1
|
Bedrosian ZK, Ruark EM, Sharma N, Silverstein RB, Manning A, Kohlsaat L, Markiewicz MA. NKG2D ligand expression on NK cells induces NKG2D-mediated cross-tolerization of cytokine signaling and reduces NK cell tumor immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf030. [PMID: 40199610 DOI: 10.1093/jimmun/vkaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/22/2025] [Indexed: 04/10/2025]
Abstract
Studies support a role for natural killer (NK) cells in cancer control, making these cells attractive for immunotherapy. One method being tested to make effective NK cells is the ex vivo activation with interleukin (IL)-12, IL-15, and IL-18. We demonstrate that this induces NKG2D ligands on NK cells. By engaging NKG2D, this NKG2D ligand expression eliminated the ability of both mouse and human NK cells to control tumor growth in vivo and in vitro, respectively. NKG2D-NKG2D ligand interaction between mouse NK cells reduced NK cell proliferation, CD25 and T-bet expression, and tumor necrosis factor and interferon γ release. NKG2D signaling induced between human NK cells similarly decreased interferon γ but did not affect T-bet or CD25 expression. These data demonstrate that NKG2D signaling can cross-tolerize cytokine signaling and suggest that eliminating this signaling could be beneficial in NK cell adoptive therapy. Further, these results highlight a need to better delineate effects downstream of NKG2D signaling in human, rather than mouse, NK cells.
Collapse
Affiliation(s)
- Zoe K Bedrosian
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Elizabeth M Ruark
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Neekun Sharma
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Rachel B Silverstein
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Allison Manning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Lauren Kohlsaat
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Mary A Markiewicz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
2
|
Chen YC, Bazewicz CG, Dinavahi SS, Huntington ND, Schell TD, Robertson GP. Emerging Role of the p53 Pathway in Modulating NK Cell-Mediated Immunity. Mol Cancer Ther 2025; 24:523-535. [PMID: 39470047 DOI: 10.1158/1535-7163.mct-24-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
The p53 pathway plays an important role in role in cancer immunity. Mutation or downregulation of the proteins in the p53 pathway are prevalent in many cancers, contributing to tumor progression and immune dysregulation. Recent findings suggest that the activity of p53 within tumor cells, immune cells, and the tumor microenvironment can play an important role in modulating NK cell-mediated immunity. Consequently, efforts to restore p53 pathway activity are being actively pursued to modulate this form of immunity. This review focuses on p53 activity regulating the infiltration and activation of NK cells in the tumor immune microenvironment. Furthermore, the impact of p53 and its regulation of NK cells on immunogenic cell death within solid tumors and the abscopal effect are reviewed. Finally, future avenues for therapeutically restoring p53 activity to improve NK cell-mediated antitumor immunity and optimize the effectiveness of cancer therapies are discussed.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher G Bazewicz
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Saketh S Dinavahi
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- oNKo-Innate Pty Ltd. Moonee Ponds, Victoria, Australia
| | - Todd D Schell
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
3
|
Chou SC, Kuo CY, Ko HW, Huang PT, Liu CH, Wang LS, Liang YJ. Sesamin induces cell cycle arrest and upregulation of NKG2D ligands in MG‑63 cells and increases susceptibility to NK cell cytotoxicity. Exp Ther Med 2025; 29:72. [PMID: 39991723 PMCID: PMC11843192 DOI: 10.3892/etm.2025.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/25/2024] [Indexed: 02/25/2025] Open
Abstract
Osteosarcoma is a common solid malignancy in children and adolescents. Despite a success of standard therapeutic approaches, an effective therapeutic strategy is in a great need for improved outcomes. The aim of the present study was to investigate the anticancer effect of sesamin and its influence on NKG2D ligand expression in human osteosarcoma MG-63 cells and to compare the differences in NK cell elimination efficiency before and after treatment. Cell viability of MG-63 cells treated with serial concentrations of sesamin (0-100 µM) was measured using MTT. Induction of cell cycle arrest was determined with flow cytometry. Flow cytometry and reverse transcription-quantitative PCR were employed to detect the changes of protein and mRNA level of NKG2D ligands before and after treatment with sesamin. NK cell elimination assay was performed to determine the changes in NK cell-mediated cytotoxicity against MG-63 cells treated with sesamin. Sesamin induced G2/M cell cycle arrest in MG-63 cells with increased p21 expression. Expression of MICA, MICB and ULBP1 at the protein and mRNA level were significantly increased (P<0.05). MG-63 cells treated with sesamin were more susceptible to NK cell-mediated elimination (P<0.05). Enhanced NK cell-mediated cytotoxicity was correlated with expression of NKG2D ligands (P<0.05). In conclusion, sesamin can induce cell cycle arrest and upregulate the expression of NKG2D ligands in MG-63 cells, thereby enhancing NK cell-mediated cytotoxicity against osteosarcoma cells.
Collapse
Affiliation(s)
- Shou-Chu Chou
- Department of Family Medicine, Occupational Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan, R.O.C
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Cheng-Yi Kuo
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan, R.O.C
| | - How-Wen Ko
- Division of Thoracic Oncology, Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 33302, Taiwan, R.O.C
| | - Pai-Tsang Huang
- Department of Occupational Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan, R.O.C
| | - Chia-Hung Liu
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan, R.O.C
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan, R.O.C
| | - Long-Siang Wang
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan, R.O.C
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| |
Collapse
|
4
|
Ribeiro LSS, Xavier DR, Rosa TDS, Macêdo AA, Ribeiro DLS, Paz FS, Silva EMC, Ribeiro AIL, Torres-Júnior JRS, Viana RB, Tchaicka L, Carvalho-Neta AV. Characterization and transcription of non-classical class I major histocompatibility complex (MHC) genes in buffaloes. BRAZ J BIOL 2025; 85:e281304. [PMID: 40172450 DOI: 10.1590/1519-6984.281304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2025] [Indexed: 04/04/2025] Open
Abstract
The objective of the present study was to characterize non-classical class I major histocompatibility complex (MHC) genes in buffaloes and evaluate the expression of these genes in different tissue components of the placenta of buffaloes during pregnancy and in trophoblastic cells after stimulation using lipopolysaccharide (LPS). To do this, DNA was extracted from the blood of buffaloes and was subjected to PCR testing and sequencing of the genes NC3 and MICB. The RNA extracted from the placentome and intercotyledonary region of buffaloes in their first (n = 6), second (n = 6) and third (n = 6) trimesters of gestation was subjected to real-time PCR. Explants were created using the chorioallantoic membrane and two experimental groups were established: control and stimulated with LPS for four hours to evaluate the gene expression profile. Analysis on the sequences obtained showed that the genes NC3 and MICB of buffaloes were homologous with those of cattle, with high similarity in the analysis on the sequence variation pattern. The gene expression analysis showed that the genes assessed were transcribed at stages and in placental tissue that differed from what was seen in cattle. The transcription of these genes varied in the tissues studied, with greater transcription of MICB in the intercotyledonary region over the first third of gestation, while the genes studied in the placentome presented low rates of transcription. The trophoblastic cells of the chorioallantoic membrane stimulated with LPS for six hours did not present non-classic MFC-I transcription alterations. The present study therefore provides additional knowledge regarding the immune regulation of placental tissues of buffaloes.
Collapse
Affiliation(s)
- L S S Ribeiro
- Universidade Estadual do Maranhão, Rede de Biodiversidade e Biotecnologia da Amazônia Legal, São Luís, MA, Brasil
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| | - D R Xavier
- Universidade de São Paulo, Faculdade de Saúde Pública, São Paulo, SP, Brasil
| | - T D S Rosa
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| | - A A Macêdo
- Faculdade Vale do Aço - FAVALE, Curso de Medicina Veterinária, Imperatriz, MA, Brasil
| | - D L S Ribeiro
- Universidade Estadual do Maranhão, Departamento das Clínicas Veterinárias, São Luís, MA, Brasil
| | - F S Paz
- Universidade Estadual do Maranhão, Departamento de Química e Biologia, São Luís MA, Brasil
| | - E M C Silva
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| | - A I L Ribeiro
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| | - J R S Torres-Júnior
- Universidade Federal do Maranhão - UFMA, Departamento de Oceanografia e Limnologia, São Luís, MA, Brasil
| | - R B Viana
- Universidade Federal Rural da Amazônia, Instituto de Saúde e Produção Animal, Belém PA, Brasil
| | - L Tchaicka
- Universidade Estadual do Maranhão, Departamento de Química e Biologia, São Luís MA, Brasil
| | - A V Carvalho-Neta
- Universidade Estadual do Maranhão, Rede de Biodiversidade e Biotecnologia da Amazônia Legal, São Luís, MA, Brasil
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| |
Collapse
|
5
|
Lv J, Liu Z, Ren X, Song S, Zhang Y, Wang Y. γδT cells, a key subset of T cell for cancer immunotherapy. Front Immunol 2025; 16:1562188. [PMID: 40226616 PMCID: PMC11985848 DOI: 10.3389/fimmu.2025.1562188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
γδT cells represent a unique and versatile subset of T cells characterized by the expression of T-cell receptors (TCRs) composed of γ and δ chains. Unlike conventional αβT cells, γδT cells do not require major histocompatibility complex (MHC)-dependent antigen presentation for activation, enabling them to recognize and respond to a wide array of antigens, including phosphoantigens, stress-induced ligands, and tumor-associated antigens. While γδT cells are relatively rare in peripheral blood, they are enriched in peripheral tissues such as the skin, intestine, and lung. These cells play a crucial role in tumor immunotherapy by exerting direct cytotoxicity through the production of inflammatory cytokines (e.g., interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-17 (IL-17)) and cytotoxic molecules (e.g., perforin and granzyme). Recent advances in γδT cell research have elucidated their mechanisms of tumor recognition, including the detection of phosphoantigens and stress-induced ligands like MICA (MHC class I polypeptide-related sequence A), MICB (MHC class I polypeptide-related sequence B), and ULBP (UL16-binding protein). Furthermore, various strategies to enhance γδT cell-based tumor immunotherapy have been developed, such as in vitro expansion using phosphoantigen-based therapies, cytokine stimulation, and chimeric antigen receptor (CAR)-γδT cell engineering. These advancements have shown promising results in both preclinical and clinical settings, paving the way for γδT cells to become a powerful tool in cancer immunotherapy. This review highlights the key mechanisms, functions, and strategies to harness the potential of γδT cells for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Jianzhen Lv
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zheng Liu
- Pathology Department, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiangting Ren
- Medical School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yan Zhang
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Bartolini R, Trueb L, Daoudlarian D, Joo V, Noto A, Stadelmann R, Gentner B, Fenwick C, Perreau M, Coukos G, Pantaleo G, Arber C, Obeid M. Enrichment of CD7 +CXCR3 + CAR T cells in infusion products is associated with durable remission in relapsed or refractory diffuse large B-cell lymphoma. Ann Oncol 2025:S0923-7534(25)00122-X. [PMID: 40132760 DOI: 10.1016/j.annonc.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy is the standard of care for relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL). However, more than half of patients fail to achieve durable remission. Identifying predictive biomarkers within the CAR T-cell infusion product (IP) may guide strategies to improve clinical outcomes. PATIENTS AND METHODS This single-center observational study conducted at Lausanne University Hospital (CHUV), Switzerland, analyzed IPs from 13 patients with R/R DLBCL who underwent standard-of-care CAR T-cell therapy. A 39-marker mass cytometry panel was used to compare phenotypic and functional markers between long-term responders (R) and non-responders (NR). Unsupervised and supervised analytic approaches were applied to IP data, and longitudinal peripheral blood samples were collected over 30 days post-infusion to track CAR T-cell subpopulation dynamics. RESULTS At a median follow-up of 13·5 months, median progression-free survival (PFS) was 13·3 months (95% CI 9·7-24·3) in R (n=8) versus 3·5 months (95% CI 0·5-5·4) in NR (n=5) (hazard ratio 56·67 [95% CI 7·3-439·3]; p=0·0001). A CD3+CXCR3+CD7+ CAR T-cell subpopulation-found in both CD4+ and CD8+ compartments-was significantly enriched in R. These cells showed increased expression of perforin, granzyme B, and NKG2D (restricted to CD8+ cells). In contrast, NR had a higher frequency of CXCR3+CD7+LAG3+ CAR T-cells. Surface expression of CD3, CD7, CXCR3, and NKG2D were higher in R, whereas LAG3, Ki67, and CD71 were elevated in NR. A predictive cut-off ratio of CD3+CXCR3+CD7+LAG3+CAR+ T-cells <0·83 and CD3+CXCR3+CD7+NKG2D+CAR+ T-cells >1·034 yielded a predictive accuracy of 0·92. Serum CXCL9 and CXCL10 concentrations did not differ between groups. CONCLUSION Enrichment of CD7+CXCR3+ CAR T-cells alongside elevated NKG2D expression in R, in contrast to higher LAG3 and CD71 in NR, emerged as potentially robust correlates of therapeutic outcome. Although derived from a small, hypothesis-generating cohort, these findings suggest that targeted analysis of IP composition may inform the development of biomarker-driven strategies to optimize CAR T-cell products and improve the likelihood of durable remission in R/R DLBCL.
Collapse
Affiliation(s)
- R Bartolini
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - L Trueb
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Oncology, Immuno-Oncology Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - D Daoudlarian
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - V Joo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - A Noto
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - R Stadelmann
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Departments of Oncology and Laboratory Medicine, Hematology Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - B Gentner
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Oncology, Immuno-Oncology Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland; Swiss Cancer Center Léman, Lausanne, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - C Fenwick
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - M Perreau
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - G Coukos
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Oncology, Immuno-Oncology Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland; Swiss Cancer Center Léman, Lausanne, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - G Pantaleo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - C Arber
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Oncology, Immuno-Oncology Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland; Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Departments of Oncology and Laboratory Medicine, Hematology Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland; Swiss Cancer Center Léman, Lausanne, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - M Obeid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Service, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
7
|
Lin MH, Hu LJ, Miller JS, Huang XJ, Zhao XY. CAR-NK cell therapy: a potential antiviral platform. Sci Bull (Beijing) 2025; 70:765-777. [PMID: 39837721 DOI: 10.1016/j.scib.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Viral infections persist as a significant cause of morbidity and mortality worldwide. Conventional therapeutic approaches often fall short in fully eliminating viral infections, primarily due to the emergence of drug resistance. Natural killer (NK) cells, one of the important members of the innate immune system, possess potent immunosurveillance and cytotoxic functions, thereby playing a crucial role in the host's defense against viral infections. Chimeric antigen receptor (CAR)-NK cell therapy has been developed to redirect the cytotoxic function of NK cells specifically towards virus-infected cells, further enhancing their cytotoxic efficacy. In this manuscript, we review the role of NK cells in antiviral infections and explore the mechanisms by which viruses evade immune detection. Subsequently, we focus on the optimization strategies for CAR-NK cell therapy to address existing limitations. Furthermore, we discuss significant advancements in CAR-NK cell therapy targeting viral infections, including those caused by severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, hepatitis B virus, human cytomegalovirus, and Epstein-Barr virus.
Collapse
Affiliation(s)
- Ming-Hao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China.
| |
Collapse
|
8
|
Henden C, Fjerdingstad HB, Bjørnsen EG, Thiruchelvam-Kyle L, Daws MR, Inngjerdingen M, Glover JC, Dissen E. NK-cell cytotoxicity toward pluripotent stem cells and their neural progeny: impacts of activating and inhibitory receptors and KIR/HLA mismatch. Stem Cells 2025; 43:sxae083. [PMID: 39708357 PMCID: PMC11929945 DOI: 10.1093/stmcls/sxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK-cell receptors and their ligands. Reporter cells expressing the activating receptor NKG2D responded strongly to embryonic stem (ES) cell lines and induced pluripotent stem (iPS) cell lines, whereas reporter cells expressing the activating receptors NKp30, NKp46, KIR2DS1, KIR2DS2, and KIR2DS4 did not respond. Human ES and iPS cells invariably expressed several ligands for NKG2D. Expression of HLA-C and HLA-E was lacking or low, insufficient to trigger reporter cells expressing the inhibitory receptors KIR2DL1, -2DL2, or -2DL3. Similar results were obtained for the pluripotent embryonic carcinoma cell lines NTERA-2 and 2102Ep, and also iPS-cell-derived neural progenitor cells. Importantly, neural progenitor cells and iPS-cell-derived motoneurons also expressed B7H6, the ligand for the activating receptor NKp30. In line with these observations, IL-2-stimulated NK cells showed robust cytotoxic responses to ES and iPS cells as well as to iPS-cell-derived motoneurons. No significant differences in cytotoxicity levels were observed between KIR/HLA matched and mismatched combinations of NK cells and pluripotent targets. Together, these data indicate that pluripotent stem cells and their neural progeny are targets for NK-cell killing both by failing to sufficiently express ligands for inhibitory receptors and by expression of ligands for activating receptors.
Collapse
Affiliation(s)
- Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Hege B Fjerdingstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0317 Oslo, Norway
| | - Joel C Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
9
|
Benjamin JS, Jarret A, Bharill S, Fontanillas P, Yadav S, Sen D, Ayupova D, Kellar D, Tilk S, Hom C, Bahrami Dizicheh Z, Chen IL, Diep AN, Shi S, Ivic N, Bonnans C, Owyang A, Sood P, Fuh G, Schmidt M, Gerrick KY, Koenig P, Poggio M. 23ME-01473, an Fc Effector-Enhanced Anti-ULBP6/2/5 Antibody, Restores NK Cell-Mediated Antitumor Immunity through NKG2D and FcγRIIIa Activation. CANCER RESEARCH COMMUNICATIONS 2025; 5:476-495. [PMID: 40116579 PMCID: PMC11927390 DOI: 10.1158/2767-9764.crc-24-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
SIGNIFICANCE This study emphasizes the utility of population-based genome-wide assessments for discovering naturally occurring genetic variants associated with lifetime risks for cancer or immune diseases as novel drug targets. We identify ULBP6 as a potential keystone member of the NKG2D pathway, which is important for antitumor immunity. Targeting ULBP6 may hold therapeutic promise for patients with cancer.
Collapse
Affiliation(s)
| | - Abigail Jarret
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | | | | | - Shruti Yadav
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Debasish Sen
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Dina Ayupova
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | | | - Susanne Tilk
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Clifford Hom
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | | | - I-Ling Chen
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Anh N Diep
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Shi Shi
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Nives Ivic
- Proteros Biostructures GmbH, Planegg, Germany
| | | | - Alex Owyang
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Pranidhi Sood
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Germaine Fuh
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Maike Schmidt
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | | | - Patrick Koenig
- 23andMe, Inc. Therapeutics, South San Francisco, California
| | - Mauro Poggio
- 23andMe, Inc. Therapeutics, South San Francisco, California
| |
Collapse
|
10
|
Hooda V, Sharma A. Interactions of NK Cells and Macrophages: From Infections to Cancer Therapeutics. Immunology 2025; 174:287-295. [PMID: 39739619 DOI: 10.1111/imm.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
The interaction between immune cells brings a consequence either on their role and functioning or the functioning of the other immune cells, modulating the whole mechanistic pathway. The interaction between natural killer (NK) cells and macrophages is one such interaction which is relatively less explored amongst diseased conditions. Their significance comes from their innate nature and secretion of large proportions of cytokines and chemokines which results in influencing adaptive immune responses. Their interplay can lead to several functional outcomes such as NK cell activation/inhibition, increased cytotoxicity and IFNγ release by NK cells, inhibition of macrophage function, etc. This paper delves into the interaction amongst NK cells and macrophages via different receptor-ligands and cytokines, particularly emphasising microbial infections and tumours. The review has the potential to uncover new insights and approaches that could lead to the development of innovative therapeutic tools and targets.
Collapse
Affiliation(s)
- Vishakha Hooda
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
11
|
Li C, Xue Y, Yinwang E, Ye Z. The Recruitment and Immune Suppression Mechanisms of Myeloid-Derived Suppressor Cells and Their Impact on Bone Metastatic Cancer. Cancer Rep (Hoboken) 2025; 8:e70044. [PMID: 39947253 PMCID: PMC11825175 DOI: 10.1002/cnr2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND MDSCs are immature neutrophils and monocytes with immunosuppressive potentials, involving mononuclear MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). RECENT FINDINGS They are significant components of the tumor microenvironment (TME). Besides, recent studies also verified that MDSCs also facilitated the progression of bone metastasis by regulating the network of cytokines and the function of immune cells. CONCLUSION It is necessary to summarize the mechanisms of MDSC recruitment and immunosuppression, and their impact on bone metastasis.
Collapse
Affiliation(s)
- Chengyuan Li
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yucheng Xue
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Eloy Yinwang
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
12
|
Wang J, Wu Y, Yang J, Ying S, Luo H, Zha L, Li Q. Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice. Food Res Int 2025; 201:115634. [PMID: 39849761 DOI: 10.1016/j.foodres.2024.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/30/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206). After 4 weeks, HFD-fed mice were further allotted to HFD, GDM, GDM + XOS, GDM + Akk, GDM + XOS + Akk, GDM + PGF, GDM + PGF + XOS, GDM + PGF + Akk, and GDM + PGF + XOS + Akk groups (n ≥ 19). GDM was induced by intraperitoneally injecting streptozotocin and PGF was established by intragastrically administrating antibiotic cocktails. XOS (500 mg/kg·BW) or/and Akk (4 × 108 CFU) were gavaged once a day for 10 days. Fasting blood glucose (FBG), insulin, oral glucose tolerance test (OGTT) and insulin signaling pathway were determined. Gut microbiota were detected by 16S rRNA sequencing and absolute quantities of Akk by qRT-PCR. Intestinal tissues were stained by Hematoxylin-Eosin and Periodic acid-Schiff-Alcian blue staining. Occludin and Zonula occludens-1 (ZO-1) in intestine, Natural killer group 2 member D (NKG2D) on intestinal epithelial lymphocytes (IELs) and NKG2D ligands (NKG2DL) on intestinal epithelial cells (IECs) were detected by Western blotting. In GDM mice, XOS, Akk and XOS + Akk reduced (p < 0.05) the area under the curve of OGTT (AUC), insulin and homeostasis model assessment of insulin resistance (HOMA-IR), and increased (p < 0.05) protein kinase B (Akt) phosphorylation in liver and insulin receptor substrate 1 (IRS-1) phosphorylation in muscle. Furthermore, XOS + Akk reduced (p < 0.05) FBG and increased (p < 0.05) Akt phosphorylation in muscle and IRS-1 phosphorylation in liver. XOS, Akk and XOS + Akk reshaped gut microbiota with XOS + Akk exhibiting the greatest effectiveness. XOS increased (p < 0.05) Akk and clearance of gut microbiota abolished such effect. XOS, Akk and XOS + Akk reduced (p < 0.05) the small intestine Chiu's score and the colon Dieleman's scores, increased (p < 0.05) ZO-1 and Occludin, and reduced (p < 0.05) NKG2D on IELs and NKG2DLs (H60, MULT-1, Rae-1ε) on IECs. Moreover, XOS + Akk reduced (p < 0.05) MULT-1 in duodenum. Collectively, XOS and Akk synergistically ameliorate IR by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in GDM mice.
Collapse
Affiliation(s)
- Jiexian Wang
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Yanhua Wu
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Junyi Yang
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Shihao Ying
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China
| | - Qing Li
- Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
13
|
Nikkhoi SK, Li G, Hatefi A. Natural killer cell engagers for cancer immunotherapy. Front Oncol 2025; 14:1483884. [PMID: 39911822 PMCID: PMC11794116 DOI: 10.3389/fonc.2024.1483884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
This review article explores the rapidly evolving field of bi-, tri-, and multi-specific NK cell engagers (NKCEs), highlighting their potential as a cutting-edge approach in cancer immunotherapy. NKCEs offer a significant advancement over conventional monoclonal antibodies (mAbs) by enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). They achieve this by stably and selectively binding to both NK cell activating receptors and tumor-associated antigens (TAAs). Unlike traditional mAbs, which depend on the relatively transient interaction between their Fc region and CD16a, NKCEs establish more robust connections with a range of activating receptors (e.g., CD16a, NKG2D, NKp30, NKp46, NKG2C) and inhibitory receptors (e.g., Siglec-7) on NK cells, thereby increasing cancer cell killing efficacy and specificity. This review article critically examines the strategies for engineering bi-, tri-, and multi-specific NKCEs for cancer immunotherapy, providing an in-depth analysis of the latest advancements in NKCE platform technologies currently under development by pharmaceutical and biotech companies and discussing the preclinical and clinical progress of these products. While NKCEs show great promise, the review underscores the need for continued research to optimize their therapeutic efficacy and to overcome obstacles related to NK cell functionality in cancer patients. Ultimately, this article presents an overview of the current landscape and future prospects of NKCE-based cancer immunotherapy, emphasizing its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | - Geng Li
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
14
|
Pogoda-Wesołowska A, Sługocka N, Synowiec A, Brodaczewska K, Mejer-Zahorowski M, Ziękiewicz M, Szypowski W, Szymański P, Stępień A. The current state of knowledge on the role of NKG2D ligands in multiple sclerosis and other autoimmune diseases. Front Mol Neurosci 2025; 17:1493308. [PMID: 39866909 PMCID: PMC11758245 DOI: 10.3389/fnmol.2024.1493308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing. However, its exact cause remains unclear. The main tests used to support the diagnosis are magnetic resonance imaging (MRI) examination and cerebrospinal fluid (CSF) analysis. Nonetheless, to date, no sensitive or specific marker has been identified for the detection of the disease at its initial stage. In recent years, researchers have focused on the fact that the number of natural killer cell group 2 member D (NKG2D) family of C-type lectin-like receptor + (NKG2D+) T cells in the peripheral blood, CSF, and brain tissue has been shown to be higher in patients with MS than in controls. The activating receptor belonging to the NKG2D is stimulated by specific ligands: in humans these are major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) and MHC class I polypeptide-related sequence B (MICB) proteins and UL16 binding 1-6 proteins (ULBP1-6). Under physiological conditions, the aforementioned ligands are expressed at low or undetectable levels but can be induced in response to stress factors. NKG2D ligands (NKG2DLs) are involved in epigenetic regulation of their expression. To date, studies in cell cultures, animal models, and brain tissues have revealed elevated expression of MICA/B, ULPB4, and its mouse homolog murine UL16 binding protein-like transcript (MULT1), in oligodendrocytes and astrocytes from patients with MS. Furthermore, soluble forms of NKG2DLs were elevated in the plasma and CSF of patients with MS compared to controls. In this review, we aim to describe the role of NKG2D and NKG2DLs, and their interactions in the pathogenesis of MS, as well as in other autoimmune diseases such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), and celiac disease (CeD). We also assess the potential of these proteins as diagnostic markers and consider future perspectives for targeting NKG2D ligands and their pathways as therapeutic targets in MS.
Collapse
Affiliation(s)
| | - Nina Sługocka
- Faculty of Medicine, University of Warsaw, Warsaw, Poland
| | - Agnieszka Synowiec
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marcin Mejer-Zahorowski
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Maciej Ziękiewicz
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Wojciech Szypowski
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Piotr Szymański
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Adam Stępień
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| |
Collapse
|
15
|
Wang Z, Zhang G. CAR-iNKT cell therapy: mechanisms, advantages, and challenges. Curr Res Transl Med 2025; 73:103488. [PMID: 39662251 DOI: 10.1016/j.retram.2024.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
In recent years, chimeric antigen receptor (CAR) T-cell therapy has emerged as a groundbreaking approach in cancer immunotherapy. Particularly in hematologic malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL), B cell lymphomas and multiple myeloma. CAR-T therapy has demonstrated remarkable clinical efficacy, leading to the approval of several CAR-T cell products and offering significant benefits to numerous leukemia patients. Despite these successes, the application of CAR-T cells in solid tumors remains limited due to significant challenges, including immunosuppressive tumor microenvironments, heterogeneous antigen expression, and treatment-associated toxicities. In parallel with CAR-T development, researchers are investigating other immune cell platforms to overcome these obstacles. Among these, invariant natural killer T (iNKT) cells have garnered increasing attention for their unique immunological properties. Unlike conventional T cells, iNKT cells are a subset of T lymphocytes characterized by the expression of a semi-invariant T-cell receptor (TCR) that recognizes lipid antigens presented by CD1d molecules. This distinctive antigen recognition mechanism enables iNKT cells to bridge innate and adaptive immunity, granting them potent antitumor activity and the ability to modulate the tumor microenvironment. Additionally, iNKT cells exhibit intrinsic resistance to exhaustion and an enhanced ability to infiltrate solid tumors compared to traditional T cells. Building on these properties, researchers are leveraging CAR technology to enhance iNKT cell tumor-targeting capabilities, aiming to overcome barriers encountered in solid tumor therapy. This review provides an in-depth discussion of the application and therapeutic potential of CAR-iNKT cells in cancer immunotherapy, with a focus on their advantages over conventional CAR-T cells and their role in addressing the challenges of solid tumor treatment.
Collapse
Affiliation(s)
- Zixuan Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing 101149, China
| | - Guangji Zhang
- Beijing Rongai Biotechnology Co., Ltd, 1st Floor, Building 29, No. 5 Kechuang East 2nd Street, Tongzhou District, Beijing 101100, China.
| |
Collapse
|
16
|
Xu A, Li Z, Ding Y, Wang X, Yang Y, Du L, Wang D, Shu S, Wang Z. Electroacupuncture suppresses NK cell infiltration and activation in the ischemic mouse brain through STAT3 inhibition. Brain Res Bull 2024; 219:111128. [PMID: 39542049 DOI: 10.1016/j.brainresbull.2024.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
AIMS Electroacupuncture (EA) at Shuigou (GV26) and Baihui (GV20) has shown therapeutic benefits for stroke patients. Given that natural killer (NK) cell infiltration into the brain significantly contributes to the exacerbation of cerebral ischemic injury, this study investigated the impact of EA at Shuigou (GV26) and Baihui (GV20) on post-ischemic brain infiltration and activation of NK cells. METHODS Neurological deficit score, rotarod test, adhesive removal test, and TTC staining were used to evaluate the beneficial effects of EA in middle cerebral artery occlusion (MCAO) mice. The inhibitory effect of EA on STAT3 activation was assessed using Western blot. Flow cytometry was used to explore the impact of EA on post-ischemic brain infiltration of NK cells, as well as the activating receptor NKG2D expression and interferon-γ (IFN-γ) production by these infiltrated NK cells. RESULTS EA significantly alleviated neurological functional deficits and reduced brain infarction in MCAO mice. Abundant NK cells infiltrated into the ischemic hemisphere, but this infiltration was significantly suppressed by EA. Furthermore, EA attenuated NKG2D levels and reduced production of IFN-γ by NK cells in the ischemic brain. Notably, EA's inhibitory effect on post-ischemic NK cell brain infiltration and activation was comparable to that of STAT3 inhibition. The combination of EA and STAT3 inhibition did not result in further enhancement of the inhibitory effect. Moreover, the protective effects of EA against MCAO injury were abolished when STAT3 was activated. CONCLUSION Our findings suggest that EA at Shuigou (GV26) and Baihui (GV20) inhibits the post-ischemic brain infiltration and activation of NK cells through STAT3 inhibition, significantly contributing to its therapeutic effects against brain ischemia.
Collapse
Affiliation(s)
- Ao Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziqing Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Acupuncture and Moxibustion Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi 330008, China
| | - Yangyang Ding
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyu Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yufang Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lixia Du
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shi Shu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhifei Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Hirahara Y, Shimizu K, Yamasaki S, Iyoda T, Ueda S, Sato S, Harada J, Saji H, Fujii S, Miyagi Y, Miyagi E, Fujii SI. Crucial immunological roles of the invasion front in innate and adaptive immunity in cervical cancer. Br J Cancer 2024; 131:1762-1774. [PMID: 39472714 PMCID: PMC11589768 DOI: 10.1038/s41416-024-02877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The immunostimulatory actions of innate and adaptive immune responses play a crucial role in the cancer-immunity cycle. Although cervical cancer (CC) exhibits a high recurrence rate, the relation with lymphocytes in the tumor tissue have not been analyzed. METHODS We analyzed NKT, NK, and T cells, not only in peripheral blood (PB), but also tumor tissue through histological analysis from 23 patients with CC collected before treatment. A correlation of them between PB and the tumor tissue were assessed. RESULTS We detected functional NKT and NKG2Dhi NK cells and effector CD4+ Tregs in PB. In the tumor, we detected the infiltration of LAG-3+ TIM-3+ CD4+ and CD8+ T cells rather than NK cells particularly in the invasion front (IF) by fluorescent multiplex immunohistochemistry. The heatmap and correlation analysis revealed that LAG-3+ TIM-3+ CD8+ T cells are highly associated with CD69+ CD103- exhausted CD8+ T cells. We identified the statistical relationship between CD4+Tregs in PB and the number of LAG-3+ TIM-3+ CD4+ T cells in the IF, which may be related to recurrence in patients with CC. CONCLUSIONS LAG-3+ TIM-3+ T cells located in the IF may play a key role in regulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yuhya Hirahara
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
- aAVC Drug Translational Unit, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shogo Ueda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, 241-8515, Japan
| | - Jotaro Harada
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Haruya Saji
- Department of Gynecology, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, 241-8515, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, 241-8515, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan.
- aAVC Drug Translational Unit, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan.
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
18
|
Desimio MG, Covino DA, Cancrini C, Doria M. Entry into the lytic cycle exposes EBV-infected cells to NK cell killing via upregulation of the MICB ligand for NKG2D and activation of the CD56 bright and NKG2A +KIR +CD56 dim subsets. Front Immunol 2024; 15:1467304. [PMID: 39676862 PMCID: PMC11638013 DOI: 10.3389/fimmu.2024.1467304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
The Epstein-Barr virus (EBV) is usually acquired during infancy as an asymptomatic infection and persists throughout life in a latent state under the control of the host immune system. However, EBV is associated with various malignant diseases that preferentially develop in immunodeficient individuals. Accumulating evidence suggests an important role for NK cells, though the mechanisms by which EBV evades or triggers NK cell responses are poorly understood. Here, we generated EBV-immortalized lymphoblastoid cell lines stably expressing an inducible form of the BZLF1 early lytic viral protein (LCL-Z) to challenge primary NK cells with EBV+ targets in either the latent or lytic phase of infection. We show that entry into the lytic phase results in drastic downregulation of HLA-E but not HLA-A, -B, and -C molecules and in increased expression of ligands for the activating NKG2D receptor, with MICB being upregulated at the cell membrane and released in a soluble form while ULBP2 and ULBP4 accumulate intracellularly. Furthermore, LCL-Z cells are killed by NK cells in an NKG2D-dependent manner and to a much higher extent during the lytic phase, but HLA-class I molecules constrain killing throughout the viral life cycle; unexpectedly, the antibody-mediated block of the inhibitory NKG2A receptor results in reduced lysis of lytic LCL-Z cells that are nearly devoid of the cognate HLA-E ligand. Accordingly, we show that NKG2A+ NK cell subsets, specifically CD56bright and NKG2A+KIR+CD56dim cells, are those that preferentially respond against cells with lytic EBV replication. Overall, these results shed light on NK/EBV+ cell interactions providing new information for improving NK cell-based immunotherapies to treat EBV-induced diseases.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Daniela Angela Covino
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
19
|
Noh KM, Jangid AK, Park J, Kim S, Kim K. Membrane-immobilized gemcitabine for cancer-targetable NK cell surface engineering. J Mater Chem B 2024; 12:12087-12102. [PMID: 39465499 DOI: 10.1039/d4tb01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although natural killer (NK) cell-based adoptive cell transfer (ACT) has shown promise in cancer immunotherapy, its efficacy against solid tumors is limited in the immunosuppressive tumor microenvironment (TME). Combinatorial therapies involving chemotherapeutic drugs such as gemcitabine (Gem) and NK cells have been developed to modulate the TME; however, their clinical application is constrained by low drug delivery efficiency and significant off-target toxicity. In this study, we developed cell membrane-immobilized Gem conjugates (i.e., lipid-Gem conjugates), designed to anchor seamlessly onto NK cell surfaces. Our modular-designed ex vivo cell surface engineeringmaterials comprise a lipid anchor for membrane immobilization, poly(ethylene glycol) to inhibit endocytosis, a disulfide bond as cleavable linker by glutathione (GSH) released during cancer cell lysis, and Gem for targeted sensitization. We demonstrated that the intrinsic properties of NK cells, such as proliferation and surface ligand availability, were preserved despite coating with lipid-Gem conjugates. Moreover, delivery of Gem prodrugs by lipid-Gem coated NK (GCNK) cells was shown to enhance antitumor efficacy against pancreatic cancer cells (PANC-1) through the following mechanisms: (1) NK cells recognized and attacked cancer cells, (2) intracellular GSH was leaked out from the lysed cancer cells, enabling cleavage of disulfide bond, (3) released Gem from the GCNK cells delivered to the target cells, (4) Gem upregulated MHC class I-related chain A and B on cancer cells, and (5) thereby activating NK cells led to enhance antitumor efficacy. The simultaneous co-delivery of membrane-immobilized Gem with NK cells could potentially facilitate both immune synapse-mediated cancer recognition and chemotherapeutic effects, offering a promising approach to enhance the anticancer efficacy of conventional ACTs.
Collapse
Affiliation(s)
- Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Jaewon Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
20
|
Li Y, Chen H, Zhang H, Lin Z, Song L, Zhao C. Identification of oxidative stress-related biomarkers in uterine leiomyoma: a transcriptome-combined Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1373011. [PMID: 39640883 PMCID: PMC11617171 DOI: 10.3389/fendo.2024.1373011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Oxidative stress has been implicated in the pathogenesis of uterine leiomyoma (ULM) with an increasing incidence. This study aimed to identify potential oxidative stress-related biomarkers in ULM using transcriptome data integrated with Mendelian randomization (MR) analysis. Methods Data from GSE64763 and GSE31699 in the Gene Expression Omnibus (GEO) were included in the analysis. Oxidative stress-related genes (OSRGs) were identified, and the intersection of differentially expressed genes (DEGs), Weighted Gene Co-expression Network Analysis (WGCNA) genes, and OSRGs was used to derive differentially expressed oxidative stress-related genes (DE-OSRGs). Biomarkers were subsequently identified via MR analysis, followed by Gene Set Enrichment Analysis (GSEA) and immune infiltration analysis. Nomograms, regulatory networks, and gene-drug interaction networks were constructed based on the identified biomarkers. Results A total of 883 DEGs were identified between ULM and control samples, from which 42 DE-OSRGs were screened. MR analysis revealed four biomarkers: ANXA1, CD36, MICB, and PRDX6. Predictive nomograms were generated based on these biomarkers. ANXA1, CD36, and MICB were significantly enriched in chemokine signaling and other pathways. Notably, ANXA1 showed strong associations with follicular helper T cells, resting mast cells, and M0 macrophages. CD36 was positively correlated with resting mast cells, while MICB was negatively correlated with macrophages. Additionally, ANXA1 displayed strong binding energy with amcinonide, and MICB with ribavirin. Conclusion This study identified oxidative stress-related biomarkers (ANXA1, CD36, MICB, and PRDX6) in ULM through transcriptomic and MR analysis, providing valuable insights for ULM therapeutic research.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Haoyue Chen
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Hao Zhang
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Zhaochen Lin
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Liang Song
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Chuanliang Zhao
- Department of Orthopedics, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
- Medical Integration and Practice Center, Shandong University School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
21
|
Hammoud MK, Meena C, Dietze R, Hoffmann N, Szymanski W, Finkernagel F, Nist A, Stiewe T, Graumann J, von Strandmann EP, Müller R. Arachidonic acid impairs natural killer cell functions by disrupting signaling pathways driven by activating receptors and reactive oxygen species. Cell Commun Signal 2024; 22:555. [PMID: 39563446 PMCID: PMC11575453 DOI: 10.1186/s12964-024-01940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND High levels of the polyunsaturated fatty acid arachidonic acid (AA) within the ovarian carcinoma (OC) microenvironment correlate with reduced relapse-free survival. Furthermore, OC progression is tied to compromised immunosurveillance, partially attributed to the impairment of natural killer (NK) cells. However, potential connections between AA and NK cell dysfunction in OC have not been studied. METHODS We employed a combination of phosphoproteomics, transcriptional profiling and biological assays to investigate AA's impact on NK cell functions. RESULTS AA (i) disrupts interleukin-2/15-mediated expression of pro-inflammatory genes by inhibiting STAT1-dependent signaling, (ii) hampers signaling by cytotoxicity receptors through disruption of their surface expression, (iii) diminishes phosphorylation of NKG2D-induced protein kinases, including ERK1/2, LYN, MSK1/2 and STAT1, and (iv) alters reactive oxygen species production by transcriptionally upregulating detoxification. These modifications lead to a cessation of NK cell proliferation and a reduction in cytotoxicity. CONCLUSION Our findings highlight significant AA-induced alterations in the signaling network that regulates NK cell activity. As low expression of several NK cell receptors correlates with shorter OC patient survival, these findings suggest a functional linkage between AA, NK cell dysfunction and OC progression.
Collapse
Affiliation(s)
- Mohamad K Hammoud
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Institute of Physiological Chemistry, Philipps University, Marburg, Germany
| | - Celina Meena
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Raimund Dietze
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Nathalie Hoffmann
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Witold Szymanski
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
- Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany.
| | - Rolf Müller
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
- Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany.
| |
Collapse
|
22
|
Watanabe CM, Suzuki CI, Dos Santos AM, Aloia TPA, Lee G, Wald D, Okamoto OK, de Azevedo JTC, de Godoy JAP, Santos FPS, Weinlich R, Kerbauy LN, Kutner JM, Paiva RDMA, Hamerschlak N. An Extended Flow Cytometry Evaluation of ex Vivo Expanded NK Cells Using K562.Clone1, a Feeder Cell Line Manufactured in Brazil. Transplant Cell Ther 2024; 30:1063.e1-1063.e19. [PMID: 38986739 DOI: 10.1016/j.jtct.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Natural killer (NK) cells play a crucial role in the immune system's response against cancer. However, the challenge of obtaining the required quantity of NK cells for effective therapeutic response necessitates the development of strategies for their ex vivo expansion. This study aimed to develop a novel feeder cell line, K562.Clone1, capable of promoting the ex vivo expansion of NK cells while preserving their cytotoxic potential. he K562 leukemic cell line was transduced with mbIL-21 and 4-1BBL proteins to generate K562.Clone1 cells. NK cells were then co-cultured with these feeder cells, and their expansion rate was monitored over 14 days. The cytotoxic potential of the expanded NK cells was evaluated against acute myeloid leukemia blasts and tumor cell lines of leukemia and glial origin. Statistical analysis was performed to determine the significance of the results. The K562.Clone1 co-cultured with peripheral NK showed a significant increase in cell count, with an approximate 94-fold expansion over 14 days. Expanded NK cells demonstrated cytotoxicity against the tested tumor cell lines, indicating preservation of their cytotoxic characteristics. Additionally, the CD56, CD16, inhibitory KIRs, and activation receptors were conserved and present in a well-balanced manner. The study successfully developed a feeder cell line, K562.Clone1, that effectively promotes the expansion of NK cells ex vivo while maintaining their cytotoxic potential. This development could significantly contribute to the advancement of NK cell therapy, especially in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Oswaldo Keith Okamoto
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Julia T Cottas de Azevedo
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Juliana Aparecida Preto de Godoy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fabio P S Santos
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lucila N Kerbauy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose Mauro Kutner
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel de Melo Alves Paiva
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Nelson Hamerschlak
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Futas J, Jelinek AL, Burger PA, Horin P. Comparative genomics of the Natural Killer Complex in carnivores. Front Immunol 2024; 15:1459122. [PMID: 39421739 PMCID: PMC11484026 DOI: 10.3389/fimmu.2024.1459122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Background The mammalian Natural Killer Complex (NKC) harbors genes and gene families encoding a variety of C-type lectin-like proteins expressed on various immune cells. The NKC is a complex genomic region well-characterized in mice, humans and domestic animals. The major limitations of automatic annotation of the NKC in non-model animals include short-read based sequencing, methods of assembling highly homologous and repetitive sequences, orthologues missing from reference databases and weak expression. In this situation, manual annotations of complex genomic regions are necessary. Methods This study presents a manual annotation of the genomic structure of the NKC region in a high-quality reference genome of the domestic cat and compares it with other felid species and with representatives of other carnivore families. Reference genomes of Carnivora, irrespective of sequencing and assembly methods, were screened by BLAST to retrieve information on their killer cell lectin-like receptor (KLR) gene content. Phylogenetic analysis of in silico translated proteins of expanded subfamilies was carried out. Results The overall genomic structure of the NKC in Carnivora is rather conservative in terms of its C-type lectin receptor gene content. A novel KLRH-like gene subfamily (KLRL) was identified in all Carnivora and a novel KLRJ-like gene was annotated in the Mustelidae. In all six families studied, one subfamily (KLRC) expanded and experienced pseudogenization. The KLRH gene subfamily expanded in all carnivore families except the Canidae. The KLRL gene subfamily expanded in carnivore families except the Felidae and Canidae, and in the Canidae it eroded to fragments. Conclusions Knowledge of the genomic structure and gene content of the NKC region is a prerequisite for accurate annotations of newly sequenced genomes, especially of endangered wildlife species. Identification of expressed genes, pseudogenes and gene fragments in the context of expanded gene families would allow the assessment of functionally important variability in particular species.
Collapse
Affiliation(s)
- Jan Futas
- Research Group Animal Immunogenomics, Central European Institute of Technology (CEITEC) VETUNI, Brno, Czechia
| | - April L Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czechia
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna (VETMEDUNI), Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, Central European Institute of Technology (CEITEC) VETUNI, Brno, Czechia
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czechia
| |
Collapse
|
24
|
McFarlin BK, Bridgeman EA, Curtis JH, Vingren JL, Hill DW. Baker's yeast beta glucan supplementation was associated with an improved innate immune mRNA expression response after exercise. Methods 2024; 230:68-79. [PMID: 39097177 DOI: 10.1016/j.ymeth.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Beta glucans are found in many natural sources, however, only Baker's Yeast Beta Glucan (BYBG) has been well documented to have structure-function effects that are associated with improved innate immune response to stressors (e.g., exercise, infection, etc.). The purpose was to identify a BYBG-associated mRNA expression pattern following exercise. Participants gave IRB-approved consent and were randomized to BYBG (Wellmune®; N=9) or Placebo (maltodextrin; N=10) for 6-weeks prior to performing 90 min of whole-body exercise. Paxgene blood samples were collected prior to exercise (PRE), after exercise (POST), two hours after exercise (2H), and four hours after exercise (4H). Total RNA was isolated and analyzed for the expression of 770 innate immune response mRNA (730 mRNA targets; 40 housekeepers/controls; Nanostring nCounter). The raw data were normalized against housekeeping controls and expressed as Log2 fold change from PRE for a given condition. Significance was set at p < 0.05 with adjustments for multiple comparisons and false discovery rate. We identified 47 mRNA whose expression was changed after exercise with BYBG and classified them to four functional pathways: 1) Immune Cell Maturation (8 mRNA), 2) Immune Response and Function (5 mRNA), 3) Pattern Recognition Receptors and DAMP or PAMP Detection (25 mRNA), and 4) Detection and Resolution of Tissue Damage (9 mRNA). The identified mRNA whose expression was altered after exercise with BYBG may represent an innate immune response pattern and supports previous conclusions that BYBG improves immune response to a future sterile inflammation or infection.
Collapse
Affiliation(s)
- Brian K McFarlin
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States; University of North Texas, Dept. of Biological Sciences, Denton, TX 76203, United States.
| | - Elizabeth A Bridgeman
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| | - John H Curtis
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| | - Jakob L Vingren
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States; University of North Texas, Dept. of Biological Sciences, Denton, TX 76203, United States.
| | - David W Hill
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| |
Collapse
|
25
|
Huang S, Qin Z, Wang F, Kang Y, Ren B. A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncol Rep 2024; 52:137. [PMID: 39155864 PMCID: PMC11358674 DOI: 10.3892/or.2024.8796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 08/20/2024] Open
Abstract
The immune system is integral to the surveillance and eradication of tumor cells. Interactions between the natural killer group 2 member D (NKG2D) receptor and its ligands (NKG2DLs) are vital for activating NKG2D receptor‑positive immune cells, such as natural killer cells. This activation enables these cells to identify and destroy tumor cells presenting with NKG2DLs, which is an essential aspect of tumor immunity. However, tumor immune escape is facilitated by soluble NKG2DL (sNKG2DL) shed from the surface of tumor cells. The production of sNKG2DL is predominantly regulated by metalloproteinases [a disintegrin and metalloproteinases (ADAM) and matrix metalloproteinase (MMP) families] and exosomes. sNKG2DL not only diminish immune recognition on the tumor cell surface but also suppress the function of immune cells, such as NK cells, and reduce the expression of the NKG2D receptor. This process promotes immune evasion, progression, and metastasis of tumors. In this review, an in‑depth summary of the mechanisms and factors that influence sNKG2DL production and their contribution to immune suppression within the tumor microenvironment are provided. Furthermore, due to the significant link between sNKG2DLs and tumor progression and metastasis, they have great potential as novel biomarkers. Detectable via liquid biopsies, sNKG2DLs could assess tumor malignancy and prognosis, and act as pivotal targets for immunotherapy. This could lead to the discovery of new drugs or the enhancement of existing treatments. Thus, the application of sNKG2DLs in clinical oncology was explored, offering substantial theoretical support for the development of innovative immunotherapeutic strategies for sNKG2DLs.
Collapse
Affiliation(s)
- Shuhao Huang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zihao Qin
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feiyang Wang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiping Kang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Biqiong Ren
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
26
|
Mansoori S, Noei A, Maali A, Seyed-Motahari SS, Sharifzadeh Z. Recent updates on allogeneic CAR-T cells in hematological malignancies. Cancer Cell Int 2024; 24:304. [PMID: 39227937 PMCID: PMC11370086 DOI: 10.1186/s12935-024-03479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
CAR-T cell therapy is known as an effective therapy in patients with hematological malignancies. Since 2017, several autologous CAR-T cell (auto-CAR-T) drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of some kinds of relapsed/refractory hematological malignancies. However, some patients fail to respond to these drugs due to high manufacturing time, batch-to-batch variation, poor quality and insufficient quantity of primary T cells, and their insufficient expansion and function. CAR-T cells prepared from allogeneic sources (allo-CAR-Ts) can be an alternative option to overcome these obstacles. Recently, several allo-CAR-Ts have entered into the early clinical trials. Despite their promising preclinical and clinical results, there are two main barriers, including graft-versus-host disease (GvHD) and allo-rejection that may decline the safety and efficacy of allo-CAR-Ts in the clinic. The successful development of these products depends on the starter cell source, the gene editing method, and the ability to escape immune rejection and prevent GvHD. Here, we summarize the gene editing technologies and the potential of various cell sources for developing allo-CAR-Ts and highlight their advantages for the treatment of hematological malignancies. We also describe preclinical and clinical data focusing on allo-CAR-T therapy in blood malignancies and discuss challenges and future perspectives of allo-CAR-Ts for therapeutic applications.
Collapse
Affiliation(s)
| | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | |
Collapse
|
27
|
Tammi S, Koskela S, Hyvärinen K, Partanen J, Ritari J. Accurate multi-population imputation of MICA, MICB, HLA-E, HLA-F and HLA-G alleles from genome SNP data. PLoS Comput Biol 2024; 20:e1011718. [PMID: 39283896 PMCID: PMC11426482 DOI: 10.1371/journal.pcbi.1011718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 08/31/2024] [Indexed: 09/27/2024] Open
Abstract
In addition to the classical HLA genes, the major histocompatibility complex (MHC) harbors a high number of other polymorphic genes with less established roles in disease associations and transplantation matching. To facilitate studies of the non-classical and non-HLA genes in large patient and biobank cohorts, we trained imputation models for MICA, MICB, HLA-E, HLA-F and HLA-G alleles on genome SNP array data. We show, using both population-specific and multi-population 1000 Genomes references, that the alleles of these genes can be accurately imputed for screening and research purposes. The best imputation model for MICA, MICB, HLA-E, -F and -G achieved a mean accuracy of 99.3% (min, max: 98.6, 99.9). Furthermore, validation of the 1000 Genomes exome short-read sequencing-based allele calling against a clinical-grade reference data showed an average accuracy of 99.8%, testifying for the quality of the 1000 Genomes data as an imputation reference. We also fitted the models for Infinium Global Screening Array (GSA, Illumina, Inc.) and Axiom Precision Medicine Research Array (PMRA, Thermo Fisher Scientific Inc.) SNP content, with mean accuracies of 99.1% (97.2, 100) and 98.9% (97.4, 100), respectively.
Collapse
Affiliation(s)
- Silja Tammi
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Satu Koskela
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- Finnish Red Cross Blood Service, Blood Service Biobank, Vantaa, Finland
| | | | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- Finnish Red Cross Blood Service, Blood Service Biobank, Vantaa, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| |
Collapse
|
28
|
Dong S, Zhao M, Zhu J, Li T, Yan M, Xing K, Liu P, Yu S, Ma J, He H. Natural killer cells: a future star for immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1442673. [PMID: 39234249 PMCID: PMC11371580 DOI: 10.3389/fimmu.2024.1442673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
The interplay between immune components and the epithelium plays a crucial role in the development and progression of head and neck squamous cell carcinoma (HNSCC). Natural killer (NK) cells, one of the main tumor-killing immune cell populations, have received increasing attention in HNSCC immunotherapy. In this review, we explore the mechanism underlying the interplay between NK cells and HNSCC. A series of immune evasion strategies utilized by cancer cells restrict HNSCC infiltration of NK cells. Overcoming these limitations can fully exploit the antineoplastic potential of NK cells. We also investigated the tumor-killing efficacy of NK cell-based immunotherapies, immunotherapeutic strategies, and new results from clinical trials. Notably, cetuximab, the most essential component of NK cell-based immunotherapy, inhibits the epidermal growth factor receptor (EGFR) signaling pathway and activates the immune system in conjunction with NK cells, inducing innate effector functions and improving patient prognosis. In addition, we compiled information on other areas for the improvement of patient prognosis using anti-EGFR receptor-based monoclonal antibody drugs and the underlying mechanisms and prognoses of new immunotherapeutic strategies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shuyan Dong
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jin Zhu
- Department of Pathology, Xi’an Daxing Hospital, Xi’an, China
| | - Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingze Yan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaixun Xing
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Ma
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
29
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
30
|
Herault A, Mak J, de la Cruz-Chuh J, Dillon MA, Ellerman D, Go M, Cosino E, Clark R, Carson E, Yeung S, Pichery M, Gador M, Chiang EY, Wu J, Liang Y, Modrusan Z, Gampa G, Sudhamsu J, Kemball CC, Cheung V, Nguyen TTT, Seshasayee D, Piskol R, Totpal K, Yu SF, Lee G, Kozak KR, Spiess C, Walsh KB. NKG2D-bispecific enhances NK and CD8+ T cell antitumor immunity. Cancer Immunol Immunother 2024; 73:209. [PMID: 39112670 PMCID: PMC11306676 DOI: 10.1007/s00262-024-03795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.
Collapse
Affiliation(s)
- Aurelie Herault
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Judy Mak
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Josefa de la Cruz-Chuh
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Michael A Dillon
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Diego Ellerman
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - MaryAnn Go
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Ely Cosino
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Robyn Clark
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Emily Carson
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Stacey Yeung
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Melanie Pichery
- Immuno-Oncology-In Vitro Biology Department, Evotec, Toulouse, France
| | - Mylène Gador
- Immuno-Oncology-In Vitro Biology Department, Evotec, Toulouse, France
| | - Eugene Y Chiang
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Jia Wu
- Department of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Next-GenSequencing, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Next-GenSequencing, South San Francisco, CA, USA
| | - Gautham Gampa
- Department of Development Sciences PTPK, Genentech, South San Francisco, CA, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Christopher C Kemball
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Victoria Cheung
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | | | - Dhaya Seshasayee
- Department of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Klara Totpal
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Shang-Fan Yu
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Genee Lee
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Katherine R Kozak
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kevin B Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
31
|
Lanier LL. Five decades of natural killer cell discovery. J Exp Med 2024; 221:e20231222. [PMID: 38842526 PMCID: PMC11157086 DOI: 10.1084/jem.20231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024] Open
Abstract
The first descriptions of "non-specific" killing of tumor cells by lymphocytes were reported in 1973, and subsequently, the mediators of the activity were named "natural killer" (NK) cells by Rolf Kiessling and colleagues at the Karolinska Institute in 1975. The activity was detected in mice, rats, and humans that had no prior exposure to the tumors, major histocompatibility complex (MHC) antigen matching of the effectors and tumor cells was not required, and the cells responsible were distinct from MHC-restricted, antigen-specific T cells. In the ensuing five decades, research by many labs has extended knowledge of NK cells beyond an in vitro curiosity to demonstrate their in vivo relevance in host defense against tumors and microbial pathogens and their role in regulation of the immune system. This brief Perspective highlights a timeline of a few selected advancements in NK cell biology from a personal perspective of being involved in this quest.
Collapse
Affiliation(s)
- Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Cantoni C, Falco M, Vitale M, Pietra G, Munari E, Pende D, Mingari MC, Sivori S, Moretta L. Human NK cells and cancer. Oncoimmunology 2024; 13:2378520. [PMID: 39022338 PMCID: PMC11253890 DOI: 10.1080/2162402x.2024.2378520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
The long story of NK cells started about 50 y ago with the first demonstration of a natural cytotoxic activity within an undefined subset of circulating leukocytes, has involved an ever-growing number of researchers, fascinated by the apparently easy-to-reach aim of getting a "universal anti-tumor immune tool". In fact, in spite of the impressive progress obtained in the first decades, these cells proved far more complex than expected and, paradoxically, the accumulating findings have continuously moved forward the attainment of a complete control of their function for immunotherapy. The refined studies of these latter years have indicated that NK cells can epigenetically calibrate their functional potential, in response to specific environmental contexts, giving rise to extraordinarily variegated subpopulations, comprehensive of memory-like cells, tissue-resident cells, or cells in various differentiation stages, or distinct functional states. In addition, NK cells can adapt their activity in response to a complex body of signals, spanning from the interaction with either suppressive or stimulating cells (myeloid-derived suppressor cells or dendritic cells, respectively) to the engagement of various receptors (specific for immune checkpoints, cytokines, tumor/viral ligands, or mediating antibody-dependent cell-mediated cytotoxicity). According to this picture, the idea of an easy and generalized exploitation of NK cells is changing, and the way is opening toward new carefully designed, combined and personalized therapeutic strategies, also based on the use of genetically modified NK cells and stimuli capable of strengthening and redirecting their effector functions against cancer.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Massimo Vitale
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Enrico Munari
- Pathology Unit, Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Daniela Pende
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
33
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
35
|
Yang R, Yang Y, Liu R, Wang Y, Yang R, He A. Advances in CAR-NK cell therapy for hematological malignancies. Front Immunol 2024; 15:1414264. [PMID: 39007146 PMCID: PMC11239349 DOI: 10.3389/fimmu.2024.1414264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has revolutionized the treatment of hematological malignancies, demonstrably improving patient outcomes and prognosis. However, its application has introduced new challenges, such as safety concerns, off-target toxicities, and significant costs. Natural killer (NK) cells are crucial components of the innate immune system, capable of eliminating tumor cells without prior exposure to specific antigens or pre-activation. This inherent advantage complements the limitations of T cells, making CAR-NK cell therapy a promising avenue for hematological tumor immunotherapy. In recent years, preclinical and clinical studies have yielded preliminary evidence supporting the safety and efficacy of CAR-NK cell therapy in hematological malignancies, paving the way for future advancements in immunotherapy. This review aims to succinctly discuss the characteristics, significant therapeutic progress, and potential challenges associated with CAR-NK cell therapy.
Collapse
Affiliation(s)
- Rui Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yiwen Wang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruoyu Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| |
Collapse
|
36
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
37
|
Jost S, Ahn J, Chen S, Yoder T, Gikundiro KE, Lee E, Gressens SB, Kroll K, Craemer M, Kaynor GC, Lifton M, Tan CS. Upregulation of the NKG2D Ligand ULBP2 by JC Polyomavirus Infection Promotes Immune Recognition by Natural Killer Cells. J Infect Dis 2024; 229:1836-1844. [PMID: 37774496 PMCID: PMC11175686 DOI: 10.1093/infdis/jiad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a potentially fatal complication of severe immune suppression with no effective treatment. Natural killer (NK) cells play critical roles in defense against viral infections; however, NK-cell response to JCPyV infection remains unexplored. METHODS NK- and T-cell responses against the JCPyV VP1 were compared using intracellular cytokine staining upon stimulation with peptide pools. A novel flow cytometry-based assay was developed to determine NK-cell killing efficiency of JCPyV-infected astrocyte-derived SVG-A cells. Blocking antibodies were used to evaluate the contribution of NK-cell receptors in immune recognition of JCPyV-infected cells. RESULTS In about 40% of healthy donors, we detected robust CD107a upregulation and IFN-γ production by NK cells, extending beyond T-cell responses. Next, using the NK-cell-mediated killing assay, we showed that coculture of NK cells and JCPyV-infected SVG-A cells leads to a 60% reduction in infection, on average. JCPyV-infected cells had enhanced expression of ULBP2-a ligand for the activating NK-cell receptor NKG2D, and addition of NKG2D blocking antibodies decreased NK-cell degranulation. CONCLUSIONS NKG2D-mediated activation of NK cells plays a key role in controlling JCPyV replication and may be a promising immunotherapeutic target to boost NK-cell anti-JCPyV activity.
Collapse
Affiliation(s)
- Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jenny Ahn
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Chen
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor Yoder
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kayitare Eunice Gikundiro
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Esther Lee
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simon B Gressens
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Melissa Craemer
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Michelle Lifton
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - C Sabrina Tan
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Cho MM, Song L, Quamine AE, Szewc F, Shi L, Ebben JD, Turicek DP, Kline JM, Burpee DM, Lafeber EO, Phillips MF, Ceas AS, Erbe AK, Capitini CM. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.07.544144. [PMID: 37333207 PMCID: PMC10274782 DOI: 10.1101/2023.06.07.544144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect but has been ineffective for solid tumors like osteosarcoma (OS). OS expresses CD155 which interacts strongly with inhibitory receptors TIGIT and CD96 but also binds to activating receptor DNAM-1 on natural killer (NK) cells. CD155 has never been targeted after alloBMT. Combining adoptively transferred allogeneic NK (alloNK) cells with CD155 blockade after alloBMT may enhance a GVT effect against OS. Methods Murine NK cells were activated and expanded ex vivo with soluble IL-15/IL-15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT and alloNK cell infusion with anti-CD155 either before or after tumor induction, with select groups receiving anti-DNAM-1 pretreated alloNK cells. Tumor growth, GVHD and survival were monitored, and differential gene expression of lung tissue was assessed by RNA microarray. Results AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared to synNK cells, and this activity was enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1. In vivo, CD155 blockade with alloNK infusion increased survival when treating OS that relapsed after alloBMT. No benefit was seen for treating established OS before alloBMT. Treatment with combination CD155 and anti-DNAM-1 pretreated alloNK ameliorated survival and tumor control benefits seen with CD155 blockade alone. RNA microarray showed mice treated with alloNK and CD155 blockade had increased expression of cytotoxicity genes and the NKG2D ligand H60a, whereas mice treated with anti-DNAM-1 pretreated alloNK cells resulted in upregulation of NK cell inhibitory receptor genes. Whereas blocking DNAM-1 on alloNK abrogated cytotoxicity, blocking NKG2D had no effect, implying DNAM-1:CD155 engagement drives alloNK activation against OS. Conclusions These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses is critical to translating alloNK cell infusions and immune checkpoint inhibition for solid tumors treated with alloBMT. WHAT IS ALREADY KNOWN ON THIS TOPIC Allogeneic bone marrow transplant (alloBMT) has yet to show efficacy in treating solid tumors, such as osteosarcoma (OS). CD155 is expressed on OS and interacts with natural killer (NK) cell receptors, such as activating receptor DNAM-1 and inhibitory receptors TIGIT and CD96 and has a dominant inhibitory effect on NK cell activity. Targeting CD155 interactions on allogeneic NK cells could enhance anti-OS responses, but this has not been tested after alloBMT. WHAT THIS STUDY ADDS CD155 blockade enhances allogeneic natural killer cell-mediated cytotoxicity against OS and improved event-free survival after alloBMT in an in vivo mouse model of metastatic pulmonary OS. Addition of DNAM-1 blockade abrogated CD155 blockade-enhanced allogeneic NK cell antitumor responses. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY These results demonstrate efficacy of allogeneic NK cells combined with CD155 blockade to mount an antitumor response against CD155-expressing OS. Translation of combination adoptive NK cell and CD155 axis modulation offers a platform for alloBMT treatment approaches for pediatric patients with relapsed and refractory solid tumors.
Collapse
|
39
|
Covino DA, Desimio MG, Giovinazzo A, de Oliveira BSP, Merolle M, Marazziti D, Pellegrini M, Doria M. Absence of ATM leads to altered NK cell function in mice. Clin Immunol 2024; 263:110233. [PMID: 38697554 DOI: 10.1016/j.clim.2024.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Daniela Angela Covino
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Giovinazzo
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | | | - Matilde Merolle
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
40
|
Shivarov V, Ivanova M. Characterisation of novel MICB alleles by next generation sequencing: MICB*055 and MICB*005:15. HLA 2024; 103:e15581. [PMID: 38923355 DOI: 10.1111/tan.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Two novel MICB alleles with coding polymorphisms in exon 3 were detected by next generation sequencing.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
41
|
Ivanova M, Shivarov V. Characterisation of the novel MICA*112:02 allele by next generation sequencing. HLA 2024; 103:e15583. [PMID: 38923360 DOI: 10.1111/tan.15583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The novel MICA*112:02 allele was detected by next generation sequencing.
Collapse
Affiliation(s)
- Milena Ivanova
- Department of Clinical Immunology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| |
Collapse
|
42
|
Hartmann JA, Cardoso MR, Talarico MCR, Kenney DJ, Leone MR, Reese DC, Turcinovic J, O'Connell AK, Gertje HP, Marino C, Ojeda PE, De Paula EV, Orsi FA, Velloso LA, Cafiero TR, Connor JH, Ploss A, Hoelzemer A, Carrington M, Barczak AK, Crossland NA, Douam F, Boucau J, Garcia-Beltran WF. Evasion of NKG2D-mediated cytotoxic immunity by sarbecoviruses. Cell 2024; 187:2393-2410.e14. [PMID: 38653235 PMCID: PMC11088510 DOI: 10.1016/j.cell.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.
Collapse
Affiliation(s)
- Jordan A Hartmann
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Devin J Kenney
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Madison R Leone
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Dagny C Reese
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Aoife K O'Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Caitlin Marino
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Pedro E Ojeda
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Erich V De Paula
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Fernanda A Orsi
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Licio Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John H Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Angelique Hoelzemer
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute for Infection and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Mary Carrington
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amy K Barczak
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas A Crossland
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Florian Douam
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Julie Boucau
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
43
|
Ma Y, Ping D, Huang K, Tao Y, Peng Y, Sun X, Liu C. Lower NKG2D expression in hepatic natural killer cells predicts poorer prognosis for chronic hepatitis B patients with cirrhosis. Hum Immunol 2024; 85:110775. [PMID: 38493049 DOI: 10.1016/j.humimm.2024.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Natural killer cells (NK) acts a central player of the immune system in liver cirrhosis. The aim of this study was to examine the expression of activating intra-hepatic NK cell group 2D (NKG2D) in patients with chronic hepatitis B (CHB) and analyzed the correlation between NKG2D expression and prognosis of liver cirrhosis in these patients. METHODS This was a cross-section study. Subjects with liver biopsy or sponge hemangioma surgery were included. The primary outcome was the NKG2D expression on intra-hepatic NK cells and their subtype cells in patients with CHB-related liver cirrhosis. Subsequently, the correlation of expression of NKG2D and clinical characteristic indicators were assayed RESULTS: Among 38 subjects, 11 (28.95%) normal liver sections adjacent the sponge hemangioma (healthy group) were collected during surgery, and 27 (71.05%) CHB-cirrhosis tissues (Cirrhosis group) were preserved after liver biopsy. Compared with healthy group, sections from cirrhosis group revealed more severe inflammation and collagen deposition and lower NKG2D expression in hepatic NK cells. The proportion of hepatic NK cells and the mean fluorescence intensity (MFI) of NKG2D on hepatic NK cells showed a positive correlation with serum albumin (Alb) level, platelet (Plt) count. Moreover, they had a significantly negative correlation with patient prothrombin time (PT), international standardized ratio (INR), the sirius red positive stained area and fibrosis stages. CONCLUSIONS Lower NKG2D expression in intra-hepatic NK cells may be predictive of poorer prognosis of CHB patients with cirrhosis.
Collapse
Affiliation(s)
- Yangqing Ma
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, PR China
| | - Dabing Ping
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, PR China
| | - Kai Huang
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai 201203, PR China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, PR China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, PR China.
| | - Xin Sun
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai 201203, PR China.
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
44
|
Amorós-Pérez B, Rivas-Pardo B, Gómez del Moral M, Subiza JL, Martínez-Naves E. State of the Art in CAR-T Cell Therapy for Solid Tumors: Is There a Sweeter Future? Cells 2024; 13:725. [PMID: 38727261 PMCID: PMC11083689 DOI: 10.3390/cells13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.
Collapse
Affiliation(s)
- Beatriz Amorós-Pérez
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Inmunotek S.L., 28805 Madrid, Spain;
| | - Benigno Rivas-Pardo
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuel Gómez del Moral
- Department of Cellular Biology, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain;
| | | | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
45
|
Rupert PB, Buerger M, Girard EJ, Frutoso M, Parrilla D, Ng K, Gooley T, Groh V, Strong RK. Preclinical characterization of Pan-NKG2D ligand-binding NKG2D receptor decoys. Heliyon 2024; 10:e28583. [PMID: 38586421 PMCID: PMC10998067 DOI: 10.1016/j.heliyon.2024.e28583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
NKG2D and its ligands are critical regulators of protective immune responses controlling infections and cancer, defining a crucial immune signaling axis. Current therapeutic efforts targeting this axis almost exclusively aim at enhancing NKG2D-mediated effector functions. However, this axis can drive disease processes when dysregulated, in particular, driving stem-like cancer cell reprogramming and tumorigenesis through receptor/ligand self-stimulation on tumor cells. Despite complexities with its structure and biology, we developed multiple novel engineered proteins that functionally serve as axis-blocking NKG2D "decoys" and report biochemical, structural, in vitro, and in vivo evaluation of their functionality.
Collapse
Affiliation(s)
- Peter B Rupert
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Matthew Buerger
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Marie Frutoso
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Don Parrilla
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kevin Ng
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Theodore Gooley
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Veronika Groh
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Roland K Strong
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
46
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
47
|
Marin MLC, Rached MR, Monteiro SM, Kalil J, Abrao MS, Coelho V. Soluble MICA in endometriosis pathophysiology: Impairs NK cell degranulation and effector functions. Am J Reprod Immunol 2024; 91:e13830. [PMID: 38454570 DOI: 10.1111/aji.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
PROBLEM Endometriosis exhibits several immune dysfunctions, including deficient natural killer (NK) cell cytotoxicity. MICA (MHC class I chain-related molecule A) is induced by biological stress and soluble MICA (sMICA) negatively modulates the expression of the activating receptor, NKG2D, reducing NK cells activities. We investigated the involvement of soluble MICA in NK cell-deficient activity in endometriosis. METHODS OF STUDY sMICA levels (serum and peritoneal fluid-PF) were evaluated by ELISA. Circulating NK cell subsets quantification and its NKG2D receptor expression, NK cell cytotoxicity and CD107a, IFN-γ and IL-10 expressions by NK cells stimulated with K562 cells were determined by flow cytometry. RESULTS We found higher sMICA levels (serum and PF) in endometriosis, especially in advanced and deep endometriosis. Endometriosis presented lower percentages of CD56dim CD16+ cytotoxic cells and impaired NK cell responses upon stimulation, resulting in lower CD107a and IFN-γ expressions, and deficient NK cell cytotoxicity. NK cell stimulation in the MICA-blocked condition (mimicking the effect of sMICA) showed decreased cytotoxicity in initial endometriosis stages and the emergence of a negative correlation between CD107a expression and sMICA levels. CONCLUSIONS We suggest that soluble MICA is a potential player in endometriosis pathophysiology with involvement in disease progression and severity, contributing to NK cell impaired IFN-γ response and degranulation. NK cell compartment exhibits multiple perturbations, including quantitative deficiency and impaired cytotoxicity, contributing to inadequate elimination of ectopic endometrial tissue.
Collapse
Affiliation(s)
- Maria Lucia Carnevale Marin
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Laboratorio de Investigaçao Medica 19 (LIM-19), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marici Rached Rached
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sandra Maria Monteiro
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Laboratorio de Investigaçao Medica 19 (LIM-19), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Instituto de Investigacao em Imunologia, Instituto Nacional de Ciencia e Tecnologia (iii-INCT), Sao Paulo, SP, Brazil
- Divisao de Imunologia Clinica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mauricio Simoes Abrao
- Divisao de Imunologia Clinica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Departamento de Ginecologia, BP - A Beneficencia Portuguesa de Sao Paulo, Sao Paulo, SP, Brazil
| | - Verônica Coelho
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Instituto de Investigacao em Imunologia, Instituto Nacional de Ciencia e Tecnologia (iii-INCT), Sao Paulo, SP, Brazil
- Divisao de Imunologia Clinica e Alergia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
48
|
Li H, Du S, Dai J, Jiang Y, Li Z, Fan Q, Zhang Y, You D, Zhang R, Zhao Y, Christiani DC, Shen S, Chen F. Proteome-wide Mendelian randomization identifies causal plasma proteins in lung cancer. iScience 2024; 27:108985. [PMID: 38333712 PMCID: PMC10850776 DOI: 10.1016/j.isci.2024.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Plasma proteins are promising biomarkers and potential drug targets in lung cancer. To evaluate the causal association between plasma proteins and lung cancer, we performed proteome-wide Mendelian randomization meta-analysis (PW-MR-meta) based on lung cancer genome-wide association studies (GWASs), protein quantitative trait loci (pQTLs) of 4,719 plasma proteins in deCODE and 4,775 in Fenland. Further, causal-protein risk score (CPRS) was developed based on causal proteins and validated in the UK Biobank. 270 plasma proteins were identified using PW-MR meta-analysis, including 39 robust causal proteins (both FDR-q < 0.05) and 78 moderate causal proteins (FDR-q < 0.05 in one and p < 0.05 in another). The CPRS had satisfactory performance in risk stratification for lung cancer (top 10% CPRS:Hazard ratio (HR) (95%CI):4.33(2.65-7.06)). The CPRS [AUC (95%CI): 65.93 (62.91-68.78)] outperformed the traditional polygenic risk score (PRS) [AUC (95%CI): 55.71(52.67-58.59)]. Our findings offer further insight into the genetic architecture of plasma proteins for lung cancer susceptibility.
Collapse
Affiliation(s)
- Hongru Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sha Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jinglan Dai
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yunke Jiang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zaiming Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qihan Fan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yixin Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing 211166, China
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing 211166, China
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Pulmonary and Critical Care Division, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing 211166, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
49
|
Li T, Niu M, Zhang W, Qin S, Zhou J, Yi M. CAR-NK cells for cancer immunotherapy: recent advances and future directions. Front Immunol 2024; 15:1361194. [PMID: 38404574 PMCID: PMC10884099 DOI: 10.3389/fimmu.2024.1361194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Natural Killer (NK) cells, intrinsic to the innate immune system, are pivotal in combating cancer due to their independent cytotoxic capabilities in antitumor immune response. Unlike predominant treatments that target T cell immunity, the limited success of T cell immunotherapy emphasizes the urgency for innovative approaches, with a spotlight on harnessing the potential of NK cells. Despite tumors adapting mechanisms to evade NK cell-induced cytotoxicity, there is optimism surrounding Chimeric Antigen Receptor (CAR) NK cells. This comprehensive review delves into the foundational features and recent breakthroughs in comprehending the dynamics of NK cells within the tumor microenvironment. It critically evaluates the potential applications and challenges associated with emerging CAR-NK cell therapeutic strategies, positioning them as promising tools in the evolving landscape of precision medicine. As research progresses, the unique attributes of CAR-NK cells offer a new avenue for therapeutic interventions, paving the way for a more effective and precise approach to cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Gutiérrez-Guerrero A, Espinosa-Padilla SE, Lugo-Reyes SO. [Anything that can go wrong: cytotoxic cells and their control of Epstein-Barr virus]. REVISTA ALERGIA MÉXICO 2024; 71:29-39. [PMID: 38683066 DOI: 10.29262/ram.v71i1.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 05/01/2024] Open
Abstract
Epstein-Barr virus (EBV) is an gamma of herpes virus affecting exclusively humans, was the first oncogenic virus described and is associated with over seven different cancers. Curiously, the exchange of genes during viral infections has enabled the evolution of other cellular organisms, favoring new functions and the survival of the host. EBV has been co-evolving with mammals for hundreds of millions of years, and more than 95% of adults have been infected in one moment of their life. The infection is acquired primarily during childhood, in most cases as an asymptomatic infection. However, during adolescence or young adulthood, around 10 to 30% develop infectious mononucleosis. The NK and CD8+ T cells are the cytotoxic cells of the immune system that focus on antiviral responses. Importantly, an essential role of NK and CD8+ T cells has been demonstrated during the control and elimination of EBV-infected cells. Nonetheless, when the cytotoxic function of these cells is compromised, the infection increases the risk of developing lymphoproliferative diseases and cancer, often fatal. In this review, we delineate EBV infection and the importance of cytotoxic responses by NK and CD8+ T cells during the control and elimination of EBV-infected cells. Furthermore, we briefly discuss the main inborn errors of immunity that compromise cytotoxic responses by NK and CD8+ T cells, and how this scenario affects the antiviral response during EBV infection. Finally, we conclude the review by underlying the need for an effective EBV vaccine capable of preventing infection and the consequent development of malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Arturo Gutiérrez-Guerrero
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Sara Elva Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Saúl Oswaldo Lugo-Reyes
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| |
Collapse
|