1
|
Kim JK, Kim J, Kim H, Jin H, Yoo Y, Fei X, Maeng HJ, Seo SY, Han G, No KT. Structure-based optimization of TEAD inhibitors: Exploring a novel subpocket near Glu347 for the treatment of NF2-mutant cancer. Bioorg Chem 2025; 159:108425. [PMID: 40168885 DOI: 10.1016/j.bioorg.2025.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
The Hippo signaling pathway is critical for regulating cell growth, tissue homeostasis, and organ size. Dysregulation of this pathway has been associated with a range of pathologies, especially cancer, through its modulation of downstream effectors-Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ). These proteins bind to transcriptional enhanced associate domain (TEAD) proteins and function as transcription factors in the nucleus, producing oncogenic target genes such as CTGF and CYR61. TEAD proteins require palmitoylation via a covalent bond with cysteine in the central pocket to bind YAP/TAZ. Therefore, competitive inhibition that prevents palmitoylation could serve as an effective anticancer strategy. In this study, we analyzed the crystal structures of the known inhibitor VT-105 bound to TEAD3 to identify new binding spots that were previously unexplored, with the aim of discovering more potent compounds using structure-based drug design. Consequently, we identified a novel hydrogen-bonding site and discovered C-2, which effectively binds to this site, as confirmed by X-ray crystallography. Furthermore, C-2 exhibited stable pharmacokinetic properties and demonstrated impressive efficacy in a mouse xenograft model.
Collapse
Affiliation(s)
- Jin Kwan Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jinhyuk Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea; Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Hadong Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Haiyan Jin
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea
| | - Youngki Yoo
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Xiang Fei
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Yong Seo
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Gyoonhee Han
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea; Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| | - Kyoung Tai No
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea; Institute of Convergence Science and Technology, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
2
|
Li C, Zhang Y, Zhang Z, Zhang Y, Song Y, Wang L, Yuan C, Hao G, Sun N, Li H, Zhang Z, He Y, Wang S. Discovery and biological evaluation of carborane-containing derivatives as TEAD auto palmitoylation inhibitors. Bioorg Med Chem Lett 2025; 121:130155. [PMID: 40010443 DOI: 10.1016/j.bmcl.2025.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Transcriptional enhanced associate domain (TEAD) proteins are key downstream effectors of the Hippo signaling pathway that play a crucial role in various cell processes including tissue development, regeneration, cell proliferation and cancer. TEADs contain a hydrophobic auto-palmitoylation pocket that can bind palmitic acid and stabilize TEADs from being degraded. Inhibitors targeting this palmitoylation pocket typically consist of hydrophobic pharmacophores. Carboranes is a cage-shaped molecule exhibiting superior hydrophobicity compared to adamantane or phenyl groups. Herein, we incorporated carborane into known TEAD inhibitors for better interaction with the hydrophobic palmitate pocket. Compounds 1f and 1l are identified as TEAD transcription inhibitors with strong anti-proliferation and anti-migration activities toward prostate cancer cell lines. They also significantly reduced TEAD-regulated downstream gene expressions.
Collapse
Affiliation(s)
- Chaofan Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yingshuang Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ziyin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yirong Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuxuan Song
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linyuan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Changxian Yuan
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Guanxiang Hao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Nan Sun
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongjing Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhiguang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Sinan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
3
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
4
|
Guo S, Hu X, Cotton JL, Ma L, Li Q, Cui J, Wang Y, Thakare RP, Tao Z, Ip YT, Wu X, Wang J, Mao J. VGLL2 and TEAD1 fusion proteins identified in human sarcoma drive YAP/TAZ-independent tumorigenesis by engaging EP300. eLife 2025; 13:RP98386. [PMID: 40338073 PMCID: PMC12061476 DOI: 10.7554/elife.98386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEADs. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in human spindle cell rhabdomyosarcoma. We demonstrate that in contrast to VGLL2 and TEAD1 the fusion proteins are potent activators of TEAD-dependent transcription, and the function of these fusion proteins does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase EP300 to control TEAD-mediated transcriptional and epigenetic landscapes. We show that small-molecule EP300 inhibition can suppress fusion protein-induced oncogenic transformation both in vitro and in vivo in mouse models. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.
Collapse
Affiliation(s)
- Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongjie Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ritesh P Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
5
|
Marrone MT, Reuss JE, Crawford A, Neelon B, Liu JO, Brahmer JR, Platz EA. Statin Use With Immune Checkpoint Inhibitors and Survival in Nonsmall Cell Lung Cancer. Clin Lung Cancer 2025; 26:201-209. [PMID: 39818516 PMCID: PMC12037305 DOI: 10.1016/j.cllc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To determine the association between concurrent statin use with immune checkpoint inhibitors (ICIs) and lung cancer-specific and overall mortality in patients with nonsmall cell lung cancer (NSCLC). MATERIALS AND METHODS SEER-Medicare was used to conduct a retrospective study of Medicare beneficiaries ≥65 years of age diagnosed with NSCLC between 2007 and 2017 treated with an ICI. Patients were followed from date of first ICI claim until death, 1 month from last ICI claim, or 12/31/2018, whichever came first. Associations for time-updated statin use and lung cancer-specific mortality, and overall mortality were estimated using Cox models adjusted for demographic, pathological, treatment-related factors, and a propensity score for statin use. RESULTS Among 1,401 patients, concurrent statin use with any ICI was associated with 41% lower risk of lung-cancer specific mortality compared to patients receiving ICI not using a statin (HR = 0.59; 95% CI = 0.35-0.99). Statin use was associated with a similarly lower risk of overall mortality (HR = 0.62; 95% CI = 0.41-0.94). Consistent inverse associations were observed when restricting to PD-1 inhibitors and by statin type. Limited anti-PD-L1 treatment prevented analysis in this subgroup. CONCLUSION Concurrent statin use with ICIs was associated with lower risk of lung cancer-specific and overall mortality in a population-based sample of older patients with NSCLC. Future work is needed to confirm these findings in prospective studies and randomized trials, including evaluating concurrent statin use with frontline ICIs, deciphering the underlying mechanism, and determining the optimal statin-ICI combination that maximize clinical benefit.
Collapse
Affiliation(s)
- Michael T Marrone
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC.
| | - Joshua E Reuss
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Anna Crawford
- Hollings Cancer Center Biostatistics Shared Resource, Medical University of South Carolina, Charleston, SC
| | - Brian Neelon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC; Hollings Cancer Center Biostatistics Shared Resource, Medical University of South Carolina, Charleston, SC
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Julie R Brahmer
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| |
Collapse
|
6
|
Mokhtari RB, Sampath D, Eversole P, Yu Lin MO, Bosykh DA, Boopathy GT, Sivakumar A, Wang C, Kumar R, Sheng JYP, Karasik E, Foster BA, Yu H, Ling X, Wu W, Li F, Ohler ZW, Brainson CF, Goodrich DW, Hong W, Chakraborty S. An Agrin-YAP/TAZ Rigidity Sensing Module Drives EGFR-Addicted Lung Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413443. [PMID: 40165020 PMCID: PMC12120797 DOI: 10.1002/advs.202413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Despite epidermal growth factor receptor (EGFR) is a pivotal oncogene for several cancers, including lung adenocarcinoma (LUAD), how it senses extracellular matrix (ECM) rigidity remain elusive in the context of the increasing role of tissue rigidity on various hallmarks of cancer development. Here it is shown that EGFR dictates tumorigenic agrin expression in lung cancer cell lines, genetically engineered EGFR-driven mouse models, and human specimens. Agrin expression confers substrate stiffness-dependent oncogenic attributes to EGFR-reliant cancer cells. Mechanistically, agrin mechanoactivates EGFR through epidermal growth factor (EGF)-dependent and independent modes, thereby sensitizing its activity toward localized cancer cell-ECM adherence and bulk rigidity by fostering interactions with integrin β1. Notably, a feed-forward loop linking agrin-EGFR rigidity response to YAP-TEAD mechanosensing is essential for tumorigenesis. Together, the combined inhibition of EGFR-YAP/TEAD may offer a strategy to reduce lung tumorigenesis by disrupting agrin-EGFR mechanotransduction, uncovering a therapeutic vulnerability for EGFR-addicted lung cancers.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Divyaleka Sampath
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Paige Eversole
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Melissa Ong Yu Lin
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Dmitriy A. Bosykh
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Gandhi T.K. Boopathy
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Aravind Sivakumar
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Cheng‐Chun Wang
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Joe Yeong Poh Sheng
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Ellen Karasik
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Barbara A. Foster
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Han Yu
- Department of BiostatisticsRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
| | - Xiang Ling
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Wenjie Wu
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Fengzhi Li
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical ResearchFrederick National Laboratory for Cancer ResearchNational Cancer InstituteNIHBethesdaMD20892‐1088USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer BiologyMarkey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| | - David W. Goodrich
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology61 Biopolis Drive ProteosSingapore138673Singapore
| | - Sayan Chakraborty
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer Center265 Elm and Carlton StreetsBuffaloNY14263USA
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
- Program of Developmental TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
| |
Collapse
|
7
|
Zhu Z, Ding R, Yu W, Liu Y, Zhou Z, Liu CY. YAP/TEAD4/SP1-induced VISTA expression as a tumor cell-intrinsic mechanism of immunosuppression in colorectal cancer. Cell Death Differ 2025; 32:911-925. [PMID: 39875519 PMCID: PMC12089306 DOI: 10.1038/s41418-025-01446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Hyperactivation of the YAP/TEAD transcriptional complex in cancers facilitates the development of an immunosuppressive tumor microenvironment. Herein, we observed that the transcription factor SP1 physically interacts with and stabilizes the YAP/TEAD complex at regulatory genomic loci in colorectal cancer (CRC). In response to serum stimulation, PKCζ (protein kinase C ζ) was found to phosphorylate SP1 and enhance its interaction with TEAD4. As a result, SP1 enhanced the transcriptional activity of YAP/TEAD and coregulated the expression of a group of YAP/TEAD target genes. The immune checkpoint V-domain Ig suppressor of T-cell activation (VISTA) was identified as a direct target of the SP1-YAP/TEAD4 complex and found to be widely expressed in CRC cells. Importantly, YAP-induced VISTA upregulation in human CRC cells was found to strongly suppress the antitumor function of CD8+ T cells. Consistently, elevated VISTA expression was found to be correlated with hyperactivation of the SP1-YAP/TEAD axis and associated with poor prognosis of CRC patients. In addition, we found by serendipity that enzymatic deglycosylation significantly improved the anti-VISTA antibody signal intensity, resulting in more accurate detection of VISTA in clinical tumor samples. Overall, our study identified SP1 as a positive modulator of YAP/TEAD for the transcriptional regulation of VISTA and developed a protein deglycosylation strategy to better detect VISTA expression in clinical samples. These findings revealed a new tumor cell-intrinsic mechanism of YAP/TAZ-mediated cancer immune evasion.
Collapse
Affiliation(s)
- Zhehui Zhu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Rui Ding
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| |
Collapse
|
8
|
Nutsch K, Trujillo MN, Song L, Erb MA, Chen JJ, Galligan JJ, Bollong MJ. Augmented Acyl-CoA Biosynthesis Promotes Resistance to TEAD Palmitoylation Site Inhibition. ACS Chem Biol 2025; 20:967-975. [PMID: 40179049 DOI: 10.1021/acschembio.5c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Activation of the YAP-TEAD transcriptional complex drives the growth of several cancer types and is a key resistance mechanism to targeted therapies. Accordingly, a host of pharmacological inhibitors to TEAD family paralogs have been developed, yet little is known as to the resistance mechanisms that might arise against this emerging therapeutic class. Here, we report that genetic augmentation of de novo coenzyme A biosynthesis desensitizes YAP-dependent cancer cells to treatment with TEAD inhibitors, an effect driven by increased levels of palmitoyl-CoA that outcompete drug for engagement of the lipid-binding pocket. This work uncovers a potential therapeutic resistance mechanism to TEAD palmitoylation site inhibition with implications for future combinatorial treatments in the clinic.
Collapse
Affiliation(s)
- Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-0202, United States
| | - Lirui Song
- A Division of Scripps Research, Calibr-Skaggs Institute for Innovative Medicines, La Jolla, California 92037-1000, United States
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Jian Jeffery Chen
- A Division of Scripps Research, Calibr-Skaggs Institute for Innovative Medicines, La Jolla, California 92037-1000, United States
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721-0202, United States
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037-1000, United States
| |
Collapse
|
9
|
You X, Li H, Li Q, Zhang Q, Cao Y, Fu W, Wang B. Astragaloside IV-PESV facilitates pyroptosis by enhancing palmitoylation of GSDMD protein mediated by ZDHHC1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04122-x. [PMID: 40237800 DOI: 10.1007/s00210-025-04122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Prostate cancer (PCa) is an epithelial malignancy affecting the prostate gland. Astragaloside IV combined with polypeptide extract from scorpion venom (PESV) has been reported to inhibit the growth of PCa. This study aimed to investigate the mechanisms by which this combination mitigates the progression of PCa. Bioinformatic analysis was utilized to investigate the correlation between zinc finger DHHC-type containing 1 (ZDHHC1) expression and PCa progression. The extent of pyroptosis in PCa cells was assessed by measuring cell viability, IL-1β and IL-18 secretion, LDH release, and HMGB1 content. PCa mouse models were constructed by subcutaneous injection of DU145 or PC-3 cells into nude mice, with subsequent monitoring of tumor weight and volume. ZDHHC1 expression was significantly lower in PCa patient tissues, which correlated with a poor prognosis. ZDHHC1 overexpression inhibited PC-3 and DU145 cell viability and increased IL-1β, IL-18, LDH, and HMGB1 levels in cell supernatants. Notably, the pyroptosis inhibitor LDC7559 partially reversed these effects. Co-IP assay demonstrated an interaction between ZDHHC1 and GSDMD. ZDHHC1 overexpression significantly enhanced GSDMD palmitoylation-mediated membrane translocation and pyroptosis; however, this effect was partially reversed by the palmitoylation inhibitor 2-BP. The combination of Astragaloside IV and PESV promoted GSDMD membrane translocation and pyroptosis in PCa cells, with ZDHHC1 knockdown partially reversing the effects of Astragaloside IV-PESV. Furthermore, treatment with Astragaloside IV-PESV significantly inhibited tumor tissue growth in tumor-bearing nude mouse models. Astragaloside IV-PESV enhances palmitoylation-mediated membrane translocation of GSDMD-N by upregulating ZDHHC1 expression, thereby facilitating pyroptosis in PCa cells and attenuating PCa progression.
Collapse
Affiliation(s)
- Xujun You
- Department of Andrology, Dongcheng District, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5 th, Beijing, 100700, China
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Honghan Li
- The Seventh Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Shenzhen, 518133, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Qing Zhang
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Yiguo Cao
- Department of Urology Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Wei Fu
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China.
| | - Bin Wang
- Department of Andrology, Dongcheng District, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5 th, Beijing, 100700, China.
| |
Collapse
|
10
|
Zhu Z, Feng S, Zeng A, Song L. Advances in Palmitoylation: A key Regulator of liver cancer development and therapeutic targets. Biochem Pharmacol 2025; 234:116810. [PMID: 39978688 DOI: 10.1016/j.bcp.2025.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Liver cancer ranks as the second leading cause of cancer-related deaths globally, which remains a significant public health concern. The development of liver cancer is associated with several signaling pathways, particularly metabolic reprogramming. Protein S-palmitoylation, a type of lipid post-translational modification (PTM), involves the reversible attachment of palmitic acid to a cysteine residue through a thioester bond. This modification is found in a wide range of proteins, including enzymes, cancer promoters, tumor suppressors, and transcription factors. The palmitoylation process is catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family, while the reverse process, depalmitoylation, is facilitated by palmitoyl-protein thioesterases (PPTs). Dysregulation of palmitoylation has been linked to various cancer hallmark functions, cancer metabolism, and tumor microenvironment regulation. Currently, membrane palmitoylated protein (MPP) and PPT1 have been identified as prognostic markers and potential therapeutic targets in liver cancer. In this review, we summarize recent advances in understanding the effects of palmitoylation on liver cancer development, metastasis, and prognosis prediction, and explore potential therapeutic strategies for managing liver cancer.
Collapse
Affiliation(s)
- Zilong Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Shenghui Feng
- Intensive Care Unit, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
11
|
Lao Z, Chen X, Pan B, Fang B, Yang W, Qian Y. Pharmacological regulators of Hippo pathway: Advances and challenges of drug development. FASEB J 2025; 39:e70438. [PMID: 40100056 DOI: 10.1096/fj.202401895rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The Hippo signaling pathway is crucial in regulating organ size, tumor progression, tissue regeneration, and bone homeostasis. Inactivation of the Hippo pathway results in the nuclear translocation and activation of YAP/TAZ. This activation not only promotes tumor progression but also enhances tissue regeneration, wound healing, and maintenance of bone stability Although its discovery occurred over two decades ago, developing effective inhibitors or activators for the Hippo pathway remains challenging. Recently, however, the pace of advancements in developing Hippo signaling-related agonists and antagonists has accelerated, with some drugs that target TEAD advancing to clinical trials and showing promise for treating related diseases. This review summarizes the progress in research on Hippo signaling-related agonists and inhibitors, offering an in-depth analysis of their regulatory mechanisms, pharmacological properties, and potential in vivo applications.
Collapse
Affiliation(s)
- Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Fang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Scalora N, DeWane G, Drebot Y, Khan AA, Sinha S, Ghosh K, Robinson D, Cogswell P, Bellizzi AM, Snow AN, Breheny P, Chimenti MS, Tanas MR. EHE cell cultures: a platform for mechanistic and therapeutic investigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644191. [PMID: 40196670 PMCID: PMC11974726 DOI: 10.1101/2025.03.24.644191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Epithelioid hemangioendothelioma (EHE) is a difficult to treat vascular sarcoma defined by TAZ- CAMTA1 or YAP-TFE3 fusion proteins. Human cell lines needed to further understand the pathogenesis of EHE have been lacking. Herein, we describe a method to generate EHE extended primary cell cultures. An integrated multi -omic and functional approach was used to characterize these cultures. The cell cultures, relatively homogenous by single cell RNA-Seq, demonstrated established characteristics of EHE including increased proliferation, anchorage independent growth, as well as the overall gene expression profile and secondary genetic alterations seen in EHE. Whole genome sequencing (WGS) identified links to epigenetic modifying complexes, metabolic processes, and pointed to the importance of the extracellular matrix (ECM) in these tumors. Bulk RNA-Seq demonstrated upregulation of pathways including PI3K-Akt signaling, ECM/ECM receptor interaction, and the Hippo signaling pathway. Development of these extended primary cell cultures allowed for single-cell profiling which demonstrated different cell compartments within the cultures. Furthermore, the cultures served as a therapeutic platform to test the efficacy of TEAD inhibitors in vitro . Overall, the development of EHE primary cell cultures will aid in the mechanistic understanding of this sarcoma and serve as a model system to test new therapeutic approaches.
Collapse
|
13
|
Lu Y, Yan Z, Sun J, Wang C, Xu L, Lyu X, Wang X, Lou J, Huang H, Meng L, Zhao Y. Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo. J Med Chem 2025; 68:5616-5640. [PMID: 39804031 DOI: 10.1021/acs.jmedchem.4c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders. Both series yielded potent TEAD degraders, including 19 and 40 (H122), which induced TEAD1 degradation with DC50 < 10 nM. Mechanistic studies demonstrated that the degradation of TEAD1 induced by 40 relied on CRBN binding, TEAD1 binding, E3 ligase activity, and a functional proteasome. RNA-seq analyses indicated that 40 significantly downregulated the expression of Myc target genes, as highlighted by GSEA analysis. More importantly, 40 exhibited robust antitumor efficacy in the MSTO-211H mouse xenograft model. Collectively, our results suggest that TEAD PROTACs have therapeutic potential for the treatment of cancers associated with TEAD overactivation.
Collapse
Affiliation(s)
- Yuhang Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
| | - Jiaqi Sun
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chenxu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lan Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
| | - Xiancheng Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Linghua Meng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yujun Zhao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
14
|
Guo P, Wan S, Guan KL. The Hippo pathway: Organ size control and beyond. Pharmacol Rev 2025; 77:100031. [PMID: 40148032 DOI: 10.1016/j.pharmr.2024.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.
Collapse
Affiliation(s)
- Pengfei Guo
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Sicheng Wan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
15
|
Sato K, Faraji F, Cervantes-Villagrana RD, Wu X, Koshizuka K, Ishikawa T, Iglesias-Bartolome R, Chen L, Miliani de Marval PL, Gwaltney SL, Adler B, Gutkind JS. Targeting YAP/TAZ-TEAD signaling as a therapeutic approach in head and neck squamous cell carcinoma. Cancer Lett 2025; 612:217467. [PMID: 39826667 PMCID: PMC12044704 DOI: 10.1016/j.canlet.2025.217467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Genetic alterations in Hippo pathway and the consequent activation of YAP/TAZ-TEAD are frequently observed in HPV-negative head and neck squamous cell carcinoma (HNSCC) patients. These include loss-of-function mutation and/or copy number loss of FAT1, and amplification of YAP1 and WWTR1 (encoding TAZ), thus raising the possibility that HNSCC cells may be dependent on YAP/TAZ-TEAD-mediated transcriptional programs. In this regard, the recent development of small molecule TEAD inhibitors (smTEADi) provides an opportunity to therapeutically target Hippo pathway dysregulation in human malignancies. This prompted us to explore the potential benefit of pharmacologically targeting the YAP/TAZ-TEAD axis in this disease. Here, we provide the pre-clinical evidence for the antitumor activity of novel smTEADi, SW-682 in HPV-negative HNSCC. By the use of multiple complementary experimental approaches, including siRNA knockdown, expression of a genetically encoded TEAD inhibitor peptide (pTEADi), and SW-682, we revealed that disruption of YAP/TAZ-TEAD interaction suppresses YAP/TAZ-TEAD-dependent target gene transcription and growth of HNSCC tumors. HNSCC cells with genetic alterations in FAT1 were more sensitive to TEADi compared to FAT1-wild type cells. Mechanistically, TEADi suppressed cell cycle progression and promoted the expression of terminal differentiation gene programs, resulting in tumor growth inhibition. A HNSCC-specific TEADi target gene set was defined from RNA-seq data, which is highly expressed in HNSCC tissues and predicts poor prognosis of HPV-negative HNSCC patients. Our results underscore that YAP/TAZ-TEAD-mediated growth-promoting programs represent a vulnerability in HPV-negative HNSCC, thus providing a pre-clinical rationale for the future evaluation of YAP/TAZ-TEAD targeting strategies as a therapeutic approach for HPV-negative HNSCC patients.
Collapse
Affiliation(s)
- Kuniaki Sato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Otolaryngology-Head and Neck Surgery, UC San Diego Health, La Jolla, CA, USA
| | - Rodolfo Daniel Cervantes-Villagrana
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Tomohiko Ishikawa
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lei Chen
- SpringWorks Therapeutics, Inc., Stamford, CT, USA
| | | | | | | | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Yang MY, Quan HY, Li DL, Ruan J, Fan HY. Targeting TEAD would be a potential strategy for scarless wound repair: A preliminary study. Acta Histochem 2025; 127:152223. [PMID: 39667304 DOI: 10.1016/j.acthis.2024.152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Despite of decades of efforts, novel approaches are still limited to attenuate or prevent skin scarring. A previous report published in Science demonstrated that inhibition of YAP promotes scarless wound repair by regeneration. Due to the difficult drugability of targeting YAP, we speculated that inhibition of TEAD, a partner molecule of YAP, might exist similar therapeutic potential. Therefore, the aim of the study was to evaluate therapeutical effect of a novel inhibitor of TEAD auto-palmitoylation, VT107, on scar formation in a cutaneous wound healing model. Our findings confirmed VT107 exhibited favorable effect on preventing scarring, manifesting as reducing fibroblast proliferation and collagen denaturation, decreasing TGF-β1 and collagen deposition, as well as connective tissue growth factor (CTGF) expression. These findings provide a novel insight for the development of anti-scarring strategies. TEAD would become an ideal target for the treatment of scars.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, China
| | - Hong-Yuan Quan
- Guangxi University, No. 100 Daxue East Road, Nanning, Guangxi 530004, China
| | - Da-Lei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264000, China.
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, China.
| |
Collapse
|
17
|
Kern JG, Kroehling L, Spinella AJ, Monti S, Varelas X. LATS1/2 inactivation in the mammary epithelium drives the evolution of a tumor-associated niche. EMBO Rep 2025; 26:1472-1503. [PMID: 39953252 PMCID: PMC11933708 DOI: 10.1038/s44319-025-00370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/17/2025] Open
Abstract
Basal-like breast cancers exhibit distinct cellular heterogeneity that contributes to disease pathology. In this study we used a genetic mouse model of basal-like breast cancer driven by epithelial-specific inactivation of the Hippo pathway-regulating LATS1 and LATS2 kinases to elucidate epithelial-stromal interactions. We demonstrate that basal-like carcinoma initiation in this model is accompanied by the accumulation of distinct cancer-associated fibroblasts and macrophages and dramatic extracellular matrix remodeling, phenocopying the stromal diversity observed in human triple-negative breast tumors. Dysregulated epithelial-stromal signals were observed, including those mediated by TGF-β, PDGF, and CSF. Autonomous activation of the transcriptional effector TAZ was observed in LATS1/2-deleted cells along with non-autonomous activation within the evolving tumor niche. We further show that inhibition of the YAP/TAZ-associated TEAD family of transcription factors blocks the development of the carcinomas and associated microenvironment. These observations demonstrate that carcinomas resulting from Hippo pathway dysregulation in the mammary epithelium are sufficient to drive cellular events that promote a basal-like tumor-associated niche and suggest that targeting dysregulated YAP/TAZ-TEAD activity may offer a therapeutic opportunity for basal-like mammary tumors.
Collapse
Affiliation(s)
- Joseph G Kern
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Lina Kroehling
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Anthony J Spinella
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Stefano Monti
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Xaralabos Varelas
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
18
|
Lopez K, Deng JJ, Xu Y, Sharkey FE, Wang P, Liu J. Exploring the role of YAP1 and TAZ in pancreatic acinar cells and the therapeutic potential of VT-104 in pancreatic inflammation. JOURNAL OF PANCREATOLOGY 2025; 8:32-40. [PMID: 40123617 PMCID: PMC11925344 DOI: 10.1097/jp9.0000000000000170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/05/2024] [Indexed: 03/25/2025] Open
Abstract
Background Increasing evidence has linked the Hippo pathway with the fibroinflammatory diseases. However, the detailed roles of key hippo components in pancreatic inflammatory diseases still remain unclear. Methods A series of genetic knockout mice were generated targeting the key components of Hippo pathway to examine the individual effects of YAP1 and TAZ on pancreatic inflammation. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and immunofluorescence staining were performed to evaluate the pancreas tissue from mice with various genotypes. The therapeutic potential of a recently developed YAP1/TAZ inhibitor VT-104 was also evaluated in our mouse model. Results Mice with acinar-specific knockout of YAP1/TAZ did not exhibit any histological abnormalities in the pancreas. LATS1/2 deficiency induced acinar to ductal metaplasia, immune cell infiltration, and fibroblast activation, which were rescued by the homozygous knockout YAP1, but not TAZ. Additionally, treatment with VT-104 also decreased pathological alterations induced by deletions of LATS1 and LATS2 in acinar cells. Conclusion Our findings highlight the critical role of YAP1 in modulating pancreatic inflammation and demonstrate that VT-104 holds therapeutic potential to mitigate pancreatitis-associated pathological manifestations. Further exploration is necessary to unravel the underlying mechanisms and translate these insights into clinical applications.
Collapse
Affiliation(s)
- Kevin Lopez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Janice J. Deng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yi Xu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Francis E. Sharkey
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Jun Liu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
19
|
Guo S, Hu X, Cotton JL, Ma L, Li Q, Cui J, Wang Y, Thakare RP, Tao Z, Ip YT, Wu X, Wang J, Mao J. VGLL2 and TEAD1 fusion proteins drive YAP/TAZ-independent tumorigenesis by engaging p300. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.01.592016. [PMID: 38746415 PMCID: PMC11092657 DOI: 10.1101/2024.05.01.592016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEAD. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in spindle cell rhabdomyosarcoma. We demonstrate that in contrast to VGLL2 and TEAD1, the fusion proteins are strong activators of TEAD-dependent transcription, and their function does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase p300 to control TEAD-mediated transcriptional and epigenetic landscapes. We showed that small molecule p300 inhibition can suppress fusion proteins-induced oncogenic transformation both in vitro and in vivo. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.
Collapse
Affiliation(s)
- Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jennifer L. Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Yongjie Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Ritesh P. Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 01605, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
20
|
Paul S, Hagenbeek TJ, Tremblay J, Kameswaran V, Ong C, Liu C, Guarnaccia AD, Mondo JA, Hsu PL, Kljavin NM, Czech B, Smola J, Nguyen DAH, Lacap JA, Pham TH, Liang Y, Blake RA, Gerosa L, Grimmer M, Xie S, Daniel B, Yao X, Dey A. Cooperation between the Hippo and MAPK pathway activation drives acquired resistance to TEAD inhibition. Nat Commun 2025; 16:1743. [PMID: 39966375 PMCID: PMC11836325 DOI: 10.1038/s41467-025-56634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
TEAD (transcriptional enhanced associate domain) transcription factors (TEAD1-4) serve as the primary effectors of the Hippo signaling pathway in various cancers. Targeted therapy leads to the emergence of resistance and the underlying mechanism of resistance to TEAD inhibition in cancers is less characterized. We uncover that upregulation of the AP-1 (activator protein-1) transcription factors, along with restored YAP (yes-associated protein) and TEAD activity, drives resistance to GNE-7883, a pan-TEAD inhibitor. Acute GNE-7883 treatment abrogates YAP-TEAD binding and attenuates FOSL1 (FOS like 1) activity. TEAD inhibitor resistant cells restore YAP and TEAD chromatin occupancy, acquire additional FOSL1 binding and exhibit increased MAPK (mitogen-activated protein kinase) pathway activity. FOSL1 is required for the chromatin binding of YAP and TEAD. This study describes a clinically relevant interplay between the Hippo and MAPK pathway and highlights the key role of MAPK pathway inhibitors in mitigating resistance to TEAD inhibition in Hippo pathway dependent cancers.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Thijs J Hagenbeek
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Julien Tremblay
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Vasumathi Kameswaran
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Christy Ong
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Chad Liu
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Alissa D Guarnaccia
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - James A Mondo
- Roche Informatics, Hoffman-La Roche Canada, Mississauga, ON, Canada
| | - Peter L Hsu
- Department of Structural Biology, Genentech Inc, South San Francisco, CA, USA
| | - Noelyn M Kljavin
- Department of Research Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Bartosz Czech
- Roche Global IT Solution Centre, Roche, Warsaw, Poland
| | - Janina Smola
- Roche Global IT Solution Centre, Roche, Warsaw, Poland
| | - Dieu An H Nguyen
- Department of Early Discovery Biochemistry, Genentech Inc, South San Francisco, CA, USA
| | - Jennifer A Lacap
- Department of Translational Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Trang H Pham
- Department of Translational Medicine, Genentech Inc, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Robert A Blake
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA
| | - Luca Gerosa
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Matthew Grimmer
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Shiqi Xie
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Bence Daniel
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Xiaosai Yao
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA.
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
| |
Collapse
|
21
|
Wang J, Shen D, Jiang J, Hu L, Fang K, Xie C, Shen N, Zhou Y, Wang Y, Du S, Meng S. Dietary Palmitic Acid Drives a Palmitoyltransferase ZDHHC15-YAP Feedback Loop Promoting Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409883. [PMID: 39686664 PMCID: PMC11809420 DOI: 10.1002/advs.202409883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/18/2024]
Abstract
Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP. It is found that the palmitoyltransferase ZDHHC15 is a YAP-regulated gene that forms a feedback loop with YAP. Notably, PA drives the ZDHHC15-YAP feedback loop, thus enforces YAP signaling, and hence promotes tumor metastasis in murine xenografts. In addition, it is shown that ZDHHC15 associates with Kidney and brain protein (KIBRA, also known as WW- and C2 domain-containing protein 1, WWC1), an upstream component of Hippo signaling, and mediates its palmitoylation. KIBRA palmitoylation leads to its degradation and regulates its subcellular localization and activity toward the Hippo/YAP pathway. Moreover, PA enhances KIBRA palmitoylation and degradation. It is further shown that combinatorial targeting of YAP and fatty acid synthesis exhibits augmented effects against metastasis formation in mice fed with a Palm diet. Collectively, these findings uncover a ZDHHC15-YAP feedback loop as a previously unrecognized mechanism underlying PA-promoted tumor metastasis and support targeting YAP and fatty acid synthesis as potential therapeutic targets in PA-driven tumor metastasis.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Dachuan Shen
- Department of OncologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Jian Jiang
- Central Hospital of Dalian University of TechnologyDepartment of Spine SurgeryDalian116033China
| | - Lulu Hu
- Department of Laboratory MedicineQingdao Central HospitalUniversity of Health and Rehabilitation Sciences NO.369Dengyun Road, Qingdao National High‐tech Industrial Development ZoneQingdaoChina
| | - Kun Fang
- Central LaboratoryCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Chunrui Xie
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Ning Shen
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yuzhao Zhou
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yifei Wang
- Department of Obstetrics and GynecologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Sha Du
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| |
Collapse
|
22
|
Park SY, Ju S, Lee J, Kim HR, Sub Y, Park DJ, Park S, Kwon D, Kang HG, Shin JE, Kim DH, Paik JE, Cho SC, Shim H, Kim YJ, Guan KL, Chun KH, Choi J, Ha SJ, Gee HY, Roe JS, Lee HW, Park SY, Park HW. Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis. SCIENCE ADVANCES 2025; 11:eadq2395. [PMID: 39841821 PMCID: PMC11753377 DOI: 10.1126/sciadv.adq2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway. Depletion of TAZ in tumor-associated macrophages promoted tumor growth by suppressing the recruitment of tumor-infiltrating lymphocytes. Moreover, in a diet-induced metabolic dysfunction-associated steatohepatitis model, macrophage-specific deletion of TAZ ameliorated liver inflammation and hepatic fibrosis. Thus, targeted therapies being developed against YAP/TAZ-TEAD are ineffective in macrophages. Together, our results introduce Golgi-associated TAZ as a potential molecular target for therapeutic intervention to treat tumor progression and chronic inflammatory diseases.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Inc., Seoul 03722, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Doru Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hyeok Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Eun Paik
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Seok Chan Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeran Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou 310030, China
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Inc., Seoul 03722, Republic of Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
24
|
Toulotte F, Coevoet M, Liberelle M, Bailly F, Zagiel B, Gelin M, Allemand F, Fourquet P, Melnyk P, Guichou JF, Cotelle P. Towards the design of ligands of the internal pocket TEADs C-terminal domain. Eur J Med Chem 2025; 282:117026. [PMID: 39571457 DOI: 10.1016/j.ejmech.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 12/10/2024]
Abstract
The Hippo pathway controls in organ size and tissue homeostasis through regulating cell growth, proliferation and apoptosis. Phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) regulates their nuclear import and therefore their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several solid cancers making YAP/TAZ-TEAD interaction a new anti-cancer target. We identified by screening a small in-house library, 5-benzyloxindole which binds to hTEAD2 at its internal/palmitate pocket. Its optimization led to covalent inhibitors bearing different warhead. Soaking with hTEAD2 gave seven new crystal structures where the ligands occupied palmitate pocket. 5-Benzyloxyindoles armed with vinylsulfamide moiety inhibit YAP/TAZ-TEAD target genes expression and breast cancer cell proliferation at micromolar concentration.
Collapse
Affiliation(s)
- Florine Toulotte
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Mathilde Coevoet
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Maxime Liberelle
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Fabrice Bailly
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Benjamin Zagiel
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France
| | - Patrick Fourquet
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille, France
| | - Patricia Melnyk
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France.
| | - Jean-François Guichou
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France.
| | - Philippe Cotelle
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France; ENSCL-Centrale Lille, CS 90108, F-59652, Villeneuve d'Ascq, France
| |
Collapse
|
25
|
Mirra L, Beretta GL, Lisini D, Marcianti A, Spampinato E, Corno C, Costantino M, Corsico A, Stella GM, Perego P. Therapeutic Strategies to Improve the Treatment of Pleural Mesothelioma. Curr Med Chem 2025; 32:2093-2114. [PMID: 38629360 DOI: 10.2174/0109298673268206240405084558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/20/2025]
Abstract
Pleural mesothelioma is a rare neoplastic disease with aggressive features. Patient survival is poor due to the lack of early symptoms and the absence of effective therapeutic strategies. The development of pleural mesothelioma is mainly associated to asbestos exposure and related chronic inflammation. From a molecular-based perspective, this disease is a heterogeneous tumor lacking actionable alterations. The median overall survival of patients affected by this tumor does not exceed 16 months from diagnosis. Molecular and biochemical approaches have shown that this disease is characterized by resistance to drug-induced apoptosis associated with the activation of cell survival pathways and expression of anti-apoptotic proteins. Thus, there is an urgent need to develop efficient and safe therapeutic strategies. Here, we review the pharmacological options available for the treatment of this disease with specific reference to the antitumor agents used in systemic therapies. In addition, novel pharmacological approaches, such as drug delivery tools, to improve pleural mesothelioma treatment are discussed.
Collapse
Affiliation(s)
- Luca Mirra
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurological Institute Carlo Besta Foundation, Milan, 20133, Italy
| | - Angela Marcianti
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurological Institute Carlo Besta Foundation, Milan, 20133, Italy
| | - Eleonora Spampinato
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurological Institute Carlo Besta Foundation, Milan, 20133, Italy
| | - Cristina Corno
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Costantino
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angelo Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, 27100 , Italy
- Unit of Respiratory Diseases, Cardio-Thoraco-Vascular Department, IRCCS Policlinico San Matteo Foundation, Pavia, 27100, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, 27100 , Italy
- Unit of Respiratory Diseases, Cardio-Thoraco-Vascular Department, IRCCS Policlinico San Matteo Foundation, Pavia, 27100, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
26
|
Zhang N, Shen X, Yu Y, Xu L, Wang Z, Zhu J. Lead exposure promotes NF2-wildtype meningioma cell proliferation through the Merlin-Hippo signaling pathway. Environ Health Prev Med 2025; 30:8. [PMID: 39894505 PMCID: PMC11790403 DOI: 10.1265/ehpm.24-00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/04/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Lead is a persistent inorganic environmental pollutant with global implication for human health. Among the diseases associated with lead exposure, the damage to the central nervous system has received considerable attention. It has been reported that long-term lead exposure increases the risk of meningioma; however, the underlying mechanism remains poorly understood. Clinical studies have indicated that loss-of-function and mutations in the neurofibromin-2 (NF2) gene play a crucial role in promoting meningioma formation. METHODS The effect of Pb on meningioma were tested in-vitro and in-vivo. Two human meningioma cell lines were used in this study, including NF2-wildtype IOMM-Lee cell and NF2-null CH157-MN cell. Cell viability, cell cycle and cell size were examined after Pb exposure. The expression of Merlin, mammalian sterile 20-like kinases 1 and 2 (MST1/2) and Yes-associated protein (YAP) from these two meningioma cells were analyzed by Western blot. A xenograft mouse model was constructed by subcutaneous injection of IOMM-Lee meningioma cells. RESULTS This study demonstrated that treatment with lead induce dose-dependent proliferation in IOMM-Lee cell (with an EC50 value of 19.6 µM). Moreover, IOMM-Lee cell exhibited augmented cell size in conjunction with elevated levels of phosphorylated histone H3, indicative of altered cell cycle progression resulting from lead exposure. However, no significant change was observed in the CH157-MN cell. Additionally, the Merlin-Hippo signaling pathway was inactivated with decreased Merlin and phosphorylation levels of MST1/2 and YAP, leading to increased YAP nuclear translocation in IOMM-Lee cells. However, there was no change in the Merlin-Hippo signaling pathway in CH157-MN cells after lead treatment. The administration of Pb resulted in an acceleration of the subcutaneous IOMM-Lee meningioma xenograft growth in mice. CONCLUSIONS Overall, the current study elucidates the potential mechanism by which lead exposure promotes the proliferation of meningioma with NF2 expression for the first time.
Collapse
Affiliation(s)
- Nenghua Zhang
- Department of Experimental Diagnosis, Provincial and Municipal Medical Key Disciplines, Jiaxing University Affiliated Traditional Chinese Medicine Hospital, Jiaxing 314000, China
| | - Xiaohua Shen
- Department of Experimental Diagnosis, Provincial and Municipal Medical Key Disciplines, Jiaxing University Affiliated Traditional Chinese Medicine Hospital, Jiaxing 314000, China
| | - Yunnong Yu
- School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Xu
- Department of Public Health, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Zheng Wang
- Department of Immunology, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Jia Zhu
- Department of Immunology, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
27
|
Nouri SH, Nitturi V, Ledbetter E, English CW, Lau S, Klisch TJ, Patel AJ. Role of NF2 Mutation in the Development of Eleven Different Cancers. Cancers (Basel) 2024; 17:64. [PMID: 39796693 PMCID: PMC11720051 DOI: 10.3390/cancers17010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: With the rise in prevalence of diagnostic genetic techniques like RNA sequencing and whole exome sequencing (WES), as well as biological treatment regiments for cancer therapy, several genes have been implicated in carcinogenesis. This review aims to update our understanding of the Neurofibromatosis 2 (NF2) gene and its role in the pathogenesis of various cancers. Methods: A comprehensive search of five online databases yielded 43 studies that highlighted the effect of sporadic NF2 mutations on several cancers, including sporadic meningioma, ependymoma, schwannoma, mesothelioma, breast cancer, hepatocellular carcinoma, prostate cancer, glioblastoma, thyroid cancer, and melanoma. Of note were key biological pathways implicated in cancer formation resulting from sporadic NF2 mutations. Results: NF2 gene mutations are implicated in over 11 different cancers, including several CNS tumors, soli-organ tumors, and skin cancer. NF2 acts as a driver mutation in some cancers, as a non-driver mutation in some cancers, and has simple associated mutations with other cancers. In terms of biological pathway involvement, 8 of the 11 cancers with NF2 mutations show evidence of Hippo signaling cascade involvement. Conclusions: Several cancers characterized by mutations in the NF2 gene have associations with the Hippo signaling pathway. However, future studies remain to be done to further elucidate the role of the Hippo signaling pathway in the carcinogenesis of human NF2-mutant tumors. The findings of this review provide insights into the role of NF2 mutations in cancers, Hippo signaling in NF2-mutant cancers, and current gaps in our knowledge regarding the two.
Collapse
Affiliation(s)
- Shervin Hosseingholi Nouri
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Vijay Nitturi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Elizabeth Ledbetter
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Collin W. English
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Sean Lau
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Tiemo J. Klisch
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Akash J. Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Otolaryngology–Head & Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Kotagiri S, Blazanin N, Xi Y, Han Y, Qudratullah M, Liang X, Wang Y, Pandey P, Mazhar H, Lam TN, Singh AK, Wang J, Lissanu Y. Enhancer reprogramming underlies therapeutic utility of a SMARCA2 degrader in SMARCA4 mutant cancer. Cell Chem Biol 2024; 31:2069-2084.e9. [PMID: 39378885 DOI: 10.1016/j.chembiol.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Genomic studies have identified frequent mutations in subunits of the SWI/SNF (switch/sucrose non-fermenting) chromatin remodeling complex including SMARCA4 and ARID1A in non-small cell lung cancer (NSCLC). Genetic evidence indicates that the paralog SMARCA2 is synthetic lethal to SMARCA4 suggesting SMARCA2 is a valuable therapeutic target. However, the discovery of selective inhibitors of SMARCA2 has been challenging. Here, we utilized structure-activity relationship (SAR) studies to develop YD23, a potent and selective proteolysis targeting chimera (PROTAC) targeting SMARCA2. Mechanistically, we show that SMARCA2 degradation induces reprogramming of the enhancer landscape in SMARCA4-mutant cells with loss of chromatin accessibility at enhancers of genes involved in cell proliferation. Furthermore, we identified YAP/TEADas key partners to SMARCA2 in driving growth of SMARCA4-mutant cells. Finally, we show that YD23 has potent tumor growth inhibitory activity in SMARCA4-mutant xenografts. These findings provide the mechanistic basis for development of SMARCA2 degraders as synthetic lethal therapeutics against SMARCA4-mutant lung cancers.
Collapse
Affiliation(s)
- Sasikumar Kotagiri
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Blazanin
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanyan Han
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Md Qudratullah
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Liang
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yawen Wang
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Poonam Pandey
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hira Mazhar
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Truong Nguyen Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anand Kamal Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yonathan Lissanu
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Choi YS, Kim YJ, Jeon Y, Kang JS, Lee J, Hong E, Park YH, Kim W, Cha B, Jeon R. Exploring structural and biological insights of TEAD through rational design and synthesis of niflumic acid derivatives. J Enzyme Inhib Med Chem 2024; 39:2419925. [PMID: 39494490 PMCID: PMC11536644 DOI: 10.1080/14756366.2024.2419925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/03/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket. We anticipate that precise targeting of the polar side pocket could facilitate the discovery of inhibitors with enhanced potencies and properties. Herein, we selected niflumic acid as the core scaffold suitable for targeting the three characteristic components of TEAD palmitate pocket. Reversible and irreversible compounds with substituents capable of directing each part of the palmitate pocket were designed. The newly synthesised compounds inhibited the palmitoylation and transcriptional activity of TEAD and elicited growth-inhibitory effects against several carcinomas, including mesothelioma.
Collapse
Affiliation(s)
- Yong-Sung Choi
- College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - Yoon-Jung Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - Yeram Jeon
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Jong Soon Kang
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Juhee Lee
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Eunmi Hong
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | | | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Boksik Cha
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| |
Collapse
|
30
|
Lukose G, Al Assaad M, Driskill JH, Levine MF, Gundem G, Semaan A, Wilkes DC, Spigland NA, Medina-Martínez JS, Sboner A, Elemento O, Jessurun J, Mosquera JM. Whole genome profiling of rare pediatric thoracic tumors elucidates a YAP1::LEUTX fusion in an unclassified biphasic embryonal neoplasm. Pathol Res Pract 2024; 264:155726. [PMID: 39566337 DOI: 10.1016/j.prp.2024.155726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Malignant biphasic tumors of the lungs are rare, more so in the pediatric population. Here, we present the whole-genome characterization of a pleuropulmonary blastoma Type III and an unclassified biphasic thoracic embryonal neoplasm. The pleuropulmonary blastoma harbored pathogenic DICER1 germline and somatic mutations, and additional somatic variants in TP53 and BCOR. The other malignant tumor demonstrated a t(11;19) balanced translocation with a YAP1::LEUTX fusion that was confirmed by fluorescence in situ hybridization. No DICER1 germline or somatic mutation was present. YAP1 and LEUTX have been implicated in tumorigenesis of various neoplasms, and YAP1 fusion genes are an emerging oncogenic entity in a variety of malignancies. In this study we highlight the importance of whole-genome characterization of rare and unclassified tumors to identify biologic mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Georgi Lukose
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jordan H Driskill
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Alissa Semaan
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David C Wilkes
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nitsana A Spigland
- Department of Surgery, Division of Pediatric Surgery, Weill Cornell Medicine / NewYork-Presbyterian Hospital, New York, NY, USA
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - José Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Roy M, Elimam R, Zgheib A, Annabi B. A Role for the Hippo/YAP1 Pathway in the Regulation of In Vitro Vasculogenic Mimicry in Glioblastoma Cells. J Cell Mol Med 2024; 28:e70304. [PMID: 39718433 PMCID: PMC11667753 DOI: 10.1111/jcmm.70304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
The Hippo pathway plays a tumorigenic role in highly angiogenic glioblastoma (GBM), whereas little is known about clinically relevant Hippo pathway inhibitors' ability to target adaptive mechanisms involved in GBM chemoresistance. Their molecular impact was investigated here in vitro against an alternative process to tumour angiogenesis termed vasculogenic mimicry (VM) in GBM-derived cell models. In silico analysis of the downstream Hippo signalling members YAP1, TAZ and TEAD1 transcript levels in low-grade glioblastoma (LGG) and GBM tumour tissues was performed using GEPIA. TAZ transcript levels did not differ between the healthy and tumour tissues data analysed. In contrast, YAP1 transcript levels were elevated in GBM tissues, whereas TEAD1 levels were high in both LGG and GBM. All three Hippo pathway inhibitors tested, GNE7883, VT107 and IAG933 effectively inhibited U87 and U251 cell migration and in vitro VM as assessed on Cultrex matrix. YAP1 gene and protein expression were induced upon VM, and its translocation to the nucleus was inhibited by the Hippo pathway inhibitors tested. SiRNA-mediated transient silencing of YAP1 repressed cell migration, VM formation and CTGF and Cyr61 transcription. In conclusion, targeting of VM using Hippo pathway inhibitors could help circumvent GBM chemoresistance and effectively complement other brain cancer treatments.
Collapse
Affiliation(s)
- Marie‐Eve Roy
- Laboratoire d'Oncologie Moléculaire, Département de ChimieUniversité du Québec à MontréalMontrealQuebecCanada
| | - Rahil Elimam
- Laboratoire d'Oncologie Moléculaire, Département de ChimieUniversité du Québec à MontréalMontrealQuebecCanada
| | - Alain Zgheib
- Laboratoire d'Oncologie Moléculaire, Département de ChimieUniversité du Québec à MontréalMontrealQuebecCanada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de ChimieUniversité du Québec à MontréalMontrealQuebecCanada
| |
Collapse
|
32
|
Kim J, Kim H, Kim J, Cho SY, Moon S, Yoo Y, Kim H, Kim JK, Jeon H, Namkung W, Han G, No KT. Pan-Transcriptional Enhanced Associated Domain Palmitoylation Pocket Covalent Inhibitor. J Med Chem 2024; 67:18957-18968. [PMID: 39487823 DOI: 10.1021/acs.jmedchem.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
In the Hippo signaling pathway, the palmitoylated transcriptional enhanced associated domain (TEAD) protein interacts with the coactivator Yes-associated protein/PDZ-binding motif, leading to transcriptional upregulation of oncogenes such as Ctgf and Cyr61. Consequently, targeting the palmitoylation sites of TEAD has emerged as a promising strategy for treating TEAD-dependent cancers. Compound 1 was identified using a structure-based drug design approach, leveraging the molecular insights gained from the known TEAD palmitoylation site inhibitor, K-975. Optimization of the initial hit compound resulted in the development of compound 3, a covalent pan-TEAD inhibitor characterized by high potency and oral bioavailability.
Collapse
Affiliation(s)
- Jinhyuk Kim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hadong Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Jongwan Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Seon Yeon Cho
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Sungho Moon
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Youngki Yoo
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hanseong Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Jin Kwan Kim
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| | - Hyejin Jeon
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Wan Namkung
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Postech Biotech Center, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Kyoung Tai No
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
- Institute of Convergence Science and Technology, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
33
|
Rominger MC, Gupta S, Moorthi S, McSharry M, Kamlapurkar S, O’Brien S, Waldum A, Lo A, Duke F, Lowe AR, Cromwell E, Glabman R, Koehne A, Berger AH. Mutant RIT1 cooperates with YAP to drive an EMT-like lung cancer state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623044. [PMID: 39605726 PMCID: PMC11601272 DOI: 10.1101/2024.11.11.623044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The discovery of oncogene addiction in cancer has led to the development of over a dozen FDA-approved biomarker-driven therapies in lung adenocarcinoma. Somatic mutations of the "Ras-like in all tissues" (RIT1) gene are non-canonical driver events in lung cancer, occurring in ~2% of lung adenocarcinomas in a mutually exclusive fashion with KRAS and EGFR mutations. Patients with RIT1-mutant lung cancer lack targeted therapy treatment options, and a lack of pre-clinical models has hindered the development of therapeutic strategies for RIT1-mutant lung cancer. Here we report a new mouse model of RIT1-driven lung cancer in which the human RIT1M90I variant can be induced in a Cre-regulated manner. We show that autochthonous expression of RIT1M90I in the lung weakly promotes cancer alone or in combination with loss of the p53 tumor suppressor. However, potent synergy between RIT1M90I and inactivation of Nf2 drives an aggressive epithelial-to-mesenchymal (EMT) lung cancer with 100% penetrance and short latency. We show this oncogenic cooperation is driven by synergistic activation of cJUN, a component of the AP-1 complex. Therapeutic inhibition of MEK and YAP/TEAD suppressed RIT1-driven lung cancer in vivo. These data identify YAP/TEAD as an important mediator of RIT1's oncogenic potential and nominate TEAD as an important drug target in RIT1-mutant lung cancer.
Collapse
Affiliation(s)
- Mary C. Rominger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Saksham Gupta
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Sitapriya Moorthi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Maria McSharry
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Shriya Kamlapurkar
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Siobhan O’Brien
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Annie Waldum
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - April Lo
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Fujiko Duke
- Cancer Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, 02142
| | - Amy R. Lowe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Elizabeth Cromwell
- Pre-clinical Modeling Core, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Raisa Glabman
- Comparative Pathology, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Amanda Koehne
- Comparative Pathology, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Alice H. Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
34
|
Athavale D, Balch C, Zhang Y, Yao X, Song S. The role of Hippo/YAP1 in cancer-associated fibroblasts: Literature review and future perspectives. Cancer Lett 2024; 604:217244. [PMID: 39260668 DOI: 10.1016/j.canlet.2024.217244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are activated fibroblasts that play a role in numerous malignant phenotypes, including hyperproliferation, invasion, and metastasis. These phenotypes correlate with activity of the Hippo pathway oncoprotein, Yes-associated protein-1 (YAP1), and its paralog, transcriptional coactivator with PDZ-binding motif (TAZ). YAP1/TAZ are normally involved in organ growth, under the regulation of various kinases and upon phosphorylation, are retained in the cytoplasm by chaperone proteins, leading to their proteasomal degradation. In CAFs and tumor cells, however, a lack of YAP1 phosphorylation results in its translocation to the nucleus, binding to TEAD transcription factors, and activation of mitogenic pathways. In this review we summarize the literature discussing the central role of YAP1 in CAF activation, the upstream cues that promote YAP1-mediated CAF activation and extracellular matrix remodeling, and how CAFs mediate tumor-stroma crosstalk to support progression, invasion and metastasis in various cancer models. We further highlight YAP1+CAFs functions in modulating an immunosuppressive tumor microenvironment and propose evaluation of several YAP1 targets regarding their role in regulating intra-tumoral immune landscapes. Finally, we propose that co-administration of YAP1- targeted therapies with immune checkpoint inhibitors can improve therapeutic outcomes in patients with advanced tumors.
Collapse
Affiliation(s)
- Dipti Athavale
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA
| | - Curt Balch
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA
| | - Yanting Zhang
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA
| | - Xiaodan Yao
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA
| | - Shumei Song
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA; MD Anderson Cancer Center at Cooper, Cooper University Hospital, 2 Cooper Plaza, Camden, NJ, 08103, USA; Departments of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
35
|
Wu LW, Jang SJ, Shapiro C, Fazlollahi L, Wang TC, Ryeom SW, Moy RH. Diffuse Gastric Cancer: A Comprehensive Review of Molecular Features and Emerging Therapeutics. Target Oncol 2024; 19:845-865. [PMID: 39271577 PMCID: PMC11557641 DOI: 10.1007/s11523-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Diffuse-type gastric cancer (DGC) accounts for approximately one-third of gastric cancer diagnoses but is a more clinically aggressive disease with peritoneal metastases and inferior survival compared with intestinal-type gastric cancer (IGC). The understanding of the pathogenesis of DGC has been relatively limited until recently. Multiomic studies, particularly by The Cancer Genome Atlas, have better characterized gastric adenocarcinoma into molecular subtypes. DGC has unique molecular features, including alterations in CDH1, RHOA, and CLDN18-ARHGAP26 fusions. Preclinical models of DGC characterized by these molecular alterations have generated insight into mechanisms of pathogenesis and signaling pathway abnormalities. The currently approved therapies for treatment of gastric cancer generally provide less clinical benefit in patients with DGC. Based on recent phase II/III clinical trials, there is excitement surrounding Claudin 18.2-based and FGFR2b-directed therapies, which capitalize on unique biomarkers that are enriched in the DGC populations. There are numerous therapies targeting Claudin 18.2 and FGFR2b in various stages of preclinical and clinical development. Additionally, there have been preclinical advancements in exploiting unique therapeutic vulnerabilities in several models of DGC through targeting of the focal adhesion kinase (FAK) and Hippo pathways. These preclinical and clinical advancements represent a promising future for the treatment of DGC.
Collapse
Affiliation(s)
- Lawrence W Wu
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA
| | - Sung Joo Jang
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron Shapiro
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra W Ryeom
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan H Moy
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA.
| |
Collapse
|
36
|
Ren J, Liu H, Ma Y, Tian W, Li Q, Wu Z, Wang M, Liu X, Zheng X, Han X. Development and validation of a UPLC-MS/MS method for rapid and simultaneous quantification of BPI-460372 and its metabolites BPI-460444 and BPI-460456 in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124300. [PMID: 39265487 DOI: 10.1016/j.jchromb.2024.124300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
In cancer development and progression, the Hippo signaling pathway functions. The transcriptional enhanced associate domain (TEAD) stands out as a pivotal transcription factor within this pathway, and the suppression of TEAD represents a promising approach for cancer treatment. The primary aim of the study was to establish an analytical method for the concurrent quantification of a novel TEAD target inhibitor, BPI-460372, and its principal metabolites, BPI-460444 and BPI-460456, in human plasma. The chromatographic separation utilized a XSelect™ HSS C18 column (2.1 × 100 mm, 2.5 µm), while quantification was conducted on a SCIEX API 4000 mass spectrometer. 22 plasma samples were tested via the developed method. The calibration curve for BPI-460372 exhibited linearity from 2 to 2000 ng/mL, while its metabolites BPI-460444 and BPI-460456 had linearity between 1 and 1000 ng/mL (r > 0.99). The precision (RSD) was ≤ 17.1 %, and the accuracy (RE) fell within the range of -17.7 % to 15.0 %, all meeting acceptance criteria. The matrix effect was from 101.0 % to 105.8 %. The extraction recovery of analytes fell within the range of 96.8 % to 104.1 % with an RSD of less than 7.4 %. The developed method was effectively utilized in an advanced solid tumor patient, and the concentration trends of the three analytes in plasma were found to be largely consistent. The established analytical method showed great sensitivity, simplicity, accuracy, and reliability for the rapid and simultaneous analysis of the TEAD target inhibitor BPI-460372, alongside its major metabolites BPI-460444 and BPI-460456 in human plasma. This analytical method provided essential support for future clinical investigations and pharmacokinetic analysis.
Collapse
Affiliation(s)
- Jianwei Ren
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hongzhong Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yufang Ma
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei Tian
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qinqin Li
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhen Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyun Liu
- Betta Pharmaceuticals Co., Ltd, Hangzhou, China
| | - Xin Zheng
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
37
|
Zhu R, Liu X, Zhang X, Zhong Z, Qi S, Jin R, Gu Y, Wang Y, Ling C, Chen K, Ye D, Yu FX. Gene therapy for diffuse pleural mesotheliomas in preclinical models by concurrent expression of NF2 and SuperHippo. Cell Rep Med 2024; 5:101763. [PMID: 39368484 PMCID: PMC11513813 DOI: 10.1016/j.xcrm.2024.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Diffuse pleural mesothelioma (DPM) is a lethal cancer with a poor prognosis and limited treatment options. The Hippo signaling pathway genes, such as NF2 and LATS1/2, are frequently mutated in DPM, indicating a tumor suppressor role in the development of DPM. Here, we show that in DPM cell lines lacking NF2 and in mice with a conditional Nf2 knockout, downregulation of WWC proteins, another family of Hippo pathway regulators, accelerates DPM progression. Conversely, the expression of SuperHippo, a WWC-derived minigene, effectively enhances Hippo signaling and suppresses DPM development. Moreover, the adeno-associated virus serotype 6 (AAV6) has been engineered to deliver both NF2 and SuperHippo genes into mesothelial cells, which substantially impedes tumor growth in xenograft and genetic DPM models and prolongs the median survival of mice. These findings serve as a proof of concept for the potential use of gene therapy targeting the Hippo pathway to treat DPM.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xincheng Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xu Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruxin Jin
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
38
|
Li N, Liu YH, Wu J, Liu QG, Niu JB, Zhang Y, Fu XJ, Song J, Zhang SY. Strategies that regulate Hippo signaling pathway for novel anticancer therapeutics. Eur J Med Chem 2024; 276:116694. [PMID: 39047607 DOI: 10.1016/j.ejmech.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
39
|
Branch B, Yuan Y, Cascone M, Raimondi F, Iglesias-Bartolome R. An improved TEAD dominant-negative protein inhibitor to study Hippo YAP1/TAZ-dependent transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.615022. [PMID: 39502361 PMCID: PMC11537315 DOI: 10.1101/2024.10.03.615022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Hippo signaling is one of the top pathways altered in human cancer, and intensive focus has been devoted to developing therapies targeting Hippo-dependent transcription mediated by YAP1 and TAZ interaction with TEAD proteins. However, a significant challenge in evaluating the efficacy of these approaches is the lack of models that can precisely characterize the consequences of TEAD inhibition. To address this gap, our laboratory developed a strategy that utilizes a fluorescently traceable, dominant-negative protein named TEADi. TEADi specifically blocks the nuclear interactions of TEAD with YAP1 and TAZ, enabling precise dissection of Hippo TEAD-dependent and independent effects on cell fate. In this study, we aimed to enhance TEADi effectiveness by altering post-transcriptional modification sites within its TEAD-binding domains (TBDs). We demonstrate that a D93E mutation in the YAP1 TBD significantly increases TEADi inhibitory capacity. Additionally, we find that TBDs derived from VGLL4 and YAP1 are insufficient to block TAZ-induced TEAD activity, revealing crucial differences in YAP1 and TAZ displacement mechanisms by dominant-negative TBDs. Structural differences in YAP1 and TAZ TBDs were also identified, which may contribute to the distinct binding of these proteins to TEAD. Our findings expand our understanding of TEAD regulation and highlight the potential of an optimized TEADi as a more potent, specific, and versatile tool for studying TEAD-transcriptional activity.
Collapse
Affiliation(s)
- Briana Branch
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Department of Cellular, Molecular, Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland, United States
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | | | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
40
|
Chen H, Gridnev A, Schlamowitz N, Hu W, Dey K, Zheng G, Misra JR. Targeted degradation of specific TEAD paralogs by small molecule degraders. Heliyon 2024; 10:e37829. [PMID: 39328531 PMCID: PMC11425103 DOI: 10.1016/j.heliyon.2024.e37829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The transcription factors, TEAD1-4 together with their co-activator YAP/TAZ function as key downstream effectors of the Hippo pathway. Hyperactivation of TEAD-YAP/TAZ activity is observed in many human cancers. TEAD1-4 possess distinct physiological and pathological functions, with conserved sequences and structures. Targeting specific isoforms within TEAD1-4 can serve as valuable chemical probes for investigating TEAD-related functions in both development and diseases. We report the TEAD-targeting proteolysis targeting chimera (PROTAC), HC278, which achieves effective and specific targeting of TEAD1 and TEAD3 at low nanomolar doses while weakly degrading TEAD2 and TEAD4 at higher doses. Proteomic analysis of >6000 proteins confirmed their highly selective TEAD1 and TEAD3 degradation. Consistently, HC278 can suppress the proliferation of YAP-dependent NCI-H226 mesothelioma cells. Mechanistic exploration revealed that both CRBN and proteasome systems are involved in the TEAD degradation induced by HC278. Moreover, RNA-seq and Gene Set Enrichment Analysis (GSEA) revealed that the YAP signature genes such as CTGF, CYR61, and ANKRD1 are significantly downregulated by HC278 treatment. Overall, HC278 serves as a valuable chemical tool for unraveling the intricate biological roles of TEAD1 and TEAD3 and holds the potential as a lead compound for developing targeted therapy for TEAD1/3-driven pathologies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Artem Gridnev
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, Oregon Health & Sciences University, Portland, OR, USA
| | - Netanya Schlamowitz
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Kuntala Dey
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti R. Misra
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
| |
Collapse
|
41
|
Zhou C, Sun C, Zhou W, Tian T, Schultz DC, Wu T, Yu M, Wu L, Pi L, Li C. Development of Novel Indole-Based Covalent Inhibitors of TEAD as Potential Antiliver Cancer Agents. J Med Chem 2024; 67:16270-16295. [PMID: 39270302 DOI: 10.1021/acs.jmedchem.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Abnormal activation of the YAP transcriptional signaling pathway drives proliferation in many hepatocellular carcinoma (HCC) and hepatoblastoma (HB) cases. Current treatment options often face resistance and toxicity, highlighting the need for alternative therapies. This article reports the discovery of a hit compound C-3 from docking-based virtual screening targeting TEAD lipid binding pocket, which inhibited TEAD-mediated transcription. Optimization led to the identification of a potent and covalent inhibitor CV-4-26 that exhibited great antitumor activity in HCC and HB cell lines in vitro, xenografted human HCC, and murine HB in vivo. These outcomes signify the potential of a highly promising therapeutic candidate for addressing a subset of HCC and HB cancers. In the cases of current treatment challenges due to high upregulation of YAP-TEAD activity, these findings offer a targeted alternative for more effective interventions against liver cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chunbao Sun
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Tian Tian
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Mu Yu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
- UF Institute of Genetics, University of Florida, Gainesville, Florida 32610, United States
| | - Liya Pi
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
42
|
Pei S, Piao HL. Exploring Protein S-Palmitoylation: Mechanisms, Detection, and Strategies for Inhibitor Discovery. ACS Chem Biol 2024; 19:1868-1882. [PMID: 39160165 DOI: 10.1021/acschembio.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.
Collapse
Affiliation(s)
- Shaojun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122 Shenyang, China
| |
Collapse
|
43
|
Cao D, Sun W, Li X, Jian L, Zhou X, Bode AM, Luo X. The role of novel protein acylations in cancer. Eur J Pharmacol 2024; 979:176841. [PMID: 39033839 DOI: 10.1016/j.ejphar.2024.176841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Novel protein acylations are a class of protein post-translational modifications, such as lactylation, succinylation, crotonylation, palmitoylation, and β-hydroxybutyrylation. These acylation modifications are common in prokaryotes and eukaryotes and play pivotal roles in various key cellular processes by regulating gene transcription, protein subcellular localization, stability and activity, protein-protein interactions, and protein-DNA interactions. The diversified acylations are closely associated with various human diseases, especially cancer. In this review, we provide an overview of the distinctive characteristics, effects, and regulatory factors of novel protein acylations. We also explore the various mechanisms through which novel protein acylations are involved in the occurrence and progression of cancer. Furthermore, we discuss the development of anti-cancer drugs targeting novel acylations, offering promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Dan Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Sun
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinyi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lian Jian
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinran Zhou
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
44
|
Kulkarni A, Mohan V, Tang TT, Post L, Chan YC, Manning M, Thio N, Parker BL, Dawson MA, Rosenbluh J, Vissers JH, Harvey KF. Identification of resistance mechanisms to small-molecule inhibition of TEAD-regulated transcription. EMBO Rep 2024; 25:3944-3969. [PMID: 39103676 PMCID: PMC11387499 DOI: 10.1038/s44319-024-00217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
The Hippo tumor suppressor pathway controls transcription by regulating nuclear abundance of YAP and TAZ, which activate transcription with the TEAD1-TEAD4 DNA-binding proteins. Recently, several small-molecule inhibitors of YAP and TEADs have been reported, with some entering clinical trials for different cancers with Hippo pathway deregulation, most notably, mesothelioma. Using genome-wide CRISPR/Cas9 screens we reveal that mutations in genes from the Hippo, MAPK, and JAK-STAT signaling pathways all modulate the response of mesothelioma cell lines to TEAD palmitoylation inhibitors. By exploring gene expression programs of mutant cells, we find that MAPK pathway hyperactivation confers resistance to TEAD inhibition by reinstating expression of a subset of YAP/TAZ target genes. Consistent with this, combined inhibition of TEAD and the MAPK kinase MEK, synergistically blocks proliferation of multiple mesothelioma and lung cancer cell lines and more potently reduces the growth of patient-derived lung cancer xenografts in vivo. Collectively, we reveal mechanisms by which cells can overcome small-molecule inhibition of TEAD palmitoylation and potential strategies to enhance the anti-tumor activity of emerging Hippo pathway targeted therapies.
Collapse
Affiliation(s)
- Aishwarya Kulkarni
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Varshini Mohan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Tracy T Tang
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Leonard Post
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Murray Manning
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Joseph Ha Vissers
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
45
|
Yang X, Liu Z, Wang X, Tian W, Zhao T, Yang Q, Li W, Yang L, Yang H, Jia Y. Anti-cancer effects of nitazoxanide in epithelial ovarian cancer in-vitro and in-vivo. Chem Biol Interact 2024; 400:111176. [PMID: 39084502 DOI: 10.1016/j.cbi.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Epithelial ovarian cancer is one of the most lethal gynecologic malignancies and poses a considerable threat to women's health. Although the progression-free survival of patients has been prolonged with the application of anti-angiogenesis drugs and Poly (ADP-ribose) polymerases (PARP) inhibitors, overall survival has not substantially improved. Thus, new therapeutic strategies are essential for the treatment of ovarian cancer. Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, has garnered attention for its potential anti-cancer activity. However, the anti-tumor effects and possible underlying mechanisms of NTZ on ovarian cancer remain unclear. In this study, we investigated the anti-tumor effects and the mechanism of NTZ on ovarian cancer in vitro and in vivo. We found that NTZ inhibited the proliferation of A2780 and SKOV3 epithelial ovarian cancer cells in a time- and concentration-dependent manner; Furthermore, NTZ suppressed the metastasis and invasion of A2780 and SKOV3 cells in vitro, correlating with the inhibition of epithelial-mesenchymal transition; Additionally, NTZ suppressed the Hippo/YAP/TAZ signaling pathway both in vitro and in vivo and demonstrated a good binding activity with core genes of Hippo pathway, including Hippo, YAP, TAZ, LATS1, and LATS2. Oral administration of NTZ inhibited tumor growth in xenograft ovarian cancer mice models without causing considerable damage to major organs. Overall, these data suggest that NTZ has therapeutic potential for treating epithelial ovarian cancer.
Collapse
Affiliation(s)
- Xiangqun Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Zhenyan Liu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Xin Wang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenda Tian
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Taoyu Zhao
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Yunnan, 678400, PR China
| | - Qiaoling Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenliang Li
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Linlin Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Hongying Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Yue Jia
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| |
Collapse
|
46
|
Wesener MC, Weiler SME, Bissinger M, Klessinger TF, Rose F, Merker S, Luzarowski M, Ruppert T, Helm B, Klingmüller U, Schirmacher P, Breuhahn K. CRKL Enhances YAP Signaling through Binding and JNK/JUN Pathway Activation in Liver Cancer. Int J Mol Sci 2024; 25:8549. [PMID: 39126118 PMCID: PMC11312940 DOI: 10.3390/ijms25158549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The Hippo pathway transducers yes-associated protein (YAP) and WW-domain containing transcription regulator 1 (WWTR1/TAZ) are key regulators of liver tumorigenesis, promoting tumor formation and progression. Although the first inhibitors are in clinical trials, targeting the relevant upstream regulators of YAP/TAZ activity could prove equally beneficial. To identify regulators of YAP/TAZ activity in hepatocarcinoma (HCC) cells, we carried out a proximity labelling approach (BioID) coupled with mass spectrometry. We verified CRK-like proto-oncogene adaptor protein (CRKL) as a new YAP-exclusive interaction partner. CRKL is highly expressed in HCC patients, and its expression is associated with YAP activity as well as poor survival prognosis. In vitro experiments demonstrated CRKL-dependent cell survival and the loss of YAP binding induced through actin disruption. Moreover, we delineated the activation of the JNK/JUN pathway by CRKL, which promoted YAP transcription. Our data illustrate that CRKL not only promoted YAP activity through its binding but also through the induction of YAP transcription by JNK/JUN activation. This emphasizes the potential use of targeting the JNK/JUN pathway to suppress YAP expression in HCC patients.
Collapse
Affiliation(s)
- Marie C. Wesener
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sofia M. E. Weiler
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tobias F. Klessinger
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sabine Merker
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Marcin Luzarowski
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Barbara Helm
- DKFZ, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Ursula Klingmüller
- DKFZ, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Moure CJ, Vara B, Cheng MM, Sondey C, Muise E, Park E, Vela Ramirez JE, Su D, D'Souza S, Yan Q, Yeung CS, Zhang M, Mansueto MS, Linn D, Buchanan M, Foti R, DiMauro E, Long B, Simov V, Barry ER. Activation of Hepatocyte Growth Factor/MET Signaling as a Mechanism of Acquired Resistance to a Novel YAP1/TEAD Small Molecule Inhibitor. Mol Cancer Ther 2024; 23:1095-1108. [PMID: 38691847 DOI: 10.1158/1535-7163.mct-23-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
Many tumor types harbor alterations in the Hippo pathway, including mesothelioma, where a high percentage of cases are considered YAP1/TEAD dependent. Identification of autopalmitoylation sites in the hydrophobic palmitate pocket of TEADs, which may be necessary for YAP1 protein interactions, has enabled modern drug discovery platforms to generate compounds that allosterically inhibit YAP1/TEAD complex formation and transcriptional activity. We report the discovery and characterization of a novel YAP1/TEAD inhibitor MRK-A from an aryl ether chemical series demonstrating potent and specific inhibition of YAP1/TEAD activity. In vivo, MRK-A showed a favorable tolerability profile in mice and demonstrated pharmacokinetics suitable for twice daily oral dosing in preclinical efficacy studies. Importantly, monotherapeutic targeting of YAP1/TEAD in preclinical models generated regressions in a mesothelioma CDX model; however, rapid resistance to therapy was observed. RNA-sequencing of resistant tumors revealed mRNA expression changes correlated with the resistance state and a marked increase of hepatocyte growth factor (HGF) expression. In vitro, exogenous HGF was able to fully rescue cytostasis induced by MRK-A in mesothelioma cell lines. In addition, co-administration of small molecule inhibitors of the MET receptor tyrosine kinase suppressed the resistance generating effect of HGF on MRK-A induced growth inhibition. In this work, we report the structure and characterization of MRK-A, demonstrating potent and specific inhibition of YAP1/TAZ-TEAD-mediated transcriptional responses, with potential implications for treating malignancies driven by altered Hippo signaling, including factors resulting in acquired drug resistance.
Collapse
Affiliation(s)
- Casey J Moure
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Brandon Vara
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Mangeng M Cheng
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Christopher Sondey
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Eric Muise
- Department of Data and Genome Sciences, Merck & Co., Inc., Rahway, New Jersey
| | - Eunsil Park
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | | | - Dan Su
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Shanti D'Souza
- Department of Discovery Oncology, Merck & Co., Inc., Rahway, New Jersey
| | - Qingyun Yan
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Minjia Zhang
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - My Sam Mansueto
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Doug Linn
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Mark Buchanan
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Robert Foti
- Department of PPDM, Merck & Co., Inc., Rahway, New Jersey
| | - Erin DiMauro
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Brian Long
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Vladimir Simov
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Evan R Barry
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| |
Collapse
|
48
|
Benton D, Yee Chow H, Karchugina S, Chernoff J. Synergistic effect of PAK and Hippo pathway inhibitor combination in NF2-deficient Schwannoma. PLoS One 2024; 19:e0305121. [PMID: 39083549 PMCID: PMC11290668 DOI: 10.1371/journal.pone.0305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
Neurofibromatosis type 2 is a genetic disorder that results in the formation and progressive growth of schwannomas, ependymomas, and/or meningiomas. The NF2 gene encodes the Merlin protein, which links cell cortical elements to the actin cytoskeleton and regulates a number of key enzymes including Group I p21-activated kinases (PAKs), the Hippo-pathway kinase LATS, and mTORC. While PAK1 and PAK2 directly bind Merlin and transmit proliferation and survival signals when Merlin is mutated or absent, inhibition of Group 1 PAKs alone has not proven sufficient to completely stop the growth of NF2-deficient meningiomas or schwannomas in vivo, suggesting the need for a second pathway inhibitor. As the Hippo pathway is also activated in NF2-deficient cells, several inhibitors of the Hippo pathway have recently been developed in the form of YAP-TEAD binding inhibitors. These inhibitors prevent activation of pro-proliferation and anti-apoptotic Hippo pathway effectors. In this study, we show that PAK inhibition slows cell proliferation while TEAD inhibition promotes apoptotic cell death. Finally, we demonstrate the efficacy of PAK and TEAD inhibitor combinations in several NF2-deficient Schwannoma cell lines.
Collapse
Affiliation(s)
- Dorothy Benton
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hoi Yee Chow
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Sofiia Karchugina
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
49
|
Graham K, Lienau P, Bader B, Prechtl S, Naujoks J, Lesche R, Weiske J, Kuehnlenz J, Brzezinka K, Potze L, Zanconato F, Nicke B, Montebaur A, Bone W, Golfier S, Kaulfuss S, Kopitz C, Pilari S, Steuber H, Hayat S, Kamburov A, Steffen A, Schlicker A, Buchgraber P, Braeuer N, Font NA, Heinrich T, Kuhnke L, Nowak-Reppel K, Stresemann C, Steigemann P, Walter AO, Blotta S, Ocker M, Lakner A, von Nussbaum F, Mumberg D, Eis K, Piccolo S, Lange M. Discovery of YAP1/TAZ pathway inhibitors through phenotypic screening with potent anti-tumor activity via blockade of Rho-GTPase signaling. Cell Chem Biol 2024; 31:1247-1263.e16. [PMID: 38537632 DOI: 10.1016/j.chembiol.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 07/21/2024]
Abstract
This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.
Collapse
Affiliation(s)
- Keith Graham
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Benjamin Bader
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Prechtl
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Jan Naujoks
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Joerg Weiske
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Julia Kuehnlenz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Krzysztof Brzezinka
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Lisette Potze
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Barbara Nicke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Anna Montebaur
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Wilhelm Bone
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sven Golfier
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Kaulfuss
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Charlotte Kopitz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sabine Pilari
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Holger Steuber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sikander Hayat
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Atanas Kamburov
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Schlicker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Philipp Buchgraber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Nico Braeuer
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Nuria Aiguabella Font
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Tobias Heinrich
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Lara Kuhnke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Katrin Nowak-Reppel
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Carlo Stresemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Patrick Steigemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Annette O Walter
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Simona Blotta
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Matthias Ocker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Ashley Lakner
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Martin Lange
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
50
|
Zhang F, Sahu V, Peng K, Wang Y, Li T, Bala P, Aitymbayev D, Sahgal P, Schaefer A, Der CJ, Ryeom S, Yoon S, Sethi N, Bass AJ, Zhang H. Recurrent RhoGAP gene fusion CLDN18-ARHGAP26 promotes RHOA activation and focal adhesion kinase and YAP-TEAD signalling in diffuse gastric cancer. Gut 2024; 73:1280-1291. [PMID: 38621923 PMCID: PMC11287566 DOI: 10.1136/gutjnl-2023-329686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/08/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Genomic studies of gastric cancer have identified highly recurrent genomic alterations impacting RHO signalling, especially in the diffuse gastric cancer (DGC) histological subtype. Among these alterations are interchromosomal translations leading to the fusion of the adhesion protein CLDN18 and RHO regulator ARHGAP26. It remains unclear how these fusion constructs impact the activity of the RHO pathway and what is their broader impact on gastric cancer development. Herein, we developed a model to allow us to study the function of this fusion protein in the pathogenesis of DGC and to identify potential therapeutic targets for DGC tumours with these alterations. DESIGN We built a transgenic mouse model with LSL-CLDN18-ARHGAP26 fusion engineered into the Col1A1 locus where its expression can be induced by Cre recombinase. Using organoids generated from this model, we evaluated its oncogenic activity and the biochemical effects of the fusion protein on the RHOA pathway and its downstream cell biological effects in the pathogenesis of DGC. RESULTS We demonstrated that induction of CLDN18-ARHGAP26 expression in gastric organoids induced the formation of signet ring cells, characteristic features of DGC and was able to cooperatively transform gastric cells when combined with the loss of the tumour suppressor geneTrp53. CLDN18-ARHGAP26 promotes the activation of RHOA and downstream effector signalling. Molecularly, the fusion promotes activation of the focal adhesion kinase (FAK) and induction of the YAP pathway. A combination of FAK and YAP/TEAD inhibition can significantly block tumour growth. CONCLUSION These results indicate that the CLDN18-ARHGAP26 fusion is a gain-of-function DGC oncogene that leads to activation of RHOA and activation of FAK and YAP signalling. These results argue for further evaluation of emerging FAK and YAP-TEAD inhibitors for these deadly cancers.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Varun Sahu
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, USA
| | - Ke Peng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Fudan University, Shanghai, China
| | - Yichen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tianxia Li
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daulet Aitymbayev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Antje Schaefer
- Universty of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra Ryeom
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Sam Yoon
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adam J Bass
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Haisheng Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Signet Therapeutics, Shenzhen, China
| |
Collapse
|