1
|
Wang X, Feng H, Zhang Y, Lin F. SGCLMD: Signed graph-based contrastive learning model for predicting somatic mutation-drug association. Comput Biol Med 2025; 190:110067. [PMID: 40147185 DOI: 10.1016/j.compbiomed.2025.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Somatic mutations could influence critical cellular processes, leading to uncontrolled cell growth and tumor formation. Understanding the intricate interactions between somatic mutations and drugs was crucial for advancing our knowledge of the underlying biological mechanisms of cancer. This knowledge, in turn, could drive advancements in cancer detection, diagnosis, and treatment. Exploring the relationships between specific somatic mutations and drug responses held the potential to identify targeted therapeutic interventions and improve personalized treatment strategies for cancer patients. In this study, we introduced a computational model, the signed graph comparison learning for mutation-drug associations (SGCLMD), designed to predict signs of somatic mutation-drug associations. Initially, we leveraged clinical data to construct a benchmark dataset encompassing somatic mutation-drug associations. We proposed a graph enhancement method, employing a random perturbation strategy, to expand the signed graph. This approach not only preserved interaction information across the two perspectives of the signed graph but also retained implicit relationships between these perspectives. Furthermore, we devised a multi-view comparison loss algorithm to learn node representations for the graph generated post-random perturbation. Through parameter optimization using 5-fold cross-validation, our SGCLMD model achieves optimal area under the curve (AUC) and area under the precision-recall curve (AUPR) values of 0.8306 and 0.8751, respectively, representing improvements of 3 % and 3.1 % over the state-of-the-art method. Through ablation experiments and case studies, we validated the importance of graph enhancement methods and multi-view contrast learning modules, demonstrating SGCLMD's potential in predicting somatic mutation-drug associations. The code and dataset for SGCLMD are available at https://github.com/wangxiaosong96/SGCLMD.
Collapse
Affiliation(s)
- Xiaosong Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Haisong Feng
- School of Informatics, Xiamen University, Xiamen, Fujian, 361105, China
| | - Yilei Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Fan Lin
- School of Informatics, Xiamen University, Xiamen, Fujian, 361105, China.
| |
Collapse
|
2
|
Giacoletto CJ, Valente LJ, Brown L, Patterson S, Gokhale R, Mockus SM, Grody WW, Deng HW, Rotter JI, Schiller MR. New Gain-of-Function Mutations Prioritize Mechanisms of HER2 Activation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.03.25323043. [PMID: 40093211 PMCID: PMC11908269 DOI: 10.1101/2025.03.03.25323043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ERBB2 (HER2) is a well-studied oncogene with several driver mutations apart from the well-known amplification defect in some breast cancers. We used the GigaAssay to test the functional effect of HER2 missense mutations on its receptor tyrosine kinase function. The GigaAssay is a modular high-throughput one-pot assay system for simultaneously measuring molecular function of thousands of genetic variants at very high accuracy. The activities of 5,886 mutations were classified, significantly more than mutants previously reported. These variants include 112 new in vitro, 10 known, and 9 new in vivo gain-of-function (GOF) mutations. Many of the GOFs spatially cluster in sequence and structure, supporting the activation mechanisms of heterodimerization with EGFR and release of kinase inhibition by the juxtamembrane domain. Retrospective analysis of patient outcomes from the Genomic Data Commons predicts increased survival with the newly identified HER2 GOF variants.
Collapse
Affiliation(s)
- Christopher J Giacoletto
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
| | - Liz J Valente
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
| | - Lancer Brown
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
| | - Sara Patterson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032
| | - Rewatee Gokhale
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032
| | | | | | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Department of Deming Department of Medicine, Tulane University, New Orleans, 70112 USA
| | - Jerome I Rotter
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Martin R Schiller
- Heligenics Inc., 10530 Discovery Dr., Las Vegas, NV 89135 USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
| |
Collapse
|
3
|
Yang L, Liu Y, Guo R, Du J, Liu L, Liu X, Zhao J, Shi F, Zhang X, Su J. CDK4 gene copy number increase and concurrent genetic changes in acral melanoma of a Chinese cohort. Pathology 2025; 57:34-39. [PMID: 39472269 DOI: 10.1016/j.pathol.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 01/11/2025]
Abstract
Acral melanoma (AM) is the most common subtype of melanoma in the Asian population. Abnormalities in the p16-cyclin D1-CDK4 signalling pathway play a crucial role in the development and progression of AM. However, the CDK4 copy number variations (CNVs) in AM are under-reported. In this study, we investigated CDK4 gene copy number and concurrent molecular changes in a Chinese cohort with AM, to explore CDK4 CNVs and their significance in AM. We examined CDK4 CNVs with fluorescence in situ hybridisation (FISH) in 31 patients with AM. Six patients with CDK4 high-level copy number increase were examined by next-generation sequencing to detect concurrent molecular changes. Using FISH, 12 (12/31, 38.7%) cases showed CDK4 copy number increase, with six (6/31, 19.4%) low-level copy number increase and six (6/31, 19.4%) high-level copy number increase. Five of six CDK4 low-level copy number increase cases were accompanied by polysomy of chromosome 12, while one case was not. Two of six CDK4 high-level copy number increase cases were accompanied by polysomy of chromosome 12, while four cases were not. CDK4 copy number increase was significantly correlated with younger patient age. In six CDK4 high-level copy number increase cases, one case was found to be accompanied by NRAS mutation, one case was accompanied by HER2 mutation, one case was accompanied by BCL2L11 mutation and one case was accompanied by BRAF, HER2 and BCL2L11 mutations. Our study confirmed the presence of CDK4 copy number increase in AM cases. Detecting CDK4 copy number increase by FISH can be reliable in the diagnosis of AM. Some CDK4 copy number increases are the results of polysomy of chromosome 12. CDK4 high-level copy number increase coexists with other pathogenic mutations in AM. CDK4 appears to be a promising target for AM treatment and is expected to be combined with other targeted therapies.
Collapse
Affiliation(s)
- Leyuan Yang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Yan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Ruiping Guo
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Juan Du
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Lingchao Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Xiaolong Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Jianfang Zhao
- Department of Pathology, Yan'an Branch of Peking University Third Hospital, Yan'an Traditional Chinese Medicine Hospital, Yan'an, China
| | - Fang Shi
- Department of Pathology, Yan'an Branch of Peking University Third Hospital, Yan'an Traditional Chinese Medicine Hospital, Yan'an, China
| | - Xin Zhang
- Department of Pathology, Yan'an Branch of Peking University Third Hospital, Yan'an Traditional Chinese Medicine Hospital, Yan'an, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
4
|
Hao W, Rajendran BK, Cui T, Sun J, Zhao Y, Palaniyandi T, Selvam M. Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review). Int J Mol Med 2025; 55:6. [PMID: 39450552 PMCID: PMC11537269 DOI: 10.3892/ijmm.2024.5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
In the modern era of medicine, prognosis and treatment, options for a number of cancer types including breast cancer have been improved by the identification of cancer‑specific biomarkers. The availability of high‑throughput sequencing and analysis platforms, the growth of publicly available cancer databases and molecular and histological profiling facilitate the development of new drugs through a precision medicine approach. However, only a fraction of patients with breast cancer with few actionable mutations typically benefit from the precision medicine approach. In the present review, the current development in breast cancer driver gene identification, actionable breast cancer mutations, as well as the available therapeutic options, challenges and applications of breast precision oncology are systematically described. Breast cancer driver mutation‑based precision oncology helps to screen key drivers involved in disease development and progression, drug sensitivity and the genes responsible for drug resistance. Advances in precision oncology will provide more targeted therapeutic options for patients with breast cancer, improving disease‑free survival and potentially leading to significant successes in breast cancer treatment in the near future. Identification of driver mutations has allowed new targeted therapeutic approaches in combination with standard chemo‑ and immunotherapies in breast cancer. Developing new driver mutation identification strategies will help to define new therapeutic targets and improve the overall and disease‑free survival of patients with breast cancer through efficient medicine.
Collapse
Affiliation(s)
- Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Tingting Cui
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Jiayi Sun
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Yingchun Zhao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | | | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| |
Collapse
|
5
|
Mao S, Liu X, Wang L, Wang Y, Yang S, Jiang T, Li X, Wang Q, Li X, Wu F, Gao G, Chen X, Wu C, Zhang W, Zhang J, Lin X, Zhu X, Li B, Li F, Zhou C, Ren S. AYVM to AYMM Transition on HER2 Exon 20 Insertion Induces Tyrosine Kinase Inhibitor Resistance in NSCLC. J Thorac Oncol 2024:S1556-0864(24)02543-7. [PMID: 39725168 DOI: 10.1016/j.jtho.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Pyrotinib, a novel pan-HER tyrosine kinase inhibitor, has demonstrated substantial anti-tumor activity in patients with NSCLC harboring HER2 mutations. Nevertheless, the inevitable resistance to pyrotinib necessitates an in-depth understanding of the underlying mechanisms. METHODS Resistance-associated mutations were identified through genomic sequencing of paired baseline and post-resistance samples from 40 patients. Integrated computational and experimental approach were utilized to validate the resistance mechanisms and explore strategies for overcoming resistance in vitro and in vivo. RESULTS Analysis of novel mutations upon the development of resistance did not identify any predominant secondary HER2 mutations. Nevertheless, 12 secondary HER2 mutations (38.7%) occurred either as single nucleotide variations (75%) or insertions-deletions (25%), on the basis of HER2 p.Y772_P775dup mutation. Only two mutations led to HER2 autophosphorylation and IL3-independent proliferation of Ba/F3 cells from the in vitro experiments, implying that the remaining 10 secondary mutations were passenger mutations. Further in vivo and in vitro validation showed that the HER2 p.E770_A771insAYMM mutation diminished the sensitivity of murine HER2 mutant lung adenocarcinoma cell line to pyrotinib, with ineffective inhibition of HER2 and its downstream pathways. Drug screening indicated that mobocertinib and dacomitinib could effectively restrain the growth of tumors bearing the HER2 p.E770_A771insAYMM mutation. CONCLUSIONS Our findings unveil a new form of resistance-a secondary mutation superimposed on the original mutation-and offer insights into a potentially sequential strategy for overcoming resistance to pyrotinib.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lin Wang
- Department of Pathology, Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yan Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuo Yang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xingya Li
- Second Ward of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiming Wang
- Three Disease Areas of Respiratory Department, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, People's Republic of China
| | - Xiang Lin
- Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, People's Republic of China
| | - Xiaoyu Zhu
- Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, People's Republic of China
| | - Baobin Li
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
| | - Fei Li
- Department of Pathology, Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Yayli G, Tokofsky A, Nayar U. The intersection of the HER2-low subtype with endocrine resistance: the role of interconnected signaling pathways. Front Oncol 2024; 14:1461190. [PMID: 39650068 PMCID: PMC11621065 DOI: 10.3389/fonc.2024.1461190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Since its introduction in the 1970s, endocrine therapy that targets the estrogen receptor alpha (ERα) signaling pathway has had tremendous success in the clinic in estrogen receptor positive (ER+) breast cancer. However, resistance to endocrine therapy eventually develops in virtually all patients with metastatic disease. Endocrine resistance is a primary unaddressed medical need for ER+ metastatic breast cancer patients. It has been shown that tumors become resistant through various mechanisms, converging on the acquisition of genetic alterations of ER, components of the MAP kinase pathway, or transcription factors (TFs). For instance, mutations in the human epidermal growth factor receptor-2 (HER2) lead to complete resistance to all current endocrine therapies including aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor degraders, as well as cross-resistance to CDK4/6 inhibitors (CDK4/6is). Emerging evidence points to an intriguing connection between endocrine-resistant tumors and the HER2-low subtype. Specifically, recent studies and our analysis of a publicly available breast cancer dataset both indicate that metastatic ER+ breast cancer with endocrine resistance conferred through acquired genetic alterations can often be classified as HER2-low rather than HER2-0/HER2-negative. Limited data suggest that acquired endocrine resistance can also be accompanied by a subtype switch. Therefore, we suggest that there is an underappreciated association between the HER2-low subtype and endocrine resistance. In this perspective piece, we explore the evidence linking the HER2-low subtype with the various pathways to endocrine resistance and suggest that there are signaling networks in HER2-low tumors that intersect endocrine resistance and can be effectively targeted.
Collapse
Affiliation(s)
- Gizem Yayli
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alexa Tokofsky
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Utthara Nayar
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Xu L, Xie Y, Gou Q, Cai R, Bao R, Huang Y, Tang R. HER2-targeted therapies for HER2-positive early-stage breast cancer: present and future. Front Pharmacol 2024; 15:1446414. [PMID: 39351085 PMCID: PMC11439691 DOI: 10.3389/fphar.2024.1446414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Breast cancer (BC) has the second highest incidence among cancers and is the leading cause of death among women worldwide. The human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 20%-30% of BC patients. The development of HER2-targeted drugs, including monoclonal antibodies (mAbs), tyrosine kinase inhibitors (TKIs) and antibody-drug conjugates (ADCs), has improved the operation rate and pathological remission rate and reduced the risk of postoperative recurrence for HER2-positive early-stage BC (HER2+ EBC) patients. This review systematically summarizes the mechanisms, resistance, therapeutic modalities and safety of HER2-targeted drugs and helps us further understand these drugs and their use in clinical practice for patients with HER2+ EBC.
Collapse
Affiliation(s)
- Luying Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Xie
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Cai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Bao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruisi Tang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Bon G, Di Lisa FS, Filomeno L, Arcuri T, Krasniqi E, Pizzuti L, Barba M, Messina B, Schiavoni G, Sanguineti G, Botti C, Cappelli S, Pelle F, Cavicchi F, Puccica I, Costantini M, Perracchio L, Maugeri-Saccà M, Ciliberto G, Vici P. HER2 mutation as an emerging target in advanced breast cancer. Cancer Sci 2024; 115:2147-2158. [PMID: 38715247 PMCID: PMC11247561 DOI: 10.1111/cas.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 07/13/2024] Open
Abstract
HER2 activating mutations have emerged as oncogenic drivers and therapeutic targets in a variety of human tumors. In breast cancer, these deregulations occur at low frequency, and are mostly detected in HER2-nonamplified, metastatic disease. Preclinical evidence has clarified the role of hotspot mutations in HER2 constitutive activation, defining them as an alternative mechanism to HER2 gene amplification. Furthermore, recent clinical studies have indicated the emergence of newly acquired HER2 deregulations in significant proportions of breast cancer patients who experience disease progression following both endocrine and HER2-targeted therapies. As the involvement of HER2 mutation in therapy resistance may profoundly impact patient outcomes on successive therapies, several clinical trials are currently investigating the efficacy of various HER2-targeted drugs in HER2-mutant breast cancer. In this review, we firstly summarize the structural organization of the HER2 oncogene and its historical impact on breast cancer prognosis and therapeutic advancement. Then, we provide an overview of the frequencies and functional relevance of clinically recurrent HER2 mutations in breast cancer with a special focus on their role in therapeutic resistance. Finally, we provide a collection of the clinical trials that are currently exploring novel therapeutic approaches for this patient subset and discuss the related perspectives and challenges.
Collapse
Affiliation(s)
- Giulia Bon
- Department of Research, Cellular Network and Molecular Therapeutic Target Unit, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Lorena Filomeno
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Teresa Arcuri
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Radiological, Medical Oncology A, Policlinico Umberto I; Oncological and Anatomo-Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Eriseld Krasniqi
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maddalena Barba
- Division of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Messina
- Department of Research, Biostatistics and Bioinformatics Unit, Clinical Trial Center, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Schiavoni
- Department of Research, Biostatistics and Bioinformatics Unit, Clinical Trial Center, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Botti
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sonia Cappelli
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Pelle
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Flavia Cavicchi
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ilaria Puccica
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maurizio Costantini
- Department of Plastic and Reconstructive Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Department of Research, Biostatistics and Bioinformatics Unit, Clinical Trial Center, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Vici
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
9
|
Koivu MKA, Chakroborty D, Airenne TT, Johnson MS, Kurppa KJ, Elenius K. Trans-activating mutations of the pseudokinase ERBB3. Oncogene 2024; 43:2253-2265. [PMID: 38806620 PMCID: PMC11245391 DOI: 10.1038/s41388-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Genetic changes in the ERBB family of receptor tyrosine kinases serve as oncogenic driver events and predictive biomarkers for ERBB inhibitor drugs. ERBB3 is a pseudokinase member of the family that, although lacking a fully active kinase domain, is well known for its potent signaling activity as a heterodimeric complex with ERBB2. Previous studies have identified few transforming ERBB3 mutations while the great majority of the hundreds of different somatic ERBB3 variants observed in different cancer types remain of unknown significance. Here, we describe an unbiased functional genetics screen of the transforming potential of thousands of ERBB3 mutations in parallel. The screen based on a previously described iSCREAM (in vitro screen of activating mutations) platform, and addressing ERBB3 pseudokinase signaling in a context of ERBB3/ERBB2 heterodimers, identified 18 hit mutations. Validation experiments in Ba/F3, NIH 3T3, and MCF10A cell backgrounds demonstrated the presence of both previously known and unknown transforming ERBB3 missense mutations functioning either as single variants or in cis as a pairwise combination. Drug sensitivity assays with trastuzumab, pertuzumab and neratinib indicated actionability of the transforming ERBB3 variants.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland.
- Department of Oncology, Turku University Hospital, Turku, 20521, Finland.
| |
Collapse
|
10
|
Pang Z, Cravatt BF, Ye L. Deciphering Drug Targets and Actions with Single-Cell and Spatial Resolution. Annu Rev Pharmacol Toxicol 2024; 64:507-526. [PMID: 37722721 DOI: 10.1146/annurev-pharmtox-033123-123610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.
Collapse
Affiliation(s)
- Zhengyuan Pang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA;
| | - Li Ye
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
11
|
Fessart D, Robert J. [Mechanisms of cancer drug resistance]. Bull Cancer 2024; 111:37-50. [PMID: 37679207 DOI: 10.1016/j.bulcan.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023]
Abstract
Despite decades of research into the molecular mechanisms of cancer and the development of new treatments, drug resistance persists as a major problem. This is in part due to the heterogeneity of cancer, including the diversity of tumor cell lineage and cell plasticity, the spectrum of somatic mutations, the complexity of microenvironments, and immunosuppressive characteristic, then necessitating the use of many different therapeutic approaches. We summarize here the biological causes of resistance, thus offering new perspectives for tackle drug resistance.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France.
| | - Jacques Robert
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France
| |
Collapse
|
12
|
Guo L, Shao W, Zhou C, Yang H, Yang L, Cai Q, Wang J, Shi Y, Huang L, Zhang J. Neratinib for HER2-positive breast cancer with an overlooked option. Mol Med 2023; 29:134. [PMID: 37803271 PMCID: PMC10559443 DOI: 10.1186/s10020-023-00736-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Positive human epidermal growth factor receptor 2 (HER2) expression is associated with an increased risk of metastases especially those to the brain in patients with advanced breast cancer (BC). Neratinib as a tyrosine kinase inhibitor can prevent the transduction of HER1, HER2 and HER4 signaling pathways thus playing an anticancer effect. Moreover, neratinib has a certain efficacy to reverse drug resistance in patients with BC with previous HER2 monoclonal antibody or targeted drug resistance. Neratinib, as monotherapy and in combination with other therapies, has been tested in the neoadjuvant, adjuvant, and metastatic settings. Neratinib with high anticancer activity is indicated for the prolonged adjuvant treatment of HER2-positive early BC, or in combination with other drugs including trastuzumab, capecitabine, and paclitaxel for the treatment of advanced HER2-positive BC especially cancers with central nervous system (CNS) metastasis to reduce the risk of BC recurrence. This article reviewed the pharmacological profiles, efficacy, safety, tolerability, and current clinical trials pertaining to neratinib, with a particular focus on the use of neratinib in patients with metastatic breast cancer (MBC) involving the CNS. We further discussed the use of neratinib for HER2-negative and HER2-mutant breast cancers, and mechanisms of resistance to neratinib. The current evidence suggests that neratinib has promising efficacy in patients with BC which is at least non-inferior compared to previous therapeutic regimens. The most common AE was diarrhea, and the incidence, severity and duration of neratinib-related grade 3 diarrhea can be reduced with loperamide. Of note, neratinib has the potential to effectively control and prevent brain metastasis in patients with advanced BC, providing a therapeutic strategy for HER2-positive BC.
Collapse
Affiliation(s)
- Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Weiwei Shao
- Department of Pathology, The First People's Hospital of Yancheng City, Yancheng, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hui Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Liu Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yan Shi
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Gaoqiao Town, Shanghai, 200137, China.
| | - Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Medical Center on Aging of Ruijin Hospital, MCARJH, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| |
Collapse
|
13
|
Marín A, Al Mamun A, Patel H, Akamatsu H, Ye D, Sudhan DR, Eli L, Marcelain K, Brown BP, Meiler J, Arteaga CL, Hanker AB. Acquired Secondary HER2 Mutations Enhance HER2/MAPK Signaling and Promote Resistance to HER2 Kinase Inhibition in Breast Cancer. Cancer Res 2023; 83:3145-3158. [PMID: 37404061 PMCID: PMC10530374 DOI: 10.1158/0008-5472.can-22-3617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023]
Abstract
HER2 mutations drive the growth of a subset of breast cancers and are targeted with HER2 tyrosine kinase inhibitors (TKI) such as neratinib. However, acquired resistance is common and limits the durability of clinical responses. Most HER2-mutant breast cancers progressing on neratinib-based therapy acquire secondary mutations in HER2. It is unknown whether these secondary HER2 mutations, other than the HER2T798I gatekeeper mutation, are causal to neratinib resistance. Herein, we show that secondary acquired HER2T862A and HER2L755S mutations promote resistance to HER2 TKIs via enhanced HER2 activation and impaired neratinib binding. While cells expressing each acquired HER2 mutation alone were sensitive to neratinib, expression of acquired double mutations enhanced HER2 signaling and reduced neratinib sensitivity. Computational structural modeling suggested that secondary HER2 mutations stabilize the HER2 active state and reduce neratinib binding affinity. Cells expressing double HER2 mutations exhibited resistance to most HER2 TKIs but retained sensitivity to mobocertinib and poziotinib. Double-mutant cells showed enhanced MEK/ERK signaling, which was blocked by combined inhibition of HER2 and MEK. Together, these findings reveal the driver function of secondary HER2 mutations in resistance to HER2 inhibition and provide a potential treatment strategy to overcome acquired resistance to HER2 TKIs in HER2-mutant breast cancer. SIGNIFICANCE HER2-mutant breast cancers acquire secondary HER2 mutations that drive resistance to HER2 tyrosine kinase inhibitors, which can be overcome by combined inhibition of HER2 and MEK.
Collapse
Affiliation(s)
- Arnaldo Marín
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
- These authors contributed equally: Arnaldo Marin, Abdullah Al Mamun
| | - Abdullah Al Mamun
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- These authors contributed equally: Arnaldo Marin, Abdullah Al Mamun
| | - Hima Patel
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
| | - Hiroaki Akamatsu
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Current Address: Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Dan Ye
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Dhivya R. Sudhan
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Lisa Eli
- Puma Biotechnology, Inc., Los Angeles, CA 90024, USA
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
| | - Benjamin P. Brown
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, 04103, Germany
| | - Carlos L. Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariella B. Hanker
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Venetis K, Cursano G, Pescia C, D'Ercole M, Porta FM, Blanco MC, Frascarelli C, Ivanova M, Guerini Rocco E, Fusco N. Liquid biopsy: Cell-free DNA based analysis in breast cancer. THE JOURNAL OF LIQUID BIOPSY 2023; 1:100002. [PMID: 40027284 PMCID: PMC11863823 DOI: 10.1016/j.jlb.2023.100002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 03/05/2025]
Abstract
Breast cancer management has witnessed significant advancements, especially in the diagnosis and treatment response monitoring through the implementation of imaging techniques and tissue biopsy procedures. Nevertheless, there is potential for further improvement by integrating less invasive approaches that offer timely and precise information. Liquid biopsy, which involves isolating tumor-derived components such as circulating cell-free DNA (cfDNA) and its subset known as circulating tumor DNA (ctDNA), can greatly enhance the prognosis, identification of specific genomic alterations, and selection of targeted therapies for breast cancer patients. While the incorporation of ctDNA-based testing into clinical practice has been primarily focused on metastatic breast cancer (MBC), there is growing interest in its applicability in early-stage breast cancer given the ability to capture tumor heterogeneity. Additionally, the minimally invasive nature of ctDNA testing allows for multiple serial samplings, providing a dynamic assessment of tumor characteristics and monitoring treatment response over time. However, the analysis of ctDNA in breast cancer encounters a significant challenge related to its abundance and the temporal aspect of the disease. The quantity of ctDNA in relation to the disease stage poses an important obstacle that often hinders its accurate analysis. Therefore, it is crucial to ensure timely sample collection, employ sensitive detection methods, and carefully manage the pre-analytical phase to overcome these challenges and facilitate successful ctDNA analysis in breast cancer. This article aims to summarize the methodologies employed in the detection of ctDNA, provide a comprehensive review of the current applications of ctDNA analysis in breast cancer, and elucidate the underlying rationale for its potential extension into broader clinical contexts. Furthermore, models that could facilitate the widespread adoption of ctDNA testing in various healthcare institutions are discussed.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Carlo Pescia
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- School of Pathology, University of Milan, 20122, Milan, Italy
| | - Marianna D'Ercole
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- School of Pathology, University of Milan, 20122, Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- School of Pathology, University of Milan, 20122, Milan, Italy
| | - Marta Cruz Blanco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Elena Guerini Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
| |
Collapse
|
15
|
Tian H, Qu M, Zhang G, Yuan L, Shi Q, Wang Y, Yang Y, Zhang Y, Qi X. Dramatic Response to Pyrotinib and T-DM1 in HER2-Negative Metastatic Breast Cancer With 2 Activating HER2 Mutations. Oncologist 2023:7147272. [PMID: 37120151 DOI: 10.1093/oncolo/oyad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023] Open
Abstract
HER2 signaling is activated in response to somatic HER2 mutations, which are often found in invasive lobular breast cancer (ILC) and are associated with poor prognosis. Tyrosine kinase inhibitors (TKIs) have demonstrated considerable antitumor activity in patients with HER2-mutated advanced breast cancer (BC). Further, several clinical trials have indicated that HER2-targeted antibody-drug conjugates (ADCs) exhibit promising efficacy in lung cancer with HER2 mutations, and the efficacy of ADCs against HER2-mutated BC is currently being evaluated. Several preclinical studies have demonstrated that the therapeutic efficacy of ADCs in HER2-mutated cancer can be enhanced by the addition of irreversible TKIs, but the potential of such a combined treatment regimen for the treatment of HER2-mutated BC has not been reported. Herein, we describe a case in which a patient with estrogen receptor-positive/HER2-negative metastatic ILC with 2 activating HER2 mutations (D769H and V777L) exhibited a significant and durable response to anti-HER2 treatment with pyrotinib (an irreversible TKI) in combination with ado-trastuzumab emtansine, which was administered after multiple lines of therapy that had resulted in disease progression. Further, based on the evidence from the present case, TKI plus ADC seems to be a promising combination anti-HER2 regimen for patients with HER2-negative/HER2-mutated advanced BC, although further rigorous studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Man Qu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Guozhi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Long Yuan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qiyun Shi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yinhuan Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ying Yang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol 2022; 15:143. [PMID: 36209184 PMCID: PMC9548212 DOI: 10.1186/s13045-022-01362-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as therapeutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future.
Collapse
Affiliation(s)
- Qing Wu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Wei Qian
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Xiaoli Sun
- Department of Radiation Oncology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
17
|
Hamel KM, King CT, Cavalier MB, Liimatta KQ, Rozanski GL, King TA, Lam M, Bingham GC, Byrne CE, Xing D, Collins-Burow BM, Burow ME, Belgodere JA, Bratton MR, Bunnell BA, Martin EC. Breast Cancer-Stromal Interactions: Adipose-Derived Stromal/Stem Cell Age and Cancer Subtype Mediated Remodeling. Stem Cells Dev 2022; 31:604-620. [PMID: 35579936 PMCID: PMC9595652 DOI: 10.1089/scd.2021.0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 10/18/2022] Open
Abstract
Adipose tissue is characterized as an endocrine organ that acts as a source of hormones and paracrine factors. In diseases such as cancer, endocrine and paracrine signals from adipose tissue contribute to cancer progression. Young individuals with estrogen receptor-alpha positive (ER-α+) breast cancer (BC) have an increased resistance to endocrine therapies, suggesting that alternative estrogen signaling is activated within these cells. Despite this, the effects of stromal age on the endocrine response in BC are not well defined. To identify differences between young and aged ER-α+ breast tumors, RNA sequencing data were obtained from The Cancer Genome Atlas. Analysis revealed enrichment of matrix and paracrine factors in young (≤40 years old) patients compared to aged (≥65 years old) tumor samples. Adipose-derived stromal/stem cells (ASCs) from noncancerous lipoaspirate of young and aged donors were evaluated for alterations in matrix production and paracrine secreted factors to determine if the tumor stroma could alter estrogen signaling. Young and aged ASCs demonstrated comparable proliferation, differentiation, and matrix production, but exhibited differences in the expression levels of inflammatory cytokines (Interferon gamma, interleukin [IL]-8, IL-10, Tumor necrosis factor alpha, IL-2, and IL-6). Conditioned media (CM)-based experiments showed that young ASC donor age elevated endocrine response in ER-α+ BC cell lines. MCF-7 ER-α+ BC cell line treated with secreted factors from young ASCs had enhanced ER-α regulated genes (PGR and SDF-1) compared to MCF-7 cells treated with aged ASC CM. Western blot analysis demonstrated increased activation levels of p-ER ser-167 in the MCF-7 cell line treated with young ASC secreted factors. To determine if ER-α+ BC cells heightened the cytokine release in ASCs, ASCs were stimulated with MCF-7-derived CM. Results demonstrated no change in growth factors or cytokines when treated with the ER-α+ secretome. In contrast to ER-α+ CM, the ER-α negative MDA-MB-231 derived CM demonstrated increased stimulation of pro-inflammatory cytokines in ASCs. While there was no observed change in the release of selected paracrine factors, MCF-7 cells did induce matrix production and a pro-adipogenic lineage commitment. The adipogenesis was evident by increased collagen content through Sirius Red/Fast Green Collagen stain, lipid accumulation evident by Oil Red O stain, and significantly increased expression in PPARγ mRNA expression. The data from this study provide evidence suggesting more of a subtype-dependent than an age-dependent difference in stromal response to BC, suggesting that this signaling is not heightened by reciprocal signals from ER-α+ BC cell lines. These results are important in understanding the mechanisms of estrogen signaling and the dynamic and reciprocal nature of cancer cell-stromal cell crosstalk that can lead to tumor heterogeneity and variance in response to therapy.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Connor T. King
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Maryn B. Cavalier
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Grace L. Rozanski
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Timothy A. King
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Meggie Lam
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Grace C. Bingham
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - C. Ethan Byrne
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Diensn Xing
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bridgette M. Collins-Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
18
|
Eli LD, Kavuri SM. Mechanisms of neratinib resistance in HER2-mutant metastatic breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:873-881. [PMID: 36627899 PMCID: PMC9771739 DOI: 10.20517/cdr.2022.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a major drug target and clinical biomarker in breast cancer treatment. Targeting HER2 gene amplification is one of the greatest successes in oncology, resulting in the use of a wide array of HER2-directed agents in the clinic. The discovery of HER2-activating mutations as novel therapeutic targets in breast and other cancers marked a significant advance in the field, which led to the metastatic breast and other solid tumor trials MutHER (NCT01670877), SUMMIT (NCT01953926), and one arm of plasmaMATCH (NCT03182634). These trials reported initial clinical benefit followed by eventual relapse ascribed to either primary or acquired resistance. These resistance mechanisms are mediated by additional secondary genomic alterations within HER2 itself and via hyperactivation of oncogenic signaling within the downstream signaling axis.
Collapse
Affiliation(s)
- Lisa D. Eli
- Translational Medicine and Diagnostics, Puma Biotechnology, Inc., Los Angeles, CA 90024, USA
| | - Shyam M. Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Bedard PL, Li S, Wisinski KB, Yang ES, Limaye SA, Mitchell EP, Zwiebel JA, Moscow JA, Gray RJ, Wang V, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Conley BA, Arteaga CL, Harris LN, O'Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of Afatinib in Patients With Tumors With Human Epidermal Growth Factor Receptor 2-Activating Mutations: Results From the National Cancer Institute-Molecular Analysis for Therapy Choice ECOG-ACRIN Trial (EAY131) Subprotocol EAY131-B. JCO Precis Oncol 2022; 6:e2200165. [PMID: 35939768 PMCID: PMC9384949 DOI: 10.1200/po.22.00165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
PURPOSE National Cancer Institute-Molecular Analysis for Therapy Choice is a multicohort trial that assigns patients with advanced cancers to targeted therapies on the basis of central tumor genomic testing. Arm B evaluated afatinib, an ErbB family tyrosine kinase inhibitor, in patients with ERBB2-activating mutations. METHODS Eligible patients had selected ERBB2 single-nucleotide variants or insertions/deletions detected by the National Cancer Institute-Molecular Analysis for Therapy Choice next-generation sequencing assay. Patients had performance status ≤ 1, left ventricular ejection fraction > 50%, grade ≤ 1 diarrhea, and no prior human epidermal growth factor receptor 2 (HER2) therapy. Patients received afatinib 40 mg once daily in 28-day cycles. The primary end point was objective response rate (ORR). Secondary end points were 6-month progression-free survival, overall survival, toxicity, and molecular correlates. RESULTS A total of 59 patients were assigned and 40 were enrolled. The median age was 62 years, 78% were female, 68% had performance status = 1, and 58% had received > 3 prior therapies. The confirmed ORR was 2.7% (n = 1 of 37; 90% CI, 0.14 to 12.2), and 6-month progression-free survival was 12.0% (90% CI, 5.6 to 25.8). A confirmed partial response occurred in a patient with adenocarcinoma of extra-mammary Paget disease of skin who progressed after cycle 6. Two unconfirmed partial responses were observed (low-grade serous gynecological tract and estrogen receptor-positive/HER2-negative immunohistochemistry breast ductal carcinoma). Of 12 patients with breast cancer, 1 additional patient with lobular carcinoma (estrogen receptor-positive/HER2 fluorescent in situ hybridization) had a 51% reduction in target lesions but progressed because of a new lesion at cycle 6. The most common (> 20%) treatment-related adverse events were diarrhea (68%), mucositis (43%), fatigue (40%), acneiform rash (30%), dehydration (27%), vomiting (27%), nausea (27%), anemia (27%), and anorexia (22%). Four patients (11%) discontinued because of adverse events. CONCLUSION Although afatinib did not meet the prespecified threshold for antitumor activity in this heavily pretreated cohort, the response in a rare tumor type is notable. The safety profile of afatinib was consistent with prior studies.
Collapse
Affiliation(s)
| | - Shuli Li
- E-A Biostatistical Center, Boston, MA
| | | | - Eddy S. Yang
- University of Alabama-Birmingham, Birmingham, AL
| | | | | | - James A. Zwiebel
- Investigational Drug Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Jeffrey A. Moscow
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Robert J. Gray
- Dana Farber Cancer Institute—ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Victoria Wang
- Dana Farber Cancer Institute—ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Larry V. Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - David R. Patton
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD
| | | | | | - Barbara A. Conley
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Lyndsay N. Harris
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Alice P. Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
20
|
Ma J, Li X, Zhang Q, Li N, Sun S, Zhao S, Zhao Z, Li M. A novel treatment strategy of HER2-targeted therapy in combination with Everolimus for HR+/HER2- advanced breast cancer patients with HER2 mutations. Transl Oncol 2022; 21:101444. [PMID: 35523006 PMCID: PMC9079719 DOI: 10.1016/j.tranon.2022.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
The incidence of HER2 somatic mutations in breast cancer is about 2-4%, mainly occurring in the HR+/HER2- subtype. Preclinical studies suggest that HER2 mutations can lead to constitutive HER2 activation, but effective treatment options for the clinical management of patients with HER2 mutations remain obscure. Our study analyzed HER2 mutation status by performing next-generation sequencing using tumor tissues and over 300 plasma samples from 72 metastatic breast cancer patients. We observed that two patients bearing HER2 mutations (Patient #1 bearing S310F and V777L mutations, Patient #2 bearing 778insGSP mutation) achieved a durable partial response to Trastuzumab combined with Everolimus. In vitro experiments showed that T47D and MCF7 cells overexpressing these HER2 mutants (S310F, V777L, 778insGSP and L755S) were sensitive to HER2-targeted therapies combined with the mTOR inhibitor Everolimus. These findings provide a treatment option for patients with HER2 mutations by combining HER2-targeted therapies with Everolimus.
Collapse
Affiliation(s)
- Jing Ma
- Department of Oncology and Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Xuelu Li
- Department of Oncology and Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Qianran Zhang
- Department of Oncology and Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Ning Li
- Department of Oncology and Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Siwen Sun
- Department of Oncology and Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Shanshan Zhao
- Department of Oncology and Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zuowei Zhao
- Department of Oncology and Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China.
| | - Man Li
- Department of Oncology and Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
21
|
Tyner JW, Haderk F, Kumaraswamy A, Baughn LB, Van Ness B, Liu S, Marathe H, Alumkal JJ, Bivona TG, Chan KS, Druker BJ, Hutson AD, Nelson PS, Sawyers CL, Willey CD. Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Res 2022; 82:1448-1460. [PMID: 35195258 PMCID: PMC9018544 DOI: 10.1158/0008-5472.can-21-3695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.
Collapse
Affiliation(s)
- Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joshi J. Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Keith Syson Chan
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peter S. Nelson
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
22
|
Chakravarty D, Johnson A, Sklar J, Lindeman NI, Moore K, Ganesan S, Lovly CM, Perlmutter J, Gray SW, Hwang J, Lieu C, André F, Azad N, Borad M, Tafe L, Messersmith H, Robson M, Meric-Bernstam F. Somatic Genomic Testing in Patients With Metastatic or Advanced Cancer: ASCO Provisional Clinical Opinion. J Clin Oncol 2022; 40:1231-1258. [PMID: 35175857 DOI: 10.1200/jco.21.02767] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE An ASCO provisional clinical opinion offers timely clinical direction to ASCO's membership following publication or presentation of potentially practice-changing data from major studies. This provisional clinical opinion addresses the appropriate use of tumor genomic testing in patients with metastatic or advanced solid tumors. CLINICAL CONTEXT An increasing number of therapies are approved to treat cancers harboring specific genomic biomarkers. However, there is a lack of clarity as to when tumor genomic sequencing should be ordered, what type of assays should be performed, and how to interpret the results for treatment selection. PROVISIONAL CLINICAL OPINION Patients with metastatic or advanced cancer should undergo genomic sequencing in a certified laboratory if the presence of one or more specific genomic alterations has regulatory approval as biomarkers to guide the use of or exclusion from certain treatments for their disease. Multigene panel-based assays should be used if more than one biomarker-linked therapy is approved for the patient's disease. Site-agnostic approvals for any cancer with a high tumor mutation burden, mismatch repair deficiency, or neurotrophic tyrosine receptor kinase (NTRK) fusions provide a rationale for genomic testing for all solid tumors. Multigene testing may also assist in treatment selection by identifying additional targets when there are few or no genotype-based therapy approvals for the patient's disease. For treatment planning, the clinician should consider the functional impact of the targeted alteration and expected efficacy of genomic biomarker-linked options relative to other approved or investigational treatments.Additional information is available at www.asco.org/assays-and-predictive-markers-guidelines.
Collapse
Affiliation(s)
| | | | | | - Neal I Lindeman
- Brigham and Womens' Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | - Fabrice André
- PRISM, Precision Medicine Center, Institut Gustave Roussy, Villejuif, France
| | | | | | - Laura Tafe
- Dartmouth-Hitchcock Medical Center and The Geisel School of Medicine at Dartmouth, Darmouth, NH
| | | | - Mark Robson
- Memorial Sloan Kettering Cancer Center, New York City, NY
| | | |
Collapse
|
23
|
Shishido SN, Masson R, Xu L, Welter L, Prabakar RK, D' Souza A, Spicer D, Kang I, Jayachandran P, Hicks J, Lu J, Kuhn P. Disease characterization in liquid biopsy from HER2-mutated, non-amplified metastatic breast cancer patients treated with neratinib. NPJ Breast Cancer 2022; 8:22. [PMID: 35181666 PMCID: PMC8857263 DOI: 10.1038/s41523-022-00390-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
Metastatic breast cancer (mBC) patients have a high risk of progression and face poor prognosis overall, with about one third (34%) surviving five years or more. In rare instances (2-4% of cases) patients with mBC have ERBB2 (HER2) activating mutations but are ERBB2 non-amplified. Neratinib is a potent, irreversible inhibitor that binds HER2 and inhibits downstream signaling. We used the previously validated high-definition single cell assay (HDSCA) workflow to investigate the clinical significance of the liquid biopsy in ERBB2 mutant, non-amplified, post-menopausal mBC patients starting neratinib and fulvestrant combination therapy. Characterization with a comprehensive liquid biopsy methodology (HDSCA) included genomic analysis of both the cell-free DNA (cfDNA) and single circulating tumor cells (CTCs) to monitor tumor evolution and identify potential mutational variants unique to the patient's clinical response. A limited series of five sequentially enrolled patients presented here were from the MutHER ( https://www.clinicaltrials.gov , NCT01670877) or SUMMIT ( https://www.clinicaltrials.gov , NCT01953926) trials. Patients had an average of 5.4 lines of therapy before enrollment, variable hormone receptor status, and ERBB2 mutations at diagnosis and during treatment. CTC enumeration alone was not sufficient to predict clinical response. Treatment pressure was shown to lead to an observable change in CTC morphology and genomic instability (GI), suggesting these parameters may inform prognosis. Single cell copy number alteration (CNA) analysis indicated that the persistence or development of a clonal population of CTCs during treatment was associated with a worse response. Hierarchical clustering analysis of the single cells across all patients and timepoints identified distinct aberrant regions shared among patients, comprised of 26 genes that are similarly affected and may be related to drug resistance. Additionally, the genomic analysis of the cfDNA, identified new mutations in ERBB2, PIK3CA, and TP53 that arose likely due to treatment pressure in a patient with poor response, further providing insights on the dynamics of the cancer genome over the course of therapy. The data presented in this small cohort study demonstrates the feasibility of real-time molecular profiling of the cellular and acellular fractions of the liquid biopsy using the HDSCA methodology. Additional studies are necessary to determine the potential use of morphometric and genomic analysis as a prognostic tool to advance personalized oncology.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Rahul Masson
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Liya Xu
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Lisa Welter
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Rishvanth Kaliappan Prabakar
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Anishka D' Souza
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - Darcy Spicer
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - Irene Kang
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - Priya Jayachandran
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Janice Lu
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA.
| |
Collapse
|
24
|
Ma CX, Luo J, Freedman RA, Pluard TJ, Nangia JR, Lu J, Valdez-Albini F, Cobleigh M, Jones JM, Lin NU, Winer EP, Marcom PK, Anderson J, Thomas S, Haas B, Bucheit L, Bryce R, Lalani AS, Carey LA, Goetz MP, Gao F, Kimmick G, Pegram MD, Ellis MJ, Bose R. The phase II MutHER study of neratinib alone and in combination with fulvestrant in HER2 mutated, non-amplified metastatic breast cancer. Clin Cancer Res 2022; 28:1258-1267. [PMID: 35046057 DOI: 10.1158/1078-0432.ccr-21-3418] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE HER2 mutations (HER2mut) induce endocrine resistance in estrogen receptor positive (ER+) breast cancer. EXPERIMENTAL DESIGN In this single arm multi-cohort phase II trial, we evaluated the efficacy of neratinib plus fulvestrant in patients with ER+/HER2mut, HER2-non-amplified metastatic breast cancer (MBC) in the fulvestrant-treated (n=24) or fulvestrant-naïve cohort (n=11). Patients with ER-negative/HER2mut MBC received neratinib monotherapy in an exploratory ER- cohort (n=5). RESULTS The clinical benefit rate (CBR: 95% CI) was 38% (18-62%), 30% (7-65%), and 25% (1-81%) in the fulvestrant-treated, fulvestrant-naïve, and ER- cohort, respectively. Adding trastuzumab at progression in 5 patients resulted in 3 partial responses and 1 stable disease {greater than or equal to}24 weeks. CBR appeared positively associated with lobular histology and negatively associated with HER2 L755 alterations. Acquired HER2mut were detected in 5 of 23 patients at progression. CONCLUSION Neratinib and fulvestrant is active for ER+/HER2mut MBC. Our data supports further evaluation of dual HER2 blockade for the treatment of HER2mut MBC.
Collapse
Affiliation(s)
- Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis School of Medicine
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine
| | | | | | | | - Janice Lu
- Medicine, University of Southern California
| | | | - Melody Cobleigh
- Rush University Cancer Center, Rush University Medical Center
| | | | - Nancy U Lin
- Medical Oncology, Dana-Farber Cancer Institute
| | - Eric P Winer
- Division of Breast Oncology, Dana-Farber Cancer Institute
| | | | | | - Shana Thomas
- Internal Medicine, Washington University in St. Louis School of Medicine
| | - Brittney Haas
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine
| | | | | | | | - Lisa A Carey
- Medicine, University of North Carolina School of Medicine
| | | | - Feng Gao
- Department of Surgery, Washington University in St. Louis School of Medicine
| | - Gretchen Kimmick
- Department of Medicine, Division of Medical Oncology, Duke Medical Center
| | - Mark D Pegram
- Department of Medicine, Stanford Comprehensive Cancer Institute
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine
| | - Ron Bose
- Medicine, Division of Oncology, Washington University in St. Louis School of Medicine
| |
Collapse
|
25
|
Tao G, Dagher F, Ghose R. Neratinib causes non-recoverable gut injury and reduces intestinal cytochrome P450 3A enzyme in mice. Toxicol Res (Camb) 2022; 11:184-194. [PMID: 35237423 PMCID: PMC8882787 DOI: 10.1093/toxres/tfab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neratinib is a pan-HER tyrosine kinase inhibitor newly approved by FDA in 2017 to treat HER2-positive breast cancer, but the phase III trial of neratinib showed that 96% of the patients taking neratinib experienced diarrhea. So far very few mechanistic studies explore neratinib-induced gastrointestinal (GI) toxicity. Hereby, we performed toxicity studies in mice to characterize the potential mechanism underlying this adverse effect. C57BL/6 J mice were separated into three groups A, B, C. Group A received vehicle; group B was orally dosed with 100 mg/kg neratinib once daily for 18 days. Group C was dosed with 100 mg/kg neratinib for 12 days and switched to vehicle for 6 days. Intestine and liver were collected for further analysis. Human intestine-derived cells were treated with neratinib in vitro. Our results showed that 12 days treatment of neratinib caused persistent histological damage in mouse GI tract. Both gene expression and activity of Cyp3a11, the major enzyme metabolizing neratinib in mice was reduced in small intestine. The gene expression of proinflammatory cytokines increased throughout the GI tract. Such damages were not recovered after 6 days without neratinib treatment. In addition, in vitro data showed that neratinib was potent in killing human intestine-derived cell lines. Based on such findings, we hypothesized that neratinib downregulates intestinal CYP3A enzyme to cause excessive drug disposition, eventually leading to gut injury.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Romi Ghose
- Correspondence address. Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health Building 2, Room 7045, 4849 Calhoun Rd., 4349 Martin Luther King Blvd., Houston, TX 77204, USA. Tel: +1-832-842-8343. E-mail:
| |
Collapse
|
26
|
Saura C, Matito J, Oliveira M, Wildiers H, Brufksy AM, Waters SH, Hurvitz SA, Moy B, Kim SB, Gradishar WJ, Queiroz GS, Cronemberger E, Wallweber GJ, Bebchuk J, Keyvanjah K, Lalani AS, Bryce R, Vivancos A, Eli LD, Delaloge S. Biomarker Analysis of the Phase III NALA Study of Neratinib + Capecitabine versus Lapatinib + Capecitabine in Patients with Previously Treated Metastatic Breast Cancer. Clin Cancer Res 2021; 27:5818-5827. [PMID: 34380637 PMCID: PMC9401509 DOI: 10.1158/1078-0432.ccr-21-1584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Neratinib plus capecitabine (N+C) demonstrated significant progression-free survival (PFS) benefit in NALA (NCT01808573), a randomized phase III trial comparing N+C with lapatinib + capecitabine (L+C) in 621 patients with HER2-positive (HER2+) metastatic breast cancer (MBC) who had received ≥2 prior HER2-directed regimens in the metastatic setting. We evaluated correlations between exploratory biomarkers and PFS. PATIENTS AND METHODS Somatic mutations were evaluated by next-generation sequencing on primary or metastatic samples. HER2 protein expression was evaluated by central IHC, H-score, and VeraTag/HERmark. p95 expression (truncated HER2) was measured by VeraTag. HRs were estimated using unstratified Cox proportional hazards models. RESULTS Four hundred and twenty samples had successful sequencing: 34.0% had PIK3CA mutations and 5.5% had HER2 (ERBB2) mutations. In the combined patient populations, PIK3CA mutations trended toward shorter PFS [wild-type vs. mutant, HR = 0.81; 95% confidence interval (CI), 0.64-1.03], whereas HER2 mutations trended toward longer PFS [HR = 1.69 (95% CI, 0.97-3.29)]. Higher HER2 protein expression was associated with longer PFS [IHC 3+ vs. 2+, HR = 0.67 (0.54-0.82); H-score ≥240 versus <240, HR = 0.77 (0.63-0.93); HERmark positive vs. negative, HR = 0.76 (0.59-0.98)]. Patients whose tumors had higher HER2 protein expression (any method) derived an increased benefit from N+C compared with L+C [IHC 3+, HR = 0.64 (0.51-0.81); H-score ≥ 240, HR = 0.54 (0.41-0.72); HERmark positive, HR = 0.65 (0.50-0.84)], as did patients with high p95 [p95 ≥2.8 relative fluorescence (RF)/mm2, HR = 0.66 (0.50-0.86) vs. p95 < 2.8 RF/mm2, HR = 0.91 (0.61-1.36)]. CONCLUSIONS PIK3CA mutations were associated with shorter PFS whereas higher HER2 expression was associated with longer PFS. Higher HER2 protein expression was also associated with a greater benefit for N+C compared with L+C.
Collapse
Affiliation(s)
- Cristina Saura
- Vall d'Hebron University Hospital, Barcelona, Spain.
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
- SOLTI Innovative Breast Cancer Research, Barcelona, Spain
| | - Judit Matito
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Mafalda Oliveira
- Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
- SOLTI Innovative Breast Cancer Research, Barcelona, Spain
| | | | | | | | - Sara A Hurvitz
- University of California at Los Angeles, Los Angeles, California
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Sung-Bae Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (South)
| | - William J Gradishar
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | | | | | - Gerald J Wallweber
- Monogram Biosciences, Inc., Laboratory Corporation of America Holdings, South San Francisco, California
| | | | | | | | | | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
- SOLTI Innovative Breast Cancer Research, Barcelona, Spain
| | - Lisa D Eli
- Puma Biotechnology Inc., Los Angeles, California
| | | |
Collapse
|
27
|
Ren Z, Li Q, Shen Y, Meng L. Intrinsic relative preference profile of pan-kinase inhibitor drug staurosporine towards the clinically occurring gatekeeper mutations in Protein Tyrosine Kinases. Comput Biol Chem 2021; 94:107562. [PMID: 34428735 DOI: 10.1016/j.compbiolchem.2021.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
Protein tyrosine kinases (PTKs) have been recognized as the attractive druggable targets of various diseases including cancer. However, many PTKs are clinically observed to establish a gatekeeper mutation in the peripheral hinge section of active site, which plays a primary role in development of acquired drug resistance to kinase inhibitors. The natural product Staurosporine, an ATP-competitive reversible pan-kinase inhibitor, has been found to exhibit wild type-sparing selectivity for some PTK gatekeeper mutants. In this study, totally 23 acquired drug-resistant gatekeeper mutations harbored on 17 PTKs involved in diverse cancers were curated, from which only five amino acid types, namely Thr, Met, Val, Leu and Ile, were observed at both wild-type and mutant residues of these clinically occurring gatekeeper sites. Here, an integrative strategy that combined molecular modeling and kinase assay was described to systematically investigate the relative preference of Staurosporine towards the five gatekeeper amino acid types in real kinase context and in a psendokinase model. A kinase-free, intrinsic relative preference profile of Staurosporine to gatekeeper amino acids was created: (dispreferred) Thr⊳Val⊳Ile⊳Leu⊳Met (preferred). It is found that kinase context has no essential effect on the profile; different kinases and even psendokinase can obtain a consistent conclusion for the preference order. Theoretically, we can use the profile to predict Staurosporine response to any gatekeeper mutation between the five amino acid types in any PTK. Structural and energetic analyses revealed that the multiple-aromatic ring system of Staurosporine can form multiple noncovalent interactions with the weakly polar side chain of Met and can pack tightly or moderately against the nonpolar side chains of Val, Ile and Leu, thus stabilizing the kinase-inhibitor system (ΔU < 0), whereas the polar side chain of Thr may cause unfavorable electronegative and solvent effects with the aromatic electrons of Staurosporine, thus destabilizing the system (ΔU > 0).
Collapse
Affiliation(s)
- Zheng Ren
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Li
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiwen Shen
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ling Meng
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
28
|
Abstract
Hanker et al. reveal that co-occurring missense mutations in the human epidermal growth factor receptor 2 (HER2) and its catalytically inactive homolog HER3 synergize to promote oncogenic signaling by the HER2/HER3 complex.
Collapse
|
29
|
Gameiro A, Urbano AC, Ferreira F. Emerging Biomarkers and Targeted Therapies in Feline Mammary Carcinoma. Vet Sci 2021; 8:164. [PMID: 34437486 PMCID: PMC8402877 DOI: 10.3390/vetsci8080164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common aggressive malignancy with a low survival rate that lacks viable therapeutic options beyond mastectomy. Recently, increasing efforts have been made to understand the molecular mechanisms underlying FMC development, using the knowledge gained from studies on human breast cancer to discover new diagnostic and prognostic biomarkers, thus reinforcing the utility of the cat as a cancer model. In this article, we review the current knowledge on FMC pathogenesis, biomarkers, and prognosis factors and offer new insights into novel therapeutic options for HER2-positive and triple-negative FMC subtypes.
Collapse
Affiliation(s)
| | | | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (A.C.U.)
| |
Collapse
|
30
|
Hanker AB, Brown BP, Meiler J, Marín A, Jayanthan HS, Ye D, Lin CC, Akamatsu H, Lee KM, Chatterjee S, Sudhan DR, Servetto A, Brewer MR, Koch JP, Sheehan JH, He J, Lalani AS, Arteaga CL. Co-occurring gain-of-function mutations in HER2 and HER3 modulate HER2/HER3 activation, oncogenesis, and HER2 inhibitor sensitivity. Cancer Cell 2021; 39:1099-1114.e8. [PMID: 34171264 PMCID: PMC8355076 DOI: 10.1016/j.ccell.2021.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/28/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Activating mutations in HER2 (ERBB2) drive the growth of a subset of breast and other cancers and tend to co-occur with HER3 (ERBB3) missense mutations. The HER2 tyrosine kinase inhibitor neratinib has shown clinical activity against HER2-mutant tumors. To characterize the role of HER3 mutations in HER2-mutant tumors, we integrate computational structural modeling with biochemical and cell biological analyses. Computational modeling predicts that the frequent HER3E928G kinase domain mutation enhances the affinity of HER2/HER3 and reduces binding of HER2 to its inhibitor neratinib. Co-expression of mutant HER2/HER3 enhances HER2/HER3 co-immunoprecipitation and ligand-independent activation of HER2/HER3 and PI3K/AKT, resulting in enhanced growth, invasiveness, and resistance to HER2-targeted therapies, which can be reversed by combined treatment with PI3Kα inhibitors. Our results provide a mechanistic rationale for the evolutionary selection of co-occurring HER2/HER3 mutations and the recent clinical observations that HER3 mutations are associated with a poor response to neratinib in HER2-mutant cancers.
Collapse
MESH Headings
- Aminopyridines/administration & dosage
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gain of Function Mutation
- Humans
- Mice, Nude
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Morpholines/administration & dosage
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors/administration & dosage
- Protein Multimerization
- Quinolines/administration & dosage
- Quinolines/chemistry
- Quinolines/metabolism
- Quinolines/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Trastuzumab/pharmacology
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Ariella B Hanker
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Benjamin P Brown
- Chemical and Physical Biology Program, Center for Structural Biology, and Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - Arnaldo Marín
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA; Doctoral Program in Medical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Harikrishna S Jayanthan
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Dan Ye
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Chang-Ching Lin
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Hiroaki Akamatsu
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Kyung-Min Lee
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA; Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04736, Republic of Korea
| | - Sumanta Chatterjee
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Dhivya R Sudhan
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Alberto Servetto
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Monica Red Brewer
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - James P Koch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan H Sheehan
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie He
- Foundation Medicine, Cambridge, MA 02141, USA
| | | | - Carlos L Arteaga
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Lobular Breast Cancer: Histomorphology and Different Concepts of a Special Spectrum of Tumors. Cancers (Basel) 2021; 13:cancers13153695. [PMID: 34359596 PMCID: PMC8345067 DOI: 10.3390/cancers13153695] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Invasive lobular breast cancer (ILC) is a special type of breast cancer (BC) that was first described in 1941. The diagnosis of ILC is made by microscopy of tumor specimens, which reveals a distinct morphology. This review recapitulates the developments in the microscopic assessment of ILC from 1941 until today. We discuss different concepts of ILC, provide an overview on ILC variants, and highlight advances which have contributed to a better understanding of ILC as a special histologic spectrum of tumors. Abstract Invasive lobular breast cancer (ILC) is the most common special histological type of breast cancer (BC). This review recapitulates developments in the histomorphologic assessment of ILC from its beginnings with the seminal work of Foote and Stewart, which was published in 1941, until today. We discuss different concepts of ILC and their implications. These concepts include (i) BC arising from mammary lobules, (ii) BC growing in dissociated cells and single files, and (iii) BC defined as a morpho-molecular spectrum of tumors with distinct histological and molecular characteristics related to impaired cell adhesion. This review also provides a comprehensive overview of ILC variants, their histomorphology, and differential diagnosis. Furthermore, this review highlights recent advances which have contributed to a better understanding of the histomorphology of ILC, such as the role of the basal lamina component laminin, the molecular specificities of triple-negative ILC, and E-cadherin to P-cadherin expression switching as the molecular determinant of tubular elements in CDH1-deficient ILC. Last but not least, we provide a detailed account of the tumor microenvironment in ILC, including tumor infiltrating lymphocyte (TIL) levels, which are comparatively low in ILC compared to other BCs, but correlate with clinical outcome. The distinct histomorphology of ILC clearly reflects a special tumor biology. In the clinic, special treatment strategies have been established for triple-negative, HER2-positive, and ER-positive BC. Treatment specialization for patients diagnosed with ILC is just in its beginnings. Accordingly, ILC deserves greater attention as a special tumor entity in BC diagnostics, patient care, and cancer research.
Collapse
|
32
|
Uribe ML, Marrocco I, Yarden Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers (Basel) 2021; 13:cancers13112748. [PMID: 34206026 PMCID: PMC8197917 DOI: 10.3390/cancers13112748] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has served as the founding member of the large family of growth factor receptors harboring intrinsic tyrosine kinase function. High abundance of EGFR and large internal deletions are frequently observed in brain tumors, whereas point mutations and small insertions within the kinase domain are common in lung cancer. For these reasons EGFR and its preferred heterodimer partner, HER2/ERBB2, became popular targets of anti-cancer therapies. Nevertheless, EGFR research keeps revealing unexpected observations, which are reviewed herein. Once activated by a ligand, EGFR initiates a time-dependent series of molecular switches comprising downregulation of a large cohort of microRNAs, up-regulation of newly synthesized mRNAs, and covalent protein modifications, collectively controlling phenotype-determining genes. In addition to microRNAs, long non-coding RNAs and circular RNAs play critical roles in EGFR signaling. Along with driver mutations, EGFR drives metastasis in many ways. Paracrine loops comprising tumor and stromal cells enable EGFR to fuel invasion across tissue barriers, survival of clusters of circulating tumor cells, as well as colonization of distant organs. We conclude by listing all clinically approved anti-cancer drugs targeting either EGFR or HER2. Because emergence of drug resistance is nearly inevitable, we discuss the major evasion mechanisms.
Collapse
|
33
|
Uchida S, Kojima T, Sugino T. Clinicopathological Features, Tumor Mutational Burden, and Tumour-Infiltrating Lymphocyte Interplay in ERBB2-Mutated Breast Cancer: In Silico Analysis. Pathol Oncol Res 2021; 27:633243. [PMID: 34257600 PMCID: PMC8262144 DOI: 10.3389/pore.2021.633243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023]
Abstract
Recent evidence suggests that somatic mutations in ERBB2 activate ERBB2 signaling. These mutations occur at a frequency of approximately 3% in breast cancer (BC). ERBB2 mutations indicate poor prognosis as they are associated with recurrence and metastasis. This study aimed to evaluate the clinicopathological features, immune infiltration levels, tumor mutational burden (TMB), and tumor-infiltrating lymphocytes (TILs) in ERBB2-mutated breast cancer (ERBB2-mutated BC) using a bioinformatic approach and publicly available datasets (i.e., TCGA-BRCA and TIMER2.0). ERBB2-mutated BCs were associated with a high histological grade. ERBB2-mutated BCs comprised invasive breast carcinoma of no special type (21/35, 60%), classic invasive lobular carcinoma (12/35, 34.3%), and pleomorphic invasive lobular carcinoma (2/35, 5.7%). A Kaplan-Meier survival curve demonstrated that ERBB2-mutated BC was associated with a significantly worse prognosis compared to ERBB2 non-mutated BC (p < 0.01). Furthermore, 40% (14/35) of the patients with ERBB2-mutated BC harbored CDH1 mutations. Mutations at L755 and V777 accounted for 30.5% of these mutations in ERBB2-mutated BC, suggesting that these sites are mutational hot spots in BC, particularly in invasive lobular carcinoma. Of the ERBB2-mutated BCs, 8.6% were classified as TIL-high, whereas 77.1% were TILs-low; TMB significantly correlated with TILs (p < 0.05). CD8+ T cell infiltration levels were significantly higher in ERBB2 non-mutated BC. Among ERBB2-mutated BCs, 22.9% were classified as TMB-high, which was significantly higher than the rate in the ERBB2 non-mutated BC (p < 0.01). These findings provide evidence for a link between ERBB2 mutations and high TMB in BC.
Collapse
Affiliation(s)
- Shiro Uchida
- Division of Diagnostic Pathology, Kikuna Memorial Hospital, Yokohama, Japan.,Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
34
|
Zhao M, Scott S, Evans KW, Yuca E, Saridogan T, Zheng X, Wang H, Korkut A, Cruz Pico CX, Demirhan M, Kirby B, Kopetz S, Diala I, Lalani AS, Piha-Paul S, Meric-Bernstam F. Combining Neratinib with CDK4/6, mTOR, and MEK Inhibitors in Models of HER2-positive Cancer. Clin Cancer Res 2021; 27:1681-1694. [PMID: 33414137 PMCID: PMC8075007 DOI: 10.1158/1078-0432.ccr-20-3017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Neratinib is an irreversible, pan-HER tyrosine kinase inhibitor that is FDA approved for HER2-overexpressing/amplified (HER2+) breast cancer. In this preclinical study, we explored the efficacy of neratinib in combination with inhibitors of downstream signaling in HER2+ cancers in vitro and in vivo. EXPERIMENTAL DESIGN Cell viability, colony formation assays, and Western blotting were used to determine the effect of neratinib in vitro. In vivo efficacy was assessed with patient-derived xenografts (PDX): two breast, two colorectal, and one esophageal cancer (with HER2 mutations). Four PDXs were derived from patients who received previous HER2-targeted therapy. Proteomics were assessed through reverse phase protein arrays and network-level adaptive responses were assessed through Target Score algorithm. RESULTS In HER2+ breast cancer cells, neratinib was synergistic with multiple agents, including mTOR inhibitors everolimus and sapanisertib, MEK inhibitor trametinib, CDK4/6 inhibitor palbociclib, and PI3Kα inhibitor alpelisib. We tested efficacy of neratinib with everolimus, trametinib, or palbociclib in five HER2+ PDXs. Neratinib combined with everolimus or trametinib led to a 100% increase in median event-free survival (EFS; tumor doubling time) in 25% (1/4) and 60% (3/5) of models, respectively, while neratinib with palbociclib increased EFS in all five models. Network analysis of adaptive responses demonstrated upregulation of EGFR and HER2 signaling in response to CDK4/6, mTOR, and MEK inhibition, possibly providing an explanation for the observed synergies with neratinib. CONCLUSIONS Taken together, our results provide strong preclinical evidence for combining neratinib with CDK4/6, mTOR, and MEK inhibitors for the treatment of HER2+ cancer.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Turcin Saridogan
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heping Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christian X Cruz Pico
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehmet Demirhan
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bryce Kirby
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Sarina Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute of Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Gameiro A, Almeida F, Nascimento C, Correia J, Ferreira F. Tyrosine Kinase Inhibitors Are Promising Therapeutic Tools for Cats with HER2-Positive Mammary Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13030346. [PMID: 33800900 PMCID: PMC8002158 DOI: 10.3390/pharmaceutics13030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common neoplasia in cat, being HER2-positive the most prevalent subtype. In woman’s breast cancer, tyrosine kinase inhibitors (TKi) are used as a therapeutic option, by blocking the phosphorylation of the HER2 tyrosine kinase domain. Moreover, clinical trials demonstrated that TKi produce synergistic antiproliferative effects in combination with mTOR inhibitors, overcoming resistance to therapy. Thus, to uncover new chemotherapeutic strategies for cats, the antiproliferative effects of two TKi (lapatinib and neratinib), and their combination with a mTOR inhibitor (rapamycin), were evaluated in FMC cell lines (CAT-M, FMCp and FMCm) and compared with a human breast cancer cell line (SkBR-3). Results revealed that both TKi induced antiproliferative effects in all feline cell lines, by blocking the phosphorylation of EGFR members and its downstream effectors. Furthermore, combined treatments with rapamycin presented synergetic antiproliferative effects. Additionally, the DNA sequence of the her2 TK domain (exons 18 to 20) was determined in 40 FMC tissue samples, and despite several mutations were found none of them were described as inducing resistance to therapy. Altogether, our results demonstrated that TKi and combined protocols may be useful in the treatment of cats with mammary carcinomas, and that TKi-resistant FMC are rare.
Collapse
Affiliation(s)
- Andreia Gameiro
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
| | - Filipe Almeida
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
- Antiviral Resistance Laboratory, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Catarina Nascimento
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
| | - Jorge Correia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
| | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
- Correspondence: ; Tel.: +351-21-365-2800 (ext. 431234)
| |
Collapse
|
36
|
Qu Y, Liu Y, Ding K, Li Y, Hong X, Zhang H. Partial Response to Pyrotinib Plus Capecitabine in an Advanced Breast Cancer Patient with HER2 Amplification and R157W Mutation After Anti- HER2 Treatment: A Case Report and Literature Review. Onco Targets Ther 2021; 14:1581-1588. [PMID: 33688205 PMCID: PMC7936716 DOI: 10.2147/ott.s289876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 01/08/2023] Open
Abstract
Human epidermal growth factor receptor2 (HER2) overexpression/amplification is associated with high malignancy, rapid disease progression and poor overall survival in breast cancer. The application of anti-HER2 drugs has greatly improved the survival of patients with HER2-positive breast cancer, but drug resistance issues affect the long-term efficacy. The HER2 mutation is considered to be one of the reasons for resistance to anti-HER2 therapy, and there is currently no standard treatment. We report for the first time the detection of HER2 amplification with R157W mutation by second-generation sequencing (NGS) in a 57-year-old hormone receptor-negative, HER2-positive woman with advanced breast cancer who was resistant to multi-line anti-HER2 therapies. She subsequently received pyrotinib combined with capecitabine treatment and achieved partial response. The small-molecule pan-HER family irreversible inhibitor pyrotinib combined with capecitabine has shown a promising effect in the treatment of HER2 mutation-induced resistance, but the molecular mechanism and efficacy need to be further verified.
Collapse
Affiliation(s)
- Yanchun Qu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yufeng Liu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Kailin Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yong Li
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiaoyu Hong
- Nanjing Geneseeq Technology Inc, Nanjing, People's Republic of China
| | - Haibo Zhang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
37
|
Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer 2021; 21:181-197. [PMID: 33462501 DOI: 10.1038/s41568-020-00322-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Aberrant signalling of ERBB family members plays an important role in tumorigenesis and in the escape from antitumour immunity in multiple malignancies. Molecular-targeted agents against these signalling pathways exhibit robust clinical efficacy, but patients inevitably experience acquired resistance to these molecular-targeted therapies. Although cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have shown durable antitumour response in a subset of the treated patients in multiple cancer types, clinical efficacy is limited in cancers harbouring activating gene alterations of ERBB family members. In particular, ICI treatment of patients with non-small cell lung cancers with epidermal growth factor receptor (EGFR) alterations and breast cancers with HER2 alterations failed to show clinical benefits, suggesting that EGFR and HER2 signalling may have an essential role in inhibiting antitumour immune responses. Here, we discuss the mechanisms by which the signalling of ERBB family members affects not only autonomous cancer hallmarks, such as uncontrolled cell proliferation, but also antitumour immune responses in the tumour microenvironment and the potential application of immune-genome precision medicine into immunotherapy and molecular-targeted therapy focusing on the signalling of ERBB family members.
Collapse
Affiliation(s)
- Shogo Kumagai
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
| |
Collapse
|
38
|
Priedigkeit N, Ding K, Horne W, Kolls JK, Du T, Lucas PC, Blohmer JU, Denkert C, Machleidt A, Ingold-Heppner B, Oesterreich S, Lee AV. Acquired mutations and transcriptional remodeling in long-term estrogen-deprived locoregional breast cancer recurrences. Breast Cancer Res 2021; 23:1. [PMID: 33407744 PMCID: PMC7788918 DOI: 10.1186/s13058-020-01379-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Endocrine therapy resistance is a hallmark of advanced estrogen receptor (ER)-positive breast cancer. In this study, we aimed to determine acquired genomic changes in endocrine-resistant disease. METHODS We performed DNA/RNA hybrid-capture sequencing on 12 locoregional recurrences after long-term estrogen deprivation and identified acquired genomic changes versus each tumor's matched primary. RESULTS Despite being up to 7 years removed from the primary lesion, most recurrences harbored similar intrinsic transcriptional and copy number profiles. Only two genes, AKAP9 and KMT2C, were found to have single nucleotide variant (SNV) enrichments in more than one recurrence. Enriched mutations in single cases included SNVs within transcriptional regulators such as ARID1A, TP53, FOXO1, BRD1, NCOA1, and NCOR2 with one local recurrence gaining three PIK3CA mutations. In contrast to DNA-level changes, we discovered recurrent outlier mRNA expression alterations were common-including outlier gains in TP63 (n = 5 cases [42%]), NTRK3 (n = 5 [42%]), NTRK2 (n = 4 [33%]), PAX3 (n = 4 [33%]), FGFR4 (n = 3 [25%]), and TERT (n = 3 [25%]). Recurrent losses involved ESR1 (n = 5 [42%]), RELN (n = 5 [42%]), SFRP4 (n = 4 [33%]), and FOSB (n = 4 [33%]). ESR1-depleted recurrences harbored shared transcriptional remodeling events including upregulation of PROM1 and other basal cancer markers. CONCLUSIONS Taken together, this study defines acquired genomic changes in long-term, estrogen-deprived disease; highlights the importance of longitudinal RNA profiling; and identifies a common ESR1-depleted endocrine-resistant breast cancer subtype with basal-like transcriptional reprogramming.
Collapse
Affiliation(s)
- Nolan Priedigkeit
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Tian Du
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Peter C Lucas
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jens-Uwe Blohmer
- Institute of Pathology and Department of Gynecology, Charité University Hospital, Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Anna Machleidt
- Institute of Pathology and Department of Gynecology, Charité University Hospital, Berlin, Germany
| | | | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Magee-Women's Research Institute, 204 Craft Avenue (Room A412), Pittsburgh, PA, 15213, USA.
| |
Collapse
|
39
|
Chen H, Libring S, Ruddraraju KV, Miao J, Solorio L, Zhang ZY, Wendt MK. SHP2 is a multifunctional therapeutic target in drug resistant metastatic breast cancer. Oncogene 2020; 39:7166-7180. [PMID: 33033382 PMCID: PMC7714690 DOI: 10.1038/s41388-020-01488-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Metastatic breast cancer (MBC) is an extremely recalcitrant disease capable of bypassing current targeted therapies via engagement of several growth promoting pathways. SH2 containing protein tyrosine phosphatase-2 (SHP2) is an oncogenic phosphatase known to facilitate growth and survival signaling downstream of numerous receptor inputs. Herein, we used inducible genetic depletion and two distinct pharmacological inhibitors to investigate the therapeutic potential of targeting SHP2 in MBC. Cells that acquired resistance to the ErbB kinase inhibitor, neratinib, displayed increased phosphorylation of SHP2 at the Y542 activation site. In addition, higher levels of SHP2 phosphorylation, but not expression, were associated with decreased survival of breast cancer patients. Pharmacological inhibition of SHP2 activity blocked ERK1/2 and AKT signaling generated from exogenous stimulation with FGF2, PDGF, and hGF and readily prevented MBC cell growth induced by these factors. SHP2 was also phosphorylated upon engagement of the extracellular matrix (ECM) via focal adhesion kinase. Consistent with the potential of SHP2-targeted compounds as therapeutic agents, the growth inhibitory property of SHP2 blockade was enhanced in ECM-rich 3D culture environments. In vivo blockade of SHP2 in the adjuvant setting decreased pulmonary metastasis and extended the survival of systemic tumor-bearing mice. Finally, inhibition of SHP2 in combination with FGFR-targeted kinase inhibitors synergistically blocked the growth of MBC cells. Overall, our findings support the conclusion that SHP2 constitutes a shared signaling node allowing MBC cells to simultaneously engage a diversity of growth and survival pathways, including those derived from the ECM.
Collapse
Affiliation(s)
- Hao Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
40
|
Fedorova O, Daks A, Shuvalov O, Kizenko A, Petukhov A, Gnennaya Y, Barlev N. Attenuation of p53 mutant as an approach for treatment Her2-positive cancer. Cell Death Discov 2020; 6:100. [PMID: 33083021 PMCID: PMC7548004 DOI: 10.1038/s41420-020-00337-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the world's leading causes of oncological disease-related death. It is characterized by a high degree of heterogeneity on the clinical, morphological, and molecular levels. Based on molecular profiling breast carcinomas are divided into several subtypes depending on the expression of a number of cell surface receptors, e.g., ER, PR, and HER2. The Her2-positive subtype occurs in ~10-15% of all cases of breast cancer, and is characterized by a worse prognosis of patient survival. This is due to a high and early relapse rate, as well as an increased level of metastases. Several FDA-approved drugs for the treatment of Her2-positive tumors have been developed, although eventually cancer cells develop drug resistance. These drugs target either the homo- or heterodimerization of Her2 receptors or the receptors' RTK activity, both of them being critical for the proliferation of cancer cells. Notably, Her2-positive cancers also frequently harbor mutations in the TP53 tumor suppressor gene, which exacerbates the unfavorable prognosis. In this review, we describe the molecular mechanisms of RTK-specific drugs and discuss new perspectives of combinatorial treatment of Her2-positive cancers through inhibition of the mutant form of p53.
Collapse
Affiliation(s)
| | | | | | | | - Alexey Petukhov
- Institute of cytology RAS, St-Petersburg, Russia
- Almazov Federal North-West Medical Research Centre, St-Petersburg, Russia
| | | | - Nikolai Barlev
- Institute of cytology RAS, St-Petersburg, Russia
- MIPT, Doloprudnuy, Moscow region, Russia
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
- Chumakov FSC R&D IBP RAS, Moscow, 108819 Russia
| |
Collapse
|
41
|
Oliveira M, Garrigós L, Assaf JD, Escrivá-de-Romaní S, Saura C. Neratinib plus capecitabine for the treatment of advanced HER2-positive breast cancer. Expert Rev Anticancer Ther 2020; 20:731-741. [PMID: 32862744 DOI: 10.1080/14737140.2020.1807947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Several agents are being developed for advanced HER2-positive breast cancer, such as potent tyrosine kinase inhibitors (TKI) targeting ErbB family receptors, novel antibody-drug conjugates, higher affinity anti-HER2 antibodies, among others. Neratinib is an irreversible pan-HER (EGFR, ERBB2, and ERBB4) TKI being tested in early and advanced HER2-positive breast cancer. In the NALA trial, neratinib plus capecitabine led to increased PFS and time to intervention for central nervous system disease over the standard regimen of lapatinib plus capecitabine. The main adverse event in the neratinib arm was diarrhea, which mandates for prophylactic treatment with loperamide. AREAS COVERED In this review, we analyze and discuss preclinical and clinical data with neratinib plus capecitabine. We summarize efficacy and safety results from phase I/II and III trials, and discuss this regimen within the landscape of treatment for patients with HER2-positive metastatic breast cancer progressing after two lines of HER2-directed treatment. EXPERT OPINION Neratinib plus capecitabine is a valid treatment option for patients with advanced HER2-positive breast cancer, after progression to at least two anti-HER2-based regimens. Given the multiple options that are being developed in this context, efforts should be employed to establish strong predictive biomarkers of efficacy to each drug and combination.
Collapse
Affiliation(s)
- Mafalda Oliveira
- Medical Oncology Department, Vall d'Hebron Hospital , Barcelona, Spain.,Breast Cancer Group, Vall d'Hebron Institute of Oncology , Barcelona, Spain
| | - Laia Garrigós
- Medical Oncology Department, Vall d'Hebron Hospital , Barcelona, Spain.,Breast Cancer Group, Vall d'Hebron Institute of Oncology , Barcelona, Spain
| | - Juan David Assaf
- Medical Oncology Department, Vall d'Hebron Hospital , Barcelona, Spain
| | - Santiago Escrivá-de-Romaní
- Medical Oncology Department, Vall d'Hebron Hospital , Barcelona, Spain.,Breast Cancer Group, Vall d'Hebron Institute of Oncology , Barcelona, Spain
| | - Cristina Saura
- Medical Oncology Department, Vall d'Hebron Hospital , Barcelona, Spain.,Breast Cancer Group, Vall d'Hebron Institute of Oncology , Barcelona, Spain
| |
Collapse
|
42
|
Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev 2020; 121:3297-3351. [PMID: 32692162 DOI: 10.1021/acs.chemrev.0c00383] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been huge progress in the discovery of targeted cancer therapies in recent years. However, even for the most successful and impactful cancer drugs which have been approved, both innate and acquired mechanisms of resistance are commonplace. These emerging mechanisms of resistance have been studied intensively, which has enabled drug discovery scientists to learn how it may be possible to overcome such resistance in subsequent generations of treatments. In some cases, novel drug candidates have been able to supersede previously approved agents; in other cases they have been used sequentially or in combinations with existing treatments. This review summarizes the current field in terms of the challenges and opportunities that cancer resistance presents to drug discovery scientists, with a focus on small molecule therapeutics. As part of this review, common themes and approaches have been identified which have been utilized to successfully target emerging mechanisms of resistance. This includes the increase in target potency and selectivity, alternative chemical scaffolds, change of mechanism of action (covalents, PROTACs), increases in blood-brain barrier permeability (BBBP), and the targeting of allosteric pockets. Finally, wider approaches are covered such as monoclonal antibodies (mAbs), bispecific antibodies, antibody drug conjugates (ADCs), and combination therapies.
Collapse
Affiliation(s)
- Richard A Ward
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nicolas Floc'h
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
43
|
Huang B, Yip WK, Wei N, Luo KQ. Acetyltanshinone IIA is more potent than lapatinib in inhibiting cell growth and degrading HER2 protein in drug-resistant HER2-positive breast cancer cells. Cancer Lett 2020; 490:1-11. [PMID: 32585412 DOI: 10.1016/j.canlet.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
High expression of human epidermal factor receptor 2 (HER2) is directly related to tumor progression, malignancy and drug resistance in HER2-positive breast cancer (HER2-PBC). The major limitation of current anti-HER2 therapies is that they cannot reduce the levels of HER2 protein. Here, we investigated the effect of acetyltanshinone IIA (ATA) in lapatinib-resistant HER2-PBC cells. Our data showed that ATA exhibited more potent effects than lapatinib against drug-resistant HER2-PBC cells in terms of (1) inhibiting cell growth, (2) reducing phosphorylated and total HER2 levels, (3) inhibiting tumor xenograft growth in nude mice, and (4) reducing HER2 protein levels in tumor xenografts. A mechanistic study revealed that ATA promoted HER2 degradation via increasing c-Cbl and CHIP-mediated HER2 ubiquitination and subsequent HER2 degradation by the proteasome or lysosome. ATA also reduced the levels of other tyrosine kinase receptors (TKRs), such as HER3, IGF-1R and MET, in lapatinib-resistant cells. Our findings suggest that direct degradation of HER2 and other TKRs can be an effective strategy for combatting drug resistance. They also indicate the potential utilization of ATA in treating breast cancer that is resistant or nonresponsive to current HER2-targeted therapies.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Wai Kien Yip
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Na Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
44
|
Joshi SK, Keck JM, Eide CA, Bottomly D, Traer E, Tyner JW, McWeeney SK, Tognon CE, Druker BJ. ERBB2/HER2 mutations are transforming and therapeutically targetable in leukemia. Leukemia 2020; 34:2798-2804. [PMID: 32366937 PMCID: PMC7515826 DOI: 10.1038/s41375-020-0844-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jamie M Keck
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA.,Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA.,Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. .,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. .,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA. .,Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
45
|
Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020; 37:496-513. [PMID: 32289273 PMCID: PMC7169993 DOI: 10.1016/j.ccell.2020.03.009] [Citation(s) in RCA: 530] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common breast cancer subtype. Treatment of ER+ breast cancer comprises interventions that suppress estrogen production and/or target the ER directly (overall labeled as endocrine therapy). While endocrine therapy has considerably reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a major challenge. An increasing number of mechanisms of endocrine resistance have been reported, including somatic alterations, epigenetic changes, and changes in the tumor microenvironment. Here, we review recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance.
Collapse
Affiliation(s)
- Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Dhivya R Sudhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
46
|
Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A. Evolving concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond. Semin Cancer Biol 2020; 72:123-135. [PMID: 32112814 DOI: 10.1016/j.semcancer.2020.02.016] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
The human epidermal growth factor receptor 2 (HER2) is a well-known negative prognostic factor in breast cancer and a target of the monoclonal antibody trastuzumab as well as of other anti-HER2 compounds. Pioneering works on HER2-positive breast cancer in the 90s' launched a new era in clinical research and oncology practice that has reshaped the natural history of this disease. In diagnostic pathology the HER2 status is routinely assessed by using a combination of immunohistochemistry (IHC, to evaluate HER2 protein expression levels) and in situ hybridization (ISH, to assess HER2 gene status). For this purpose, international recommendations have been developed by a consensus of experts in the field, which have changed over the years according to new experimental and clinical data. In this review article we will document the changes that have contributed to a better evaluation of the HER2 status in clinical practice, furthermore we will discuss HER2 heterogeneity defined by IHC and ISH as well as by transcriptomic analysis and we will critically describe the complexity of HER2 equivocal results. Finally, we will introduce the clinical impact of HER2 mutations and we will define the upcoming category of HER2-low breast cancer with respect to emerging clinical data on the efficacy of specific anti-HER2 agents in subgroups of breast carcinomas lacking the classical oncogene addition dictated by HER2 amplification.
Collapse
Affiliation(s)
- Caterina Marchiò
- Department of Medical Sciences, University of Turin, Turin, Italy; Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy; Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Ana Marques
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Pathology Unit, Centro Hospitalar São João, Porto, Portugal
| | - Laura Casorzo
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Enrico Berrino
- Department of Medical Sciences, University of Turin, Turin, Italy; Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy; Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
47
|
Sudhan DR, Guerrero-Zotano A, Won H, González Ericsson P, Servetto A, Huerta-Rosario M, Ye D, Lee KM, Formisano L, Guo Y, Liu Q, Kinch LN, Red Brewer M, Dugger T, Koch J, Wick MJ, Cutler RE, Lalani AS, Bryce R, Auerbach A, Hanker AB, Arteaga CL. Hyperactivation of TORC1 Drives Resistance to the Pan-HER Tyrosine Kinase Inhibitor Neratinib in HER2-Mutant Cancers. Cancer Cell 2020; 37:183-199.e5. [PMID: 31978326 PMCID: PMC7301608 DOI: 10.1016/j.ccell.2019.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/30/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
We developed neratinib-resistant HER2-mutant cancer cells by gradual dose escalation. RNA sequencing identified TORC1 signaling as an actionable mechanism of drug resistance. Primary and acquired neratinib resistance in HER2-mutant breast cancer patient-derived xenografts (PDXs) was also associated with TORC1 hyperactivity. Genetic suppression of RAPTOR or RHEB ablated P-S6 and restored sensitivity to the tyrosine kinase inhibitor. The combination of the TORC1 inhibitor everolimus and neratinib potently arrested the growth of neratinib-resistant xenografts and organoids established from neratinib-resistant PDXs. RNA and whole-exome sequencing revealed RAS-mediated TORC1 activation in a subset of neratinib-resistant models. DNA sequencing of HER2-mutant tumors clinically refractory to neratinib, as well as circulating tumor DNA profiling of patients who progressed on neratinib, showed enrichment of genomic alterations that converge to activate the mTOR pathway.
Collapse
Affiliation(s)
- Dhivya R Sudhan
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Helen Won
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alberto Servetto
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mariela Huerta-Rosario
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dan Ye
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyung-Min Lee
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luigi Formisano
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Monica Red Brewer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Teresa Dugger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Koch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | - Ariella B Hanker
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
48
|
Adaptive resistance to trastuzumab impairs response to neratinib and lapatinib through deregulation of cell death mechanisms. Cancer Lett 2020; 470:161-169. [DOI: 10.1016/j.canlet.2019.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022]
|
49
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
50
|
Chen Z, Sun T, Yang Z, Zheng Y, Yu R, Wu X, Yan J, Shao YW, Shao X, Cao W, Wang X. Monitoring treatment efficacy and resistance in breast cancer patients via circulating tumor DNA genomic profiling. Mol Genet Genomic Med 2019; 8:e1079. [PMID: 31867841 PMCID: PMC7005625 DOI: 10.1002/mgg3.1079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/16/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023] Open
Abstract
Background One of the major challenges in managing invasive breast cancer (BC) is the lack of reliable biomarkers to track response. Circulating tumor DNA (ctDNA) from liquid biopsy, as a candidate biomarker, provides a valuable assessment of BC patients. In this retrospective study, we evaluated the utility of ctDNA to reflect the efficacy of treatment and to monitor resistance mechanisms. Methods Targeted next‐generation sequencing (NGS) of 416 cancer‐relevant genes was performed on 41 plasma biopsy samples of 19 HER2+ and 12 HER2‐ BC patients. Longitudinal ctDNA samples were analyzed in three BC patients over the treatment course for detecting acquired mutations. Results In HER2+ BC patients, ERBB2 somatic copy numbers in ctDNA samples were significantly higher in patients progressed on HER2‐targeted therapy than those who were still responding to the treatment. Recurrent acquired mutations were detected in genes including ERBB2, TP53, EGFR, NF1, and SETD2, which may contribute to trastuzumab resistance. In longitudinal analyses, the observed mutation allele frequencies were tracked closely in concordance with treatment responses. A novel ERBB2 p.(Leu869Arg) mutation was acquired in one patient upon resistant to trastuzumab therapy, which was further validated as an oncogenic mutation in vitro and contributed to resistance. In HER2‐ BC patients with chemotherapy resistance, genetic alterations on TP53, PIK3CA, and DNA damage repair genes were frequently observed. Conclusions In summary, ctDNA monitoring, particularly longitudinal analyses, provides valuable insights into the assessment of targeted therapy efficacy and gene alterations underlying trastuzumab resistance and chemotherapy resistance in HER2+ and HER2‐ BC patients, respectively.
Collapse
Affiliation(s)
- Zhanhong Chen
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Tian Sun
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, Ontario, Canada
| | - Ziyan Yang
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Yabing Zheng
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruoying Yu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, Ontario, Canada
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, Ontario, Canada
| | - Junrong Yan
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang W Shao
- Nanjing Geneseeq Technology Inc., Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiying Shao
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wenming Cao
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiaojia Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|