (SC79), p21WAF1/CIP1 activation triggered by MC/DMC in MCF-7 cells was not reduced. This indicated that Akt inhibition triggered by MC/DMC was not associated with MC/DMC-induced p21WAF1/CIP1 activation. Label-free quantitative proteomic profiling analysis revealed that DMC has a stronger effect on down-regulating the PI3K/Akt signaling pathway in MCF-7 cells as compared to MC. No significant effect of MC/DMC on PI3K/Akt in K562 cells was observed. In summary, MC/DMC regulate Akt activation in a p53-dependent manner. This Akt deactivation is not associated with p21WAF1/CIP1 activation in response to MC/DMC.
Collapse
Affiliation(s)
- Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York City, New York
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York City, New York
| | - Anayatzinc Vargas
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York City, New York
| | - Ji-Young Lee
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York City, New York
| | - Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Chemistry Department, Lehman College, City University of New York, Bronx, New York
| | - Elise Champeil
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York City, New York
| |
Collapse
|
26
|
Huang X, Qiao Y, Zhou Y, Ruan Z, Kong Y, Li G, Xie X, Zhang J. Ureaplasma spp. lipid-associated membrane proteins induce human monocyte U937 cell cycle arrest through p53-independent p21 pathway. Int J Med Microbiol 2018; 308:819-828. [PMID: 30033344 DOI: 10.1016/j.ijmm.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 07/15/2018] [Indexed: 12/26/2022] Open
Abstract
Ureaplasma spp. are known to be associated with human genitourinary tract diseases and perinatal diseases and Ureaplasma spp. Lipid-associated membrane proteins (LAMPs) play important roles in their related diseases. However, the exact mechanism underlying pathogenesis of Ureaplasma spp. LAMPs is largely unknown. In this study, we explored the pathogenic mechanisms of Ureaplasma spp. LAMPs by elucidating their role in modulating the cell cycle and related signaling pathways in human monocytic cell U937, which is highly related to the inflammatory and protective effect in infectious diseases. We utilized the two ATCC reference strains (Ureaplasma parvum serovar 3 str. ATCC 27,815 (UPA3) and Ureaplasma urealyticum serovar 8 str. ATCC 27,618 (UUR8)) and nine clinical isolates which including both UPA and UUR to study the effects of Ureaplasma spp. LAMPs on U937 in vitro. We found that LAMPs derived from UUR8 and both UPA and UUR of clinical strains markedly inhibited the cell proliferation, while UPA3 LAMPs suppressed slightly. Besides, the result of flow cytometry analysis indicated all the Ureaplasma spp. LAMPs could arrest U937 cells in G1 phase. Next, we found that the cell cycle arrest was associated with increased levels of p53 and p21, and a concomitant decrease in the levels of CDK2, CDK4, CDK6 and cyclin E1 at both transcriptional and translational levels after treatment with LAMPs derived from UUR8 or clinical strains, while only cyclin E1 was down-regulated after treatment with UPA3 LAMPs. Further study showed that p53 down-regulation had almost no effect on the distribution of cell cycle and the expression of p21. In conclusion, this study demonstrated that LAMPs derived from UUR8 and clinical strains could inhibit the proliferation of U937 cells by inducing G1 cell cycle arrest through increasing the p21 expression in a p53-independent manner, while UPA3 LAMPs could induce the cell cycle arrest slightly. Our study could contribute to the understanding of Ureaplasma spp. pathogenesis, which has potential value for the treatment of Ureaplasma spp. infections.
Collapse
Affiliation(s)
- Xucheng Huang
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China; Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yingli Qiao
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China; Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yixuan Zhou
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China; Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Zhi Ruan
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China; Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yingying Kong
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China; Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Guoli Li
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China; Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xinyou Xie
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China; Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| | - Jun Zhang
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China; Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
27
|
Han SY, Jeong YJ, Choi Y, Hwang SK, Bae YS, Chang YC. Mitochondrial dysfunction induces the invasive phenotype, and cell migration and invasion, through the induction of AKT and AMPK pathways in lung cancer cells. Int J Mol Med 2018; 42:1644-1652. [PMID: 29916527 DOI: 10.3892/ijmm.2018.3733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/08/2018] [Indexed: 11/05/2022] Open
Abstract
Mitochondria are well known for their important roles in oxidative phosphorylation, amino acid metabolism, fatty acid oxidation and ion homeostasis. Although the effects of mitochondrial dysfunction on tumorigenesis in various cancer cells have been reported, the correlation between mitochondrial dysfunction and epithelial‑to‑mesenchymal transition (EMT) in lung cancer development and metastasis has not been well elucidated. In the present study, the effects of mitochondrial dysfunction on EMT and migration in lung cancer cells were investigated using inhibitors of mitochondrial respiration, oligomycin A and antimycin A. Oligomycin A and antimycin A induced distinct mesenchymal‑like morphological features in H23, H1793 and A549 lung cancer cells. In addition, they decreased the expression levels of the epithelial marker protein E‑cadherin, but increased the expression levels of the mesenchymal marker proteins Vimentin, Snail and Slug. The results of immunofluorescence staining indicated that oligomycin A and antimycin A downregulated cortical E‑cadherin expression and upregulated the expression of Vimentin. In addition, oligomycin A and antimycin A increased the migration and invasion of A549 lung cancer cells, and promoted the expression levels of phosphorylated (p)‑protein kinase B (AKT) and p‑AMP‑activated protein kinase (AMPK). Notably, the production of reactive oxygen species by oligomycin A and antimycin A did not affect the expression of EMT protein markers. Conversely, treatment with the AKT inhibitor wortmannin and the AMPK inhibitor Compound C upregulated E‑cadherin and downregulated Vimentin expression. These results suggested that oligomycin A and antimycin A may induce migration and invasion of lung cancer cells by inducing EMT via the upregulation of p‑AKT and p‑AMPK expression.
Collapse
Affiliation(s)
- Si-Yoon Han
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Yongsoo Choi
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Soon-Kyung Hwang
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Young-Seuk Bae
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group,College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Chae Chang
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
28
|
GADD45A and CDKN1A are involved in apoptosis and cell cycle modulatory effects of viscumTT with further inactivation of the STAT3 pathway. Sci Rep 2018; 8:5750. [PMID: 29636527 PMCID: PMC5893628 DOI: 10.1038/s41598-018-24075-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/21/2018] [Indexed: 12/28/2022] Open
Abstract
ViscumTT, a whole mistletoe preparation, has shown synergistic induction of apoptosis in several pediatric tumor entities. High therapeutic potential has previously been observed in Ewing's sarcoma, rhabdomyosarcoma, ALL and AML. In this study, we analyzed modulatory effects on the cell cycle by viscumTT in three osteosarcoma cell lines with various TP53 statuses. ViscumTT treatment induced G1 arrest in TP53 wild-type and null-mutant cells, but S arrest in TP53 mutant cells. Blockage of G1/S transition was accompanied by down-regulation of the key regulators CDK4, CCND1, CDK2, CCNE, CCNA. However, investigations on the transcriptional level revealed secondary TP53 participation. Cell cycle arrest was predominantly mediated by transcriptionally increased expression of GADD45A and CDKN1A and decreased SKP2 levels. Enhanced CDKN1A and GADD45A expression further played a role in viscumTT-induced apoptosis with involvement of stress-induced MAPK8 and inactivation of MAPK1/3. Furthermore, viscumTT inhibited the pro-survival pathway STAT3 by dephosphorylation of the two sites, Tyr705 and Ser727, by down-regulation of total STAT3 and its direct downstream targets BIRC5 and C-MYC. Moreover, tests of the efficacy of viscumTT in vivo showing reduction of tumor volume confirmed the high therapeutic potential as an anti-tumoral agent for osteosarcoma.
Collapse
|
29
|
Kim J, Park SH, Do KH, Kim D, Moon Y. Interference with mutagenic aflatoxin B1-induced checkpoints through antagonistic action of ochratoxin A in intestinal cancer cells: a molecular explanation on potential risk of crosstalk between carcinogens. Oncotarget 2018; 7:39627-39639. [PMID: 27119350 PMCID: PMC5129958 DOI: 10.18632/oncotarget.8914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
Foodborne aflatoxin B1 (AFB1) and ochratoxin A (OTA) cause genotoxic injury and subsequent tumor formation. As a biomarker of oncogenic stimulation by genotoxic mycotoxins, p53-triggered Mdm2 was assessed in intestinal cancer cells. AFB1 increased Mdm2 reporter expression in a dose-dependent manner. However, this was strongly antagonized by OTA treatment. As a positive transcription factor of Mdm2 expression, p53 levels were also increased by AFB1 alone and reduced by OTA. With marginal cell death responses, AFB1 induced p53-mediated S phase arrest and cell cycle-regulating target genes, which was completely suppressed by OTA. Although enterocyte-dominant CYP3A5 counteracted AFB1-induced DNA damage, expression of CYP3A5 was decreased by OTA or AFB1. Instead, OTA enhanced expression of another metabolic inactivating enzyme CYP3A4, attenuation of formation of AFB1-DNA adduct and p53-mediated cell cycle checking responses to the mutagens. Finally, the growth of intestinal cancer cells exposed to the mycotoxin mixture significantly exceeded the expected growth calculated from that of cells treated with each mycotoxin. Although AFB1-induced mutagen formation was decreased by OTA, interference with checkpoints through antagonistic action of OTA may contribute to the survival of tumor cells with deleterious mutations by genotoxic mycotoxins, potently increasing the risk of carcinogenesis.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Dongwook Kim
- National Institute of Animal Science, RDA, Wanju, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan, South Korea
| |
Collapse
|
30
|
Jeong Y, Hoe H, Cho H, Park K, Kim D, Kim C, Magae J, Kang DW, Lee S, Chang Y. Suppression of c‐Myc enhances p21
WAF1/CIP1
‐mediated G1 cell cycle arrest through the modulation of ERK phosphorylation by ascochlorin. J Cell Biochem 2017; 119:2036-2047. [PMID: 28833404 DOI: 10.1002/jcb.26366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yun‐Jeong Jeong
- Research Institute of Biomedical Engineering and Department of MedicineCatholic University of Daegu School of MedicineDaeguRepublic of Korea
| | - Hyang‐Sook Hoe
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)DaeguRepublic of Korea
| | - Hyun‐Ji Cho
- Research Institute of Biomedical Engineering and Department of MedicineCatholic University of Daegu School of MedicineDaeguRepublic of Korea
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)DaeguRepublic of Korea
| | - Kwan‐Kyu Park
- Research Institute of Biomedical Engineering and Department of MedicineCatholic University of Daegu School of MedicineDaeguRepublic of Korea
| | - Dae‐Dong Kim
- Research Institute of Biomedical Engineering and Department of MedicineCatholic University of Daegu School of MedicineDaeguRepublic of Korea
| | - Cheorl‐Ho Kim
- Department of Biological ScienceSungkyunkwan UniversitySuwonKyunggi‐DoRepublic of Korea
| | | | - Dong Wook Kang
- Department of Pharmaceutical Science and TechnologyDaegu Catholic UniversityGyeongsan‐siGyeongbukRepublic of Korea
| | - Sang‐Rae Lee
- National Primate Research Center (NPRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB), OchangChungbukRepublic of Korea
| | - Young‐Chae Chang
- Research Institute of Biomedical Engineering and Department of MedicineCatholic University of Daegu School of MedicineDaeguRepublic of Korea
| |
Collapse
|
31
|
Park JY, Chung TW, Jeong YJ, Kwak CH, Ha SH, Kwon KM, Abekura F, Cho SH, Lee YC, Ha KT, Magae J, Chang YC, Kim CH. Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophages. PLoS One 2017; 12:e0171322. [PMID: 28207754 PMCID: PMC5313137 DOI: 10.1371/journal.pone.0171322] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The natural fungal compound ascofuranone (5-chloro-3-[(2E,6E)-7-[(2S)-5,5-dimethyl-4-oxo-tetrahydrofuran-2-yl]-3-methyl-octa-2,6-dienyl]-2,4-dihydroxy-6-methyl-benzaldehyde, MW 420.93) (AF) isolated from Ascochyta viciae has been known to promote cell cycle arrest and inhibit invasion of tumor cells. We have previously studied a structurally similar compound ascochlorin (ASC; MW 404.93) with regard to its anti-inflammatory activity in LPS- stimulated RAW 264.7 macrophages. In order to examine the relationship between the anti-inflammatory activities and the molecular differences between AF and ASC, the activity of AF is herein studied, because ASC has a unique trimethyl oxocyclohexyl structure, while AF has a unique dimethyl-oxo-tetrahydrofuran structure. AF dose-dependently inhibited the production of NO and iNOS and the COX-2 mRNA and protein levels in RAW 264.7 cells. In addition, AF suppressed mRNA expression levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, as assessed by RT-PCR. AF (30-50 μg/ml) treatment clearly inhibited the nuclear translocation of NF-κB, AP-1 (p-c-Jun) from the cytosolic space. Phosphorylation of IκB, which functions to maintain the activity of NF-κB, was decreased by AF treatment. Moreover, AF suppressed the binding of NF-κB (p65). Inhibition of IkBa phosphorylation and degradation inhibits nuclear translocation of p65. Immunofluorescence confocal microscopy analysis also revealed that translocation of NF-κB and AP-1 (p-c-Jun) was decreased upon AF treatment. AF specifically decreased the expression level of p-ERK, but not the expression level of p-p38 or p-JNK. Given these results, we suggest that AF suppresses the inflammatory response by targeting p-ERK. This indicates that AF is a negative regulator of LPS-stimulated nuclear translocation of NF-κB and AP-1 (p-c-Jun) in RAW 264.7 macrophages, and specifically it targets p-ERK. Therefore, AF and ASC exert their effects in different ways, most probably because their structural differences allow for specific recognition and inhibition of their target MAPKs. Our results further suggest that AF could be a natural bioactive compound useful for treating inflammation-mediated pathological diseases.
Collapse
Affiliation(s)
- Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Tae-Wook Chung
- School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju, Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49–4 Fujimidai, Tsukuba, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
32
|
Min-Wen JC, Yan-Jiang BC, Mishra S, Dai X, Magae J, Shyh-Chang N, Kumar AP, Sethi G. Molecular Targets of Ascochlorin and Its Derivatives for Cancer Therapy. STRESS AND INFLAMMATION IN DISORDERS 2017; 108:199-225. [DOI: 10.1016/bs.apcsb.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Li Y, Shen Y, Hohensinner P, Ju J, Wen Z, Goodman SB, Zhang H, Goronzy JJ, Weyand CM. Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity 2016; 45:903-916. [PMID: 27742546 DOI: 10.1016/j.immuni.2016.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
Abstract
Immune aging manifests with a combination of failing adaptive immunity and insufficiently restrained inflammation. In patients with rheumatoid arthritis (RA), T cell aging occurs prematurely, but the mechanisms involved and their contribution to tissue-destructive inflammation remain unclear. We found that RA CD4+ T cells showed signs of aging during their primary immune responses and differentiated into tissue-invasive, proinflammatory effector cells. RA T cells had low expression of the double-strand-break repair nuclease MRE11A, leading to telomeric damage, juxtacentromeric heterochromatin unraveling, and senescence marker upregulation. Inhibition of MRE11A activity in healthy T cells induced the aging phenotype, whereas MRE11A overexpression in RA T cells reversed it. In human-synovium chimeric mice, MRE11Alow T cells were tissue-invasive and pro-arthritogenic, and MRE11A reconstitution mitigated synovitis. Our findings link premature T cell aging and tissue-invasiveness to telomere deprotection and heterochromatin unpacking, identifying MRE11A as a therapeutic target to combat immune aging and suppress dysregulated tissue inflammation.
Collapse
Affiliation(s)
- Yinyin Li
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Shen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philipp Hohensinner
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Internal Medicine II/Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jihang Ju
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhenke Wen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hui Zhang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Lin SC, Gou GH, Hsia CW, Ho CW, Huang KL, Wu YF, Lee SY, Chen YH. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev 2016; 25:1172-93. [PMID: 27269634 DOI: 10.1089/scd.2016.0040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest stem cells (NCSCs) are a population of multipotent stem cells that are distributed broadly in many tissues and organs and are capable of differentiating into a variety of cell types that are dispersed throughout three germ layers. We are interested in studying the effects of simulated microgravity on the survival and self-renewal of NCSCs. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro, respectively, in a 2D adherent environment and a 3D suspension environment using the rotatory cell culture system (RCCS) to simulate microgravity. We found that rat NCSCs (rNCSCs) cultured in the RCCS for 24 h showed disrupted organization of filamentous actin, increased globular actin level, formation of plasma membrane blebbing and neurite-like artifact, as well as decreased levels of cortactin and vimentin. Interestingly, ∼70% of RCCS-cultured rNCSCs co-expressed cleaved (active) caspase-3 and neuronal markers microtubule-associated protein 2 (MAP2) and Tuj1 instead of NCSC markers, suggesting stress-induced formation of neurite-like artifact in rNCSCs. In addition, rNCSCs showed increased C-X-C chemokine receptor 4 (CXCR4) expression, RhoA GTPase activation, Rho-associated kinase 1 (ROCK1) and p38 mitogen-activated protein kinase (MAPK) phosphorylation, and p53 expression in the nucleus. Incubation of rNCSCs with the Gα protein inhibitor pertussis toxin or CXCR4 siRNA during RCCS-culturing prevented cytoskeleton disorganization and plasma membrane blebbing, and it suppressed apoptosis of rNCSCs. Taken together, we demonstrate for the first time that simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rNCSCs via upregulating CXCR4 expression and the RhoA-ROCK1-p38 MAPK-p53 signaling pathway.
Collapse
Affiliation(s)
- Shing-Chen Lin
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Guo-Hau Gou
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,3 Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital , Longtan Township, Taoyuan County, Taiwan
| | - Kun-Lun Huang
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,4 Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Yung-Fu Wu
- 5 Department of Medical Research, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Shih-Yu Lee
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| |
Collapse
|
35
|
Chakraborty S, Rasool RU, Kumar S, Nayak D, Rah B, Katoch A, Amin H, Ali A, Goswami A. Cristacarpin promotes ER stress-mediated ROS generation leading to premature senescence by activation of p21(waf-1). AGE (DORDRECHT, NETHERLANDS) 2016; 38:62. [PMID: 27246693 PMCID: PMC5005927 DOI: 10.1007/s11357-016-9922-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Stress-induced premature senescence (SIPS) is quite similar to replicative senescence that is committed by cells exposed to various stress conditions viz. ultraviolet radiation (DNA damage), hydrogen peroxide (oxidative stress), chemotherapeutic agents (cytotoxic threat), etc. Here, we report that cristacarpin, a natural product obtained from the stem bark of Erythrina suberosa, promotes endoplasmic reticulum (ER) stress, leading to sub-lethal reactive oxygen species (ROS) generation and which eventually terminates by triggering senescence in pancreatic and breast cancer cells through blocking the cell cycle in the G1 phase. The majority of cristacarpin-treated cells responded to conventional SA-β-gal stains; showed characteristic p21(waf1) upregulation along with enlarged and flattened morphology; and increased volume, granularity, and formation of heterochromatin foci-all of these features are the hallmarks of senescence. Inhibition of ROS generation by N-acetyl-L-cysteine (NAC) significantly reduced the expression of p21(waf1), confirming that the modulation in p21(waf1) by anti-proliferative cristacarpin was ROS dependent. Further, the elevation in p21(waf1) expression in PANC-1 and MCF-7 cells was consistent with the decrease in the expression of Cdk-2 and cyclinD1. Here, we provide evidence that cristacarpin promotes senescence in a p53-independent manner. Moreover, cristacarpin treatment induced p38MAPK, indicating the ROS-dependent activation of the MAP kinase pathway, and thus abrogates the tumor growth in mouse allograft tumor model.
Collapse
Affiliation(s)
- Souneek Chakraborty
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, J&K, 180001, India
| | - Reyaz Ur Rasool
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, J&K, 180001, India
| | - Sunil Kumar
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, J&K, 180001, India
| | - Debasis Nayak
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, J&K, 180001, India
| | - Bilal Rah
- University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Archana Katoch
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, J&K, 180001, India
| | - Hina Amin
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, J&K, 180001, India
| | - Asif Ali
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, J&K, 180001, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, India.
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, J&K, 180001, India.
| |
Collapse
|
36
|
Shin JM, Jeong YJ, Cho HJ, Magae J, Bae YS, Chang YC. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells. Apoptosis 2016; 21:657-68. [DOI: 10.1007/s10495-016-1228-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Edwards SKE, Han Y, Liu Y, Kreider BZ, Liu Y, Grewal S, Desai A, Baron J, Moore CR, Luo C, Xie P. Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells. Leuk Res 2015; 41:85-95. [PMID: 26740054 DOI: 10.1016/j.leukres.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023]
Abstract
Bortezomib, a clinical drug for multiple myeloma (MM) and mantle cell lymphoma, exhibits complex mechanisms of action, which vary depending on the cancer type and the critical genetic alterations of each cancer. Here we investigated the signaling mechanisms of bortezomib in mouse B lymphoma and human MM cells deficient in a new tumor suppressor gene, TRAF3. We found that bortezomib consistently induced up-regulation of the cell cycle inhibitor p21(WAF1) and the pro-apoptotic protein Noxa as well as cleavage of the anti-apoptotic protein Mcl-1. Interestingly, bortezomib induced the activation of NF-κB1 and the accumulation of the oncoprotein c-Myc, but inhibited the activation of NF-κB2. Furthermore, we demonstrated that oridonin (an inhibitor of NF-κB1 and NF-κB2) or AD 198 (a drug targeting c-Myc) drastically potentiated the anti-cancer effects of bortezomib in TRAF3-deficient malignant B cells. Taken together, our findings increase the understanding of the mechanisms of action of bortezomib, which would aid the design of novel bortezomib-based combination therapies. Our results also provide a rationale for clinical evaluation of the combinations of bortezomib and oridonin (or other inhibitors of NF-κB1/2) or AD 198 (or other drugs targeting c-Myc) in the treatment of lymphoma and MM, especially in patients containing TRAF3 deletions or relevant mutations.
Collapse
Affiliation(s)
- Shanique K E Edwards
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ 08854, United States
| | - Yeming Han
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Yingying Liu
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Benjamin Z Kreider
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Yan Liu
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Sukhdeep Grewal
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Anand Desai
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Jacqueline Baron
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Carissa R Moore
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States; Member, Rutgers Cancer Institute of New Jersey, United States.
| |
Collapse
|
38
|
Jäger SN, Porta EOJ, Labadie GR. Tuning the Lewis acid phenol ortho-prenylation as a molecular diversity tool. Mol Divers 2015; 20:407-19. [PMID: 26525879 DOI: 10.1007/s11030-015-9644-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022]
Abstract
A diversity-oriented approach for the synthesis of various structurally different prenylated alcohols from readily accessible and common precursors was developed. With varying approaches, this article describes some successful examples of a Friedel-Crafts alkylation using methoxyphenols and different prenyl alcohols (geraniol and (E,E)-farnesol). We demonstrated that just by varying the stoichiometry of the Lewis acid used, the course of the reaction can be shifted to produce the alkylated or the cyclized product. Eighteen unique products were obtained with good isolated yields by direct alkylation with or without a consecutive π-cationic cyclization.
Collapse
Affiliation(s)
- Sebastián N Jäger
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Exequiel O J Porta
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
39
|
Wang Y, Qiu Z, Zhou B, Liu C, Ruan J, Yan Q, Liao J, Zhu F. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicol In Vitro 2015; 29:1107-1115. [PMID: 25910917 DOI: 10.1016/j.tiv.2015.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 03/20/2015] [Accepted: 04/11/2015] [Indexed: 12/15/2022]
Abstract
The intestinal metabolites of ellagic acid (EA), urolithins are known to effectively inhibit cancer cell proliferation. This study investigates antiproliferative and antioxidant effects of urolithin A (UA) on cell survival of the HepG2 hepatic carcinomas cell line. The antiproliferative effects of UA (0-500 μM) on HepG2 cells were determined using a CCK assay following 12-36 h exposure. Effects on β-catenin and other factors of expression were assessed by using real-time PCR and Western blot. We found that UA showed potent antiproliferative activity on HepG2 cells. When cell death was induced by UA, it was found that the expression of β-catenin, c-Myc and Cyclin D1 were decreased and TCF/LEF transcriptional activation was notably down-regulated. UA also increased protein expression of p53, p38-MAPK and caspase-3, but suppressed expression of NF-κB p65 and other inflammatory mediators. Furthermore, the antioxidant assay afforded by UA and EA treatments was associated with decreases in intracellular ROS levels, and increases in intracellular SOD and GSH-Px activity. These results suggested that UA could inhibit cell proliferation and reduce oxidative stress status in liver cancer, thus acting as a viably effective constituent for HCC prevention and treatment.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Zhenpeng Qiu
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Cong Liu
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China
| | - Jinlan Ruan
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan 430223, People's Republic of China
| | - Qiujin Yan
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China
| | - Jianming Liao
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China
| | - Fan Zhu
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, People's Republic of China.
| |
Collapse
|
40
|
Beggs KM, Maiuri AR, Fullerton AM, Poulsen KL, Breier AB, Ganey PE, Roth RA. Trovafloxacin-induced replication stress sensitizes HepG2 cells to tumor necrosis factor-alpha-induced cytotoxicity mediated by extracellular signal-regulated kinase and ataxia telangiectasia and Rad3-related. Toxicology 2015; 331:35-46. [PMID: 25748550 DOI: 10.1016/j.tox.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/11/2015] [Accepted: 03/04/2015] [Indexed: 01/23/2023]
Abstract
Use of the fluoroquinolone antibiotic trovafloxacin (TVX) was restricted due to idiosyncratic, drug-induced liver injury (IDILI). Previous studies demonstrated that tumor necrosis factor-alpha (TNF) and TVX interact to cause death of hepatocytes in vitro that was associated with prolonged activation of c-Jun N-terminal kinase (JNK), activation of caspases 9 and 3, and DNA damage. The purpose of this study was to explore further the mechanism by which TVX interacts with TNF to cause cytotoxicity. Treatment with TVX caused cell cycle arrest, enhanced expression of p21 and impaired proliferation, but cell death only occurred after cotreatment with TVX and TNF. Cell death involved activation of extracellular signal-related kinase (ERK), which in turn activated caspase 3 and ataxia telangiectasia and Rad3-related (ATR), both of which contributed to cytotoxicity. Cotreatment of HepG2 cells with TVX and TNF caused double-strand breaks in DNA, and ERK contributed to this effect. Inhibition of caspase activity abolished the DNA strand breaks. The data suggest a complex interaction of TVX and TNF in which TVX causes replication stress, and the downstream effects are exacerbated by TNF, leading to hepatocellular death. These results raise the possibility that IDILI from TVX results from MAPK and ATR activation in hepatocytes initiated by interaction of cytokine signaling with drug-induced replication stress.
Collapse
Affiliation(s)
- Kevin M Beggs
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Ashley R Maiuri
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Aaron M Fullerton
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Kyle L Poulsen
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Anna B Breier
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Patricia E Ganey
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Robert A Roth
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States.
| |
Collapse
|
41
|
Zhang R, Shi H, Ren F, Liu H, Zhang M, Deng Y, Li X. Misregulation of polo-like protein kinase 1, P53 and P21WAF1 in epithelial ovarian cancer suggests poor prognosis. Oncol Rep 2015; 33:1235-42. [PMID: 25592872 DOI: 10.3892/or.2015.3723] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Polo-like protein kinase 1 (PLK1), P53 and P21WAF1 are relevant to cell cycle checkpoints and cancer biology. Misregulation of PLK1, P53 and P21WAF1 has been detected in several types of malignant tumors. The present study aimed to clarify the role of PLK1, P53 and P21WAF1 in the prognosis of ovarian cancer. PLK1 and P53 shRNA lentiviral plasmids were transfected into SK-OV-3 cells, respectively. Cell proliferation, apoptosis and invasion were examined by MTT assay, flow cytometry and Matrigel assay, respectively. Survival time of the animals was observed in a xenograft model. Expression levels of PLK1, P53 and P21WAF1 were detected in different ovarian tissues by immunohistochemistry and western blot analysis. Their correlations to the clinicopathologic characteristics of the epithelial ovarian cancer (EOC) cases and their interrelationships were analyzed. Risk factors of prognosis for EOC were determined by logistic regression analysis. The survival time of EOC patients was measured by Kaplan-Meier analysis. After PLK1 or P53 knockdown, proliferation of the SK-OV-3 cells was inhibited, the apoptosis rate was increased, and cell invasion was suppressed in vitro, and the survival time was prolonged in the animals. Expression levels of P53, p-P53 (Ser15), P21WAF1, growth arrest and DNA damage‑inducible gene 45 (GADD45) and 14-3-3σ were upregulated in the SK-OV-3 cells after PLK1 knockdown, but downregulated after P53 knockdown. Higher expression levels of PLK1 and P53 were observed in patients with a higher FIGO stage and worse histological differentiation, but lower P21WAF1 was noted at a higher FIGO stage. Negative correlations were observed between expression of PLK1 and P53 and P53 and P21WAF1 in the EOC cases. PLK1, P53 and P21WAF1 could be used to assess the prognosis of EOC, respectively, but only PLK1 was found to be an independent prognostic factor. The overall survival time of subjects exhibiting PLK1-positive/P53-positive expression and PLK1-positive/P21WAF1-negative expression was obviously shorter than the other patient groups at the end of the follow-up. These results indicate that PLK1 is implicated in ovarian carcinogenesis and may owe its ability to inhibition of the activity of P53. In addition, misregulation of PLK1 coincident with P53 and P21WAF1 in EOC suggests poor prognosis.
Collapse
MESH Headings
- 14-3-3 Proteins/biosynthesis
- Adult
- Aged
- Animals
- Apoptosis/genetics
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Carcinoma, Ovarian Epithelial
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Disease Models, Animal
- Exoribonucleases/biosynthesis
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Neoplasm Invasiveness/genetics
- Neoplasm Staging
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/mortality
- Neoplasms, Glandular and Epithelial/pathology
- Nuclear Proteins/biosynthesis
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNA, Small Interfering
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Young Adult
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Ruitao Zhang
- Department of Gynaecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huirong Shi
- Department of Gynaecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fang Ren
- Department of Gynaecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huina Liu
- Department of Gynaecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Minghui Zhang
- Department of Gynaecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Youxing Deng
- Department of Gynaecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xia Li
- Department of Gynaecology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
42
|
Jeong YJ, Shin JM, Bae YS, Cho HJ, Park KK, Choe JY, Han SM, Moon SK, Kim WJ, Choi YH, Kim CH, Chang HW, Chang YC. Melittin has a chondroprotective effect by inhibiting MMP-1 and MMP-8 expressions via blocking NF-κB and AP-1 signaling pathway in chondrocytes. Int Immunopharmacol 2015; 25:400-5. [PMID: 25708656 DOI: 10.1016/j.intimp.2015.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 11/26/2022]
Abstract
Bee venom is a natural ingredient produced by the honey bee (Apis mellifera), and has been widely used in China, Korea and Japan as a traditional medicine for various diseases such as arthritis, rheumatism, and skin diseases However, the regulation of the underlying molecular mechanisms of the anti-arthritis by bee venom and its major peptides is largely unknown. In this study, we investigated the potential molecular mechanisms underlying the anti-arthritis effect of bee venom and its major peptides, melittin and apamin, in tumor necrosis factor-α (TNF-α) responsive C57BL/6 mice chondrocyte cells. The bee venom and melittin significantly and selectively suppressed the TNF-α-mediated decrease of type II collagen expression, whereas the apamin had no effects on the type II collagen expression. We, furthermore, found that the bee venom and melittin inhibited the protein expression of matrix metalloproteinase (MMP)-1 and MMP-8, which suggests that the chondroprotective effect of bee venom may be caused by melittin. The inhibitory effects of melittin on the TNF-α-induced MMP-1 and MMP-8 protein expression were regulated by the inhibition of NF-kB and AP-1. In addition, melittin suppressed the TNF-α-induced phosphorylation of Akt, JNK and ERK1/2, but did not affect the phosphorylation of p38 kinase. These results suggest that melittin suppresses TNF-α-stimulated decrease of type II collagen expression by the inhibiting MMP-1 and MMP-8 through regulation of the NF-kB and AP-1 pathway and provision of a novel role for melittin in anti-arthritis action.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Jae-Moon Shin
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), Kyungpook National University, Daegu 702-701 Republic of Korea
| | - Young-Seuk Bae
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), Kyungpook National University, Daegu 702-701 Republic of Korea
| | - Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Jung-Yoon Choe
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Sang-Mi Han
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, Kyunggi-Do 441-100, Republic of Korea
| | - Sung-Kwon Moon
- School of Food Science and Technology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Wun-Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-052, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-Do 440-746, Republic of Korea
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 701-947, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea.
| |
Collapse
|
43
|
Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y, Farajnia S. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res 2014; 93:1-10. [PMID: 25533812 DOI: 10.1016/j.phrs.2014.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 01/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a critical role in the initiation and progression of a variety of human cancers, including breast cancer. An important signaling pathway downstream of EGFR is the PI3K/AKt pathway, which regulates cellular processes as diverse as cell growth, survival, proliferation and migration. Deregulated activity of this pathway may lead to uncontrolled cell growth, survival, migration and invasion, contributing to tumor formation. In this review, we evaluate natural compounds that, in vitro (breast cancer cell lines) and/or in vivo (animal model, clinical) studies, suppress breast cancer cells or tumors mainly by suppressing the PI3K/AKT signaling pathway. The effect of these compounds on cell cycle arrest, inhibition of cell migration and invasion, tumor angiogenesis and metastasis in breast cancer are discussed.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Masoumeh Khalili
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Jeong YJ, Choi Y, Shin JM, Cho HJ, Kang JH, Park KK, Choe JY, Bae YS, Han SM, Kim CH, Chang HW, Chang YC. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem Toxicol 2014; 68:218-25. [PMID: 24675423 DOI: 10.1016/j.fct.2014.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/21/2014] [Accepted: 03/17/2014] [Indexed: 12/20/2022]
|
45
|
Lee SH, Kang YJ, Kim DH, Sung B, Kang JA, Chun P, Yoon JH, Moon HR, Kim HS, Chung HY, Kim ND. A novel oxiranylchromenone derivative, MHY336, induces apoptosis and cell cycle arrest via a p53- and p21-dependent pathway in HCT116 human colon cancer cells. Int J Oncol 2013; 44:943-9. [PMID: 24365999 DOI: 10.3892/ijo.2013.2226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/21/2013] [Indexed: 11/06/2022] Open
Abstract
In this study, we compared cytotoxicity, cell cycle distribution, and apoptosis on MHY336 treatment in three human colorectal carcinoma HCT116 cells: p53+/+ (p53‑wt), p53-/- (p53-null), and p21-/- (p21-null), as well as investigated the roles of p53 and p21 in cell death. Using these three isogenic variants, the roles of p53 and p21 in the cellular response to treatment with MHY336, a novel topoisomerase IIα inhibitor, were investigated. Our results showed that MHY336 treatment increased the expression of p53 over time in cells with wild-type p53 status. This elevated levels of p53 is associated with increased DNA fragmentation, and cleavage of poly(ADP-ribose) polymerase, consistent with increased sensitivity of these cells to apoptotic stimuli. However, p53-null and p21-null cells were more resistant to the antiproliferative and apoptotic effects of MHY336 than p53-wt cells. The same result was achieved by knocking down p53 and p21 with siRNA in p53-wt cells, indicating that p53 and p21 play a crucial role in MHY336-induced cell cycle arrest and apoptosis. Taken together, these results suggest that MHY336 could be a potential candidate to be used in chemoprevention and/or treatment of colon cancer.
Collapse
Affiliation(s)
- Sun Hwa Lee
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| | - Yong Jung Kang
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| | - Dong Hwan Kim
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| | - Bokyung Sung
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| | - Jin Ah Kang
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Jeong-Hyun Yoon
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| | - Nam Deuk Kim
- College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
46
|
Jeong YJ, Cho HJ, Magae J, Lee IK, Park KG, Chang YC. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 2013; 273:542-50. [DOI: 10.1016/j.taap.2013.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/29/2022]
|
47
|
A novel role for the anti-senescence factor TBX2 in DNA repair and cisplatin resistance. Cell Death Dis 2013; 4:e846. [PMID: 24113180 PMCID: PMC3824674 DOI: 10.1038/cddis.2013.365] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022]
Abstract
The emergence of drug resistant tumours that are able to escape cell death pose a major problem in the treatment of cancers. Tumours develop resistance to DNA-damaging chemotherapeutic agents by acquiring the ability to repair their DNA. Combination therapies that induce DNA damage and disrupt the DNA damage repair process may therefore prove to be more effective against such tumours. The developmentally important transcription factor TBX2 has been suggested as a novel anticancer drug target, as it is overexpressed in several cancers and possesses strong anti-senescence and pro-proliferative functions. Importantly, we recently showed that when TBX2 is silenced, we are able to reverse several features of transformation in both breast cancer and melanoma cells. Overexpression of TBX2 has also been linked to drug resistance and we have shown that its ectopic expression results in genetically unstable polyploidy cells with resistance to cisplatin. Whether the overexpression of endogenous TBX2 levels is associated with cisplatin resistance in TBX2-driven cancers has, however, not been shown. To address this we have silenced TBX2 in a cisplatin-resistant breast cancer cell line and we show that knocking down TBX2 sensitises the cells to cisplatin by disrupting the ATM-CHK2-p53 signalling pathway. Cell cycle analyses demonstrate that when TBX2 is knocked down there is an abrogation of an S-phase arrest but a robust G2/M arrest that correlates with a reduction in phosphorylated CHK2 and p53 levels. This prevents DNA repair resulting in TBX2-deficient cells entering mitosis with damaged DNA and consequently undergoing mitotic catastrophe. These results suggest that targeting TBX2 in combination with chemotherapeutic drugs such as cisplatin could improve the efficacy of current anticancer treatments.
Collapse
|
48
|
Systematic analyses of the cytotoxic effects of compound 11a, a putative synthetic agonist of photoreceptor-specific nuclear receptor (PNR), in cancer cell lines. PLoS One 2013; 8:e75198. [PMID: 24066170 PMCID: PMC3774666 DOI: 10.1371/journal.pone.0075198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/11/2013] [Indexed: 12/19/2022] Open
Abstract
Photoreceptor cell-specific receptor (PNR/NR2E3) is an orphan nuclear receptor that plays a critical role in retinal development and photoreceptor maintenance. The disease-causing mutations in PNR have a pleiotropic effect resulting in varying retinal diseases. Recently, PNR has been implicated in control of cellular functions in cancer cells. PNR was reported to be a novel regulator of ERα expression in breast cancer cells, and high PNR expression correlates with favorable response to tamoxifen treatment. Moreover, PNR was shown to increase p53 stability in HeLa cells, implying that PNR may be a therapeutic target in this and other cancers that retain a wild type p53 gene. To facilitate further understanding of PNR functions in cancer, we characterized compound 11a, a synthetic, putative PNR agonist in several cell-based assays. Interestingly, we showed that 11a failed to activate PNR and its cytotoxicity was independent of PNR expression, excluding PNR as a mediator for 11a cytotoxicity. Systematic analyses of the cytotoxic effects of 11a in NCI-60 cell lines revealed a strong positive correlation of cytotoxicity with p53 status, i.e., p53 wild type cell lines were significantly more sensitive to 11a than p53 mutated or null cell lines. Furthermore, using HCT116 p53+/+ and p53-/- isogenic cell lines we revealed that the mechanism of 11a-induced cytotoxicity occurred through G1/S phase cell cycle arrest rather than apoptosis. In conclusion, we observed a correlation of 11a sensitivity with p53 status but not with PNR expression, suggesting that tumors expressing wild type p53 might be responsive to this compound.
Collapse
|
49
|
Mukherjee JJ, Kumar S. DNA synthesis inhibition in response to benzo[a]pyrene dihydrodiol epoxide is associated with attenuation of p(34)cdc2: Role of p53. Mutat Res 2013; 755:61-7. [PMID: 23692869 PMCID: PMC3743414 DOI: 10.1016/j.mrgentox.2013.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 04/21/2023]
Abstract
Our previous findings demonstrated that DNA damage by polynuclear aromatic hydrocarbons (PAHs) triggers a cellular protective response of growth inhibition (G1-S cell cycle arrest and inhibition of DNA synthesis) in human fibroblasts associated with accumulation of p53 protein, a growth-inhibitory transcription factor. Here, we report that BPDE (the ultimate carcinogenic metabolite of the PAH benzo[a]pyrene) treatment triggers a variable extent of inhibition of DNA synthesis/cell growth, which does not correspond to the extent of increased p53 accumulation. BPDE treatment of cells significantly attenuates expression of p(34)cdc2, a cell cycle activating protein. Although the role of cdc2 down-regulation in inhibition of cell cycle progression is well known, cdc2 down-regulation in response to cellular insult by PAHs has not been reported. Unlike p53 accumulation, there is a correspondence between DNA synthesis/cell growth inhibition and cdc2 down-regulation by BPDE. BPDE-induced cdc2 down-regulation is p53 dependent, although there is no correspondence between p53 accumulation and cdc2 down-regulation. BPDE-induced cdc2 down-regulation corresponded with accumulation of the cell cycle inhibitor protein p21 (transactivation product of p53). DNA synthesis/cell growth inhibition in response to DNA-damaging PAHs may involve down-regulation of cdc2 protein mediated by p53 activation (transactivation ability), and the extent of p53 accumulation is not the sole determining factor in this regard.
Collapse
|
50
|
Riccardin D induces cell death by activation of apoptosis and autophagy in osteosarcoma cells. Toxicol In Vitro 2013; 27:1928-36. [PMID: 23810952 DOI: 10.1016/j.tiv.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 05/08/2013] [Accepted: 06/07/2013] [Indexed: 01/04/2023]
Abstract
Macrocyclic bisbibenzyls, characteristic components derived from liverworts, have various biological activities. Riccardin D (RD), a liverwort-derived naturally occurring macrocyclic bisbibenzyl, has been found to exert anticancer effects in multiple cancer cell types through apoptosis induction. However, the underlying mechanisms of such effects remain undefined. In addition, whether RD induces other forms of cell death such as autophagy is unknown. In this study, we found that the arrest of RD-caused U2OS (p53 wild) and Saos-2 (p53 null) cells in G1 phase was associated with the induction of p53 and p21(WAF1) in U2OS cells. RD-mediated cell cycle arrest was accompanied with apoptosis promotion as indicated by changes in nuclear morphology and expression of apoptosis-related proteins. Further studies revealed that the antiproliferation of RD was unaffected in the presence of p53 inhibitor but was partially reversed by a pan-inhibitor of caspases, suggesting that p53 was not required in RD-mediated apoptosis and that caspase-independent mechanisms were involved in RD-mediated cell death. Except for apoptosis, RD-induced autophagy occurred as evidenced by the accumulation of microtubule-associated protein-1 light chain-3B-II, formation of AVOs, punctate dots, and increased autophagic flux. Pharmacological blockade of autophagy activation markedly attenuated RD-mediated cell death. RD-induced cell death was significantly restored by the combination of autophagy and caspase inhibitors in osteosarcoma cells. Overall, our study revealed RD-induced caspase-dependent apoptosis and autophagy in cancer cells, as well as highlighted the importance of continued investigation on the use of RD as a potential anticancer candidate.
Collapse
|