1
|
Kobori Y, Tachizaki M, Imaizumi T, Tanaka Y, Seya K, Miki Y, Kawaguchi S, Matsumiya T, Tobisawa Y, Ohyama C, Tasaka S. TMEM2 suppresses TLR3-mediated IFN-β/ISG56/CXCL10 expression in BEAS-2B bronchial epithelial cells. Mol Biol Rep 2024; 51:417. [PMID: 38483660 DOI: 10.1007/s11033-024-09346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Bronchial epithelial cells are at the front line of viral infections. Toll-like receptor 3 (TLR3) cascade causes the expression of interferon (IFN)-β and IFN-stimulated genes (ISGs), which in turn induce an antiviral response. Members of the transmembrane protein (TMEM) family are expressed in various cell types. Although the prognostic value of TMEM2 in various cancers has been reported, its association with infectious diseases remains unknown. In this study, we investigated the effects of TMEM2 on antiviral immunity in BEAS-2B bronchial epithelial cells. METHODS AND RESULTS TMEM2 protein was found in the cytoplasm of normal human bronchial epithelial cells and differed between organs using immunohistochemistry. Cultured BEAS-2B cells were transfected with TMEM2 siRNA, followed by administration of TLR3 ligand polyinosinic-polycytidylic acid (poly IC) or recombinant human (r(h)) IFN-β. The expression of TMEM2, IFN-β, ISG56, C-X-C motif chemokine ligand 10 (CXCL10) and hyaluronan were evaluated appropriately by western blotting, quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. TMEM2 expression was not altered by poly IC stimulation. Knockdown of TMEM2 increased poly IC-induced expression of IFN-β, CXCL10, and ISG56, while IFN-β-induced expression of ISG56 and CXCL10 were not changed by TMEM2 knockdown. The hyaluronan concentration in the medium was decreased by either TMEM2 knockdown or poly IC, but additive or synergistic effects were not observed. CONCLUSIONS TMEM2 knockdown enhanced TLR3-mediated IFN-β, CXCL10, and ISG56 expression in BEAS-2B cells. This implies that TMEM2 suppresses antiviral immune responses and prevents tissue injury in bronchial epithelial cells.
Collapse
Affiliation(s)
- Yuri Kobori
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, 036-8562, Japan.
| | - Mayuki Tachizaki
- Department of Vascular and Inflammatory Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular and Inflammatory Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yusuke Tanaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular and Inflammatory Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Vascular and Inflammatory Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular and Inflammatory Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Gifu University Hospital, Gifu, Japan
| | - Chikara Ohyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, 036-8562, Japan
| |
Collapse
|
2
|
Hariharan A, Qi W, Rehrauer H, Wu L, Ronner M, Wipplinger M, Kresoja‐Rakic J, Sun S, Oton‐Gonzalez L, Sculco M, Serre‐Beinier V, Meiller C, Blanquart C, Fonteneau J, Vrugt B, Rüschoff JH, Opitz I, Jean D, de Perrot M, Felley‐Bosco E. Heterogeneous RNA editing and influence of ADAR2 on mesothelioma chemoresistance and the tumor microenvironment. Mol Oncol 2022; 16:3949-3974. [PMID: 36221913 PMCID: PMC9718120 DOI: 10.1002/1878-0261.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
We previously observed increased levels of adenosine-deaminase-acting-on-dsRNA (Adar)-dependent RNA editing during mesothelioma development in mice exposed to asbestos. The aim of this study was to characterize and assess the role of ADAR-dependent RNA editing in mesothelioma. We found that tumors and mesothelioma primary cultures have higher ADAR-mediated RNA editing compared to mesothelial cells. Unsupervised clustering of editing in different genomic regions revealed heterogeneity between tumor samples as well as mesothelioma primary cultures. ADAR2 expression levels are higher in BRCA1-associated protein 1 wild-type tumors, with corresponding changes in RNA editing in transcripts and 3'UTR. ADAR2 knockdown and rescue models indicated a role in cell proliferation, altered cell cycle, increased sensitivity to antifolate treatment, and type-1 interferon signaling upregulation, leading to changes in the microenvironment in vivo. Our data indicate that RNA editing contributes to mesothelioma heterogeneity and highlights an important role of ADAR2 not only in growth regulation in mesothelioma but also in chemotherapy response, in addition to regulating inflammatory response downstream of sensing nucleic acid structures.
Collapse
Affiliation(s)
- Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Weihong Qi
- Functional Genomics Center, ETH ZurichUniversity of ZurichSwitzerland
| | - Hubert Rehrauer
- Functional Genomics Center, ETH ZurichUniversity of ZurichSwitzerland
| | - Licun Wu
- Latner Thoracic Surgery Laboratories, Division of Thoracic SurgeryUniversity Health NetworkTorontoCanada
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Jelena Kresoja‐Rakic
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Lucia Oton‐Gonzalez
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Marika Sculco
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | | | - Clément Meiller
- Centre de Recherche des Cordeliers, InsermSorbonne Université, Université Paris Cité, Functional Genomics of Solid TumorsFrance
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NAFrance
| | | | - Bart Vrugt
- Institute of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Jan Hendrik Rüschoff
- Institute of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Isabelle Opitz
- Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Didier Jean
- Centre de Recherche des Cordeliers, InsermSorbonne Université, Université Paris Cité, Functional Genomics of Solid TumorsFrance
| | - Marc de Perrot
- Latner Thoracic Surgery Laboratories, Division of Thoracic SurgeryUniversity Health NetworkTorontoCanada
| | - Emanuela Felley‐Bosco
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| |
Collapse
|
3
|
Elemam NM, Talaat IM, Maghazachi AA. CXCL10 Chemokine: A Critical Player in RNA and DNA Viral Infections. Viruses 2022; 14:2445. [PMID: 36366543 PMCID: PMC9696077 DOI: 10.3390/v14112445] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Chemokines constitute a group of small, secreted proteins that regulate leukocyte migration and contribute to their activation. Chemokines are crucial inflammatory mediators that play a key role in managing viral infections, during which the profile of chemokine expression helps shape the immune response and regulate viral clearance, improving clinical outcome. In particular, the chemokine ligand CXCL10 and its receptor CXCR3 were explored in a plethora of RNA and DNA viral infections. In this review, we highlight the expression profile and role of the CXCL10/CXCR3 axis in the host defense against a variety of RNA and DNA viral infections. We also discuss the interactions among viruses and host cells that trigger CXCL10 expression, as well as the signaling cascades induced in CXCR3 positive cells.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Mamdouh Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Shiratori T, Imaizumi T, Hirono K, Kawaguchi S, Matsumiya T, Seya K, Tasaka S. ISG56 is involved in CXCL10 expression induced by TLR3 signaling in BEAS-2B bronchial epithelial cells. Exp Lung Res 2020; 46:195-202. [PMID: 32363951 DOI: 10.1080/01902148.2020.1760965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose and aim of the study: Bronchial epithelial cells play an important role in immune response against viral infections. Toll-like receptor 3 (TLR3) is a pathogen recognition receptor that recognizes viral double-stranded RNA (dsRNA). Activation of TLR3 induces the expression of interferon (IFN)-β, and newly synthesized IFN-β exhibits anti-viral activity by upregulating the expression of IFN-stimulated genes (ISGs). ISG56 encodes a multifunctional protein with tetratricopeptide motifs and is involved in anti-viral reactions through various mechanisms. Expression of chemokines such as CXCL10, which induces leukocyte chemotaxis, is essential for defense against airway microbes. However, regulation of chemokine expression by ISG56 in bronchial epithelial cells has not been fully investigated. The aim of this study was to examine the expression of ISG56 and its role in CXCL10 production in BEAS-2B bronchial epithelial cells treated with dsRNA.Materials and methods: BEAS-2B bronchial epithelial cells were treated with polyinosinic-polycytidylic acid (poly IC), a synthetic TLR3 ligand. The mRNA and protein expression levels of ISG 56 were analyzed by quantitative reverse transcription polymerase chain reaction and western blotting. The effect of knocking down TLR3, IFN-β, and ISG56 was examined using RNA interference. The protein expression of CXCL10 in culture medium was measured using an enzyme-linked immunosorbent assay.Results: Poly IC induced ISG56 expression in a concentration- and time- dependent manner. RNA interference showed that ISG56 induction was inhibited by knockdown of TLR3 or IFN-β and that ISG 56 knockdown decreased CXCL10 expression.Conclusions: ISG56 was induced by poly IC through TLR3/IFN-β axis, and ISG56 may positively regulated CXCL10 expression in BEAS-2B cells. ISG56 may modulate anti-viral innate immunity, at least in part, by regulating the expression of CXCL10 in bronchial epithelial cells.
Collapse
Affiliation(s)
- Toshihiro Shiratori
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koji Hirono
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
5
|
Interferon response of the cystic fibrosis bronchial epithelium to major and minor group rhinovirus infection. J Cyst Fibros 2015; 15:332-9. [PMID: 26613982 PMCID: PMC7185532 DOI: 10.1016/j.jcf.2015.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/19/2015] [Accepted: 10/29/2015] [Indexed: 12/01/2022]
Abstract
Rhinoviruses (RVs) are associated with exacerbations of cystic fibrosis (CF), asthma and COPD. There is growing evidence suggesting the involvement of the interferon (IFN) pathway in RV-associated morbidity in asthma and COPD. The mechanisms of RV-triggered exacerbations in CF are poorly understood. In a pilot study, we assessed the antiviral response of CF and healthy bronchial epithelial cells (BECs) to RV infection, we measured the levels of IFNs, pattern recognition receptors (PRRs) and IFN-stimulated genes (ISGs) upon infection with major and minor group RVs and poly(IC) stimulation. Major group RV infection of CF BECs resulted in a trend towards a diminished IFN response at the level of IFNs, PRRs and ISGs in comparison to healthy BECs. Contrary to major group RV, the IFN pathway induction upon minor group RV infection was significantly increased at the level of IFNs and PRRs in CF BECs compared to healthy BECs.
Collapse
|
6
|
Wu W, Zhang W, More S, Booth JL, Duggan ES, Liu L, Zhao YD, Metcalf JP. Cigarette smoke attenuates the RIG-I-initiated innate antiviral response to influenza infection in two murine models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L848-58. [PMID: 25260755 PMCID: PMC4254961 DOI: 10.1152/ajplung.00158.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoke (CS) exposure increases the frequency and severity of respiratory tract infections. Despite this association, the mechanisms underlying the increased susceptibility to respiratory virus infection are poorly understood. Retinoic acid-inducible gene I (RIG-I) is an important regulator of influenza virus-induced expression of antiviral cytokines, mainly interferons (IFNs), which are necessary to clear viral infections. In this study, we compared the innate cytokine responses of two mouse CS exposure models following a challenge with influenza A virus (IAV): 1) exposure of the mice to cigarette smoke extract (CSE) intratracheally and 2) exposure of the mice to CS in a whole body exposure chamber. Both intratracheal CSE treatment and whole body CS exposure caused antiviral immunosuppression in these mice, and both CS exposure methods inhibited RIG-I induction. CS attenuated influenza-induced antiviral IFNs and IP-10 expression in vivo. However, we did not find that CS inhibited induction of the proinflammatory cytokines IL-6 and TNF-α, whose expression was induced by IAV. Interestingly, IAV infection also increased Toll-like receptor 3 (TLR3) expression in mouse lung, but CS exposure did not impact TLR3 induction in these mice. Together, the results support our previous finding in a human lung organ culture model that the suppression of RIG-I induction and antiviral cytokine responses by CS are likely important in the enhanced susceptibility of smokers to influenza infection in the lung.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sunil More
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
7
|
Schögler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C, Kieninger E, Jung A, Moeller A, Geiser T, Regamey N, Alves MP. Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur Respir J 2014; 45:428-39. [PMID: 25359346 DOI: 10.1183/09031936.00102014] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Virus-associated pulmonary exacerbations, often associated with rhinoviruses (RVs), contribute to cystic fibrosis (CF) morbidity. Currently, there are only a few therapeutic options to treat virus-induced CF pulmonary exacerbations. The macrolide antibiotic azithromycin has antiviral properties in human bronchial epithelial cells. We investigated the potential of azithromycin to induce antiviral mechanisms in CF bronchial epithelial cells. Primary bronchial epithelial cells from CF and control children were infected with RV after azithromycin pre-treatment. Viral RNA, interferon (IFN), IFN-stimulated gene and pattern recognition receptor expression were measured by real-time quantitative PCR. Live virus shedding was assessed by assaying the 50% tissue culture infective dose. Pro-inflammatory cytokine and IFN-β production were evaluated by ELISA. Cell death was investigated by flow cytometry. RV replication was increased in CF compared with control cells. Azithromycin reduced RV replication seven-fold in CF cells without inducing cell death. Furthermore, azithromycin increased RV-induced pattern recognition receptor, IFN and IFN-stimulated gene mRNA levels. While stimulating antiviral responses, azithromycin did not prevent virus-induced pro-inflammatory responses. Azithromycin pre-treatment reduces RV replication in CF bronchial epithelial cells, possibly through the amplification of the antiviral response mediated by the IFN pathway. Clinical studies are needed to elucidate the potential of azithromycin in the management and prevention of RV-induced CF pulmonary exacerbations.
Collapse
Affiliation(s)
- Aline Schögler
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Berne, Switzerland Dept of Clinical Research, University of Berne, Berne, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Berne, Berne, Switzerland
| | - Brigitte S Kopf
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Berne, Switzerland Dept of Clinical Research, University of Berne, Berne, Switzerland
| | - Michael R Edwards
- Airway Disease Infection Section, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma and Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sebastian L Johnston
- Airway Disease Infection Section, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma and Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, UK
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Berne, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Berne, Switzerland
| | - Andreas Jung
- Division of Respiratory Medicine, University Children's Hospital, Zurich, Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine, University Children's Hospital, Zurich, Switzerland
| | - Thomas Geiser
- Dept of Clinical Research, University of Berne, Berne, Switzerland Dept of Pulmonary Medicine, University Hospital Berne, Berne, Switzerland
| | - Nicolas Regamey
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Berne, Switzerland Dept of Clinical Research, University of Berne, Berne, Switzerland These authors contributed equally
| | - Marco P Alves
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Berne, Switzerland Dept of Clinical Research, University of Berne, Berne, Switzerland These authors contributed equally
| |
Collapse
|
8
|
Ida H, Fukuda K, Tachibana A, Tanabe T. Long DNA passenger strand highly improves the activity of RNA/DNA hybrid siRNAs. J Biosci Bioeng 2014; 117:401-6. [DOI: 10.1016/j.jbiosc.2013.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
|
9
|
Golebski K, Röschmann KIL, Toppila-Salmi S, Hammad H, Lambrecht BN, Renkonen R, Fokkens WJ, van Drunen CM. The multi-faceted role of allergen exposure to the local airway mucosa. Allergy 2013; 68:152-60. [PMID: 23240614 DOI: 10.1111/all.12080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 12/13/2022]
Abstract
Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses.
Collapse
Affiliation(s)
- K. Golebski
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - K. I. L. Röschmann
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - S. Toppila-Salmi
- Helsinki University Central Hospital, Skin and Allergy Hospital & Transplantation Laboratory, Haartman Institute, University of Helsinki; Helsinki; Finland
| | | | | | - R. Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki & Helsinki University Central Hospital, HUSLAB; Helsinki; Finland
| | - W. J. Fokkens
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - C. M. van Drunen
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| |
Collapse
|
10
|
Jornot L, Cordey S, Caruso A, Gerber C, Vukicevic M, Tapparel C, Kaiser L, Burger D, Roosnek E, Lacroix JS, Rochat T. T lymphocytes promote the antiviral and inflammatory responses of airway epithelial cells. PLoS One 2011; 6:e26293. [PMID: 22022590 PMCID: PMC3194808 DOI: 10.1371/journal.pone.0026293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/23/2011] [Indexed: 01/19/2023] Open
Abstract
HYPOTHESIS T cells modulate the antiviral and inflammatory responses of airway epithelial cells to human rhinoviruses (HRV). METHODS Differentiated primary human nasal epithelial cells (HNEC) grown on collagen-coated filters were exposed apically to HRV14 for 6 h, washed thoroughly and co-cultured with anti-CD3/CD28 activated T cells added in the basolateral compartment for 40 h. RESULTS HRV14 did not induce IFNγ, NOS2, CXCL8 and IL-6 in HNEC, but enhanced expression of the T cell attractant CXCL10. On the other hand, HNEC co-cultured with activated T cells produced CXCL10 at a level several orders of magnitude higher than that induced by HRV14. Albeit to a much lower degree, activated T cells also induced CXCL8, IL-6 and NOS2. Anti-IFNγ antibodies and TNF soluble receptor completely blocked CXCL10 upregulation. Furthermore, a significant correlation was observed between epithelial CXCL10 mRNA expression and the amounts of IFNγ and TNF secreted by T cells. Likewise, increasing numbers of T cells to a constant number of HNEC in co-cultures resulted in increasing epithelial CXCL10 production, attaining a plateau at high IFNγ and TNF levels. Hence, HNEC activation by T cells is induced mainly by IFNγ and/or TNF. Activated T cells also markedly inhibited viral replication in HNEC, partially through activation of the nitric oxide pathway. CONCLUSION Cross-talk between T cells and HNEC results in activation of the latter and increases their contribution to airway inflammation and virus clearance.
Collapse
Affiliation(s)
- Lan Jornot
- Division of Pulmonary Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu W, Patel KB, Booth JL, Zhang W, Metcalf JP. Cigarette smoke extract suppresses the RIG-I-initiated innate immune response to influenza virus in the human lung. Am J Physiol Lung Cell Mol Physiol 2011; 300:L821-30. [PMID: 21335520 PMCID: PMC3119130 DOI: 10.1152/ajplung.00267.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 02/02/2011] [Indexed: 02/06/2023] Open
Abstract
Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD) and predisposes subjects to severe respiratory tract infections. Epidemiological studies have shown that cigarette smokers are seven times more likely to contract influenza infection than nonsmokers. The mechanisms underlying this increased susceptibility are poorly characterized. Retinoic acid-inducible gene (RIG)-I is believed to play an important role in the recognition of, and response to, influenza virus and other RNA viruses. Our study focused on how cigarette smoke extract (CSE) alters the influenza-induced proinflammatory response and suppresses host antiviral activity in the human lung using a unique lung organ culture model. We first determined that treatment with 2-20% CSE did not induce cytotoxicity as assessed by LDH release. However, CSE treatment inhibited influenza-induced IFN-inducible protein 10 protein and mRNA expression. Induction of the major antiviral cytokine IFN-β mRNA was also decreased by CSE. CSE also blunted viral-mediated RIG-I mRNA and protein expression. Inhibition of viral-mediated RIG-I induction by CSE was prevented by the antioxidants N-acetyl-cysteine and glutathione. These findings show that CSE suppresses antiviral and innate immune responses in influenza virus-infected human lungs through oxidative inhibition of viral-mediated induction of the pattern recognition receptor RIG-I. This immunosuppressive effect of CSE may play a role in the enhanced susceptibility of smokers to serious influenza infection in the lung.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | | | | |
Collapse
|
12
|
Horvath KM, Brighton LE, Zhang W, Carson JL, Jaspers I. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection. Am J Respir Cell Mol Biol 2010; 45:237-45. [PMID: 20935192 DOI: 10.1165/rcmb.2010-0190oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza-induced immune response, we established a model using differentiated nasal epithelial cells (NECs) from nonsmokers and smokers, co-cultured with peripheral blood monocyte-derived dendritic cells (mono-DCs) from nonsmokers. NEC/mono-DC co-cultures were infected with influenza A virus and analyzed for influenza-induced immune responses 24 hours after infection. We observed that NECs from smokers, as well as mono-DCs co-cultured with NECs from smokers, exhibited suppressed influenza-induced, interferon-related proteins interferon regulatory factor-7, Toll-like receptor-3, and retinoic acid inducible gene-1, likely because of the suppressed production of IFNα from the NECs of smokers. Furthermore, NEC/mono-DC co-cultures using NECs from smokers exhibited suppressed concentrations of T-cell/natural killer cell chemokine interferon gamma-induced protein 10 (IP-10) after infection with influenza, indicating that NECs from smokers may skew early influenza-induced Th1 responses. In contrast, NEC/mono-DC co-cultures using NEC from smokers contained increased influenza-induced concentrations of the Th2 chemokine thymic stromal lymphopoeitin (TSLP). In addition, NECs from smokers cultured alone had increased influenza-induced concentrations of the Th2 chemokine thymus and activation-regulated chemokine (TARC). Using this model, we demonstrated that in the context of infection with influenza, NECs obtained from smokers create an overall cytokine microenvironment that suppresses the interferon-mediated Th1 response and enhances the TSLP-TARC-mediated Th2 response, with the potential to modify the responses of DCs. Smoking-induced alterations in the Th1/Th2 balance may play a role in developing underlying susceptibilities to respiratory viral infections, and may also promote the likelihood of acquiring Th2 proallergic diseases.
Collapse
|
13
|
Liu F, Li G, Wen K, Bui T, Cao D, Zhang Y, Yuan L. Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol 2010; 23:135-49. [PMID: 20373994 DOI: 10.1089/vim.2009.0088] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies of epithelial immune responses to rotavirus infection have been conducted in transformed cell lines. In this study, we evaluated a non-transformed porcine jejunum epithelial cell line (IPEC-J2) as an in-vitro model of rotavirus infection and probiotic treatment. Cell-culture-adapted porcine rotavirus (PRV) OSU strain, or human rotavirus (HRV) Wa strain, along with Lactobacillus acidophilus (LA) or Lactobacillus rhamnosus GG (LGG) were used to inoculate IPEC-J2 cells. LA or LGG treatment was applied pre- or post-rotavirus infection. We demonstrated that IPEC-J2 cells were productively infected by PRV. LA or LGG treatment of the cells did not reduce virus replication. PRV infection increased MUC3 mucin secretion. LGG treatment post-rotavirus infection reduced the mucin secretion response induced by PRV; LGG alone increased the production of membrane-associated MUC3 mucin. LA treatment prior to rotavirus infection significantly increased PRV replication and the IL-6 response to PRV infection, which is consistent with the adjuvant effect of LA. LGG treatment post-rotavirus infection downregulated the IL-6 response, confirming the anti-inflammatory effect of LGG. IPEC-J2 cells expressed toll-like receptor (TLR) 2, TLR3, and TLR9 constitutively. TLR2 expression was upregulated by LGG and peptidoglycan, corresponding to the decreased IL-6 response, indicating that the protective effect of LGG is associated with upregulation of TLR2 expression on intestinal epithelial cells. The IPEC-J2 cell model of PRV infection is a completely homologous system. It is a valuable model for studying the interactions among rotavirus-host-probiotics, and the mechanisms behind the immunomodulating effect of probiotic bacteria on innate immune responses.
Collapse
Affiliation(s)
- Fangning Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | | | | | | | | | | | | |
Collapse
|
14
|
Cellular response to influenza virus infection: a potential role for autophagy in CXCL10 and interferon-alpha induction. Cell Mol Immunol 2010; 7:263-70. [PMID: 20473322 PMCID: PMC4003230 DOI: 10.1038/cmi.2010.25] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Historically, influenza pandemics have arisen from avian influenza viruses. Avian influenza viruses H5N1 and H9N2 are potential pandemic candidates. Infection of humans with the highly pathogenic avian influenza H5N1 virus is associated with a mortality in excess of 60%, which has been attributed to dysregulation of the cytokine system. Human macrophages and epithelial cells infected with some genotypes of H5N1 and H9N2 viruses express markedly elevated cytokine and chemokine levels when compared with seasonal influenza A subtype H1N1 virus. The mechanisms underlying this cytokine and chemokine hyperinduction are not fully elucidated. In the present study, we demonstrate that autophagy, a tightly regulated homeostatic process for self-digestion of unwanted cellular subcomponents, plays a role in cytokine induction. Autophagy is induced to a greater extent by H9N2/G1, in association with cytokine hyperinduction, compared with H1N1 and the novel pandemic swine-origin influenza A/H1N1 viruses. Using 3-methyladenine to inhibit autophagy and small interfering RNA to silence the autophagy gene, Atg5, we further show that autophagic responses play a role in influenza virus-induced CXCL10 and interferon-α expression in primary human blood macrophages. Our results provide new insights into the pathogenic mechanisms of avian influenza viruses.
Collapse
|
15
|
Kenworthy R, Lambert D, Yang F, Wang N, Chen Z, Zhu H, Zhu F, Liu C, Li K, Tang H. Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. Nucleic Acids Res 2009; 37:6587-99. [PMID: 19729514 PMCID: PMC2770676 DOI: 10.1093/nar/gkp714] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 12/25/2022] Open
Abstract
Activation of the type I interferon (IFN) pathway by small interfering RNA (siRNA) is a major contributor to the off-target effects of RNA interference in mammalian cells. While IFN induction complicates gene function studies, immunostimulation by siRNAs may be beneficial in certain therapeutic settings. Various forms of siRNA, meeting different compositional and structural requirements, have been reported to trigger IFN activation. The consensus is that intracellularly expressed short-hairpin RNAs (shRNAs) are less prone to IFN activation because they are not detected by the cell-surface receptors. In particular, lentiviral vector-mediated transduction of shRNAs has been reported to avoid IFN response. Here we identify a shRNA that potently activates the IFN pathway in human cells in a sequence- and 5'-triphosphate-dependent manner. In addition to suppressing its intended mRNA target, expression of the shRNA results in dimerization of interferon regulatory factor-3, activation of IFN promoters and secretion of biologically active IFNs into the extracellular medium. Delivery by lentiviral vector transduction did not avoid IFN activation by this and another, unrelated shRNA. We also demonstrated that retinoic-acid-inducible gene I, and not melanoma differentiation associated gene 5 or toll-like receptor 3, is the cytoplasmic sensor for intracellularly expressed shRNAs that trigger IFN activation.
Collapse
Affiliation(s)
- Rachael Kenworthy
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Diana Lambert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Feng Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nan Wang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Zihong Chen
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Haizhen Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Chen Liu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kui Li
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic cell and CD8(+) T cell efficacy. Eur J Immunol 2008; 38:2168-79. [PMID: 18624292 DOI: 10.1002/eji.200838155] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The induction of inflammatory cytokines during respiratory viral infections contributes to both disease pathogenesis and resolution. The present studies investigated the role of the chemokine CXCL10 and its specific receptor, CXCR3, in the host response to pulmonary respiratory syncytial virus (RSV) infection. Antibody-mediated neutralization of CXCL10 resulted in a significant increase in disease pathogenesis, including airway hyperresponsiveness (AHR), mucus gene expression, and impaired viral clearance. When the pulmonary cytokine levels were examined, only type I IFN and IL-12p70 were significantly reduced. These latter observations were reflected in reduced dendritic cell (DC) numbers and DC maturation in the lungs of RSV-infected mice treated with anti-CXCL10. Neutralization of the only known receptor for CXCL10, CXCR3, resulted in similar increases in pathogenic responses. When bone marrow-derived DC were incubated with CXCL10 and RSV, an up-regulation of type I IFN was observed. In addition, T lymphocytes were also examined and a significant decrease in the number of RSV M2 peptide-specific CD8(+) T cells was identified. These findings highlight a previously unappreciated role for the CXCL10:CXCR3 signaling axis in RSV-infected animals by recruiting virus-specific T cells into the lung and promoting viral clearance.
Collapse
|
17
|
Prens EP, Kant M, van Dijk G, van der Wel LI, Mourits S, van der Fits L. IFN-alpha enhances poly-IC responses in human keratinocytes by inducing expression of cytosolic innate RNA receptors: relevance for psoriasis. J Invest Dermatol 2008; 128:932-8. [PMID: 17928888 DOI: 10.1038/sj.jid.5701087] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Keratinocytes play a key role in innate immune responses of the skin to bacterial and viral pathogens. Viral double-stranded RNA and its synthetic analogue polyriboinosinic-polyribocytidylic acid (poly-IC) are recognized via multiple pathways involving the receptors Toll-like receptor 3 (TLR3), protein kinase R (PKR), and the recently described cytosolic RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We show that preincubation of human keratinocytes with IFN-alpha enhances the proinflammatory responses to poly-IC. Kinetic studies suggest that this is mediated via upregulation of the receptors TLR3, PKR, RIG-I, and MDA5. Interestingly, expression of RIG-I, MDA5, and PKR was significantly increased in lesional skin from patients with psoriasis, a chronic inflammatory skin disease that is characterized by high IFN-alpha levels. These results suggest that psoriatic keratinocytes show increased sensitivity to viral RNA intermediates, thereby leading to excessive proinflammatory responses and maintenance of the inflammatory skin phenotype. Here, we provide early evidence that point toward a role for the recently described cytosolic innate RNA receptors in non-viral chronic inflammatory diseases.
Collapse
Affiliation(s)
- Errol P Prens
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008; 89:1-47. [PMID: 18089727 DOI: 10.1099/vir.0.83391-0] [Citation(s) in RCA: 1232] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo, because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81, 2341-2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
Collapse
Affiliation(s)
- Richard E Randall
- School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK
| | - Stephen Goodbourn
- Division of Basic Medical Sciences, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
19
|
Jaspers I, Zhang W, Brighton LE, Carson JL, Styblo M, Beck MA. Selenium deficiency alters epithelial cell morphology and responses to influenza. Free Radic Biol Med 2007; 42:1826-37. [PMID: 17512462 PMCID: PMC2048669 DOI: 10.1016/j.freeradbiomed.2007.03.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/27/2007] [Accepted: 03/14/2007] [Indexed: 01/24/2023]
Abstract
It is unknown whether nutritional deficiencies affect the morphology and function of structural cells, such as epithelial cells, and modify the susceptibility to viral infections. We developed an in vitro system of differentiated human bronchial epithelial cells (BEC) grown either under selenium-adequate (Se+) or selenium-deficient (Se-) conditions, to determine whether selenium deficiency impairs host defense responses at the level of the epithelium. Se- BECs had normal SOD activity, but decreased activity of the selenium-dependent enzyme GPX1. Interestingly, catalase activity was also decreased in Se- BECs. Both Se- and Se+ BECs differentiated into a mucociliary epithelium; however, Se- BEC demonstrated increased mucus production and increased Muc5AC mRNA levels. This effect was also seen in Se+ BEC treated with 3-aminotriazole, an inhibitor of catalase activity, suggesting an association between catalase activity and mucus production. Both Se- and Se+ were infected with influenza A/Bangkok/1/79 and examined 24 h postinfection. Influenza-induced IL-6 production was greater while influenza-induced IP-10 production was lower in Se- BECs. In addition, influenza-induced apoptosis was greater in Se- BEC as compared to the Se+ BECs. These data demonstrate that selenium deficiency has a significant impact on the morphology and influenza-induced host defense responses in human airway epithelial cells.
Collapse
Affiliation(s)
- I Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Matsukura S, Kokubu F, Kurokawa M, Kawaguchi M, Ieki K, Kuga H, Odaka M, Suzuki S, Watanabe S, Homma T, Takeuchi H, Nohtomi K, Adachi M. Role of RIG-I, MDA-5, and PKR on the expression of inflammatory chemokines induced by synthetic dsRNA in airway epithelial cells. Int Arch Allergy Immunol 2007; 143 Suppl 1:80-3. [PMID: 17541283 DOI: 10.1159/000101411] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We hypothesized that synthetic double-stranded (ds)RNA may mimic viral infection and reported that dsRNA stimulates expression of inflammatory chemokines through a receptor of dsRNA Toll-like receptor (TLR) 3 in airway epithelial cells. In this study, we focused our study on the role of other receptors for dsRNA, such as retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA-5), and double-stranded RNA-dependent protein kinase (PKR). METHODS Airway epithelial cell BEAS-2B was cultured in vitro. Expression of target RNA and protein were analyzed by PCR and ELISA. To analyze the role of receptors for dsRNA, knockdown of theses genes was performed with short interfering RNA (siRNA). RESULTS We first investigated the effects of chloroquine, an inhibitor of lysosomal acidification, on the expression of chemokines. Preincubation with 100 microM chloroquine significantly inhibited the expression of mRNA for RANTES, IP-10, and IL-8, stimulated by poly I:C, indicating that poly I:C may react with a receptor expressed inside the cells. RIG-I, MDA-5, and PKR are supposed to be expressed inside the airway epithelial cells. However, the expression of chemokines stimulated with poly I:C was not significantly inhibited for these putative receptors in the cells which were transfected with siRNA. CONCLUSIONS Synthetic dsRNA poly I:C stimulates the expression of inflammatory chemokines in airway epithelial cells, but the putative receptors for dsRNA such as RIG-I, MDA-5, or PKR may not play pivotal roles in this process. TLR3 may play a major role as reported previously.
Collapse
MESH Headings
- Bronchi/cytology
- Bronchi/metabolism
- Cell Line, Transformed
- Chemokine CCL5/biosynthesis
- Chemokine CCL5/genetics
- Chemokine CXCL10
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chloroquine/pharmacology
- DEAD Box Protein 58
- DEAD-box RNA Helicases/antagonists & inhibitors
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/physiology
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Humans
- Inflammation
- Interferon-Induced Helicase, IFIH1
- Interleukin-8/biosynthesis
- Interleukin-8/genetics
- Poly I-C/pharmacology
- Polymerase Chain Reaction
- RNA Interference
- RNA, Double-Stranded/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Receptors, Immunologic
- Toll-Like Receptor 3/drug effects
- Toll-Like Receptor 3/physiology
- eIF-2 Kinase/antagonists & inhibitors
- eIF-2 Kinase/genetics
- eIF-2 Kinase/physiology
Collapse
Affiliation(s)
- Satoshi Matsukura
- First Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Imaizumi T, Yagihashi N, Kubota K, Yoshida H, Sakaki H, Yagihashi S, Kimura H, Satoh K. Expression of retinoic acid-inducible gene-I (RIG-I) in macrophages: possible involvement of RIG-I in atherosclerosis. J Atheroscler Thromb 2007; 14:51-5. [PMID: 17485888 DOI: 10.5551/jat.14.51] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Retinoic acid-inducible gene-I (RIG-I) is one of the genes induced by interferon (IFN)-gamma which plays an important role in atherosclerosis. The aim of this study is to examine if RIG-I is involved in atherosclerosis. METHODS The expression of RIG-I in atherosclerotic lesions in human aorta was examined by immunohistochemical analysis. The expression of RIG-I in THP-1 monocytic cell line or human monocyte-derived macrophages was studied by western blot and RT-PCR analyses. RESULTS Intense immunoreactivity for RIG-I was detected in intimal macrophages in atherosclerotic lesions. IFN-gamma slightly enhanced the RIG-I expression in THP-1 cells. Treatment of the cells with phorbol 12-myristate 13-acetate, which induces the differentiation of the cells into macrophage-like cells, significantly enhanced the IFN-gamma -induced RIG-I expression. IFN-gamma also stimulated the expression of RIG-I in monocyte-derived macrophages. CONCLUSION These results suggest that RIG-I may be involved in differentiation and activation of macrophages, playing a role in atherosclerosis.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yoshida H, Imaizumi T, Lee SJ, Tanji K, Sakaki H, Matsumiya T, Ishikawa A, Taima K, Yuzawa E, Mori F, Wakabayashi K, Kimura H, Satoh K. Retinoic acid-inducible gene-I mediates RANTES/CCL5 expression in U373MG human astrocytoma cells stimulated with double-stranded RNA. Neurosci Res 2007; 58:199-206. [PMID: 17395328 DOI: 10.1016/j.neures.2007.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/16/2007] [Accepted: 02/26/2007] [Indexed: 12/13/2022]
Abstract
Retinoic acid-inducible gene-I (RIG-I) mediates part of the cell signaling in response to viral infection. Polyinosinic-polycytidilic acid (poly IC) is a synthetic double-stranded RNA (dsRNA) and mimics viral infection when applied to cell cultures. The CC chemokine, RANTES (regulated on activation, normal T-cell expressed and secreted), is a potent attractant for inflammatory cells such as memory T-lymphocytes, monocytes and eosinophils. In the present study, we demonstrated that poly IC enhances the expression of RIG-I in U373MG human astrocytoma cells. The RNA interference of RIG-I resulted in the suppression of the poly IC-induced RANTES expression. Pretreatment of the cells with SB203580, an inhibitor of p38 mitogen-activated protein kinase, and dexamethasone inhibited the poly IC-induced expression of RIG-I. Furthermore, poly IC upregulated RIG-I in normal human astrocytes in culture and the in vivo injection of poly IC into the striatum of the mouse brain induced the expression of RIG-I in astrocytes. We conclude that RIG-I may be involved in immune reactions against viral infection, at least in part, through the regulation of RANTES expression in astrocytes.
Collapse
Affiliation(s)
- Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sohn MH, Lee KE, Kim KW, Kim ES, Park JY, Kim KE. Calcium-calmodulin mediates house dust mite-induced ERK activation and IL-8 production in human respiratory epithelial cells. Respiration 2007; 74:447-53. [PMID: 17268170 DOI: 10.1159/000099264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 12/06/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND House dust mites (HDM) have been shown to be important sources of indoor allergens associated with asthma and other allergic conditions. While exogenous proteases from allergens have a direct proinflammatory role in the respiratory tract, the precise mechanisms underlying the release of cytokines from the respiratory epithelium are unclear. OBJECTIVES The present study examines that extracellular signal-regulated kinase (ERK) activated downstream of the Ca(2+)-sensitive tyrosine kinase plays an important role in the efficient activation of the HDM-induced IL-8 signaling pathway. METHODS We examined the effect of HDM, and the role of the Ca(2+)/calmodulin system and mitogen-activated protein kinases, on IL-8 expression in human lung epithelial cells. RESULTS In H292 cells, HDM induced IL-8 release in a time- and/or dose-dependent manner. This IL-8 release was abolished by treatment with intracellular Ca(2+) chelator (BAPTA-AM), but not by EGTA or nifedipine. Calmodulin inhibitor (calmidazolium) and tyrosine kinase inhibitor (genistein) almost completely blocked IL-8 release by HDM. PD98,059, an ERK pathway inhibitor, completely abolished HDM-induced IL-8 release. Moreover, PD98,059, BAPTA-AM, calmidazolium and genistein suppressed the HDM-induced ERK phosphorylation. CONCLUSIONS HDM-induced IL-8 production is predominantly regulated by Ca(2+)/calmodulin signaling, and ERK plays an important role in signal transmission for efficient activation of the HDM-induced IL-8 signaling pathway.
Collapse
Affiliation(s)
- Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, BK21 Project for Medical Science, Biomolecule Secretion Research Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall R, Goodbourn S. mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 2006; 359:190-200. [PMID: 17049367 DOI: 10.1016/j.virol.2006.09.023] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/05/2006] [Accepted: 09/13/2006] [Indexed: 01/01/2023]
Abstract
The induction of IFN-beta by the paramyxovirus PIV5 (formerly known as SV5) is limited by the action of the viral V protein that targets the cellular RNA helicase mda-5. Here we show that 12 other paramyxoviruses also target mda-5 by a direct interaction between the conserved cysteine-rich C-terminus of their V proteins and the helicase domain of mda-5. The inhibition of IFN-beta induction is not species-restricted, being observed in a range of mammalian cells as well as in avian cells, and we show that the inhibition of mda-5 function is also not restricted to mammalian cells. In contrast, the V proteins do not bind to the related RNA helicase RIG-I and do not inhibit its activity. The relative contributions of mda-5 and RIG-I to IFN-beta induction are discussed.
Collapse
Affiliation(s)
- Kay Childs
- Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE, UK
| | | | | | | | | | | | | | | |
Collapse
|