1
|
Liang KL, Azad NS. Immune-Based Strategies for Pancreatic Cancer in the Adjuvant Setting. Cancers (Basel) 2025; 17:1246. [PMID: 40227779 PMCID: PMC11988091 DOI: 10.3390/cancers17071246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality in the United States, with poor overall survival across all stages. Less than 20% of patients are eligible for curative surgical resection at diagnosis, and despite adjuvant chemotherapy, most will experience disease recurrence within two years. The incorporation of immune-based strategies in the adjuvant setting remains an area of intense investigation with unrealized promise. It offers the potential of providing durable disease control for micro-metastatic disease following curative intent surgery and enabling personalized treatments based on mutational neoantigen profiles derived from resected specimens. However, most of these attempts have failed to demonstrate significant clinical success, likely due to the immunosuppressive tumor microenvironment (TME) and individual genetic heterogeneity. Despite these challenges, immune-based strategies, such as therapeutic vaccines targeted towards neoantigens, have demonstrated promise via immune activation and induction of T-cell tumor infiltration. In this review, we will highlight the foundational lessons learned from previous clinical trials of adjuvant immunotherapy, discussing the knowledge gained from analyses of trials with disappointing results. In addition, we will discuss how these data have been incorporated to design new agents and study concepts that are proving to be exciting in more recent trials, such as shared antigen vaccines and combination therapy with immune-checkpoint inhibitors and chemotherapy. This review will evaluate novel approaches in ongoing and future clinical studies and provide insight into how these immune-based strategies might evolve to address the unique challenges for treatment of PDAC in the adjuvant setting.
Collapse
Affiliation(s)
| | - Nilofer S. Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
2
|
Wang T, Sun J, Wang L, Lin Y, Wu Z, Jia Q, Zhang S, An J, Ma X, Wu Q, Su Z, Wang H. Therapeutic potential of isochlorogenic acid A from Taraxacum officinale in improving immune response and enhancing the efficacy of PD-1/PD-L1 blockade in triple-negative breast cancer. Front Immunol 2025; 16:1529710. [PMID: 40109332 PMCID: PMC11920172 DOI: 10.3389/fimmu.2025.1529710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Taraxacum officinale, a traditional medicinal herb, has garnered significant attention for its potential role in the prevention and treatment of breast cancer. Although clinical recognition of its efficacy has gradually increased, research has shown that Taraxacum officinale contains a variety of chemical components, including triterpenes, carbohydrates, flavonoids, phenolic acids, sesquiterpenes, coumarins, fatty acids, and organic acids. However, the pharmacological mechanisms underlying Taraxacum officinale's effects and the identification of its key bioactive components warrant further investigation. Methods Flow cytometry was utilized to investigate the effects of Taraxacum officinale extract (TOE) in combination with PD-1/PD-L1 inhibitor 2 on the immune microenvironment of triple-negative breast cancer (TNBC). Active compounds and their potential targets were identified through an integrative approach involving GeneCards, OMIM, and DisGeNET databases, as well as UPLC-Q-Orbitrap MS analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted, followed by molecular docking to explore compound-target interactions. The anti-proliferative effects of isochlorogenic acid A (ICGA-A) and chicoric acid (CRA) on MDA-MB-231 and 4T1 cells were evaluated using the CCK-8 assay. In vivo validation was performed using a 4T1 murine model and flow cytometry. Results TOE and its active constituents, ICGA-A and CRA, demonstrate potential in augmenting PD-1 blockade therapy for TNBC. This study investigated the combination of ICGA-A and PD-1/PD-L1 inhibitor 2, which significantly enhanced the infiltration of macrophages and CD8+ T cells into tumors in murine models, while concurrently reducing the population of exhausted T cells. Furthermore, CRA notably increased the frequency of CD8+ T cells. Both ICGA-A and CRA therapies were also found to suppress tumor proliferation by inhibiting the FAK/PI3K/AKT/mTOR signaling pathway. These findings highlight the potential of ICGA-A and CRA as effective adjuvants to improve the therapeutic efficacy of PD-1 inhibitor-based immunotherapy in TNBC. Discussion ICGA-A and CRA, bioactive compounds from Taraxacum officinale, exhibit significant antitumor activity in TNBC by targeting the FAK/PI3K/AKT/mTOR pathway, a critical regulator of cancer progression. Their ability to modulate the tumor immune microenvironment highlights their potential as immune modulators that enhance the efficacy of immunotherapy. These findings suggest that ICGA-A and CRA could serve as promising adjuncts in TNBC treatment, offering a novel strategy to overcome challenges such as therapeutic resistance and limited treatment options. Further investigation is warranted to explore their synergistic effects with immunotherapies in improving TNBC outcomes.
Collapse
Affiliation(s)
- Tangyi Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Jingwei Sun
- Department of Medical Laboratory, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Li Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Yuxin Lin
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Zhijing Wu
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Juan An
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Xueman Ma
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Qiong Wu
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Zhanhai Su
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Haiyan Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
3
|
Addassi HA, Krga I, Villarreal F, LaComb JF, Frohman MA, Matsukuma K, Mackenzie GG. Inhibition of phospholipase D1 reduces pancreatic carcinogenesis in mice partly through a FAK-dependent mechanism. Carcinogenesis 2025; 46:bgae071. [PMID: 39487573 DOI: 10.1093/carcin/bgae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024] Open
Abstract
Phospholipase D (PLD) plays a critical role in cancer progression. However, its role in pancreatic cancer remains unclear. Thus, we evaluated the role of PLD1, one of two classical isoforms of PLD, in pancreatic carcinogenesis in vivo. The role of PLD1 in tumor growth was evaluated by subcutaneously transplanting human MIA PaCa-2 cells expressing endogenous PLD1 levels (Ctr KD cells) or cells in which PLD1 was knocked down (Pld1 KD cells) into immunodeficient mice. Twenty days post-implantation, tumors that arose from Pld1-KD cells were significantly smaller, compared to controls (Ctr KD). Then, we assessed the role of PLD1 in the tumor microenvironment, by subcutaneously implanting mouse LSL-KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) cells into wild-type or PLD1 knockout (Pld1-/-) mice. Compared to wild type, tumor growth was attenuated in Pld1-/- mice by 39%, whereas treatment of Pld1-/- mice with gemcitabine reduced tumor growth by 79%. When PLD1 was ablated in LSL-KrasG12D;Ptf1Cre/+ (KC) mice, no reduction in acinar cell loss was observed, compared to KC mice. Finally, treatment of KC mice with a small molecule inhibitor of PLD1 and PLD2 (FIPI) significantly reduced acinar cell loss and cell proliferation, compared to vehicle-treated mice. Mechanistically, the effect of PLD on tumor growth is mediated, partly, by the focal adhesion kinase pathway. In conclusion, while PLD1 is a critical regulator of pancreatic xenograft and allograft growth, playing an important role at the tumor and at the microenvironment levels, the inhibition of PLD1 and PLD2 is necessary to reduce pancreatic carcinogenesis in KC mice and might represent a novel therapeutic target.
Collapse
Affiliation(s)
- Hala A Addassi
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis Medical Center, 45th St., Sacramento, CA 95817, United States
| | - Irena Krga
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
| | - Fernando Villarreal
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
| | - Joseph F LaComb
- Department of Family, Population and Preventive Medicine, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, United States
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, United States
| | - Karen Matsukuma
- UC Davis Comprehensive Cancer Center, University of California, Davis Medical Center, 45th St., Sacramento, CA 95817, United States
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, V St., Sacramento, CA 95817, United States
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis Medical Center, 45th St., Sacramento, CA 95817, United States
- Department of Family, Population and Preventive Medicine, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, United States
| |
Collapse
|
4
|
Finan JM, Guo Y, Goodyear SM, Brody JR. Challenges and Opportunities in Targeting the Complex Pancreatic Tumor Microenvironment. JCO ONCOLOGY ADVANCES 2024; 1:e2400050. [PMID: 39735733 PMCID: PMC11670921 DOI: 10.1200/oa-24-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths with a 5-year survival rate of 13%. Surgical resection remains the only curative option as systemic therapies offer limited benefit. Poor response to chemotherapy and immunotherapy is due, in part, to the dense stroma and heterogeneous tumor microenvironment (TME). Opportunities to target the PDAC stroma may increase the effectiveness of existing or novel therapies. Current strategies targeting the stromal compartment within the PDAC TME primarily focus on degrading extracellular matrix or inhibiting stromal cell activity, angiogenesis, or hypoxic responses. In addition, extensive work has attempted to use immune targeting strategies to improve clinical outcomes. Preclinically, these strategies show promise, especially with the ability to alter the tumor ecosystem; however, when translated to the clinic, most of these trials have failed to improve overall patient outcomes. In this review, we catalog the heterogenous elements of the TME and discuss the potential of combination therapies that target the heterogeneity observed in the TME between patients and how molecular stratification could improve responses to targeted and combination therapies.
Collapse
Affiliation(s)
- Jennifer M. Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Yifei Guo
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shaun M. Goodyear
- Division of Hematology and Oncology, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
5
|
Liu X, Baer JM, Stone ML, Knolhoff BL, Hogg GD, Turner MC, Kao YL, Weinstein AG, Ahmad F, Chen J, Schmidt AD, Klomp JA, Coho H, Coho KS, Coma S, Pachter JA, Bryant KL, Kang LI, Lim KH, Beatty GL, DeNardo DG. Stromal reprogramming overcomes resistance to RAS-MAPK inhibition to improve pancreas cancer responses to cytotoxic and immune therapy. Sci Transl Med 2024; 16:eado2402. [PMID: 39441902 DOI: 10.1126/scitranslmed.ado2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that is often resistant to therapy. An immune suppressive tumor microenvironment (TME) and oncogenic mutations in KRAS have both been implicated as drivers of resistance to therapy. Mitogen-activated protein kinase (MAPK) inhibition has not yet shown clinical efficacy, likely because of rapid acquisition of tumor-intrinsic resistance. However, the unique PDAC TME may also be a driver of resistance. We found that long-term focal adhesion kinase (FAK) inhibitor treatment led to hyperactivation of the RAS/MAPK pathway in PDAC cells in mouse models and tissues from patients with PDAC. Concomitant inhibition of both FAK (with VS-4718) and rapidly accelerated fibrosarcoma and MAPK kinase (RAF-MEK) (with avutometinib) induced tumor growth inhibition and increased survival across multiple PDAC mouse models. In the TME, cancer-associated fibroblasts (CAFs) impaired the down-regulation of MYC by RAF-MEK inhibition in PDAC cells, resulting in resistance. By contrast, FAK inhibition reprogramed CAFs to suppress the production of FGF1, which can drive resistance to RAF-MEK inhibition. The addition of chemotherapy to combined FAK and RAF-MEK inhibition led to tumor regression, a decrease in liver metastasis, and improved survival in KRAS-driven PDAC mouse models. Combination of FAK and RAF-MEK inhibition alone improved antitumor immunity and priming of T cell responses in response to chemotherapy. These findings provided the rationale for an ongoing clinical trial evaluating the efficacy of avutometinib and defactinib in combination with gemcitabine and nab-paclitaxel in patients with PDAC and may suggest further paths for combined stromal and tumor-targeting therapies.
Collapse
Affiliation(s)
- Xiuting Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Meredith L Stone
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Graham D Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Madeleine C Turner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Lan Kao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alyssa G Weinstein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew D Schmidt
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey A Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Heather Coho
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kayjana S Coho
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kian-Huat Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory L Beatty
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Su D, Wang R, Chen G, Ding C, Liu Y, Tao J, Wang Y, Qiu J, Luo W, Weng G, Yang G, Zhang T. FBXO32 Stimulates Protein Synthesis to Drive Pancreatic Cancer Progression and Metastasis. Cancer Res 2024; 84:2607-2625. [PMID: 38775804 DOI: 10.1158/0008-5472.can-23-3638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/16/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide, primarily due to its rapid progression. The current treatment options for PDAC are limited, and a better understanding of the underlying mechanisms responsible for PDAC progression is required to identify improved therapeutic strategies. In this study, we identified FBXO32 as an oncogenic driver in PDAC. FBXO32 was aberrantly upregulated in PDAC, and high FBXO32 expression was significantly associated with an unfavorable prognosis in patients with PDAC. FRG1 deficiency promoted FBXO32 upregulation in PDAC. FBXO32 promoted cell migration and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, FBXO32 directly interacted with eEF1A1 and promoted its polyubiquitination at the K273 site, leading to enhanced activity of eEF1A1 and increased protein synthesis in PDAC cells. Moreover, FBXO32-catalyzed eEF1A1 ubiquitination boosted the translation of ITGB5 mRNA and activated focal adhesion kinase (FAK) signaling, thereby facilitating focal adhesion assembly and driving PDAC progression. Importantly, interfering with the FBXO32-eEF1A1 axis or pharmaceutical inhibition of FAK by defactinib, an FDA-approved FAK inhibitor, substantially inhibited PDAC growth and metastasis driven by aberrantly activated FBXO32-eEF1A1 signaling. Overall, this study uncovers a mechanism by which PDAC cells rely on FBXO32-mediated eEF1A1 activation to drive progression and metastasis. FBXO32 may serve as a promising biomarker for selecting eligible patients with PDAC for treatment with defactinib. Significance: FBXO32 upregulation in pancreatic cancer induced by FRG1 deficiency increases eEF1A1 activity to promote ITGB5 translation and stimulate FAK signaling, driving cancer progression and sensitizing tumors to the FAK inhibitor defactinib.
Collapse
Affiliation(s)
- Dan Su
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruobing Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Chen
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Chen Ding
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guihu Weng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Brown BA, Myers PJ, Adair SJ, Pitarresi JR, Sah-Teli SK, Campbell LA, Hart WS, Barbeau MC, Leong K, Seyler N, Kane W, Lee KE, Stelow E, Jones M, Simon MC, Koivunen P, Bauer TW, Stanger BZ, Lazzara MJ. A Histone Methylation-MAPK Signaling Axis Drives Durable Epithelial-Mesenchymal Transition in Hypoxic Pancreatic Cancer. Cancer Res 2024; 84:1764-1780. [PMID: 38471099 DOI: 10.1158/0008-5472.can-22-2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) plays a key role in tumor progression and response to therapy. The dense PDAC stroma causes hypovascularity, which leads to hypoxia. Here, we showed that hypoxia drives long-lasting epithelial-mesenchymal transition (EMT) in PDAC primarily through a positive-feedback histone methylation-MAPK signaling axis. Transformed cells preferentially underwent EMT in hypoxic tumor regions in multiple model systems. Hypoxia drove a cell autonomous EMT in PDAC cells, which, unlike EMT in response to growth factors, could last for weeks. Furthermore, hypoxia reduced histone demethylase KDM2A activity, suppressed PP2 family phosphatase expression, and activated MAPKs to post-translationally stabilize histone methyltransferase NSD2, leading to an H3K36me2-dependent EMT in which hypoxia-inducible factors played only a supporting role. Hypoxia-driven EMT could be antagonized in vivo by combinations of MAPK inhibitors. Collectively, these results suggest that hypoxia promotes durable EMT in PDAC by inducing a histone methylation-MAPK axis that can be effectively targeted with multidrug therapies, providing a potential strategy for overcoming chemoresistance. SIGNIFICANCE Integrated regulation of histone methylation and MAPK signaling by the low-oxygen environment of pancreatic cancer drives long-lasting EMT that promotes chemoresistance and shortens patient survival and that can be pharmacologically inhibited. See related commentary by Wirth and Schneider, p. 1739.
Collapse
Affiliation(s)
- Brooke A Brown
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Paul J Myers
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Sara J Adair
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jason R Pitarresi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shiv K Sah-Teli
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Logan A Campbell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - William S Hart
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | | | - Kelsey Leong
- Engineering Science, University of Virginia, Charlottesville, Virginia
| | - Nicholas Seyler
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - William Kane
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Kyoung Eun Lee
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Edward Stelow
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Marieke Jones
- Claude Moore Health Sciences Library, University of Virginia, Charlottesville, Virginia
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Todd W Bauer
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
8
|
Benwell CJ, Johnson RT, Taylor JAGE, Lambert J, Robinson SD. A proteomics approach to isolating neuropilin-dependent α5 integrin trafficking pathways: neuropilin 1 and 2 co-traffic α5 integrin through endosomal p120RasGAP to promote polarised fibronectin fibrillogenesis in endothelial cells. Commun Biol 2024; 7:629. [PMID: 38789481 PMCID: PMC11126613 DOI: 10.1038/s42003-024-06320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.
Collapse
Affiliation(s)
- Christopher J Benwell
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Robert T Johnson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - James A G E Taylor
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jordi Lambert
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen D Robinson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
9
|
Shi Y, Ju M, Zhang Y, Liang L, Sun X, Di X. Comprehensive pan-cancer analysis of 33 human cancers reveals immunotherapeutic value of focal adhesion tyrosine kinase. Medicine (Baltimore) 2024; 103:e37362. [PMID: 38518034 PMCID: PMC10956984 DOI: 10.1097/md.0000000000037362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/02/2024] [Indexed: 03/24/2024] Open
Abstract
The immune environment in tumors is the key factor affecting the survival and immunotherapeutic response of patients. This research aimed to explore the underlying association between focal adhesion tyrosine kinase (FAK/PTK2) and cancer immunotherapy in 33 human cancers. Gene expression data and clinical features of 33 cancers were retrieved from the Cancer Genome Atlas Database. The immunotherapy cohorts included GSE67501, GSE78220, and IMVIGOR210, which were derived from the comprehensive gene expression database or from previous studies. Clinical parameters including patient age, gender, survival rate, and tumor stage were analyzed to evaluate the prognostic value of FAK/PTK2. FAK/PTK2 activity was detected by single-sample gene set enrichment analysis and used to compare the difference between FAK/PTK2 transcriptome and protein expression levels. To better understand the role of FAK/PTK2 in cancer immunotherapy, we analyzed its correlations with tumor microenvironment and with immune processes/elements (e.g., immune cell infiltration, immunosuppressants, and stimulants) and major histocompatible complexes. Potential pathways associated with FAK/PTK2 signaling in cancers were also explored. Correlations between FAK/PTK2 and 2 immunotherapeutic biomarkers (tumor mutation load and microsatellite instability) were studied. Finally, the 3 independent immunotherapy cohorts were used to study the relationship between FAK/PTK2 and immunotherapeutic response. Although FAK/PTK2 is not closely associated with age (13/33), gender (5/33), or tumor stage (5/33) in any of the studied human cancers, it has potential prognostic value for predicting patient survival. Consistency between FAK/PTK2 activity and expression exists in some cancers (3/33). Generally, FAK/PTK2 is robustly correlated with immune cell infiltration, immune modulators, and immunotherapeutic markers. Moreover, high FAK/PTK2 expression is significantly related to immune-relevant pathways. However, FAK/PTK2 is not significantly correlated with the immunotherapeutic response. Research on the immunotherapeutic value of FAK/PTK2 in 33 human cancers provides evidence regarding the function of FAK/PTK2 and its role in clinical treatment. However, given the use of a bioinformatics approach, our results are preliminary and require further validation.
Collapse
Affiliation(s)
- Yujing Shi
- Department of Oncology, The People’s Hospital of Jurong City, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Mengyang Ju
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Zhang
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital. School of Medicine, Tongji University, Shanghai, China
| | - Liang Liang
- Department of Oncology, The People’s Hospital of Jurong City, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Xinchen Sun
- Department of Radiotherapy, Jiangsu Provincial People’s Hospital, Nanjing, China
| | - Xiaoke Di
- Department of Radiotherapy, Jiangsu Provincial People’s Hospital, Nanjing, China
| |
Collapse
|
10
|
Qiao M, Zhou F, Liu X, Jiang T, Wang H, Li X, Zhao C, Cheng L, Chen X, Ren S, Wang Z, Zhou C. Targeting focal adhesion kinase boosts immune response in KRAS/LKB1 co-mutated lung adenocarcinoma via remodeling the tumor microenvironment. Exp Hematol Oncol 2024; 13:11. [PMID: 38291516 PMCID: PMC10826079 DOI: 10.1186/s40164-023-00471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND KRAS mutation is one of the most common oncogenic drivers in NSCLC, however, the response to immunotherapy is heterogeneous owing to the distinct co-occurring genomic alterations. KRAS/LKB1 co-mutated lung adenocarcinoma displays poor response to PD-1 blockade whereas the mechanism remains undetermined. METHODS We explored the specific characteristics of tumor microenvironment (TME) in KL tumors using syngeneic KRASG12DLKB1-/- (KL) and KRASG12DTP53-/- (KP) lung cancer mouse models. The impact of focal adhesion kinase (FAK) inhibitor on KL lung tumors was investigated in vitro and in vivo through evaluation of both KL cell lines and KL lung cancer mouse models. RESULTS We identified KL tumors as "immune-cold" tumors with excessive extracellular matrix (ECM) collagen deposition that formed a physical barrier to block the infiltration of CD8+T cells. Mechanistically, abundant activated cancer-associated fibroblasts (CAFs) resulted from FAK activation contributed to the formation of the unique TME of KL tumors. FAK inhibition with a small molecular inhibitor could remodel the TME by inhibiting CAFs activation, decreasing collagen deposition and further facilitating the infiltration of anti-tumor immune cells, including CD8+ T cells, DC cells and M1-like macrophages into tumors, hence, converting "immune-cold" KL tumors into "immune-hot" tumors. The combined FAK inhibitor and PD-1 blockade therapy synergistically retarded primary and metastatic tumor growth of KL tumors. CONCLUSIONS Our study identified FAK as a promising intervention target for KL tumors and provided basis for the combination of FAK inhibitor with PD-1 blockade in the management of KL lung cancers.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, People's Republic of China
- Department of Medical Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, People's Republic of China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, People's Republic of China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, People's Republic of China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, People's Republic of China
| | - Zaiqi Wang
- InxMed (Shanghai) Co., Ltd, Shanghai, 201202, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
11
|
Canel M, Sławińska AD, Lonergan DW, Kallor AA, Upstill-Goddard R, Davidson C, von Kriegsheim A, Biankin AV, Byron A, Alfaro J, Serrels A. FAK suppresses antigen processing and presentation to promote immune evasion in pancreatic cancer. Gut 2023; 73:131-155. [PMID: 36977556 PMCID: PMC10715489 DOI: 10.1136/gutjnl-2022-327927] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Immunotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC) has shown limited efficacy. Poor CD8 T-cell infiltration, low neoantigen load and a highly immunosuppressive tumour microenvironment contribute to this lack of response. Here, we aimed to further investigate the immunoregulatory function of focal adhesion kinase (FAK) in PDAC, with specific emphasis on regulation of the type-II interferon response that is critical in promoting T-cell tumour recognition and effective immunosurveillance. DESIGN We combined CRISPR, proteogenomics and transcriptomics with mechanistic experiments using a KrasG12Dp53R172H mouse model of pancreatic cancer and validated findings using proteomic analysis of human patient-derived PDAC cell lines and analysis of publicly available human PDAC transcriptomics datasets. RESULTS Loss of PDAC cell-intrinsic FAK signalling promotes expression of the immunoproteasome and Major Histocompatibility Complex class-I (MHC-I), resulting in increased antigen diversity and antigen presentation by FAK-/- PDAC cells. Regulation of the immunoproteasome by FAK is a critical determinant of this response, optimising the physicochemical properties of the peptide repertoire for high affinity binding to MHC-I. Expression of these pathways can be further amplified in a STAT1-dependent manner via co-depletion of FAK and STAT3, resulting in extensive infiltration of tumour-reactive CD8 T-cells and further restraint of tumour growth. FAK-dependent regulation of antigen processing and presentation is conserved between mouse and human PDAC, but is lost in cells/tumours with an extreme squamous phenotype. CONCLUSION Therapies aimed at FAK degradation may unlock additional therapeutic benefit for the treatment of PDAC through increasing antigen diversity and promoting antigen presentation.
Collapse
Affiliation(s)
- Marta Canel
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - David W Lonergan
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ashwin Adrian Kallor
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Rosie Upstill-Goddard
- The Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Catherine Davidson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew V Biankin
- The Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Alan Serrels
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Lyu A, Humphrey RS, Nam SH, Durham TA, Hu Z, Arasappan D, Horton TM, Ehrlich LIR. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:6270. [PMID: 37805579 PMCID: PMC10560206 DOI: 10.1038/s41467-023-41925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.
Collapse
Affiliation(s)
- Aram Lyu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tyler A Durham
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
13
|
Xie D, Wang Z, Sun B, Qu L, Zeng M, Feng L, Guo M, Wang G, Hao J, Zhou G. High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast. Front Med 2023; 17:907-923. [PMID: 37682378 DOI: 10.1007/s11684-023-1009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 09/09/2023]
Abstract
The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
Collapse
Affiliation(s)
- Dawei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Beibei Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liwei Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lin Feng
- Department of Gastroenterology & Hepatology and Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology and Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| | - Guizhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Ortiz Rivera J, Velez Crespo G, Inyushin M, Kucheryavykh Y, Kucheryavykh L. Pyk2/FAK Signaling Is Upregulated in Recurrent Glioblastoma Tumors in a C57BL/6/GL261 Glioma Implantation Model. Int J Mol Sci 2023; 24:13467. [PMID: 37686276 PMCID: PMC10487692 DOI: 10.3390/ijms241713467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The majority of glioblastomas (GBMs) recur shortly after tumor resection and recurrent tumors differ significantly from newly diagnosed GBMs, phenotypically and genetically. In this study, using a Gl261-C57Bl/6 mouse glioma implantation model, we identified significant upregulation of proline-rich tyrosine kinase Pyk2 and focal adhesion kinase (FAK) phosphorylation levels-pPyk2 (579/580) and pFAK (925)-without significant modifications in total Pyk2 and FAK protein expression in tumors regrown after surgical resection, compared with primary implanted tumors. Previously, we demonstrated that Pyk2 and FAK are involved in the regulation of tumor cell invasion and proliferation and are associated with reduced overall survival. We hypothesized that the use of inhibitors of Pyk2/FAK in the postsurgical period may reduce the growth of recurrent tumors. Using Western blot analysis and confocal immunofluorescence approaches, we demonstrated upregulation of Cyclin D1 and the Ki67 proliferation index in tumors regrown after resection, compared with primary implanted tumors. Treatment with Pyk2/FAK inhibitor PF-562271, administered through oral gavage at 50 mg/kg daily for two weeks beginning 2 days before tumor resection, reversed Pyk2/FAK signaling upregulation in recurrent tumors, reduced tumor volume, and increased animal survival. In conclusion, the use of Pyk2/FAK inhibitors can contribute to a delay in GBM tumor regrowth after surgical resection.
Collapse
Affiliation(s)
- Jescelica Ortiz Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (G.V.C.); (M.I.); (Y.K.); (L.K.)
| | | | | | | | | |
Collapse
|
16
|
Salahi A, Honrado C, Moore J, Adair S, Bauer TW, Swami NS. Supervised learning on impedance cytometry data for label-free biophysical distinction of pancreatic cancer cells versus their associated fibroblasts under gemcitabine treatment. Biosens Bioelectron 2023; 231:115262. [PMID: 37058962 PMCID: PMC10134450 DOI: 10.1016/j.bios.2023.115262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Chemotherapy failure in pancreatic cancer patients is widely attributed to cancer cell reprogramming towards drug resistance by cancer associated fibroblasts (CAFs), which are the abundant cell type in the tumor microenvironment. Association of drug resistance to specific cancer cell phenotypes within multicellular tumors can advance isolation protocols for enabling cell-type specific gene expression markers to identify drug resistance. This requires the distinction of drug resistant cancer cells versus CAFs, which is challenging since permeabilization of CAF cells during drug treatment can cause non-specific uptake of cancer cell-specific stains. Cellular biophysical metrics, on the other hand, can provide multiparametric information to assess the gradual alteration of target cancer cells towards drug resistance, but these phenotypes need to be distinguished versus CAFs. Using pancreatic cancer cells and CAFs from a metastatic patient-derived tumor that exhibits cancer cell drug resistance under CAF co-culture, the biophysical metrics from multifrequency single-cell impedance cytometry are utilized for distinction of the subpopulation of viable cancer cells versus CAFs, before and after gemcitabine treatment. This is accomplished through supervised machine learning after training the model using key impedance metrics for cancer cells and CAFs from transwell co-cultures, so that an optimized classifier model can recognize each cell type and predict their respective proportions in multicellular tumor samples, before and after gemcitabine treatment, as validated by their confusion matrix and flow cytometry assays. In this manner, an aggregate of the distinguishing biophysical metrics of viable cancer cells after gemcitabine treatment in co-cultures with CAFs can be used in longitudinal studies, to classify and isolate the drug resistant subpopulation for identifying markers.
Collapse
Affiliation(s)
- Armita Salahi
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| | - John Moore
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Sara Adair
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - Todd W Bauer
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA; Chemistry, University of Virginia, Charlottesville, USA.
| |
Collapse
|
17
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
18
|
Zhu YH, Zheng JH, Jia QY, Duan ZH, Yao HF, Yang J, Sun YW, Jiang SH, Liu DJ, Huo YM. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46:17-48. [PMID: 36367669 DOI: 10.1007/s13402-022-00741-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jia-Hao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, 200240, People's Republic of China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
19
|
Gamache A, Conarroe C, Adair S, Bauer T, Padilla F, Bullock TNJ. Interrogating the CD27:CD70 axis in αCD40-dependent control of pancreatic adenocarcinoma. Front Cell Dev Biol 2023; 11:1173686. [PMID: 37123403 PMCID: PMC10130518 DOI: 10.3389/fcell.2023.1173686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Immune checkpoint blockade immunotherapy has radically changed patient outcomes in multiple cancer types. Pancreatic cancer is one of the notable exceptions, being protected from immunotherapy by a variety of mechanisms, including the presence of a dense stroma and immunosuppressive myeloid cells. Previous studies have demonstrated that CD40 stimulation can remodel the tumor microenvironment in a manner that promotes effector immune cell responses and can cooperate with immune checkpoint inhibition for durable tumor control mediated by T cells. Here we confirm the capability of this combination therapy to dramatically, and durably, control pancreatic cancer growth in an orthotopic model and that the immune memory to this cancer is primarily a function of CD4+ T cells. We extend this understanding by demonstrating that recruitment of recently primed T cells from the draining lymph nodes is not necessary for the observed control, suggesting that the pre-existing intra-tumoral cells respond to the combination therapy. Further, we find that the efficacy of CD40 stimulation is not dependent upon CD70, which is commonly induced on dendritic cells in response to CD40 agonism. Finally, we find that directly targeting the receptor for CD70, CD27, in combination with the TLR3 agonist polyIC, provides some protection despite failing to increase the frequency of interferon gamma-secreting T cells.
Collapse
Affiliation(s)
- Awndre Gamache
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Awndre Gamache,
| | - Claire Conarroe
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Sara Adair
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Todd Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, VA, United States
- Department of Radiology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Timothy N. J. Bullock
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
20
|
Khatoon F, Haque S, Hashem A, Mahmoud A, Tashkandi H, Mathkor D, Harakeh S, Alghamdi B, Kumar V. Network-based approach for targeting human kinases commonly associated with amyotrophic lateral sclerosis and cancer. Front Mol Neurosci 2022; 15:1023286. [PMID: 36590916 PMCID: PMC9802580 DOI: 10.3389/fnmol.2022.1023286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a rare progressive and chronic motor neuron degenerative disease for which at present no cure is available. In recent years, multiple genes encode kinases and other causative agents for ALS have been identified. Kinases are enzymes that show pleiotropic nature and regulate different signal transduction processes and pathways. The dysregulation of kinase activity results in dramatic changes in processes and causes many other human diseases including cancers. Methods In this study, we have adopted a network-based system biology approach to investigate the kinase-based molecular interplay between ALS and other human disorders. A list of 62 ALS-associated-kinases was first identified and then we identified the disease associated with them by scanning multiple disease-gene interaction databases to understand the link between the ALS-associated kinases and other disorders. Results An interaction network with 36 kinases and 381 different disorders associated with them was prepared, which represents the complexity and the comorbidity associated with the kinases. Further, we have identified 5 miRNAs targeting the majority of the kinases in the disease-causing network. The gene ontology and pathways enrichment analysis of those miRNAs were performed to understand their biological and molecular functions along with to identify the important pathways. We also identified 3 drug molecules that can perturb the disease-causing network by drug repurposing. Conclusion This network-based study presented hereby contributes to a better knowledge of the molecular underpinning of comorbidities associated with the kinases associated with the ALS disease and provides the potential therapeutic targets to disrupt the highly complex disease-causing network.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Anwar Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Hanaa Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Darin Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badra Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Kumar,
| |
Collapse
|
21
|
Wang-Gillam A, Lim KH, McWilliams R, Suresh R, Lockhart AC, Brown A, Breden M, Belle JI, Herndon J, Bogner SJ, Pedersen K, Tan B, Boice N, Acharya A, Abdiannia M, Gao F, Yoon HH, Zhu M, Trikalinos NA, Ratner L, Aranha O, Hawkins WG, Herzog BH, DeNardo DG. Defactinib, Pembrolizumab, and Gemcitabine in Patients with Advanced Treatment Refractory Pancreatic Cancer: A Phase I Dose Escalation and Expansion Study. Clin Cancer Res 2022; 28:5254-5262. [PMID: 36228156 PMCID: PMC9772237 DOI: 10.1158/1078-0432.ccr-22-0308] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/05/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Targeting focal adhesion kinase (FAK) renders checkpoint immunotherapy effective in pancreatic ductal adenocarcinoma (PDAC) mouse model. Defactinib is a highly potent oral FAK inhibitor that has a tolerable safety profile. PATIENTS AND METHODS We conducted a multicenter, open-label, phase I study with dose escalation and expansion phases. In dose escalation, patients with refractory solid tumors were treated at five escalating dose levels of defactinib and gemcitabine to identify a recommended phase II dose (RP2D). In expansion phase, patients with metastatic PDAC who progressed on frontline treatment (refractory cohort) or had stable disease (SD) after at least 4 months of standard gemcitabine/nab-paclitaxel (maintenance cohort) were treated at RP2D. Pre- and posttreatment tumor biopsies were performed to evaluate tumor immunity. RESULTS The triple drug combination was well-tolerated, with no dose-limiting toxicities. Among 20 treated patients with refractory PDAC, the disease control rate (DCR) was 80%, with one partial response (PR) and 15 SDs, and the median progression-free survival (PFS) and overall survival (OS) were 3.6 and 7.8 months, respectively. Among 10 evaluable patients in the maintenance cohort, DCR was 70% with one PR and six SDs. Three patients with SD came off study due to treatment- or disease-related complications. The median PFS and OS on study treatment were 5.0 and 8.3 months, respectively. CONCLUSIONS The combination of defactinib, pembrolizumab, and gemcitabine was well-tolerated and safe, had promising preliminary efficacy, and showed biomarker activity in infiltrative T lymphocytes. Efficacy of this strategy may require incorporation of more potent chemotherapy in future studies.
Collapse
Affiliation(s)
- Andrea Wang-Gillam
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kian-Huat Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert McWilliams
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester MN 55905, USA
| | - Rama Suresh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert C. Lockhart
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amberly Brown
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus Breden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jad I. Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Herndon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Savannah J. Bogner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katrina Pedersen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin Tan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas Boice
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abhi Acharya
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mina Abdiannia
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harry H. Yoon
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester MN 55905, USA
| | - Mojun Zhu
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester MN 55905, USA
| | - Nikolaos A. Trikalinos
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia Aranha
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William G. Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett H. Herzog
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Lander VE, Belle JI, Kingstonl NL, Herndon JM, Hogg GD, Liu X, Kang LI, Knolhoff BL, Bogner SJ, Baer JM, Zuo C, Borcherding NC, Lander DP, Mpoy C, Scott J, Zahner M, Rogers BE, Schwarz JK, Kim H, DeNardo DG. Stromal Reprogramming by FAK Inhibition Overcomes Radiation Resistance to Allow for Immune Priming and Response to Checkpoint Blockade. Cancer Discov 2022; 12:2774-2799. [PMID: 36165893 PMCID: PMC9722639 DOI: 10.1158/2159-8290.cd-22-0192] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/16/2022] [Accepted: 09/22/2022] [Indexed: 01/12/2023]
Abstract
The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. SIGNIFICANCE Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Varintra E. Lander
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jad I. Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natalie L. Kingstonl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M. Herndon
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Graham D. Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiuting Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett L. Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Savannah J. Bogner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M. Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas C. Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel P. Lander
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jalen Scott
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Zahner
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hyun Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Hashimoto A, Handa H, Hata S, Hashimoto S. Orchestration of mesenchymal plasticity and immune evasiveness via rewiring of the metabolic program in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1005566. [PMID: 36408139 PMCID: PMC9669439 DOI: 10.3389/fonc.2022.1005566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most fatal cancer in humans, due to its difficulty of early detection and its high metastatic ability. The occurrence of epithelial to mesenchymal transition in preinvasive pancreatic lesions has been implicated in the early dissemination, drug resistance, and cancer stemness of PDAC. PDAC cells also have a reprogrammed metabolism, regulated by driver mutation-mediated pathways, a desmoplastic tumor microenvironment (TME), and interactions with stromal cells, including pancreatic stellate cells, fibroblasts, endothelial cells, and immune cells. Such metabolic reprogramming and its functional metabolites lead to enhanced mesenchymal plasticity, and creates an acidic and immunosuppressive TME, resulting in the augmentation of protumor immunity via cancer-associated inflammation. In this review, we summarize our recent understanding of how PDAC cells acquire and augment mesenchymal features via metabolic and immunological changes during tumor progression, and how mesenchymal malignancies induce metabolic network rewiring and facilitate an immune evasive TME. In addition, we also present our recent findings on the interesting relevance of the small G protein ADP-ribosylation factor 6-based signaling pathway driven by KRAS/TP53 mutations, inflammatory amplification signals mediated by the proinflammatory cytokine interleukin 6 and RNA-binding protein ARID5A on PDAC metabolic reprogramming and immune evasion, and finally discuss potential therapeutic strategies for the quasi-mesenchymal subtype of PDAC.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| | - Haruka Handa
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Soichiro Hata
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| |
Collapse
|
24
|
Davidson C, Taggart D, Sims AH, Lonergan DW, Canel M, Serrels A. FAK promotes stromal PD-L2 expression associated with poor survival in pancreatic cancer. Br J Cancer 2022; 127:1893-1905. [PMID: 36138073 PMCID: PMC9643373 DOI: 10.1038/s41416-022-01966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Pancreatic Cancer is one of the most lethal cancers, with less than 8% of patients surviving 5 years following diagnosis. The last 40 years have seen only small incremental improvements in treatment options, highlighting the continued need to better define the cellular and molecular pathways contributing to therapy response and patient prognosis. METHODS We combined CRISPR, shRNA and flow cytometry with mechanistic experiments using a KrasG12Dp53R172H mouse model of pancreatic cancer and analysis of publicly available human PDAC transcriptomic datasets. RESULTS Here, we identify that expression of the immune checkpoint, Programmed Death Ligand 2 (PD-L2), is associated with poor prognosis, tumour grade, clinical stage and molecular subtype in patients with Pancreatic Ductal Adenocarcinoma (PDAC). We further show that PD-L2 is predominantly expressed in the stroma and, using an orthotopic murine model of PDAC, identify cancer cell-intrinsic Focal Adhesion Kinase (FAK) signalling as a regulator of PD-L2 stromal expression. Mechanistically, we find that FAK regulates interleukin-6, which can act in concert with interleukin-4 secreted by CD4 T-cells to drive elevated expression of PD-L2 on tumour-associated macrophages, dendritic cells and endothelial cells. CONCLUSIONS These findings identify further complex heterocellular signalling networks contributing to FAK-mediated immune suppression in pancreatic cancer.
Collapse
Affiliation(s)
- Catherine Davidson
- Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Hospital for Small Animals, The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, UK
| | - David Taggart
- Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Andrew H Sims
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David W Lonergan
- Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marta Canel
- Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Alan Serrels
- Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
25
|
Zhang C, Zhu X, Li Y, Shao J, Xu H, Chen L, Dan Y, Jin H, He A. High expression of PYK2 is associated with poor prognosis and cancer progression in early-stage cervical carcinoma. Medicine (Baltimore) 2022; 101:e31178. [PMID: 36253980 PMCID: PMC9575807 DOI: 10.1097/md.0000000000031178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Proline-rich tyrosine kinase-2 (PYK2), also known as calcium dependent tyrosine kinase, regulates different signal transduction cascades that control cell proliferation, migration, and invasion. However, the role of PYK2 in cervical cancer remains to be elucidated. The current study retrospectively included 134 patients with cervical cancer from December 2007 to September 2014. PYK2 expression was detected in tissue microarray and cervical cancer cell lines. Statistical analysis was performed to evaluate its clinicopathological significance. Small interfering RNA (siRNA) was employed to suppress endogenous PYK2 expression in cervical cancer cells to observe the biological function. PYK2 expression was up-regulated in cervical cancer specimens compared with paired adjacent normal cervical tissue samples. Statistical analyses indicated that PYK2 expression might be an independent prognostic indicator for patients with early-stage cervical cancer. A nomogram model was constructed based on PYK2 expression and other clinicopathological risk factors, and it performed well in predicting patients survival. In cellular studies, down-regulation of PYK2 remarkably inhibited cellular proliferation, migration and invasion. PYK2 expression possessed the potential to serve as a novel prognostic marker in cervical cancer patients.
Collapse
Affiliation(s)
- Can Zhang
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Nantong, China
| | - Yong Li
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jia Shao
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Haibo Xu
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Lei Chen
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Youli Dan
- Medical College of Nantong University, Nantong, China
| | - Hua Jin
- Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Aiqin He
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
- *Correspondence: Aiqin He, Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, 30 Tongyang North Road, Nantong, 226300, China (e-mail: )
| |
Collapse
|
26
|
Daly RJ, Scott AM, Klein O, Ernst M. Enhancing therapeutic anti-cancer responses by combining immune checkpoint and tyrosine kinase inhibition. Mol Cancer 2022; 21:189. [PMID: 36175961 PMCID: PMC9523960 DOI: 10.1186/s12943-022-01656-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitor (ICI) therapy has been established as the standard of care for many types of cancer, but the strategies employed have continued to evolve. Recently, much clinical focus has been on combining targeted therapies with ICI for the purpose of manipulating the immune setpoint. The latter concept describes the equilibrium between factors that promote and those that suppress anti-cancer immunity. Besides tumor mutational load and other cancer cell-intrinsic determinants, the immune setpoint is also governed by the cells of the tumor microenvironment and how they are coerced by cancer cells to support the survival and growth of the tumor. These regulatory mechanisms provide therapeutic opportunities to intervene and reduce immune suppression via application of small molecule inhibitors and antibody-based therapies against (receptor) tyrosine kinases and thereby improve the response to ICIs. This article reviews how tyrosine kinase signaling in the tumor microenvironment can promote immune suppression and highlights how therapeutic strategies directed against specific tyrosine kinases can be used to lower the immune setpoint and elicit more effective anti-tumor immunity.
Collapse
Affiliation(s)
- Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
| | - Andrew M Scott
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
- Department of Molecular Imaging & Therapy, Austin Health, and Faculty of Medicine, University of Melbourne, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
| | - Oliver Klein
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
| | - Matthias Ernst
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
27
|
Honrado C, Salahi A, Adair SJ, Moore JH, Bauer TW, Swami NS. Automated biophysical classification of apoptotic pancreatic cancer cell subpopulations by using machine learning approaches with impedance cytometry. LAB ON A CHIP 2022; 22:3708-3720. [PMID: 35997278 PMCID: PMC9514012 DOI: 10.1039/d2lc00304j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Unrestricted cell death can lead to an immunosuppressive tumor microenvironment, with dysregulated apoptotic signaling that causes resistance of pancreatic cancer cells to cytotoxic therapies. Hence, modulating cell death by distinguishing the progression of subpopulations under drug treatment from viable towards early apoptotic, late apoptotic, and necrotic states is of interest. While flow cytometry after fluorescent staining can monitor apoptosis with single-cell sensitivity, the background of non-viable cells within non-immortalized pancreatic tumors from xenografts can confound distinction of the intensity of each apoptotic state. Based on single-cell impedance cytometry of drug-treated pancreatic cancer cells that are obtained from tumor xenografts with differing levels of gemcitabine sensitivity, we identify the biophysical metrics that can distinguish and quantify cellular subpopulations at the early apoptotic versus late apoptotic and necrotic states, by using machine learning methods to train for the recognition of each phenotype. While supervised learning has previously been used for classification of datasets with known classes, our advancement is the utilization of optimal positive controls for each class, so that clustering by unsupervised learning and classification by supervised learning can occur on unknown datasets, without human interference or manual gating. In this manner, automated biophysical classification can be used to follow the progression of apoptotic states in each heterogeneous drug-treated sample, for developing drug treatments to modulate cancer cell death and advance longitudinal analysis to discern the emergence of drug resistant phenotypes.
Collapse
Affiliation(s)
- Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Armita Salahi
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Sara J Adair
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - John H Moore
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Todd W Bauer
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
- Chemistry, University of Virginia, Charlottesville, USA
| |
Collapse
|
28
|
Focal adhesion kinase priming in pancreatic cancer, altering biomechanics to improve chemotherapy. Biochem Soc Trans 2022; 50:1129-1141. [PMID: 35929603 PMCID: PMC9444069 DOI: 10.1042/bst20220162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
The dense desmoplastic and fibrotic stroma is a characteristic feature of pancreatic ductal adenocarcinoma (PDAC), regulating disease progression, metastasis and response to treatment. Reciprocal interactions between the tumour and stroma are mediated by bidirectional integrin-mediated signalling, in particular by Focal Adhesion Kinase (FAK). FAK is often hyperactivated and overexpressed in aggressive cancers, promoting stromal remodelling and inducing tissue stiffness which can accelerate cancer cell proliferation, survival and chemoresistance. Therapeutic targeting of the PDAC stroma is an evolving area of interest for pre-clinical and clinical research, where a subtle reshaping of the stromal architecture prior to chemotherapy may prove promising in the clinical management of disease and overall patient survival. Here, we describe how transient stromal manipulation (or ‘priming’) via short-term FAK inhibition, rather than chronic treatment, can render PDAC cells exquisitely vulnerable to subsequent standard-of-care chemotherapy. We assess how our priming publication fits with the recent literature and describe in this perspective how this could impact future cancer treatment. This highlights the significance of treatment timing and warrants further consideration of anti-fibrotic therapies in the clinical management of PDAC and other fibrotic diseases.
Collapse
|
29
|
Skorupan N, Palestino Dominguez M, Ricci SL, Alewine C. Clinical Strategies Targeting the Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:4209. [PMID: 36077755 PMCID: PMC9454553 DOI: 10.3390/cancers14174209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer has a complex tumor microenvironment which engages in extensive crosstalk between cancer cells, cancer-associated fibroblasts, and immune cells. Many of these interactions contribute to tumor resistance to anti-cancer therapies. Here, new therapeutic strategies designed to modulate the cancer-associated fibroblast and immune compartments of pancreatic ductal adenocarcinomas are described and clinical trials of novel therapeutics are discussed. Continued advances in our understanding of the pancreatic cancer tumor microenvironment are generating stromal and immune-modulating therapeutics that may improve patient responses to anti-tumor treatment.
Collapse
Affiliation(s)
- Nebojsa Skorupan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Medical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mayrel Palestino Dominguez
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel L. Ricci
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine Alewine
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Tumor-associated macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell carcinoma (ESCC). Cell Mol Immunol 2022; 19:1054-1066. [PMID: 35962191 PMCID: PMC9424285 DOI: 10.1038/s41423-022-00903-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor cell dependence on activated oncogenes is considered a therapeutic target, but protumorigenic microenvironment-mediated cellular addiction to specific oncogenic signaling molecules remains to be further defined. Here, we showed that tumor-associated macrophages (TAMs) produced an abundance of C-C motif chemokine 22 (CCL22), whose expression in the tumor stroma was positively associated with the level of intratumoral phospho-focal adhesion kinase (pFAK Tyr397), tumor metastasis and reduced patient survival. Functionally, CCL22-stimulated hyperactivation of FAK was correlated with increased malignant progression of cancer cells. CCL22-induced addiction to FAK was demonstrated by the persistent suppression of tumor progression upon FAK-specific inhibition. Mechanistically, we identified that diacylglycerol kinase α (DGKα) acted as a signaling adaptor to link the CCL22 receptor C-C motif chemokine receptor 4 (CCR4) and FAK and promoted CCL22-induced activation of the FAK/AKT pathway. CCL22/CCR4 signaling activated the intracellular Ca2+/phospholipase C-γ1 (PLC-γ1) axis to stimulate the phosphorylation of DGKα at a tyrosine residue (Tyr335) and promoted the translocation of DGKα to the plasma membrane to assemble the DGKα/FAK signalosome, which critically contributed to regulating sensitivity to FAK inhibitors in cancer cells. The identification of TAM-driven intratumoral FAK addiction provides opportunities for utilizing the tumor-promoting microenvironment to achieve striking anticancer effects.
Collapse
|
31
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H, Wang C. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front Immunol 2022; 13:844142. [PMID: 35874717 PMCID: PMC9299092 DOI: 10.3389/fimmu.2022.844142] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines, etc. The interactions between these components, which are divided into anti-tumor and pro-tumor, determine the trend of anti-tumor immunity. Although the immune system can eliminate tumor through the cancer-immune cycle, tumors appear to eventually evade from immune surveillance by shaping an immunosuppressive microenvironment. Immunotherapy reshapes the TIME and restores the tumor killing ability of anti-tumor immune cells. Herein, we review the function of immune cells within the TIME and discuss the contribution of current mainstream immunotherapeutic approaches to remolding the TIME. Changes in the immune microenvironment in different forms under the intervention of immunotherapy can shed light on better combination treatment strategies.
Collapse
Affiliation(s)
- Bingzhe Lv
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongjiang Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wei Cheng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jie Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tao Yong
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
32
|
Wu X, Wang J, Liang Q, Tong R, Huang J, Yang X, Xu Y, Wang W, Sun M, Shi J. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment. Biomed Pharmacother 2022; 151:113116. [PMID: 35598365 DOI: 10.1016/j.biopha.2022.113116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
33
|
Zhang D, Wang G, Yu X, Wei T, Farbiak L, Johnson LT, Taylor AM, Xu J, Hong Y, Zhu H, Siegwart DJ. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. NATURE NANOTECHNOLOGY 2022; 17:777-787. [PMID: 35551240 PMCID: PMC9931497 DOI: 10.1038/s41565-022-01122-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/21/2022] [Indexed: 05/06/2023]
Abstract
Genome editing holds great potential for cancer treatment due to the ability to precisely inactivate or repair cancer-related genes. However, delivery of CRISPR/Cas to solid tumours for efficient cancer therapy remains challenging. Here we targeted tumour tissue mechanics via a multiplexed dendrimer lipid nanoparticle (LNP) approach involving co-delivery of focal adhesion kinase (FAK) siRNA, Cas9 mRNA and sgRNA (siFAK + CRISPR-LNPs) to enable tumour delivery and enhance gene-editing efficacy. We show that gene editing was enhanced >10-fold in tumour spheroids due to increased cellular uptake and tumour penetration of nanoparticles mediated by FAK-knockdown. siFAK + CRISPR-PD-L1-LNPs reduced extracellular matrix stiffness and efficiently disrupted PD-L1 expression by CRISPR/Cas gene editing, which significantly inhibited tumour growth and metastasis in four mouse models of cancer. Overall, we provide evidence that modulating the stiffness of tumour tissue can enhance gene editing in tumours, which offers a new strategy for synergistic LNPs and other nanoparticle systems to treat cancer using gene editing.
Collapse
Affiliation(s)
- Di Zhang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xueliang Yu
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tuo Wei
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukas Farbiak
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsay T Johnson
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alan Mark Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Roy-Luzarraga M, Reynolds LE, de Luxán-Delgado B, Maiques O, Wisniewski L, Newport E, Rajeeve V, Drake RJ, Gómez-Escudero J, Richards FM, Weller C, Dormann C, Meng YM, Vermeulen PB, Saur D, Sanz-Moreno V, Wong PP, Géraud C, Cutillas PR, Hodivala-Dilke K. Suppression of Endothelial Cell FAK Expression Reduces Pancreatic Ductal Adenocarcinoma Metastasis after Gemcitabine Treatment. Cancer Res 2022; 82:1909-1925. [PMID: 35350066 PMCID: PMC9381116 DOI: 10.1158/0008-5472.can-20-3807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023]
Abstract
Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Louise E. Reynolds
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Laura Wisniewski
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Emma Newport
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Rebecca J.G. Drake
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Jesús Gómez-Escudero
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Frances M. Richards
- Translational Medicine Operations, Astrazeneca Oncology, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Céline Weller
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christof Dormann
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peter B. Vermeulen
- Department of Oncological Research, Translational Cancer Research Unit, Oncology Center GZA—GZA Hospitals St. Augustinus and University of Antwerp, Antwerp, Belgium
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg and Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, München, Germany
| | - Victoria Sanz-Moreno
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cyrill Géraud
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pedro R. Cutillas
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| |
Collapse
|
35
|
Liu P, Sun Y, Liu S, Niu J, Liu X, Chu Q. SY-707, an ALK/FAK/IGF1R inhibitor, suppresses growth and metastasis of breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:252-260. [PMID: 35538024 PMCID: PMC9909315 DOI: 10.3724/abbs.2022008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Focal adhesion kinase (FAK), a multi-functional cytoplasmic tyrosine kinase, plays a critical role in cancer migration, proliferation and metastasis via regulating multiple signaling pathways. SY-707 is an anaplastic lymphoma kinase (ALK)/FAK/type 1 insulin-like growth factor receptor (IGF1R) multi-kinase inhibitor which is now being evaluated in phase II clinical trials for ALK positive non-small cell lung cancer (NSCLC). However, the effect of SY-707 on breast cancer is unknown. In this study, we assessed preclinical the anti-growth and anti-metastasis potency of SY-707 in breast cancer cells. ATP content, PE-Annexin V, and would healing assays were used to examine cell proliferation, cell cycle and migration. Then, SD rat and beagle dog models were used to evaluate the pharmacokinetics profile of SY-707, and mouse xenograft model was used to evaluate the anti-cancer activities of SY-707 . We found that breast cancer cells apoptosis were induced by SY-707. Moreover, SY-707 exerted inhibition on cell migration and adhesion in a dose-dependent manner. In T47D xenograft mice, SY-707 had significant anti-tumor activities alone or synergistically with Paclitaxel. Meanwhile, SY-707 also displayed significant suppression on spontaneous metastasis of tumor to the lung in 4T1 murine breast cancer xenograft model. In conclusion, SY-707 has potent anti-proliferation and anti-migration potential in breast cancer and , implying its therapeutic application for the treatment of breast cancer in future clinical trials.
Collapse
Affiliation(s)
- Ping Liu
- Department of GeriatricsXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai200092China,Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | | | - Shuang Liu
- Shouyao Holdings Co.LtdBeijing100195China
| | - Jing Niu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Xijie Liu
- Shouyao Holdings Co.LtdBeijing100195China
| | - Qiaoyun Chu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China,Correspondence address. Tel: +86-10-83950524;
| |
Collapse
|
36
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
37
|
Macrophages as a Therapeutic Target in Metastatic Prostate Cancer: A Way to Overcome Immunotherapy Resistance? Cancers (Basel) 2022; 14:cancers14020440. [PMID: 35053602 PMCID: PMC8773572 DOI: 10.3390/cancers14020440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the most common malignancy and the fifth cause of cancer death in men. The treatment for localized or locally advanced stages offers a high probability of cure. Even though the therapeutic landscape has significantly improved over the last decade, metastatic PC (mPC) still has a poor prognosis mainly due to the development of therapy resistance. In this context, the use of immunotherapy alone or in combination with other drugs has been explored in recent years. However, T-cell directed immune checkpoint inhibitors (ICIs) have shown limited activity with inconclusive results in mPC patients, most likely due to the highly immunosuppressive PC tumor microenvironment (TME). In this scenario, targeting macrophages, a highly abundant immunosuppressive cell type in the TME, could offer a new therapeutic strategy to improve immunotherapy efficacy. In this review, we summarize the growing field of macrophage-directed immunotherapies and discuss how these could be applied in the treatment of mPC, focusing on their combination with ICIs.
Collapse
|
38
|
Salimi-Jeda A, Ghabeshi S, Gol Mohammad Pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M, Abdoli A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat Res Commun 2022; 30:100512. [PMID: 35026533 DOI: 10.1016/j.ctarc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Ollah Jazaeri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Mehrdad Araiinejad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Edalat
- Department of medical laboratory sciences, Paramedical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
39
|
Ray A, Callaway MK, Rodríguez-Merced NJ, Crampton AL, Carlson M, Emme KB, Ensminger EA, Kinne AA, Schrope JH, Rasmussen HR, Jiang H, DeNardo DG, Wood DK, Provenzano PP. Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight 2021; 7:150330. [PMID: 34914633 PMCID: PMC8855836 DOI: 10.1172/jci.insight.150330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination.
Collapse
Affiliation(s)
- Arja Ray
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Mackenzie K Callaway
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Nelson J Rodríguez-Merced
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexandra L Crampton
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Marjorie Carlson
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Kenneth B Emme
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Ethan A Ensminger
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexander A Kinne
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Jonathan H Schrope
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Haley R Rasmussen
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Hong Jiang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David K Wood
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Paolo P Provenzano
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
40
|
Quispe PA, Lavecchia MJ, León IE. Focal adhesion kinase inhibitors in the treatment of solid tumors: Preclinical and clinical evidence. Drug Discov Today 2021; 27:664-674. [PMID: 34856395 DOI: 10.1016/j.drudis.2021.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Focal Adhesion Kinase (FAK) is a 125-kDa cytoplasmic protein kinase that is implicated in several cellular functions. This protein is an attractive molecular target for cancer therapy because a wide variety of studies have demonstrated associations between the activation or elevated expression of FAK and tumor progression, invasion, and drug resistance in malignant tumors. Here, we review the strategies used to inhibit FAK activity in solid tumors. We also include an overview of the preclinical (in vitro and in vivo) and clinical studies on FAK inhibitors.
Collapse
Affiliation(s)
- Patricia A Quispe
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Martin J Lavecchia
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| |
Collapse
|
41
|
Pretta A, Lai E, Persano M, Donisi C, Pinna G, Cimbro E, Parrino A, Spanu D, Mariani S, Liscia N, Dubois M, Migliari M, Impera V, Saba G, Pusceddu V, Puzzoni M, Ziranu P, Scartozzi M. Uncovering key targets of success for immunotherapy in pancreatic cancer. Expert Opin Ther Targets 2021; 25:987-1005. [PMID: 34806517 DOI: 10.1080/14728222.2021.2010044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite available treatment options, pancreatic ductal adenocarcinoma (PDAC) is frequently lethal. Recent immunotherapy strategies have failed to yield any notable impact. Therefore, research is focussed on unearthing new drug targets and therapeutic strategies to tackle this malignancy and attain more positive outcomes for patients. AREAS COVERED In this perspective article, we evaluate the main resistance mechanisms to immune checkpoint inhibitors (ICIs) and the approaches to circumvent them. We also offer an assessment of concluded and ongoing trials of PDAC immunotherapy. Literature research was performed on Pubmed accessible through keywords such as: 'pancreatic ductal adenocarcinoma,' 'immunotherapy,' 'immunotherapy resistance,' 'immune escape,' 'biomarkers.' Papers published between 2000 and 2021 were selected. EXPERT OPINION The tumor microenvironment is a critical variable of treatment resistance because of its role as a physical barrier and inhibitory immune signaling. Promising therapeutic strategies appear to be a combination of immunotherapeutics with other targeted treatments. Going forward, predictive biomarkers are required to improve patient selection. Biomarker-driven trials could enhance approaches for assessing the role of immunotherapy in PDAC.
Collapse
Affiliation(s)
- Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giovanna Pinna
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Erika Cimbro
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Alissa Parrino
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome, Rome Italy.,Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| |
Collapse
|
42
|
Wu Y, Li N, Ye C, Jiang X, Luo H, Zhang B, Zhang Y, Zhang Q. Focal adhesion kinase inhibitors, a heavy punch to cancer. Discov Oncol 2021; 12:52. [PMID: 35201485 PMCID: PMC8777493 DOI: 10.1007/s12672-021-00449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Kinases are the ideal druggable targets for diseases and especially were highlighted on cancer therapy. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and its aberrant signaling extensively implicates in the progression of most cancer types, involving in cancer cell growth, adhesion, migration, and tumor microenvironment (TME) remodeling. FAK is commonly overexpressed and activated in a variety of cancers and plays as a targetable kinase in cancer therapy. FAK inhibitors already exhibited promising performance in preclinical and early-stage clinical trials. Moreover, substantial evidence has implied that targeting FAK is more effective in combination strategy, thereby reversing the failure of chemotherapies or targeted therapies in solid tumors. In the current review, we summarized the drug development progress, chemotherapy strategy, and perspective view for FAK inhibitors.
Collapse
Affiliation(s)
- Yueling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ning Li
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengfeng Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Xingmei Jiang
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
43
|
Anderson EM, Thomassian S, Gong J, Hendifar A, Osipov A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers (Basel) 2021; 13:5510. [PMID: 34771675 PMCID: PMC8583016 DOI: 10.3390/cancers13215510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest malignancies among all cancers. Despite curative intent, surgery and the use of standard cytotoxic chemotherapy and radiation therapy, PDAC remains treatment-resistant. In recent years, more contemporary treatment modalities such as immunotherapy via checkpoint inhibition have shown some promise in many other malignancies, yet PDAC still eludes an effective curative treatment. In investigating these phenomena, research has suggested that the significant desmoplastic and adaptive tumor microenvironment (TME) of PDAC promote the proliferation of immunosuppressive cells and act as major obstacles to treatment efficacy. In this review, we explore challenges associated with the treatment of PDAC, including its unique immunosuppressive TME. This review examines the role of surgery in PDAC, recent advances in surgical approaches and surgical optimization. We further focus on advances in immunotherapeutic approaches, including checkpoint inhibition, CD40 agonists, and discuss promising immune-based future strategies, such as therapeutic neoantigen cancer vaccines as means of overcoming the resistance mechanisms which underly the dense stroma and immune milieu of PDAC. We also explore unique signaling, TME and stromal targeting via novel small molecule inhibitors, which target KRAS, FAK, CCR2/CCR5, CXCR4, PARP and cancer-associated fibroblasts. This review also explores the most promising strategy for advancement in treatment of pancreatic cancer by reviewing contemporary combinatorial approaches in efforts to overcome the treatment refractory nature of PDAC.
Collapse
Affiliation(s)
- Eric M. Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Shant Thomassian
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Jun Gong
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Andrew Hendifar
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Arsen Osipov
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| |
Collapse
|
44
|
Heumann T, Azad N. Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer Metastasis Rev 2021; 40:837-862. [PMID: 34591243 PMCID: PMC9804001 DOI: 10.1007/s10555-021-09981-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
To date, the use of immune checkpoint inhibitors has proven largely ineffective in patients with advanced pancreatic ductal adenocarcinoma. A combination of low tumor antigenicity, deficits in immune activation along with an exclusive and suppressive tumor microenvironment result in resistance to host defensives. However, a deepening understanding of these immune escape and suppressive mechanisms has led to the discovery of novel molecular targets and treatment strategies that may hold the key to a long-awaited therapeutic breakthrough. In this review, we describe the tumor-intrinsic and microenvironmental barriers to modern immunotherapy, examine novel immune-based and targeted modalities, summarize relevant pre-clinical findings and human experience, and, finally, discuss novel synergistic approaches to overcome immune-resistance in pancreatic cancer. Beyond checkpoint inhibition, immune agonists and anti-tumor vaccines represent promising strategies to stimulate host response via activation and expansion of anti-tumor immune effectors. Off-the-shelf natural killer cell therapies may offer an effective method for bypassing downregulated tumor antigen presentation. In parallel with this, sophisticated targeting of crosstalk between tumor and tumor-associated immune cells may lead to enhanced immune infiltration and survival of anti-tumor lymphocytes. A future multimodal treatment strategy involving immune priming/activation, tumor microenvironment reprogramming, and immune checkpoint blockade may help transform pancreatic cancer into an immunogenic tumor.
Collapse
Affiliation(s)
- Thatcher Heumann
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nilofer Azad
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Cho H, Shin I, Yoon H, Jeon E, Lee J, Kim Y, Ryu S, Song C, Kwon NH, Moon Y, Kim S, Kim ND, Choi HG, Sim T. Identification of Thieno[3,2- d]pyrimidine Derivatives as Dual Inhibitors of Focal Adhesion Kinase and FMS-like Tyrosine Kinase 3. J Med Chem 2021; 64:11934-11957. [PMID: 34324343 DOI: 10.1021/acs.jmedchem.1c00459] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focal adhesion kinase (FAK) is overexpressed in highly invasive and metastatic cancers. To identify novel FAK inhibitors, we designed and synthesized various thieno[3,2-d]pyrimidine derivatives. An intensive structure-activity relationship (SAR) study led to the identification of 26 as a lead. Moreover, 26, a multitargeted kinase inhibitor, possesses excellent potencies against FLT3 mutants as well as FAK. Gratifyingly, 26 remarkably inhibits recalcitrant FLT3 mutants, including F691L, that cause drug resistance. Importantly, 26 is superior to PF-562271 in terms of apoptosis induction, anchorage-independent growth inhibition, and tumor burden reduction in the MDA-MB-231 xenograft mouse model. Also, 26 causes regression of tumor growth in the MV4-11 xenograft mouse model, indicating that it could be effective against acute myeloid leukemia (AML). Finally, in an orthotopic mouse model using MDA-MB-231, 26 remarkably prevents metastasis of orthotopic tumors to lymph nodes. Taken together, the results indicate that 26 possesses potential therapeutic value against highly invasive cancers and relapsed AML.
Collapse
Affiliation(s)
- Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Injae Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Younghoon Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - SeongShick Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Youngji Moon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Hwan Geun Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- B2Sbio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Taebo Sim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
46
|
Lees DM, Reynolds LE, Pedrosa AR, Roy-Luzarraga M, Hodivala-Dilke KM. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis 2021; 24:471-482. [PMID: 33730293 PMCID: PMC8292267 DOI: 10.1007/s10456-021-09776-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.
Collapse
Affiliation(s)
- Delphine M Lees
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana Rita Pedrosa
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
47
|
Geng X, Chen H, Zhao L, Hu J, Yang W, Li G, Cheng C, Zhao Z, Zhang T, Li L, Sun B. Cancer-Associated Fibroblast (CAF) Heterogeneity and Targeting Therapy of CAFs in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:655152. [PMID: 34336821 PMCID: PMC8319605 DOI: 10.3389/fcell.2021.655152] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease that typically features a dramatic desmoplastic reaction, especially fibroblasts. The roles of cancer-associated fibroblasts (CAFs) in PDAC have received more attention in recent years. As increasing evidence suggests the heterogeneity of CAFs in PDAC, different CAF subtypes have been shown to support tumor growth, while others suppress cancer proliferation. Myofibrotic CAFs (myCAFs) show alpha-smooth muscle actin (α-SMA)high interleukin-6 (IL-6)low myofibroblastic features, are activated by direct contact with tumor cells, and are located in the periglandular region. Inflammatory CAFs (iCAFs) show α-SMAlow IL-6high inflammatory features, are activated by paracrine factors secreted from tumor cells, and are located away from cancer cells. Antigen-presenting CAFs (apCAFs) show major histocompatibility complex II (MHC II) family genes that are highly expressed. CAFs have also been gradually explored as diagnostic and prognostic markers in pancreatic cancer. Targeted therapy of CAFs in PDAC has gradually attracted attention. With the deepening of related studies, some meaningful positive and negative results have surfaced, and CAFs may be the key to unlocking the door to pancreatic cancer treatment. Our review summarizes recent advances in the heterogeneity, function, and markers of CAFs in pancreatic cancer, as well as research and treatment targeting CAFs in pancreatic cancer.
Collapse
Affiliation(s)
- Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Abdominal Endoscopic Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Zhao
- Department of Gynecology, Qinghai University Affiliated Hospital, Xining, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Pang XJ, Liu XJ, Liu Y, Liu WB, Li YR, Yu GX, Tian XY, Zhang YB, Song J, Jin CY, Zhang SY. Drug Discovery Targeting Focal Adhesion Kinase (FAK) as a Promising Cancer Therapy. Molecules 2021; 26:molecules26144250. [PMID: 34299525 PMCID: PMC8308130 DOI: 10.3390/molecules26144250] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
FAK is a nonreceptor intracellular tyrosine kinase which plays an important biological function. Many studies have found that FAK is overexpressed in many human cancer cell lines, which promotes tumor cell growth by controlling cell adhesion, migration, proliferation, and survival. Therefore, targeting FAK is considered to be a promising cancer therapy with small molecules. Many FAK inhibitors have been reported as anticancer agents with various mechanisms. Currently, six FAK inhibitors, including GSK-2256098 (Phase I), VS-6063 (Phase II), CEP-37440 (Phase I), VS-6062 (Phase I), VS-4718 (Phase I), and BI-853520 (Phase I) are undergoing clinical trials in different phases. Up to now, there have been many novel FAK inhibitors with anticancer activity reported by different research groups. In addition, FAK degraders have been successfully developed through “proteolysis targeting chimera” (PROTAC) technology, opening up a new way for FAK-targeted therapy. In this paper, the structure and biological function of FAK are reviewed, and we summarize the design, chemical types, and activity of FAK inhibitors according to the development of FAK drugs, which provided the reference for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Xiao-Jing Pang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Xiu-Juan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Yuan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Wen-Bo Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Yan-Bing Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Jian Song
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| | - Sai-Yang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| |
Collapse
|
49
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
50
|
Lu D, Wang Y, Zhang T, Wang F, Li K, Zhou S, Zhu H, Yang Z, Liu Z. Metabolic radiolabeling and in vivo PET imaging of cytotoxic T lymphocytes to guide combination adoptive cell transfer cancer therapy. J Nanobiotechnology 2021; 19:175. [PMID: 34112200 PMCID: PMC8194184 DOI: 10.1186/s12951-021-00924-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Adoptive T cell transfer-based immunotherapy yields unsatisfactory results in the treatment of solid tumors, partially owing to limited tumor infiltration and the immunosuppressive microenvironment in solid tumors. Therefore, strategies for the noninvasive tracking of adoptive T cells are critical for monitoring tumor infiltration and for guiding the development of novel combination therapies. METHODS We developed a radiolabeling method for cytotoxic T lymphocytes (CTLs) that comprises metabolically labeling the cell surface glycans with azidosugars and then covalently conjugating them with 64Cu-1,4,7-triazacyclononanetriacetic acid-dibenzo-cyclooctyne (64Cu-NOTA-DBCO) using bioorthogonal chemistry. 64Cu-labeled control-CTLs and ovalbumin-specific CTLs (OVA-CTLs) were tracked using positron emission tomography (PET) in B16-OVA tumor-bearing mice. We also investigated the effects of focal adhesion kinase (FAK) inhibition on the antitumor efficacy of OVA-CTLs using a poly(lactic-co-glycolic) acid (PLGA)-encapsulated nanodrug (PLGA-FAKi). RESULTS CTLs can be stably radiolabeled with 64Cu with a minimal effect on cell viability. PET imaging of 64Cu-OVA-CTLs enables noninvasive mapping of their in vivo behavior. Moreover, 64Cu-OVA-CTLs PET imaging revealed that PLGA-FAKi induced a significant increase in OVA-CTL infiltration into tumors, suggesting the potential for a combined therapy comprising OVA-CTLs and PLGA-FAKi. Further combination therapy studies confirmed that the PLGA-FAKi nanodrug markedly improved the antitumor effects of adoptive OVA-CTLs transfer by multiple mechanisms. CONCLUSION These findings demonstrated that metabolic radiolabeling followed by PET imaging can be used to sensitively profile the early-stage migration and tumor-targeting efficiency of adoptive T cells in vivo. This strategy presents opportunities for predicting the efficacy of cell-based adoptive therapies and for guiding combination regimens.
Collapse
Affiliation(s)
- Dehua Lu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Kui Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|