1
|
Wang R, Hu B, Pan Z, Mo C, Zhao X, Liu G, Hou P, Cui Q, Xu Z, Wang W, Yu Z, Zhao L, He M, Wang Y, Fu C, Wei M, Yu L. Antibody-Drug Conjugates (ADCs): current and future biopharmaceuticals. J Hematol Oncol 2025; 18:51. [PMID: 40307936 PMCID: PMC12044742 DOI: 10.1186/s13045-025-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of biopharmaceuticals comprising monoclonal antibodies covalently conjugated to cytotoxic agents via engineered chemical linkers. This combination enables targeted delivery of cytotoxic agents to tumor site through recognizing target antigens by antibody while minimizing off-target effects on healthy tissues. Clinically, ADCs overcome the limitations of traditional chemotherapy, which lacks target specificity, and enhance the therapeutic efficacy of monoclonal antibodies, providing higher efficacy and fewer toxicity anti-tumor biopharmaceuticals. ADCs have ushered in a new era of targeted cancer therapy, with 15 drugs currently approved for clinical use. Additionally, ADCs are being investigated as potential therapeutic candidates for autoimmune diseases, persistent bacterial infections, and other challenging indications. Despite their therapeutic benefits, the development and application of ADCs face significant challenges, including antibody immunogenicity, linker instability, and inadequate control over the release of cytotoxic agent. How can ADCs be designed to be safer and more efficient? What is the future development direction of ADCs? This review provides a comprehensive overview of ADCs, summarizing the structural and functional characteristics of the three core components, antibody, linker, and payload. Furthermore, we systematically assess the advancements and challenges associated with the 15 approved ADCs in cancer therapy, while also exploring the future directions and ongoing challenges. We hope that this work will provide valuable insights into the design and optimization of next-generation ADCs for wider clinical applications.
Collapse
Grants
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
Collapse
Affiliation(s)
- Ruili Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ziyu Pan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chongxia Mo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Guojia Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ping Hou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qi Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhao Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenjia Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110000, China.
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Papacharisi E, Braun AC, Vranic M, Pahl AM, Hechler T. Novel Amanitin-Based Antibody-Drug Conjugates Targeting TROP2 for the Treatment of Pancreatic Cancer. Mol Cancer Ther 2025; 24:485-496. [PMID: 39564769 PMCID: PMC11962393 DOI: 10.1158/1535-7163.mct-24-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Trophoblast cell surface antigen 2 (TROP2) exhibits aberrant expression in pancreatic cancer, correlating with metastasis, advanced tumor stage, and poor prognosis in patients with pancreatic ductal adenocarcinoma. TROP2 has been recognized as a promising therapeutic target for antibody-drug conjugates (ADC), as evidenced by the approval of the anti-TROP2 ADC Trodelvy for the treatment of triple-negative breast cancer (TNBC). In this study, we report the generation of novel second-generation amanitin-based ADCs (ATAC) targeting TROP2, comprising the humanized RS7 antibody of Trodelvy (hRS7) and the highly potent payload amanitin. The specific in vitro binding, efficient antigen internalization, and high cytotoxicity of hRS7 ATACs with EC50 values in the picomolar range in TROP2-expressing cells constituted the foundation for preclinical in vivo evaluation. The hRS7 ATACs demonstrated a significant reduction in tumor growth in vivo in subcutaneous xenograft mouse models of pancreatic cancer and TNBC at well-tolerated doses. The antitumor efficacy correlated with the level of TROP2 expression on the tumors and the in vivo tumor uptake of the ATACs. The long half-life of 9.7 to 10.7 days of hRS7 ATACs without premature payload release in serum supported a high therapeutic index. Notably, the efficacy of the hRS7 ATACs was superior to that of Trodelvy with complete tumor eradication in both refractory pancreatic cancer and TNBC xenograft models. In summary, hRS7 ATACs represent a highly effective and well-tolerated targeted therapy, and our data support their development for pancreatic cancer and other TROP2-expressing tumors.
Collapse
|
3
|
Paris J, Tavernier A, Bethegnies S, Descloux S, Fedeli O. Quantification of total sBCMA in human plasma by peptide-level immunocapture LC-MS/MS. J Mass Spectrom Adv Clin Lab 2025; 36:46-51. [PMID: 40331169 PMCID: PMC12051699 DOI: 10.1016/j.jmsacl.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Background B-cell maturation antigen (BCMA) is a membrane protein that is overexpressed in multiple myeloma cells and can be targeted with biotherapeutic agents. BCMA is naturally shed by γ-secretase, leading to the formation of soluble BCMA (sBCMA), which circulates in the blood. sBCMA can affect the efficacy of BCMA-targeted therapies and act as a drug sink. Additionally, sBCMA can interfere with pharmacokinetic measurements when BCMA is directly targeted. Therefore, quantification of this biomarker during clinical trials is essential to assess the effective dose and understand pharmacokinetic results. When quantifying sBCMA using ligand binding assays or hybrid assays, the biotherapeutic can interfere with the capture of sBCMA, leading to an underestimation of its levels. Methods Samples were denatured, reduced, and alkylated prior to trypsin digestion. sBCMA peptide enrichment was performed using anti-peptide polyclonal antibodies. Reversed-phase chromatographic separation was conducted on a biocompatible C18 column with an analysis time of sixteen minutes per sample. The SCIEX QTRAP 5500 mass spectrometer operated in multiple reaction monitoring mode. The calibration curve was prepared by spiking recombinant sBCMA into monkey plasma. Results The parallelism between the authentic and surrogate matrices, as well as between the endogenous and recombinant proteins, was validated. Comparisons were made between protein and peptide level hybrid assays, with the peptide level approach effectively removing the interference of the biotherapeutic. Additionally, the peptide level immunocapture LC-MS/MS demonstrated ligand tolerance. Conclusion The peptide level immunocapture LC-MS/MS analysis eliminated the interference of anti-BCMA biotherapeutics, allowing for the quantification of total sBCMA in clinical samples while achieving a LLOQ of 10 ng/mL.
Collapse
Affiliation(s)
| | | | - Sylvie Bethegnies
- Sanofi, TMU-Labsciences, 371 rue du Professeur Blayac, 34184 Montpellier, France
| | - Sandrine Descloux
- Sanofi, TMU-Labsciences, 371 rue du Professeur Blayac, 34184 Montpellier, France
| | - Olivier Fedeli
- Sanofi, TMU-Labsciences, 371 rue du Professeur Blayac, 34184 Montpellier, France
| |
Collapse
|
4
|
van Kampen F, Clark A, Soul J, Kanhere A, Glenn MA, Pettitt AR, Kalakonda N, Slupsky JR. Deletion of 17p in cancers: Guilt by (p53) association. Oncogene 2025; 44:637-651. [PMID: 39966556 PMCID: PMC11876076 DOI: 10.1038/s41388-025-03300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Monoallelic deletion of the short arm of chromosome 17 (del17p) is a recurrent abnormality in cancers with poor outcomes. Best studied in relation to haematological malignancies, associated functional outcomes are attributed mainly to loss and/or dysfunction of TP53, which is located at 17p13.1, but the wider impact of deletion of other genes located on 17p is poorly understood. 17p is one of the most gene-dense regions of the genome and includes tumour suppressor genes additional to TP53, genes essential for cell survival and proliferation, as well as small and long non-coding RNAs. In this review we utilise a data-driven approach to demarcate the extent of 17p deletion in multiple cancers and identify a common loss-of-function gene signature. We discuss how the resultant loss of heterozygosity (LOH) and haploinsufficiency may influence cell behaviour but also identify vulnerabilities that can potentially be exploited therapeutically. Finally, we highlight how emerging animal and isogenic cell line models of del17p can provide critical biological insights for cancer cell behaviour.
Collapse
Affiliation(s)
- Francisca van Kampen
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Abigail Clark
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jamie Soul
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark A Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2025; 39:789-874. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Izzo D, Ascione L, Guidi L, Marsicano RM, Koukoutzeli C, Trapani D, Curigliano G. Innovative payloads for ADCs in cancer treatment: moving beyond the selective delivery of chemotherapy. Ther Adv Med Oncol 2025; 17:17588359241309461. [PMID: 39759830 PMCID: PMC11694294 DOI: 10.1177/17588359241309461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a transformative approach in cancer therapy by enhancing tumor targeting and minimizing systemic toxicity compared to traditional chemotherapy. Initially developed with chemotherapy agents as payloads, ADCs have now incorporated alternative payloads, such as immune-stimulating agents, natural toxins, and radionuclides, to improve therapeutic efficacy and specificity. A significant advancement in ADC technology is the integration of Proteolysis Targeting Chimeras (PROTACs), which enable the precise degradation of cellular targets involved in tumorigenesis. This strategy enhances the specificity and precision of cancer therapies, addressing key mechanisms in cancer cell survival. Moreover, incorporating radioactive isotopes into ADCs is an emerging strategy aimed at further improving therapeutic outcomes. By delivering localized radiation, this approach offers the potential to enhance the efficacy of treatment and expand the therapeutic arsenal. Despite these innovations, challenges remain, including dysregulated immune activation, severe adverse effects, and intrinsic immunogenicity of some agents. These emerging issues highlight the ongoing need for optimization in ADC therapy. This review summarizes the latest developments in ADC technology, focusing on novel payloads, PROTAC integration, and the potential for combining ADCs with other therapeutic modalities to refine cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Davide Izzo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Liliana Ascione
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Guidi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Renato Maria Marsicano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Chandra SD, Gunasekera S, Noichl BP, Patrick BO, Perrin DM. Synthesis of (2 S,3 R,4 R)-Dihydroxyisoleucine for Use in Amatoxin Synthesis. J Org Chem 2024; 89:12739-12747. [PMID: 39167711 DOI: 10.1021/acs.joc.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We report a streamlined synthesis of (2S,3R,4R)-4,5-dihydroxy isoleucine (DHIle), an amino acid found in α-amanitin, which appears to be critical for toxicity. This synthetic route is transition metal-free and enables the production of significant quantities of DHIle with suitable protection for use in peptide synthesis. Its incorporation into a cytotoxic amatoxin analog is reported.
Collapse
Affiliation(s)
- Shambhu Deo Chandra
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Shanal Gunasekera
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Benjamin Philipp Noichl
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| |
Collapse
|
8
|
Dong W, Wang W, Cao C. The Evolution of Antibody-Drug Conjugates: Toward Accurate DAR and Multi-specificity. ChemMedChem 2024; 19:e202400109. [PMID: 38758596 DOI: 10.1002/cmdc.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Antibody-drug conjugates (ADCs) consist of antibodies, linkers and payloads. They offer targeted delivery of potent cytotoxic drugs to tumor cells, minimizing off-target effects. However, the therapeutic efficacy of ADCs is compromised by heterogeneity in the drug-to-antibody ratio (DAR), which impacts both cytotoxicity and pharmacokinetics (PK). Additionally, the emergence of drug resistance poses significant challenges to the clinical advancement of ADCs. To overcome these limitations, a variety of strategies have been developed, including the design of multi-specific drugs with accurate DAR. This review critically summarizes the current challenges faced by ADCs, categorizing key issues and evaluating various innovative solutions. We provide an in-depth analysis of the latest methodologies for achieving homogeneous DAR and explore design strategies for multi-specific drugs aimed at combating drug resistance. Our discussion offers a current perspective on the advancements made in refining ADC technologies, with an emphasis on enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Wenge Dong
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wanqi Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Marino SF, Daumke O. Structure-based humanization of a therapeutic antibody for multiple myeloma. J Mol Med (Berl) 2024; 102:1151-1161. [PMID: 39052065 PMCID: PMC11358308 DOI: 10.1007/s00109-024-02470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The optimal efficacy of xenogeneically generated proteins intended for application in humans requires that their own antigenicity be minimized. This necessary adaptation of antibodies to a humanized version poses challenges since modifications even distant from the binding sites can greatly influence antigen recognition and this is the primary feature that must be maintained during all modifications. Current strategies often rely on grafting and/or randomization/selection to arrive at a humanized variant retaining the binding properties of the original molecule. However, in terms of speed and efficiency, rationally directed approaches can be superior, provided the requisite structural information is available. We present here a humanization procedure based on the high-resolution X-ray structure of a chimaeric IgG against a marker for multiple myeloma. Based on in silico modelling of humanizing amino acid substitutions identified from sequence alignments, we devised a straightforward cloning procedure to rapidly evaluate the proposed sequence changes. Careful inspection of the structure allowed the identification of a potentially problematic amino acid change that indeed disrupted antigen binding. Subsequent optimization of the antigen binding loop sequences resulted in substantial recovery of binding affinity lost in the completely humanized antibody. X-ray structures of the humanized and optimized variants demonstrate that the antigen binding mode is preserved, with surprisingly few direct contacts to antibody atoms. These results underline the importance of structural information for the efficient optimization of protein therapeutics. KEY MESSAGES: Structure-based humanization of an IgG against BCMA, a marker for Multiple Myeloma. Identification of problematic mutations and unexpected modification sites. Structures of the modified IgG-antigen complexes verified predictions. Provision of humanized high-affinity IgGs against BCMA for therapeutic applications.
Collapse
Affiliation(s)
- Stephen F Marino
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
- German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Oliver Daumke
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| |
Collapse
|
10
|
Tonon G, Rizzolio F, Visentin F, Scattolin T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature-Inspired Payloads. Int J Mol Sci 2024; 25:8651. [PMID: 39201338 PMCID: PMC11355040 DOI: 10.3390/ijms25168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
This review highlights significant advancements in antibody-drug conjugates (ADCs) equipped with metal-based and nature-inspired payloads, focusing on synthetic strategies for antibody conjugation. Traditional methods such us maleimide and succinimide conjugation and classical condensation reactions are prevalent for metallodrugs and natural compounds. However, emerging non-conventional strategies such as photoconjugation are gaining traction due to their milder conditions and, in an aspect which minimizes side reactions, selective formation of ADC. The review also summarizes the therapeutic and diagnostic properties of these ADCs, highlighting their enhanced selectivity and reduced side effects in cancer treatment compared to non-conjugated payloads. ADCs combine the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy drugs, offering a targeted approach to the elimination of cancer cells while sparing healthy tissues. This targeted mechanism has demonstrated impressive clinical efficacy in various malignancies. Key future advancements include improved linker technology for enhanced stability and controlled release of cytotoxic agents, incorporation of novel, more potent, cytotoxic agents, and the identification of new cancer-specific antigens through genomic and proteomic technologies. ADCs are also expected to play a crucial role in combination therapies with immune checkpoint inhibitors, CAR-T cells, and small molecule inhibitors, leading to more durable and potentially curative outcomes. Ongoing research and clinical trials are expanding their capabilities, paving the way for more effective, safer, and personalized treatments, positioning ADCs as a cornerstone of modern medicine and offering new hope to patients.
Collapse
Affiliation(s)
- Giovanni Tonon
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
11
|
Ma Q, Durga P, Wang FXC, Yao HP, Wang MH. Pharmaceutical innovation and advanced biotechnology in the biotech-pharmaceutical industry for antibody-drug conjugate development. Drug Discov Today 2024; 29:104057. [PMID: 38844064 DOI: 10.1016/j.drudis.2024.104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Antibody-drug conjugates (ADCs), from prototypes in the 1980s to first- and second-generation products in the 2000s, and now in their multiformats, have progressed tremendously to meet oncological challenges. Currently, 13 ADCs have been approved for medical practice, with over 200 candidates in clinical trials. Moreover, ADCs have evolved into different formats, including bispecific ADCs, probody-drug conjugates, pH-responsive ADCs, target-degrading ADCs, and immunostimulating ADCs. Technologies from biopharmaceutical industries have a crucial role in the clinical transition of these novel biotherapeutics. In this review, we highlight several features contributing to the prosperity of bioindustrial ADC development. Various proprietary technologies from biopharmaceutical companies are discussed. Such advances in biopharmaceutical industries are the backbone for the success of ADCs in development and clinical application.
Collapse
Affiliation(s)
- Qi Ma
- Translational Research Laboratory for Urological Diseases, First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, PR China; Comprehensive Genitourinary Cancer Center, First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, PR China.
| | - Puro Durga
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | | | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Center for Infectious Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Ming-Hai Wang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA.
| |
Collapse
|
12
|
Sato S, Shoji T, Jo A, Otsuka H, Abe M, Tatsuki S, Chiba Y, Takatori E, Kaido Y, Nagasawa T, Kagabu M, Baba T. Antibody-Drug Conjugates: The New Treatment Approaches for Ovarian Cancer. Cancers (Basel) 2024; 16:2545. [PMID: 39061184 PMCID: PMC11275051 DOI: 10.3390/cancers16142545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), accounting for approximately 200,000 deaths worldwide annually, is a heterogeneous disease showing major differences in terms of its incidence, tumor behavior, and outcomes across histological subtypes. In OC, primary chemotherapy, paclitaxel carboplatin, bevacizumab, and PARP inhibitors have shown prolonged progression-free survival and a favorable overall response rate compared to conventional treatments. However, treatment options for platinum-resistant recurrence cases are limited, with no effective therapies that significantly prolong the prognosis. Recently, mirvetuximab soravtansine, an alpha-folate receptor (FRα)-targeted antibody-drug conjugate (ADC), was approved by the US Food and Drug Administration for patients with FRα-positive recurrent epithelial OC (EOC). This approval was based on a Phase II study, which demonstrated its efficacy in such patients. ADCs comprise an antibody, a linker, and a payload, representing new concept agents without precedence. Advanced clinical studies are developing ADCs for patients with OC, targeting solid tumors such as gynecologic cancer. Ongoing clinical trials are evaluating ADCs targeting FRα and human epidermal growth factor receptor 2, trophoblast cell surface antigen-2, sodium-dependent phosphate transport protein 2B, and cadherin-6 in Phase II/III studies. In this review, we summarize the existing evidence supporting the use of ADCs in OC, discuss ongoing clinical trials and preclinical studies, and explore the potential of these innovative agents to address the challenges in OC treatment.
Collapse
Affiliation(s)
| | - Tadahiro Shoji
- Department of Obstetrics and Gynecology, Iwate Medical University, Yahaba 028-3694, Iwate, Japan; (S.S.); (A.J.); (H.O.); (M.A.); (S.T.); (Y.C.); (E.T.); (Y.K.); (T.N.); (M.K.); (T.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
14
|
Li S, Wang H, Xiong S, Liu J, Sun S. Targeted Delivery Strategies for Multiple Myeloma and Their Adverse Drug Reactions. Pharmaceuticals (Basel) 2024; 17:832. [PMID: 39065683 PMCID: PMC11279695 DOI: 10.3390/ph17070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, multiple myeloma (MM) is a prevalent hematopoietic system malignancy, known for its insidious onset and unfavorable prognosis. Recently developed chemotherapy drugs for MM have exhibited promising therapeutic outcomes. Nevertheless, to overcome the shortcomings of traditional clinical drug treatment, such as off-target effects, multiple drug resistance, and systemic toxicity, targeted drug delivery systems are optimizing the conventional pharmaceuticals for precise delivery to designated sites at controlled rates, striving for maximal efficacy and safety, presenting a promising approach for MM treatment. This review will delve into the outstanding performance of antibody-drug conjugates, peptide-drug conjugates, aptamer-drug conjugates, and nanocarrier drug delivery systems in preclinical studies or clinical trials for MM and monitor their adverse reactions during treatment.
Collapse
Affiliation(s)
- Shuting Li
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
| | - Hongjie Wang
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
| | - Shijun Xiong
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
- Department of Biochemistry and Molecular Biology, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Jing Liu
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
- Department of Biochemistry and Molecular Biology, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Shuming Sun
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
- Department of Biochemistry and Molecular Biology, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| |
Collapse
|
15
|
Ning D, Xue J, Lou X, Shao R, Liu Y, Chen G. Transforming toxins into treatments: the revolutionary role of α-amanitin in cancer therapy. Arch Toxicol 2024; 98:1705-1716. [PMID: 38555326 DOI: 10.1007/s00204-024-03727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Amanita phalloides is the primary species responsible for fatal mushroom poisoning, as its main toxin, α-amanitin, irreversibly and potently inhibits eukaryotic RNA polymerase II (RNAP II), leading to cell death. There is no specific antidote for α-amanitin, which hinders its clinical application. However, with the advancement of precision medicine in oncology, including the development of antibody-drug conjugates (ADCs), the potential value of various toxic small molecules has been explored. These ADCs ingeniously combine the targeting precision of antibodies with the cytotoxicity of small-molecule payloads to precisely kill tumor cells. We searched PubMed for studies in this area using these MeSH terms "Amanitins, Alpha-Amanitin, Therapeutic use, Immunotherapy, Immunoconjugates, Antibodies" and did not limit the time interval. Recent studies have conducted preclinical experiments on ADCs based on α-amanitin, showing promising therapeutic effects and good tolerance in primates. The current challenges include the not fully understood toxicological mechanism of α-amanitin and the lack of clinical studies to evaluate the therapeutic efficacy of ADCs developed based on α-amanitin. In this article, we will discuss the role and therapeutic efficacy of α-amanitin as an effective payload in ADCs for the treatment of various cancers, providing background information for the research and application strategies of current and future drugs.
Collapse
Affiliation(s)
- Deyuan Ning
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, No 157 Jinbi Road, Xishan District, Kunming, 650032, China.
| |
Collapse
|
16
|
Gunasekera S, Pryyma A, Jung J, Greenwood R, Patrick BO, Perrin DM. Diphenylphosphinylhydroxylamine (DPPH) Affords Late-Stage S-imination to access free-NH Sulfilimines and Sulfoximines. Angew Chem Int Ed Engl 2024; 63:e202314906. [PMID: 38289976 DOI: 10.1002/anie.202314906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Sulfilimines, as potential aza-isosteres of sulfoxides, are valued as building blocks, auxiliaries, ligands, bioconjugation handles, and as precursors to versatile S(VI) scaffolds including sulfoximines and sulfondiimines. Here, we report a thioether imination methodology that exploits O-(diphenylphosphinyl)hydroxyl amine (DPPH). Under mild, metal-free, and biomolecule-compatible conditions, DPPH enables late-stage S-imination on peptides, natural products, and a clinically trialled drug, and shows both excellent chemoselectivity and broad functional group tolerance. This methodological report is extended to an efficient and high-yielding one-pot reaction for accessing free-NH sulfoximines with diverse substrates including ones of potential clinical importance. In the presence of a rhodium catalyst, sulfoxides are S-iminated in higher yields to afford free-NH sulfoximines. S-imination was validated on an oxidatively delicate amatoxin to give sulfilimine and sulfoximine congeners. Interestingly, these new sulfilimine and sulfoximine-amatoxins show cytotoxicity. This method is further extended to create sulfilimine and sulfoximine-Fulvestrant and buthionine analogues.
Collapse
Affiliation(s)
- Shanal Gunasekera
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Alla Pryyma
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Jimin Jung
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Rebekah Greenwood
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Brian O Patrick
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| |
Collapse
|
17
|
Lu N, Wu J, Tian M, Zhang S, Li Z, Shi L. Comprehensive review on the elaboration of payloads derived from natural products for antibody-drug conjugates. Eur J Med Chem 2024; 268:116233. [PMID: 38408390 DOI: 10.1016/j.ejmech.2024.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Antibody-drug conjugates (ADCs) have arisen as a promising class of biotherapeutics for targeted cancer treatment, combining the specificity of monoclonal antibodies with the cytotoxicity of small-molecule drugs. The choice of an appropriate payload is crucial for the success development of ADCs, as it determines the therapeutic efficacy and safety profile. This review focuses on payloads derived from natural products, including cytotoxic agents, DNA-damaging agents, and immunomodulators. These offer several advantages such as diverse chemical structures, unique mechanism of actions, and potential for improved therapeutic index. Challenges and opportunities associated with their development were highlighted. This review underscores the significance of natural product payloads in the elaboration of ADCs, which serves as a valuable resource for researchers involved in developing and optimizing next-generation ADCs for cancer treatment.
Collapse
Affiliation(s)
- Nan Lu
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Jiaqi Wu
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Mengwei Tian
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Shanshan Zhang
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| | - Zhiguo Li
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| | - Liming Shi
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| |
Collapse
|
18
|
Al Sbihi A, Alasfour M, Pongas G. Innovations in Antibody-Drug Conjugate (ADC) in the Treatment of Lymphoma. Cancers (Basel) 2024; 16:827. [PMID: 38398219 PMCID: PMC10887180 DOI: 10.3390/cancers16040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Chemoimmunotherapy and cellular therapy are the mainstay of the treatment of relapsed/refractory (R/R) lymphomas. Development of resistance and commonly encountered toxicities of these treatments limit their role in achieving desired response rates and durable remissions. The Antibody-Drug Conjugate (ADC) is a novel class of targeted therapy that has demonstrated significant efficacy in treating various cancers, including lymphomas. To date, three ADC agents have been approved for different lymphomas, marking a significant advancement in the field. In this article, we aim to review the concept of ADCs and their application in lymphoma treatment, provide an analysis of currently approved agents, and discuss the ongoing advancements of ADC development.
Collapse
Affiliation(s)
| | | | - Georgios Pongas
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
19
|
Singh RK, Jones RJ, Shirazi F, Qin L, Zou J, Hong S, Wang H, Lee HC, Patel KK, Wan J, Choudhary RK, Kuiatse I, Pahl A, Orlowski RZ. Novel Anti-B-cell Maturation Antigen Alpha-Amanitin Antibody-drug Conjugate HDP-101 Shows Superior Activity to Belantamab Mafodotin and Enhanced Efficacy in Deletion 17p Myeloma Models. RESEARCH SQUARE 2024:rs.3.rs-3843028. [PMID: 38260385 PMCID: PMC10802748 DOI: 10.21203/rs.3.rs-3843028/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
B-cell maturation antigen (BCMA) plays a pathobiologic role in myeloma and is a validated target with five BCMA-specific therapeutics having been approved for relapsed/refractory disease. However, these drugs are not curative, and responses are inferior in patients with molecularly-defined high-risk disease, including those with deletion 17p (del17p) involving the tumor suppressor TP53, supporting the need for further drug development. Del17p has been associated with reduced copy number and gene expression of RNA polymerase II subunit alpha (POLR2A) in other tumor types. We therefore studied the possibility that HDP-101, an anti-BCMA antibody drug conjugate (ADC) with the POLR2A poison α-amanitin could be an attractive agent in myeloma, especially with del17p. HDP-101 reduced viability in myeloma cell lines representing different molecular disease subtypes, and overcame adhesion-mediated and both conventional and novel drug resistance. After confirming that del17p is associated with reduced POLR2A levels in publicly available myeloma patient databases, we engineered TP53 wild-type cells with a TP53 knockout (KO), POLR2A knockdown (KD), or both, the latter to mimic del17p. HDP-101 showed potent anti-myeloma activity against all tested cell lines, and exerted enhanced efficacy against POLR2A KD and dual TP53 KO/POLR2A KD cells. Mechanistic studies showed HDP-101 up-regulated the unfolded protein response, activated apoptosis, and induced immunogenic cell death. Notably, HDP-101 impacted CD138-positive but not-negative primary cells, showed potent efficacy against aldehyde dehydrogenase-positive clonogenic cells, and eradicated myeloma in an in vivo cell line-derived xenograft (CDX). Interestingly, in the CDX model, prior treatment with HDP-101 precluded subsequent engraftment on tumor cell line rechallenge in a manner that appeared to be dependent in part on natural killer cells and macrophages. Finally, HDP-101 was superior to the BCMA-targeted ADC belantamab mafodotin against cell lines and primary myeloma cells in vitro, and in an in vivo CDX. Together, the data support the rationale for translation of HDP-101 to the clinic, where it is now undergoing Phase I trials, and suggest that it could emerge as a more potent ADC for myeloma with especially interesting activity against the high-risk del17p myeloma subtype.
Collapse
Affiliation(s)
| | | | | | - Li Qin
- The University of Texas MD Anderson Cancer Center
| | - Jianxuan Zou
- The University of Texas MD Anderson Cancer Center
| | - Samuel Hong
- The University of Texas MD Anderson Cancer Center
| | - Hua Wang
- The University of Texas MD Anderson Cancer Center
| | - Hans C Lee
- The University of Texas MD Anderson Cancer Center
| | | | - Jie Wan
- The University of Texas MD Anderson Cancer Center
| | | | | | | | | |
Collapse
|
20
|
Wojaczyńska E, Wojaczyński J. Sulfoxides in medicine. Curr Opin Chem Biol 2023; 76:102340. [PMID: 37307682 DOI: 10.1016/j.cbpa.2023.102340] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
In the review, current status of sulfoxides on the pharmaceutical market is discussed. In the first part of the article, natural sulfoxides will be described with a special focus on sulforaphane and amanitin, a mushroom toxin which has been developed as payload in antibody drug conjugates in the possible cancer treatment. Controversies associated with the medical use of dimethylsulfoxide are briefly described in the next section. In the part devoted to PPIs, the benefits of using pure enantiomers (chiral switch) are discussed. An interesting approach, repositioning of drugs is exemplified by new possible applications of modafinil and sulindac. The review is concluded by presentation of cenicriviroc and adezmapimod, both with the status of promising drug candidates.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370, Wrocław, Poland.
| | - Jacek Wojaczyński
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50 383, Wrocław, Poland
| |
Collapse
|
21
|
Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B 2023; 13:4025-4059. [PMID: 37799390 PMCID: PMC10547921 DOI: 10.1016/j.apsb.2023.06.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody‒drug conjugates (ADCs), which combine the advantages of monoclonal antibodies with precise targeting and payloads with efficient killing, show great clinical therapeutic value. The ADCs' payloads play a key role in determining the efficacy of ADC drugs and thus have attracted great attention in the field. An ideal ADC payload should possess sufficient toxicity, low immunogenicity, high stability, and modifiable functional groups. Common ADC payloads include tubulin inhibitors and DNA damaging agents, with tubulin inhibitors accounting for more than half of the ADC drugs in clinical development. However, due to clinical limitations of traditional ADC payloads, such as inadequate efficacy and the development of acquired drug resistance, novel highly efficient payloads with diverse targets and reduced side effects are being developed. This perspective summarizes the recent research advances of traditional and novel ADC payloads with main focuses on the structure-activity relationship studies, co-crystal structures, and designing strategies, and further discusses the future research directions of ADC payloads. This review also aims to provide valuable references and future directions for the development of novel ADC payloads that will have high efficacy, low toxicity, adequate stability, and abilities to overcome drug resistance.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lantu Gou
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
22
|
Chang HL, Schwettmann B, McArthur HL, Chan IS. Antibody-drug conjugates in breast cancer: overcoming resistance and boosting immune response. J Clin Invest 2023; 133:e172156. [PMID: 37712425 PMCID: PMC10503805 DOI: 10.1172/jci172156] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a revolutionary therapeutic class, combining the precise targeting ability of monoclonal antibodies with the potent cytotoxic effects of chemotherapeutics. Notably, ADCs have rapidly advanced in the field of breast cancer treatment. This innovative approach holds promise for strengthening the immune system through antibody-mediated cellular toxicity, tumor-specific immunity, and adaptive immune responses. However, the development of upfront and acquired resistance poses substantial challenges in maximizing the effectiveness of these therapeutics, necessitating a deeper understanding of the underlying mechanisms. These mechanisms of resistance include antigen loss, derangements in ADC internalization and recycling, drug clearance, and alterations in signaling pathways and the payload target. To overcome resistance, ongoing research and development efforts are focused on urgently identifying biomarkers, integrating immune therapy approaches, and designing novel cytotoxic payloads. This Review provides an overview of the mechanisms and clinical effectiveness of ADCs, and explores their unique immune-boosting function, while also highlighting the complex resistance mechanisms and safety challenges that must be addressed. A continued focus on how ADCs impact the tumor microenvironment will help to identify new payloads that can improve patient outcomes.
Collapse
Affiliation(s)
- Hannah L. Chang
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Blake Schwettmann
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Heather L. McArthur
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8:306. [PMID: 37591844 PMCID: PMC10435569 DOI: 10.1038/s41392-023-01521-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
24
|
Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov 2023; 22:641-661. [PMID: 37308581 DOI: 10.1038/s41573-023-00709-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/14/2023]
Abstract
Antibody-drug conjugates (ADCs) combine the specificity of monoclonal antibodies with the potency of highly cytotoxic agents, potentially reducing the severity of side effects by preferentially targeting their payload to the tumour site. ADCs are being increasingly used in combination with other agents, including as first-line cancer therapies. As the technology to produce these complex therapeutics has matured, many more ADCs have been approved or are in late-phase clinical trials. The diversification of antigenic targets as well as bioactive payloads is rapidly broadening the scope of tumour indications for ADCs. Moreover, novel vector protein formats as well as warheads targeting the tumour microenvironment are expected to improve the intratumour distribution or activation of ADCs, and consequently their anticancer activity for difficult-to-treat tumour types. However, toxicity remains a key issue in the development of these agents, and better understanding and management of ADC-related toxicities will be essential for further optimization. This Review provides a broad overview of the recent advances and challenges in ADC development for cancer treatment.
Collapse
Affiliation(s)
- Charles Dumontet
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | - Alain Beck
- Institut de Recherche Pierre Fabre, CIPF, Saint-Julien-en-Genevois, France
| |
Collapse
|
25
|
Ray U, Orlowski RZ. Antibody-Drug Conjugates for Multiple Myeloma: Just the Beginning, or the Beginning of the End? Pharmaceuticals (Basel) 2023; 16:ph16040590. [PMID: 37111346 PMCID: PMC10145905 DOI: 10.3390/ph16040590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple myeloma is a malignancy of immunoglobulin-secreting plasma cells that is now often treated in the newly diagnosed and relapsed and/or refractory settings with monoclonal antibodies targeting lineage-specific markers used either alone or in rationally designed combination regimens. Among these are the anti-CD38 antibodies daratumumab and isatuximab, and the anti-Signaling lymphocytic activation molecule family member 7 antibody elotuzumab, all of which are used in their unconjugated formats. Single-chain variable fragments from antibodies also form a key element of the chimeric antigen receptors (CARs) in the B-cell maturation antigen (BCMA)-targeted CAR T-cell products idecabtagene vicleucel and ciltacabtagene autoleucel, which are approved in the advanced setting. Most recently, the bispecific anti-BCMA and T-cell-engaging antibody teclistamab has become available, again for patients with relapsed/refractory disease. Another format into which antibodies can be converted to exert anti-tumor efficacy is as antibody-drug conjugates (ADCs), and belantamab mafodotin, which also targets BCMA, represented the first such agent that gained a foothold in myeloma. Negative results from a recent Phase III study have prompted the initiation of a process for withdrawal of its marketing authorization. However, belantamab remains a drug with some promise, and many other ADCs targeting either BCMA or other plasma cell surface markers are in development and showing potential. This contribution will provide an overview of some of the current data supporting the possibility that ADCs will remain a part of our chemotherapeutic armamentarium against myeloma moving forward, and also highlight areas for future development.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX 77030-4009, USA
| |
Collapse
|
26
|
Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol 2023; 16:3. [PMID: 36650546 PMCID: PMC9847035 DOI: 10.1186/s13045-022-01397-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Collapse
|
27
|
Barreca M, Lang N, Tarantelli C, Spriano F, Barraja P, Bertoni F. Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:763-794. [PMID: 36654819 PMCID: PMC9834635 DOI: 10.37349/etat.2022.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/28/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of a wide range of malignant conditions, both as monotherapy and in combination with chemotherapy, including for lymphoma patients. Over 100 ADCs are under preclinical and clinical investigation worldwide. This paper it provides an overview of approved and promising ADCs in clinical development for the treatment of lymphoma. Each component of the ADC design, their mechanism of action, and the highlights of their clinical development progress are discussed.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Noémie Lang
- Division of Oncology, Department of Oncology, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
28
|
Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:35. [PMID: 36418786 PMCID: PMC9684400 DOI: 10.1186/s43556-022-00100-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Since the first monoclonal antibody drug, muromonab-CD3, was approved for marketing in 1986, 165 antibody drugs have been approved or are under regulatory review worldwide. With the approval of new drugs for treating a wide range of diseases, including cancer and autoimmune and metabolic disorders, the therapeutic antibody drug market has experienced explosive growth. Monoclonal antibodies have been sought after by many biopharmaceutical companies and scientific research institutes due to their high specificity, strong targeting abilities, low toxicity, side effects, and high development success rate. The related industries and markets are growing rapidly, and therapeutic antibodies are one of the most important research and development areas in the field of biology and medicine. In recent years, great progress has been made in the key technologies and theoretical innovations provided by therapeutic antibodies, including antibody-drug conjugates, antibody-conjugated nuclides, bispecific antibodies, nanobodies, and other antibody analogs. Additionally, therapeutic antibodies can be combined with technologies used in other fields to create new cross-fields, such as chimeric antigen receptor T cells (CAR-T), CAR-natural killer cells (CAR-NK), and other cell therapy. This review summarizes the latest approved or in regulatory review therapeutic antibodies that have been approved or that are under regulatory review worldwide, as well as clinical research on these approaches and their development, and outlines antibody discovery strategies that have emerged during the development of therapeutic antibodies, such as hybridoma technology, phage display, preparation of fully human antibody from transgenic mice, single B-cell antibody technology, and artificial intelligence-assisted antibody discovery.
Collapse
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjian Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mei Tang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Antibody Drug Conjugates in Multiple Myeloma. Cancer J 2022; 28:488-495. [DOI: 10.1097/ppo.0000000000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Neumeister P, Schulz E, Pansy K, Szmyra M, Deutsch AJA. Targeting the Microenvironment for Treating Multiple Myeloma. Int J Mol Sci 2022; 23:ijms23147627. [PMID: 35886976 PMCID: PMC9317002 DOI: 10.3390/ijms23147627] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is a malignant, incurable disease characterized by the expansion of monoclonal terminally differentiated plasma cells in the bone marrow. MM is consistently preceded by an asymptomatic monoclonal gammopathy of undetermined significance, and in the absence of myeloma defining events followed by a stage termed smoldering multiple myeloma (SMM), which finally progresses to active myeloma if signs of organ damage are present. The reciprocal interaction between tumor cells and the tumor microenvironment plays a crucial role in the development of MM and the establishment of a tumor-promoting stroma facilitates tumor growth and myeloma progression. Since myeloma cells depend on signals from the bone marrow microenvironment (BMME) for their survival, therapeutic interventions targeting the BMME are a novel and successful strategy for myeloma care. Here, we describe the complex interplay between myeloma cells and the cellular components of the BMME that is essential for MM development and progression. Finally, we present BMME modifying treatment options such as anti-CD38 based therapies, immunomodulatory drugs (IMiDs), CAR T-cell therapies, bispecific antibodies, and antibody-drug conjugates which have significantly improved the long-term outcome of myeloma patients, and thus represent novel therapeutic standards.
Collapse
Affiliation(s)
- Peter Neumeister
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
- Correspondence:
| | - Eduard Schulz
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| | - Alexander JA Deutsch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (E.S.); (K.P.); (M.S.); (A.J.D.)
| |
Collapse
|
31
|
Todorovic M, Rivollier P, Wong AAWL, Wang Z, Pryyma A, Nguyen TT, Newell KC, Froelich J, Perrin DM. Rationally Designed Amanitins Achieve Enhanced Cytotoxicity. J Med Chem 2022; 65:10357-10376. [PMID: 35696491 DOI: 10.1021/acs.jmedchem.1c02226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For 70 years, α-amanitin, the most cytotoxic peptide in its class, has been without a synthetic rival; through synthesis, we address the structure-activity relationships to inform the design of new amatoxins and disclose analogues that are more cytotoxic than the natural product when evaluated on CHO, HEK293, and HeLa cells, whereas on liver-derived HepG2 cells, the same toxins show diminished cytotoxicity.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Paul Rivollier
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Antonio A W L Wong
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Zhou Wang
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Alla Pryyma
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Tuan Trung Nguyen
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Kayla C Newell
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Juliette Froelich
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - David M Perrin
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| |
Collapse
|
32
|
Offidani M, Corvatta L, Morè S, Manieri MV, Olivieri A. An update on novel multiple myeloma targets. Expert Rev Hematol 2022; 15:519-537. [PMID: 35640130 DOI: 10.1080/17474086.2022.2085088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction: despite therapeutic progress, leading to a significant improvement of outcome, multiple myeloma (MM) remains a difficult to treat hematologic disease due to its biological heterogeneity and clinical complexity. Areas covered: Treatment of patients refractory and resistant to all classes of agents used in newly diagnosed MM, is becoming a relevant problem for every hematologist. New generation immunotherapies, such as conjugated mAb, bispecific mAbs and CAR-T cells, targeting novel molecules as BCMA, have showed relevant results in very advanced MM. In the same setting, small molecules, such as selinexor and melflufen, also proved to be effective. We are currently waiting for the results of under evaluation personalized therapy, directed against specific gene mutations or signaling pathways, responsible for disease progression. Expert Opinion: In the near future, many therapeutic strategies will become available for MM and the challenge will be to position each approach in order to cure, maintaining a good quality of life in these patients.
Collapse
Affiliation(s)
- Massimo Offidani
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| | | | - Sonia Morè
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| | | | - Attilio Olivieri
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| |
Collapse
|
33
|
Paul B, Rodriguez C, Usmani SZ. BCMA-Targeted Biologic Therapies: The Next Standard of Care in Multiple Myeloma Therapy. Drugs 2022; 82:613-631. [PMID: 35412114 PMCID: PMC9554894 DOI: 10.1007/s40265-022-01697-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
With recent advances in myeloma therapy, patients can achieve long-term remissions, but eventually relapses will occur. Triple-class refractory myeloma (disease that is refractory to an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody) and penta-refractory myeloma (disease that is refractory to two proteasome inhibitors, two immunomodulatory agents, and an anti-CD38 antibody) are associated with a particularly poor prognosis, and novel treatments are desperately needed for these patients. Targeting B cell maturation antigen (BCMA), which is ubiquitously expressed on plasma cells, has emerged as a well-tolerated and highly efficacious strategy in patients with relapsed and refractory myeloma. Several mechanisms of targeting BCMA are currently under investigation, including antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells and natural killer (NK) cells, all with unique side effect profiles. Early phase clinical trials showed unprecedented response rates in highly refractory myeloma patients, leading to the recent approvals of some of these agents. Still, many questions remain with regard to this target, including how best to target it, how to treat patients who have progressed on a BCMA-targeting therapy, and whether response rates will deepen if these agents are used in earlier lines of therapy. In this review, we examine the rationale for targeting BCMA and summarize the data for several agents across multiple classes of BCMA-targeting therapeutics, paying special attention to the diverse mechanisms and unique challenges of each therapeutic class.
Collapse
Affiliation(s)
- Barry Paul
- Division of Plasma Cell Disorders, Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | | | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
34
|
Tai W, Wahab A, Franco D, Shah Z, Ashraf A, Abid QUA, Mohammed YN, Lal D, Anwer F. Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma. Antibodies (Basel) 2022; 11:22. [PMID: 35466275 PMCID: PMC9036234 DOI: 10.3390/antib11020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is characterized by malignant proliferation of malignant plasma cells; it is the second most common hematological malignancy associated with significant morbidity. Genetic intricacy, instability, and diverse clinical presentations remain a barrier to cure. The treatment of MM is modernized with the introduction of newer therapeutics agents, i.e., target-specific monoclonal antibodies. The currently available literature lacks the benefits of newer targeted therapy being developed with an aim to reduce side effects and increase effectiveness, compared to conventional chemotherapy regimens. This article aims to review literature about the current available monoclonal antibodies, antibody-drug conjugates, and bispecific antibodies for the treatment of MM.
Collapse
Affiliation(s)
- Waqqas Tai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA;
| | - Ahsan Wahab
- Department of Internal Medicine, Prattville Baptist Hospital, Prattville, AL 36066, USA;
| | - Diana Franco
- Department of Internal Medicine, Loyola MacNeal Hospital, Berwyn, IL 60402, USA;
| | - Zunairah Shah
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA;
| | - Aqsa Ashraf
- Department of Internal Medicine, Northwell Health, Mather Hospital, Port Jefferson, NY 11777, USA;
| | - Qurrat-Ul-Ain Abid
- Department of Internal Medicine, AMITA Health Saint Joseph Hospital, Chicago, IL 60657, USA;
| | - Yaqub Nadeem Mohammed
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA;
| | - Darshan Lal
- Department of Internal Medicine, University of Nevada School of Medicine, Las Vegas, NV 89102, USA;
| | - Faiz Anwer
- Taussig Cancer Center, Myeloma Program, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
35
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
36
|
Hartley-Brown M, Richardson P. Antibody-drug conjugate therapies in multiple myeloma—what’s next on the horizon? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:1-10. [PMID: 36046359 PMCID: PMC9400726 DOI: 10.37349/etat.2022.00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Targeted immunotherapy has arisen over the past decade to the forefront of cancer care. Notably, targeted therapies such as antibody-drug conjugates (ADCs) are becoming more recognized for a novel approach in cancer treatment. The mechanism of action of ADCs incorporates a monoclonal antibody portion directed against the tumor cell antigen and attached to the tumoricidal portion via chemical linkage. The binding of the monoclonal antibody portion allows for tumor cell internalization of the ADC and precise release of the toxic payload within the cancer cell. Multiple myeloma (MM) is an incurable cancer for which belantamab mafodotin was the first-in-class ADC to achieve United States Food and Drug Administration (FDA) approval for treatment of this disease. Clinical trials are currently evaluating other ADCs in the treatment of MM. In this review, a look at the current ADCs being tested in MM clinical trials with a focus on those that are more promising and a potential next-in-line for FDA approval for treatment of MM is discussed.
Collapse
Affiliation(s)
- Monique Hartley-Brown
- Department of Medicine, Division of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paul Richardson
- Department of Medicine, Division of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
37
|
Pryyma A, Matinkhoo K, Bu YJ, Merkens H, Zhang Z, Bénard F, Perrin DM. Synthesis and preliminary evaluation of octreotate conjugates of bioactive synthetic amatoxins for targeting somatostatin receptor (sstr2) expressing cells. RSC Chem Biol 2022; 3:69-78. [PMID: 35128410 PMCID: PMC8729174 DOI: 10.1039/d1cb00036e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Targeted cancer therapy represents a paradigm-shifting approach that aims to deliver a toxic payload selectively to target-expressing cells thereby sparing normal tissues the off-target effects associated with traditional chemotherapeutics. Since most targeted constructs rely on standard microtubule inhibitors or DNA-reactive molecules as payloads, new toxins that inhibit other intracellular targets are needed to realize the full potential of targeted therapy. Among these new payloads, α-amanitin has gained attraction as a payload in targeted therapy. Here, we conjugate two synthetic amanitins at different sites to demonstrate their utility as payloads in peptide drug conjugates (PDCs). As an exemplary targeting agent, we chose octreotate, a well-studied somatostatin receptor (sstr2) peptide agonist for the conjugation to synthetic amatoxins via three tailor-built linkers. The linker chemistry permitted the evaluation of one non-cleavable and two cleavable self-immolative conjugates. The immolating linkers were chosen to take advantage of either the reducing potential of the intracellular environment or the high levels of lysosomal proteases in tumor cells to trigger toxin release. Cell-based assays on target-positive Ar42J cells revealed target-specific reduction in viability with up to 1000-fold enhancement in bioactivity compared to the untargeted amatoxins. Altogether, this preliminary study enabled the development of a highly modular synthetic platform for the construction of amanitin-based conjugates that can be readily extended to various targeting moieties.
Collapse
Affiliation(s)
- Alla Pryyma
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Kaveh Matinkhoo
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Yong Jia Bu
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - Francois Bénard
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
38
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
39
|
Podar K, Leleu X. Relapsed/Refractory Multiple Myeloma in 2020/2021 and Beyond. Cancers (Basel) 2021; 13:5154. [PMID: 34680303 PMCID: PMC8534171 DOI: 10.3390/cancers13205154] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the challenges imposed by the COVID-19 pandemic, exciting therapeutic progress continues to be made in MM. New drug approvals for relapsed/refractory (RR)MM in 2020/2021 include the second CD38 monoclonal antibody, isatuximab, the first BCMA-targeting therapy and first-in-class antibody-drug conjugate (ADC) belantamab mafodotin, the first BCMA-targeting CAR T cell product Idecabtagen-Vicleucel (bb2121, Ide-Cel), the first in-class XPO-1 inhibitor selinexor, as well as the first-in-class anti-tumor peptide-drug conjugate, melflufen. The present introductory article of the Special Issue on "Advances in the Treatment of Relapsed and Refractory Multiple Myeloma: Novel Agents, Immunotherapies and Beyond" summarizes the most recent registration trials and emerging immunotherapies in RRMM, gives an overview on latest insights on MM genomics and on tumor-induced changes within the MM microenvironment, and presents some of the most promising rationally derived future therapeutic strategies.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Xavier Leleu
- Department of Hematology, and CIC1402 INSERM Unit, Poitiers University Hospital, 2 Rue de la Milétrie, 86021 Poitiers, France;
| |
Collapse
|
40
|
Rasche L, Wäsch R, Munder M, Goldschmidt H, Raab MS. Novel immunotherapies in multiple myeloma - chances and challenges. Haematologica 2021; 106:2555-2565. [PMID: 34196164 PMCID: PMC8485654 DOI: 10.3324/haematol.2020.266858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
In this review article, we summarize the latest data on antibody-drug conjugates, bispecific T-cell-engaging antibodies, and chimeric antigen receptor T cells in the treatment of multiple myeloma. We discuss the pivotal questions to be addressed as these new immunotherapies become standard agents in the management of multiple myeloma. We also focus on the selection of patients for these therapies and speculate as to how best to individualize treatment approaches. We see these novel immunotherapies as representing a paradigm shift. However, despite the promising preliminary data, many open issues remain to be evaluated in future trials.
Collapse
Affiliation(s)
- Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg; Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg
| | - Ralph Wäsch
- Department of Internal Medicine I, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Markus Munder
- Third Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg; National Center of Tumor Diseases (NCT), Heidelberg and
| | - Marc S Raab
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg; CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
41
|
Monoclonal Antibodies in Myeloma: Optimizing Targeted Therapy. Cancer J 2021; 27:222-230. [PMID: 34549911 DOI: 10.1097/ppo.0000000000000521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT In the past several years, there have been significant advances in the therapeutic arsenal of agents used to treat multiple myeloma (MM). Despite these advances, MM remains incurable. One of the most recent therapeutic advances is the development of targeted monoclonal antibodies (MoAbs). The MoAbs have significantly improved disease response rates, and extended survival in MM patients. In this review, we highlight the current US Food and Drug Administration approved MoAbs, namely, belantamab mafodotin, daratumumab, elotuzumab, and isatuximab. The mechanisms of action and pivotal clinical trials that led to US Food and Drug Administration approval of these agents and their current therapeutic use in the management of patients with MM are discussed in detail. Lastly, we describe several novel MoAbs under clinical investigation with potential for approval in the future.
Collapse
|
42
|
Matinkhoo K, Pryyma A, Wong AAWL, Perrin DM. Synthesis and evaluation of " Ama-Flash", a photocaged amatoxin prodrug for light-activated RNA Pol II inhibition and cell death. Chem Commun (Camb) 2021; 57:9558-9561. [PMID: 34477193 DOI: 10.1039/d1cc03279h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amanitin is used extensively as a research tool to inhibit RNA Pol II thereby implicating its role in mRNA transcription. Recently, amanitin has gained traction as a toxic payload for targeted therapy. Here we report the first-ever photocaged amanitin analog, that is non-toxic and can be pre-loaded into cells. Light provides a means to inhibit RNA Pol II and provoke cell death on-demand.
Collapse
Affiliation(s)
- Kaveh Matinkhoo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Alla Pryyma
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Antonio A W L Wong
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - David M Perrin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
43
|
Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021; 10:343-371. [PMID: 34527606 PMCID: PMC8437262 DOI: 10.2147/itt.s306103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Collapse
Affiliation(s)
- Hanley N Abramson
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
44
|
Yao G, Knittel CH, Kosol S, Wenz MT, Keller BG, Gruß H, Braun AC, Lutz C, Hechler T, Pahl A, Süssmuth RD. Iodine-Mediated Tryptathionine Formation Facilitates the Synthesis of Amanitins. J Am Chem Soc 2021; 143:14322-14331. [PMID: 34459587 DOI: 10.1021/jacs.1c06565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic methods on the macrocyclization of peptides are of high interest since they facilitate the synthesis of various types of potentially bioactive compounds, e.g. addressing targets like protein-protein-interactions. Herein, we report on an efficient method to construct tryptathionine-cross-links in peptides between the amino acids Trp and Cys. This reaction not only is the basis for the total synthesis of the death cap toxin α-amanitin but also provides rapid access to various new amanitin analogues. This study for the first time presents a systematic compilation of structure-activity relations (SAR) of amatoxins with regard to RNA polymerase II inhibition and cytotoxicity with one amanitin derivative of superior RNAP II inhibition. The present approach paves the way for the synthesis of structurally diverse amatoxins as future payloads for antibody-toxin conjugates in cancer therapy.
Collapse
Affiliation(s)
- Guiyang Yao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Caroline H Knittel
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Simone Kosol
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Marius T Wenz
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Bettina G Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hendrik Gruß
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Alexandra C Braun
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Christian Lutz
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Torsten Hechler
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526 Ladenburg, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
45
|
Su CT, Ye JC. Emerging therapies for relapsed/refractory multiple myeloma: CAR-T and beyond. J Hematol Oncol 2021; 14:115. [PMID: 34301270 PMCID: PMC8299593 DOI: 10.1186/s13045-021-01109-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
The pace of innovation of multiple myeloma therapy in recent years is remarkable with the advent of monoclonal antibodies and the approval of novel agents with new mechanisms of action. Emerging therapies are on the horizon for clinical approval with significant implications in extending patient survival and advancing closer to the goal of a cure, especially in areas of immunotherapy such as chimeric antigen receptor T cells, bispecific T cell engager antibodies, antibody drug conjugates, newer generations of monoclonal antibodies, and small molecule inhibitor and modulators. This review provides an update of current myeloma therapeutics in active preclinical and early clinical development and discusses the mechanism of action of several classes of novel therapeutics.
Collapse
Affiliation(s)
- Christopher T Su
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Christine Ye
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
46
|
Hammood M, Craig AW, Leyton JV. Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)-A Necessity for Future ADC Research and Development. Pharmaceuticals (Basel) 2021; 14:ph14070674. [PMID: 34358100 PMCID: PMC8308841 DOI: 10.3390/ph14070674] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Biologically-based therapies increasingly rely on the endocytic cycle of internalization and exocytosis of target receptors for cancer therapies. However, receptor trafficking pathways (endosomal sorting (recycling, lysosome localization) and lateral membrane movement) are often dysfunctional in cancer. Antibody-drug conjugates (ADCs) have revitalized the concept of targeted chemotherapy by coupling inhibitory antibodies to cytotoxic payloads. Significant advances in ADC technology and format, and target biology have hastened the FDA approval of nine ADCs (four since 2019). Although the links between aberrant endocytic machinery and cancer are emerging, the impact of dysregulated internalization processes of ADC targets and response rates or resistance have not been well studied. This is despite the reliance on ADC uptake and trafficking to lysosomes for linker cleavage and payload release. In this review, we describe what is known about all the target antigens for the currently approved ADCs. Specifically, internalization efficiency and relevant intracellular sorting activities are described for each receptor under normal processes, and when complexed to an ADC. In addition, we discuss aberrant endocytic processes that have been directly linked to preclinical ADC resistance mechanisms. The implications of endocytosis in regard to therapeutic effectiveness in the clinic are also described. Unexpectedly, information on endocytosis is scarce (absent for two receptors). Moreover, much of what is known about endocytosis is not in the context of receptor-ADC/antibody complexes. This review provides a deeper understanding of the pertinent principles of receptor endocytosis for the currently approved ADCs.
Collapse
Affiliation(s)
- Manar Hammood
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Andrew W. Craig
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Jeffrey V. Leyton
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre d’Imagerie Moleculaire, Centre de Recherche, CHUS, Sherbrooke, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110
| |
Collapse
|
47
|
Toxic Effects of Amanitins: Repurposing Toxicities toward New Therapeutics. Toxins (Basel) 2021; 13:toxins13060417. [PMID: 34208167 PMCID: PMC8230822 DOI: 10.3390/toxins13060417] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The consumption of mushrooms has become increasingly popular, partly due to their nutritional and medicinal properties. This has increased the risk of confusion during picking, and thus of intoxication. In France, about 1300 cases of intoxication are observed each year, with deaths being mostly attributed to Amanita phalloides poisoning. Among amatoxins, α- and β-amanitins are the most widely studied toxins. Hepatotoxicity is the hallmark of these compounds, leading to hepatocellular failure within three days of ingestion. The toxic mechanisms of action mainly include RNA polymerase II inhibition and oxidative stress generation, leading to hepatic cell apoptosis or necrosis depending on the doses ingested. Currently, there is no international consensus concerning Amanita phalloides poisoning management. However, antidotes with antioxidant properties remain the most effective therapeutics to date suggesting the predominant role of oxidative stress in the pathophysiology. The partially elucidated mechanisms of action may reveal a suitable target for the development of an antidote. The aim of this review is to present an overview of the knowledge on amanitins, including the latest advances that could allow the proposal of new innovative and effective therapeutics.
Collapse
|
48
|
Hambira CM, Matinkhoo K, Pryyma A, Patrick BO, Perrin DM. Scaling Amatoxin Synthesis with an Improved Route to (2 S,3 R,4 R)-Dihydroxyisoleucine Exemplified by a Toxic, Clickable α-Amanitin Analogue. J Org Chem 2021; 86:5362-5370. [PMID: 33710901 DOI: 10.1021/acs.joc.0c03022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a scalable synthesis of the key amino acid residue, (2S,3R,4R)-4,5-dihydroxyisoleucine (DHIle) in α-amanitin, that in turn enables the scalable synthesis of an equipotent analogue, Asn(N-ethylazide)-S,6'-dideoxy-α-amanitin, suitable for CuAAC conjugation to empower studies on therapeutic antibody-drug conjugates.
Collapse
Affiliation(s)
- Chido M Hambira
- Chemistry Department, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | - Kaveh Matinkhoo
- Chemistry Department, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | - Alla Pryyma
- Chemistry Department, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | - Brian O Patrick
- Chemistry Department, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | - David M Perrin
- Chemistry Department, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| |
Collapse
|
49
|
John L, Krauth MT, Podar K, Raab MS. Pathway-Directed Therapy in Multiple Myeloma. Cancers (Basel) 2021; 13:1668. [PMID: 33916289 PMCID: PMC8036678 DOI: 10.3390/cancers13071668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant plasma cell disorder with an unmet medical need, in particular for relapsed and refractory patients. Molecules within deregulated signaling pathways, including the RAS/RAF/MEK/ERK, but also the PI3K/AKT-pathway belong to the most promising evolving therapeutic targets. Rationally derived compounds hold great therapeutic promise to target tumor-specific abnormalities rather than general MM-associated vulnerabilities. This paradigm is probably best depicted by targeting mutated BRAF: while well-tolerated, remarkable responses have been achieved in selected patients by inhibition of BRAFV600E alone or in combination with MEK. Targeting of AKT has also shown promising results in a subset of patients as monotherapy or to resensitize MM-cells to conventional treatment. Approaches to target transcription factors, convergence points of signaling cascades such as p53 or c-MYC, are emerging as yet another exciting strategy for pathway-directed therapy. Informed by our increasing knowledge on the impact of signaling pathways in MM pathophysiology, rationally derived Precision-Medicine trials are ongoing. Their results are likely to once more fundamentally change treatment strategies in MM.
Collapse
Affiliation(s)
- Lukas John
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
| | - Klaus Podar
- Department of Internal Medicine, Karl Landsteiner University of Health Sciences, Mitterweg 10, 3500 Krems an der Donau, Austria;
| | - Marc-Steffen Raab
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Cardona-Benavides IJ, de Ramón C, Gutiérrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021; 10:336. [PMID: 33562668 PMCID: PMC7914805 DOI: 10.3390/cells10020336] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Some genetic abnormalities of multiple myeloma (MM) detected more than two decades ago remain major prognostic factors. In recent years, the introduction of cutting-edge genomic methodologies has enabled the extensive deciphering of genomic events in MM. Although none of the alterations newly discovered have significantly improved the stratification of the outcome of patients with MM, some of them, point mutations in particular, are promising targets for the development of personalized medicine. This review summarizes the main genetic abnormalities described in MM together with their prognostic impact, and the therapeutic approaches potentially aimed at abrogating the undesirable pathogenic effect of each alteration.
Collapse
Affiliation(s)
- Ignacio J. Cardona-Benavides
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Cristina de Ramón
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|