1
|
Gao Y, Fu S, Peng Y, Zhou Y, Zhu J, Zhang X, Cai C, Han Y, Shen H, Zeng S. HMBOX1 reverses autophagy mediated 5-fluorouracil resistance through promoting HACE1-induced ubiquitination and degradation of ATG5 in colorectal cancer. Autophagy 2025:1-22. [PMID: 40126194 DOI: 10.1080/15548627.2025.2477443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Chemotherapy remains the primary treatment for unresectable or advanced postoperative colorectal cancers. However, its effectiveness is compromised by chemoresistance, which adversely affects patient outcomes. Dysregulated macroautophagy/autophagy is a proposed mechanism behind this resistance, with ubiquitination playing a key regulatory role. In this study, we identify the transcription factor HMBOX1 (homeobox containing 1) as a critical regulator of chemoresistance in colorectal cancer. RNA sequencing revealed that HMBOX1 is downregulated in drug-resistant colorectal cancer cells and tissues, with its low expression linked to poor prognosis. An integrated analysis of genes associated with autophagy and 5-fluorouracil (5-FU) resistance was conducted, verified in the colorectal cancer tissues of patients by single-cell RNA sequencing and immunostaining. Mass-spectrometry-based proteomics and RNA sequencing were used to elucidate the underlying molecular mechanisms. Functionally, upregulation of HMBOX1 enhances the sensitivity of colorectal cancer cells to the first-line treatment with 5-FU by inhibiting autophagy. Mechanistically, HMBOX1 promotes the transcription of the E3 ubiquitin ligase HACE1, which in turn enhances ATG5 K63-ubiquitination and subsequent proteasome-mediated degradation. This results in decreased ATG5 levels, inhibiting autophagy and thus reducing 5-FU resistance in colorectal cancer cells both in vitro and in vivo. Furthermore, we confirm that HMBOX1 expression positively correlates with HACE1 expression and inversely correlates with autophagy levels in clinical colorectal cancer tissues. Our findings suggest that HMBOX1 downregulation drives 5-FU resistance through autophagy enhancement in colorectal cancer, highlighting HMBOX1 as a potential target for improving chemosensitivity and patient prognosis.Abbreviation: 3-MA: 3-methyladenine; 5-FU: 5-fluorouracil; ATG: autophagy related; CASP3: caspase 3; C-CASP3: cleaved caspase 3; C-PARP: cleaved PARP; CCK8: cell counting kit-8; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CNV: copy number variation; co-IP: co-immunoprecipitation; COAD: colorectal adenocarcinoma; CQ: chloroquine; CRC: colorectal cancer; CR: complete response; FHC: fetal human colon; GEO: Gene Expression Omnibus; HACE1: HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1; HMBOX1: homeobox containing 1; IHC: immunohistochemistry; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mIHC: multiplexed immunohistochemistry; MUT: mutant; NC: negative control; OS: overall survival; PBS: phosphate-buffered saline; PD: progressive disease; PFA: paraformaldehyde; PFS: progression-free survival; PR: partial response; qPCR: quantitative polymerase chain reaction; RAPA: rapamycin; SD: stable disease; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; TF: translation factor; USP22: ubiquitin specific peptidase 22; WT: wild type.
Collapse
Affiliation(s)
- Yan Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shenao Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Jiang Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Bei Y, Zhu Y, Zhou J, Ai S, Yao J, Yin M, Hu M, Qi W, Spanos M, Li L, Wei M, Huang Z, Gao J, Liu C, van der Kraak PH, Li G, Lei Z, Sluijter JPG, Xiao J. Inhibition of Hmbox1 Promotes Cardiomyocyte Survival and Glucose Metabolism Through Gck Activation in Ischemia/Reperfusion Injury. Circulation 2024; 150:848-866. [PMID: 38708602 DOI: 10.1161/circulationaha.123.067592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Jingwen Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Songwei Ai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (J.Y.)
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Meiyu Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Weitong Qi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston (M.S., G.L.)
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Zhenzhen Huang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Petra H van der Kraak
- Department of Pathology (P.H.v.d.K.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston (M.S., G.L.)
| | - Zhiyong Lei
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L., J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
- Division Laboratory, Central Diagnosis Laboratory Research (Z.L.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L., J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
- Utrecht Regenerative Medicine Center (J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| |
Collapse
|
3
|
Wang Z, Wang J. Primary NTRK-rearranged spindle cell neoplasm of bone harboring an HMBOX1::NTRK3 gene fusion. Genes Chromosomes Cancer 2023; 62:477-482. [PMID: 36740981 DOI: 10.1002/gcc.23132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
The majority of neurotrophic tyrosine receptor kinase (NTRK) rearranged neoplasms occur either in the superficial or deep soft tissues of extremities or trunk. Occasionally, it arises in visceral organs. However, its occurrence as a primary osseous tumor has not been documented thus far. Herein, we describe a unique case of an NTRK rearranged neoplasm that presented as a primary bony lesion. The tumor occurred in a 21-year-old woman who presented with an increasing pain in the right lower extremity. Radiologic examinations revealed a destructive lytic lesion located in the lower portion of the right femur. Histologically, the tumor was composed of haphazard fascicles of monomorphic spindle cells displaying mild nuclear atypia and rare mitotic activity. Immunohistochemically, the tumor cells showed focal staining of pan-TRK and S100 protein. Fluorescence in situ hybridization analysis was performed with the utilization of break-apart probes for NTRK1/NTRK2/NTRK3 genes. An NTRK3 rearrangement was identified. Subsequent next-generation sequencing (RNA-seq) revealed HMBOX1exon6::NTRK3exon 14 fusion. Our study illustrates, albeit extremely rare, that NTRK-rearranged neoplasms can arise as a primary bone lesion. In addition, we describe a novel HMBOX1::NTRK3 fusion that has not been documented before.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Jiang W, Jiang Y, Zhang X, Mu H, Song Y, Zhao H. Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS. BMC Genomics 2023; 24:272. [PMID: 37208615 DOI: 10.1186/s12864-023-09361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
Macrophages are important effector cells in tumor progression and immune regulation. Previously, we demonstrated that the transcription suppressor homeobox containing 1(HMBOX1) exhibits immunosuppressive activity in LPS-induced acute liver injury by impeding macrophage infiltration and activation. We also observed a lower proliferation in HMBOX1-overexpressed RAW264.7 cells. However, the specific mechanism was unclear. Here, a work was performed to characterize HMBOX1 function related to cell proliferation from a metabolomics standpoint by comparing the metabolic profiles of HMBOX1-overexpressed RAW264.7 cells to those of the controls. Firstly, we assessed HMBOX1 anti-proliferation activity in RAW264.7 cells with CCK8 assay and clone formation. Then, we performed metabolomic analyses by ultra-liquid chromatography coupled with mass spectrometry to explore the potential mechanisms. Our results indicated that HMBOX1 inhibited the macrophage growth curve and clone formation ability. Metabolomic analyses showed significant changes in HMBOX1-overexpressed RAW264.7 metabolites. A total of 1312 metabolites were detected, and 185 differential metabolites were identified based on the criterion of OPLS-DA VIP > 1 and p value < 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the elevated HMBOX1 in RAW264.7 inhibited the pathways of amino acid and nucleotide metabolism. Glutamine concentrations decreased significantly in HMBOX1-overexpressed macrophages, and glutamine-related transporter SLC1A5 was also downregulated. Furthermore, SLC1A5 overexpression reversed HMBOX1 inhibition of macrophage proliferation. This study demonstrated the potential mechanism of the HMBOX1/SLC1A5 pathway in cell proliferation by regulating glutamine transportation. The results may help provide a new direction for therapeutic interventions in macrophage-related inflammatory diseases.
Collapse
Affiliation(s)
- Wen Jiang
- Central Research Laboratory, the Second Hospital of Shandong University, Jinan, 250033, China
| | - Yu Jiang
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Xinghai Zhang
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Hongli Mu
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Yuanming Song
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Hengli Zhao
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| |
Collapse
|
5
|
Hong J, Xu K, Lee JH. Biological roles of the RNA m 6A modification and its implications in cancer. Exp Mol Med 2022; 54:1822-1832. [PMID: 36446846 PMCID: PMC9722703 DOI: 10.1038/s12276-022-00897-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
The N6-Methyladenosine (m6A) modification of RNA transcripts is the most prevalent and abundant internal modification in eukaryotic messenger RNAs (mRNAs) and plays diverse and important roles in normal biological processes. Extensive studies have indicated that dysregulated m6A modification and m6A-associated proteins play critical roles in tumorigenesis and cancer progression. However, m6A-mediated physiological consequences often lead to opposite outcomes in a biological context-dependent manner. Therefore, context-related complexity must be meaningfully considered to obtain a comprehensive understanding of RNA methylation. Recently, it has been reported that m6A-modified RNAs are closely related to the regulation of the DNA damage response and genomic integrity maintenance. Here, we present an overview of the current knowledge on the m6A modification and its function in human cancer, particularly in relation to the DNA damage response and genomic instability.
Collapse
Affiliation(s)
- Juyeong Hong
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Kexin Xu
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Ji Hoon Lee
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| |
Collapse
|
6
|
Ye W, Xu L, Li Y, Liu L, Ma Z, Sun D, Han B. Single Nucleotide Polymorphisms of ALDH18A1 and MAT2A Genes and Their Genetic Associations with Milk Production Traits of Chinese Holstein Cows. Genes (Basel) 2022; 13:genes13081437. [PMID: 36011348 PMCID: PMC9407996 DOI: 10.3390/genes13081437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Our preliminary work had suggested two genes, aldehyde dehydrogenase 18 family member A1 (ALDH18A1) and methionine adenosyltransferase 2A (MAT2A), related to amino acid synthesis and metabolism as candidates affecting milk traits by analyzing the liver transcriptome and proteome of dairy cows at different lactation stages. In this study, the single nucleotide polymorphisms (SNPs) of ALDH18A1 and MAT2A genes were identified and their genetic effects and underlying causative mechanisms on milk production traits in dairy cattle were analyzed, with the aim of providing effective genetic information for the molecular breeding of dairy cows. By resequencing the entire coding and partial flanking regions of ALDH18A1 and MAT2A, we found eight SNPs located in ALDH18A1 and two in MAT2A. Single-SNP association analysis showed that most of the 10 SNPs of these two genes were significantly associated with the milk yield traits, 305-day milk yield, fat yield, and protein yield in the first and second lactations (corrected p ≤ 0.0488). Using Haploview 4.2, we found that the seven SNPs of ALDH18A1 formed two haplotype blocks; subsequently, the haplotype-based association analysis showed that both haplotypes were significantly associated with 305-day milk yield, fat yield, and protein yield (corrected p ≤ 0.014). Furthermore, by Jaspar and Genomatix software, we found that 26:g.17130318 C>A and 11:g.49472723G>C, respectively, in the 5′ flanking region of ALDH18A1 and MAT2A genes changed the transcription factor binding sites (TFBSs), which might regulate the expression of corresponding genes to affect the phenotypes of milk production traits. Therefore, these two SNPs were considered as potential functional mutations, but they also require further verification. In summary, ALDH18A1 and MAT2A were proved to probably have genetic effects on milk production traits, and their valuable SNPs might be used as candidate genetic markers for dairy cattle’s genomic selection (GS).
Collapse
Affiliation(s)
- Wen Ye
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lingna Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| |
Collapse
|
7
|
Antoun E, Titcombe P, Dalrymple K, Kitaba NT, Barton SJ, Flynn A, Murray R, Garratt ES, Seed PT, White SL, Cooper C, Inskip HM, Hanson M, Poston L, Godfrey KM, Lillycrop KA, UPBEAT Consortium/EpiGen Consortium. DNA methylation signatures in cord blood associated with birthweight are enriched for dmCpGs previously associated with maternal hypertension or pre-eclampsia, smoking and folic acid intake. Epigenetics 2022; 17:405-421. [PMID: 33784941 PMCID: PMC8993070 DOI: 10.1080/15592294.2021.1908706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 01/22/2023] Open
Abstract
Many epidemiological studies have linked low birthweight to an increased risk of non-communicable diseases (NCDs) in later life, with epigenetic proceseses suggested as an underlying mechanism. Here, we sought to identify neonatal methylation changes associated with birthweight, at the individual CpG and genomic regional level, and whether the birthweight-associated methylation signatures were associated with specific maternal factors. Using the Illumina Human Methylation EPIC array, we assessed DNA methylation in the cord blood of 557 and 483 infants from the UK Pregnancies Better Eating and Activity Trial and Southampton Women's Survey, respectively. Adjusting for gestational age and other covariates, an epigenome-wide association study identified 2911 (FDR≤0.05) and 236 (Bonferroni corrected p ≤ 6.45×10-8) differentially methylated CpGs (dmCpGs), and 1230 differentially methylated regions (DMRs) (Stouffer ≤0.05) associated with birthweight. The top birthweight-associated dmCpG was located within the Homeobox Telomere-Binding Protein 1 (HMBOX1) gene with a 195 g (95%CI: -241, -149 g) decrease in birthweight per 10% increase in methylation, while the top DMR was located within the promoter of corticotropin-releasing hormone-binding protein (CRHBP). Furthermore, the birthweight-related dmCpGs were enriched for dmCpGs previously associated with gestational hypertension/pre-eclampsia (14.51%, p = 1.37×10-255), maternal smoking (7.71%, p = 1.50 x 10-57) and maternal plasma folate levels during pregnancy (0.33%, p = 0.029). The identification of birthweight-associated methylation markers, particularly those connected to specific pregnancy complications and exposures, may provide insights into the developmental pathways that affect birthweight and suggest surrogate markers to identify adverse prenatal exposures for stratifying for individuals at risk of later NCDs.
Collapse
Affiliation(s)
- E Antoun
- Human Development and health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Titcombe
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - K Dalrymple
- Department of Women and Children’s Health, King’s College London, London, UK
| | - NT Kitaba
- Human Development and health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - SJ Barton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Ac Flynn
- Department of Women and Children’s Health, King’s College London, London, UK
| | - R Murray
- Human Development and health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - ES Garratt
- Human Development and health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - PT Seed
- Department of Women and Children’s Health, King’s College London, London, UK
| | - SL White
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR, NIHR Southampton BiomedGical Research Centre, Southampton
| | - H M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - M Hanson
- Human Development and health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - L Poston
- Department of Women and Children’s Health, King’s College London, London, UK
| | - KM Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR, NIHR Southampton BiomedGical Research Centre, Southampton
| | - KA Lillycrop
- NIHR, NIHR Southampton BiomedGical Research Centre, Southampton
- Biological Sciences, University of Southampton, Southampton, UK
| | - UPBEAT Consortium/EpiGen Consortium
- Human Development and health, Faculty of Medicine, University of Southampton, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Department of Women and Children’s Health, King’s College London, London, UK
- NIHR, NIHR Southampton BiomedGical Research Centre, Southampton
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Kind L, Raasakka A, Molnes J, Aukrust I, Bjørkhaug L, Njølstad PR, Kursula P, Arnesen T. Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants. J Biol Chem 2022; 298:101803. [PMID: 35257744 PMCID: PMC8988010 DOI: 10.1016/j.jbc.2022.101803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/05/2022] Open
Abstract
Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic β-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Janne Molnes
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Pål Rasmus Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
9
|
Nie M, Li H, Liu P, Dang P. HMBOX1 attenuates LPS-induced periodontal ligament stem cell injury by inhibiting CXCL10 expression through the NF-κB signaling pathway. Exp Ther Med 2022; 23:224. [PMID: 35222701 PMCID: PMC8812104 DOI: 10.3892/etm.2022.11148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Homeobox containing 1 (HMBOX1) is a member of the homeobox transcription factor family that has been reported to serve an important role in numerous biological processes. The present study aimed to determine the role of HMBOX1 in the pathogenesis of periodontitis. Human periodontal ligament stem cells (hPDLSCs) were treated with liposaccharide (LPS) and transfected with a HMBOX1 overexpression (Ov-HMBOX1) plasmid or small interfering (si)-C-X-C motif chemokine ligand 10 (CXCL10) plasmids. The effects of Ov-HMBOX1 on cell proliferation, inflammation and apoptosis were subsequently investigated using Cell Counting Kit-8, ELISA for analysis of IL-6, TNF-α and IL-1β levels, TUNEL and western blotting assays for analysis of Bcl-2, Bax, cleaved caspase-3 and caspase-3 levels, respectively. Furthermore, the potential effects of HMBOX1 on the mRNA and protein levels of CXCL10 and the NF-κB signaling pathway were investigated by using reverse transcription-quantitative PCR and western blotting. Finally, the physiological processes of lipopolysaccharide (LPS)-induced hPDLSCs overexpressing HMBOX1 were assessed following treatment with phorbol 12-myristate 13-acetate (PMA), a NF-κB agonist. The results revealed that Ov-HMBOX1 transfection promoted proliferation whilst alleviating inflammation and apoptosis in LPS-induced hPDLSCs. Ov-HMBOX1 reduced the expression of CXCL10 by suppressing the NF-κB signaling pathway. PMA treatment inhibited the proliferation of LPS-induced hPDLSCs transfected with Ov-HMBOX1, which was reversed by transfection with si-CXCL10. In conclusion, results of the present study provided evidence that HMBOX1 can attenuate LPS-induced hPDLSC injury by downregulating CXCL10 expression via the NF-κB signaling pathway, which may provide a novel insight into the development of potentially novel treatment strategies for periodontitis.
Collapse
Affiliation(s)
- Minyuan Nie
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, P.R. China
| | - Heng Li
- Department of Paediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Puhe Liu
- Department of Stomatology, The First Dental Hospital, Wuhai, Inner Mongolia Autonomous Region 016000, P.R. China
| | - Ping Dang
- Department of Stomatology, Amcare Women's and Children's Hospital, Beijing 100016, P.R. China
| |
Collapse
|
10
|
Lee JH, Hong J, Zhang Z, de la Peña Avalos B, Proietti CJ, Deamicis AR, Guzmán G P, Lam HM, Garcia J, Roudier MP, Sisk AE, De La Rosa R, Vu K, Yang M, Liao Y, Scheirer J, Pechacek D, Yadav P, Rao MK, Zheng S, Johnson-Pais TL, Leach RJ, Elizalde PV, Dray E, Xu K. Regulation of telomere homeostasis and genomic stability in cancer by N 6-adenosine methylation (m 6A). SCIENCE ADVANCES 2021; 7:7/31/eabg7073. [PMID: 34321211 PMCID: PMC8318370 DOI: 10.1126/sciadv.abg7073] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
The role of RNA methylation on N 6-adenosine (m6A) in cancer has been acknowledged, but the underlying mechanisms remain obscure. Here, we identified homeobox containing 1 (HMBOX1) as an authentic target mRNA of m6A machinery, which is highly methylated in malignant cells compared to the normal counterparts and subject to expedited degradation upon the modification. m6A-mediated down-regulation of HMBOX1 causes telomere dysfunction and inactivation of p53 signaling, which leads to chromosome abnormalities and aggressive phenotypes. CRISPR-based, m6A-editing tools further prove that the methyl groups on HMBOX1 per se contribute to the generation of altered cancer genome. In multiple types of human cancers, expression of the RNA methyltransferase METTL3 is negatively correlated with the telomere length but favorably with fractions of altered cancer genome, whereas HMBOX1 mRNA levels show the opposite patterns. Our work suggests that the cancer-driving genomic alterations may potentially be fixed by rectifying particular epitranscriptomic program.
Collapse
Affiliation(s)
- Ji Hoon Lee
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juyeong Hong
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
| | - Cecilia J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Agustina Roldán Deamicis
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Pablo Guzmán G
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco Casilla 54-D, Chile
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Jose Garcia
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Martine P Roudier
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Anthony E Sisk
- Department of Pathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Richard De La Rosa
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kevin Vu
- Department of Medical Education, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX 78229, USA
| | - Mei Yang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yiji Liao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jessica Scheirer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Douglas Pechacek
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pooja Yadav
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Teresa L Johnson-Pais
- Department of Urology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Robin J Leach
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol Ther 2021; 29:1512-1528. [PMID: 33388421 PMCID: PMC8058488 DOI: 10.1016/j.ymthe.2020.12.034] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated lymphatic endothelial cells (LECs) are an active barrier to the effector arm of the anti-tumor immune response; however, it remains unclear how LECs become immunosuppressive in the tumor microenvironment (TME). Exosomal microRNAs (miRNAs) have recently been implicated in intercellular crosstalk within the TME. Here, we report a mechanistic model via which cervical cancer-secreted, exosome-encapsulated microRNA (miR)-1468-5p promotes lymphatic PD-L1 upregulation and lymphangiogenesis to impair T cell immunity. Subsequently, exosomal miR-1468-5p epigenetically activates the JAK2/STAT3 pathway in LECs by directly targeting homeobox containing 1 (HMBOX1) in the SOCS1 promoter, activating an immunosuppressive program that allows cancer cells to escape anti-cancer immunity. Furthermore, clinical data reveal that high serum exosomal miR-1468-5p levels correlate with TME immunosuppressive status and poor prognosis in cervical cancer (CCa) patients. Taken together, our results suggest that cancer-secreted exosomal miR-1468-5p instructs LECs to form an integrated immunosuppressive TME component and may be a prognostic biomarker and therapeutic target for CCa.
Collapse
|
12
|
Chen S, Li Y, Zhi S, Ding Z, Wang W, Peng Y, Huang Y, Zheng R, Yu H, Wang J, Hu M, Miao J, Li J. WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m 6A-dependent manner. Cell Death Dis 2020; 11:659. [PMID: 32814762 PMCID: PMC7438489 DOI: 10.1038/s41419-020-02847-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
N6-methyladenosine (m6A) regulators are involved in the progression of various cancers via regulating m6A modification. However, the potential role and mechanism of the m6A modification in osteosarcoma remains obscure. In this study, WTAP was found to be highly expressed in osteosarcoma tissue and it was an independent prognostic factor for overall survival in osteosarcoma. Functionally, WTAP, as an oncogene, was involved in the proliferation and metastasis of osteosarcoma in vitro and vivo. Mechanistically, M6A dot blot, RNA-seq and MeRIP-seq, MeRIP-qRT-PCR and luciferase reporter assays showed that HMBOX1 was identified as the target gene of WTAP, which regulated HMBOX1 stability depending on m6A modification at the 3′UTR of HMBOX1 mRNA. In addition, HMBOX1 expression was downregulated in osteosarcoma and was an independent prognostic factor for overall survival in osteosarcoma patients. Silenced HMBOX1 evidently attenuated shWTAP-mediated suppression on osteosarcoma growth and metastasis in vivo and vitro. Finally, WTAP/HMBOX1 regulated osteosarcoma growth and metastasis via PI3K/AKT pathway. In conclusion, this study demonstrated the critical role of the WTAP-mediated m6A modification in the progression of osteosarcoma, which could provide novel insights into osteosarcoma treatment.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuezhan Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Shuang Zhi
- Four Gynecological Wards, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yan Huang
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, China
| | - Haiyang Yu
- School of Basic Medical Science, Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Minghua Hu
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha, China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| |
Collapse
|
13
|
Ma H, Su L, He X, Miao J. Loss of HMBOX1 promotes LPS-induced apoptosis and inhibits LPS-induced autophagy of vascular endothelial cells in mouse. Apoptosis 2020; 24:946-957. [PMID: 31583496 DOI: 10.1007/s10495-019-01572-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our previous study revealed that Homeobox containing 1 (HMBOX1), essential for the survival of vascular endothelial cells (VECs), was involved in the progression of atherosclerosis. Knockdown of HMBOX1 promoted apoptosis and inhibited autophagy through regulating intracellular free zinc level in cultured VECs. In current study, in order to investigate the roles of HMBOX1 in vivo and in endothelium, we generated a knockout (KO) mouse for HMBOX1 by using transcription activator-like effector nucleases (TALENs) technology. Herein, we reported that the protein level of HMBOX1 was gradually increased during mouse development. The HMBOX1 KO mouse was viable and fertile. There existed no differences in apoptosis and autophagy of aortic endothelial cells between wild type and KO mouse. Whereas, loss of HMBOX1 promoted apoptosis and inhibited autophagy of aortic endothelial cells under lipopolysaccharide (LPS) stimulation in mouse. We also demonstrated that HMBOX1 deletion had no influence on the secretion of inflammatory cytokines TNF-α and IL-6. Moreover, overexpression or knockdown of HMBOX1 failed to regulate multiple pro-apoptotic genes expression in vitro. In conclusion, HMBOX1 participated in the functional maintenance of mouse aortic endothelial cells, the aortic endothelial cells of HMBOX1 KO mouse showed increased apoptosis and decreased autophagy with LPS treatment.
Collapse
Affiliation(s)
- HanLin Ma
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China.,Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China
| | - XiaoYing He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, People's Republic of China.
| |
Collapse
|
14
|
Jiang Y, Han QJ, Zhang J. Hepatocellular carcinoma: Mechanisms of progression and immunotherapy. World J Gastroenterol 2019; 25:3151-3167. [PMID: 31333308 PMCID: PMC6626719 DOI: 10.3748/wjg.v25.i25.3151] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the most common malignancies, and various pathogenic factors can lead to its occurrence and development. Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most common. With extensive studies, an increasing number of molecular mechanisms that promote HCC are being discovered. Surgical resection is still the most effective treatment for patients with early HCC. However, early detection and treatment are difficult for most HCC patients, and the postoperative recurrence rate is high, resulting in poor clinical prognosis of HCC. Although immunotherapy takes longer than conventional chemotherapy to produce therapeutic effects, it persists for longer. In recent years, the emergence of many new immunotherapies, such as immune checkpoint blockade and chimeric antigen receptor T cell therapies, has given new hope for the treatment of HCC.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
- Cancer Vaccines/therapeutic use
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Disease Progression
- Humans
- Immunotherapy, Adoptive/methods
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Receptors, Chimeric Antigen/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
15
|
Klein SL, Scheper C, Brügemann K, Swalve HH, König S. Phenotypic relationships, genetic parameters, genome-wide associations, and identification of potential candidate genes for ketosis and fat-to-protein ratio in German Holstein cows. J Dairy Sci 2019; 102:6276-6287. [PMID: 31056336 DOI: 10.3168/jds.2019-16237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Energy demand for milk production in early lactation exceeds energy intake, especially in high-yielding Holstein cows. Energy deficiency causes increasing susceptibility to metabolic disorders. In addition to several blood parameters, the fat-to-protein ratio (FPR) is suggested as an indicator for ketosis, because a FPR >1.5 refers to high lipolysis. The aim of this study was to analyze phenotypic, quantitative genetic, and genomic associations between FPR and ketosis. In this regard, 8,912 first-lactation Holstein cows were phenotyped for ketosis according to a veterinarian diagnosis key. Ketosis was diagnosed if the cow showed an abnormal carbohydrate metabolism with increased content of ketone bodies in the blood or urine. At least one entry for ketosis in the first 6 wk after calving implied a score = 1 (diseased); otherwise, a score = 0 (healthy) was assigned. The FPR from the first test-day was defined as a Gaussian distributed trait (FPRgauss), and also as a binary response trait (FPRbin), considering a threshold of FPR = 1.5. After imputation and quality controls, 45,613 SNP markers from the 8,912 genotyped cows were used for genomic studies. Phenotypically, an increasing ketosis incidence was associated with significantly higher FPR, and vice versa. Hence, from a practical trait recording perspective, first test-day FPR is suggested as an indicator for ketosis. The ketosis heritability was slightly larger when modeling the pedigree-based relationship matrix (pedigree-based: 0.17; SNP-based: 0.11). For FPRbin, heritabilities were larger when modeling the genomic relationship matrix (pedigree-based: 0.09; SNP-based: 0.15). For FPRgauss, heritabilities were almost identical for both pedigree and genomic relationship matrices (pedigree-based: 0.14; SNP-based: 0.15). Genetic correlations between ketosis with FPRbin and FPRgauss using either pedigree- or genomic-based relationship matrices were in a moderate range from 0.39 to 0.71. Applying genome-wide association studies, we identified the specific SNP rs109896020 (BTA 5, position: 115,456,438 bp) significantly contributing to ketosis. The identified potential candidate gene PARVB in close chromosomal distance is associated with nonalcoholic fatty liver disease in humans. The most important SNP contributing to FPRbin was located within the DGAT1 gene. Different SNP significantly contributed to ketosis and FPRbin, indicating different mechanisms for both traits genomically.
Collapse
Affiliation(s)
- S-L Klein
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| | - C Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - K Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - H H Swalve
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| |
Collapse
|
16
|
Diao N, Li Y, Yang J, Jin C, Meng X, Jiao W, Feng J, Liu Z, Lu N. High expression of HMBOX1 contributes to poor prognosis of gastric cancer by promoting cell proliferation and migration. Biomed Pharmacother 2019; 115:108867. [PMID: 31005794 DOI: 10.1016/j.biopha.2019.108867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/24/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Homeobox-containing 1 (HMBOX1) has been reported to be associated with biological characteristics of some tumors, but its roles in gastric cancer have never been reported. In the present study, we found that HMBOX1 expression was significantly upregulated in gastric cancer tissues and cell lines and correlated with the TNM stage, lymph-node metastatic and the overall survival (OS) of patients of gastric cancer. The overexpression of HMBOX1 in gastric cancer cells enhanced cell proliferation by accelerating cell cycle, induced cell migration. In contrast, silencing HMBOX1 inhibited these processes. And the expression of HMBOX1 was related with the expression of vascular endothelial growth factor receptor (VEGFR), transforming growth factor-β (TGF-β) and CD133. What's more, we found that the expression of CD133 had a significantly positive correlation with HMBOX1 in gastric cancer tissues, and the co-expression of HMBOX1 and CD133 was significantly correlated with poor prognosis of gastric cancer patients, especially for patients at III and IV stage. In conclusion, HMBOX1 was upregulated in gastric cancer and correlated with gastric cancer cell proliferation and migration. Moreover, HMBOX1 combined CD133 might be useful to predict survival of patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Nannan Diao
- Institute of Diagnostics, School of Medicine, Shandong University, Ji'nan, Shandong, China; Department of Clinical Laboratory, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yuzheng Li
- Institute of Yantai, China Agricultural University, Beijing, China
| | - Jinling Yang
- Institute of Diagnostics, School of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China; Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital, Shandong University, Ji'nan, Shandong, China
| | - Xiaohui Meng
- Institute of Diagnostics, School of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Wenlin Jiao
- National Research Center for Assisted Reproductive Technology and Reproduction Genetics, Ji'nan, Shandong, China
| | - Jinbo Feng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China; Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital, Shandong University, Ji'nan, Shandong, China
| | - Zhenping Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China; Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital, Shandong University, Ji'nan, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Ji'nan, Shandong, China.
| |
Collapse
|
17
|
Yuan HX, Feng XE, Liu EL, Ge R, Zhang YL, Xiao BG, Li QS. 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone attenuates LPS-induced inflammation and ROS production in EA.hy926 cells via HMBOX1 induction. J Cell Mol Med 2018; 23:453-463. [PMID: 30358079 PMCID: PMC6307801 DOI: 10.1111/jcmm.13948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.
Collapse
Affiliation(s)
- Hong-Xia Yuan
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Xiu-E Feng
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - En-Li Liu
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Rui Ge
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yuan-Lin Zhang
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Bao-Guo Xiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Qing-Shan Li
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| |
Collapse
|
18
|
Zhou J, Wang M, Deng D. c-Fos/microRNA-18a feedback loop modulates the tumor growth via HMBOX1 in human gliomas. Biomed Pharmacother 2018; 107:1705-1711. [PMID: 30257388 DOI: 10.1016/j.biopha.2018.08.157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Glioma is one of the most aggressive and lethal human cancers in central nervous system (CNS). Recent studies have identified many dysregulated microRNAs (miRNA, miR) in human glioma, which are a class of small non-coding RNA molecules. Increasing data have shown that miR-18a plays significant roles in several tumors. However, its effects on glioma are unclear. In this study, we found the elevated expression of c-Fos and miR-18a in tissues of human glioma patients and glioma cells. Then the miR-18a inhibitor or c-Fos siRNA were transfected into glioma cells line H4 to determine their effects on H4 cells. MTT assay showed that both miR-18a inhibitor and si-c-Fos suppressed the H4 cell proliferation. Transwell assay showed the reduced cell migration by miR-18a inhibitor and si-c-Fos in H4 cells. The increased level of H4 cells apoptosis by miR-18a inhibitor and si-c-Fos was also determined. Moreover, knockout of c-Fos decreased the miR-18a level, while miR-18a inhibitor reduced the c-Fos level in H4 cells. Added with the results of ChIP assay, this report showed a positive feedback between c-Fos and miR-18a. Finally, luciferase assay showed that HMBOX1 was directly targeted by miR-18a in H4 cells, and the HMBOX1 siRNA reversed the effects of miR-18a inhibitor on cell proliferation, migration and apoptosis of H4 cells. In conclusion, our study determine that c-Fos/miR-18a feedback loop promotes the tumor growth of gliomas by HMBOX1, providing important clues for understanding the key roles of transcription factor mediated mRNA-miRNA functional network in the regulation of gliomas.
Collapse
Affiliation(s)
- Jingbin Zhou
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China
| | - Muchun Wang
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China
| | - Dongfeng Deng
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China.
| |
Collapse
|
19
|
Zhao H, Han Q, Lu N, Xu D, Tian Z, Zhang J. HMBOX1 in hepatocytes attenuates LPS/D-GalN-induced liver injury by inhibiting macrophage infiltration and activation. Mol Immunol 2018; 101:303-311. [PMID: 30032072 DOI: 10.1016/j.molimm.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
The HMBOX1 (Homeobox Containing 1) gene was first isolated from the human pancreatic cDNA libraries and is widely expressed in many tissues. Previously, we detected high expression of HMBOX1 in the liver, but its function was unclear. In this study, hepatocyte-specific HMBOX1 knockout mice (Hm△hep mice) were generated and used to characterize the function of HMBOX1 in the LPS/D-GalN-induced acute liver failure model. HMBOX1-knockout exhibits exacerbated liver injury induced by LPS/D-GalN, accompanied with high levels of inflammatory cytokines both in the liver and in circulation. Further investigation demonstrated that HMBOX1 negatively regulates NF-κB signal transduction. Therefore, HMBOX1-knockout in hepatocytes promotes CCL2 expression through the activation of NF-κB signaling, which enhanced the infiltration of macrophages into the liver. In addition, the decrease of HMBOX1 in hepatocytes promotes the activation of macrophages, upregulating CD80 and MHCⅡ, as well as inflammatory factors TNF-α and IL-6. Importantly, overexpression of HMBOX1 rescued liver injury in Hm△hep mice. These findings indicate that HMBOX1 in hepatocytes acts as a key immunosuppressive factor for inflammation and plays a critical protective role in LPS/D-GalN-induced liver injury.
Collapse
Affiliation(s)
- Hengli Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Nan Lu
- Diagnostic Institute, Medical School, Shandong University, China
| | - Dongqing Xu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China.
| |
Collapse
|
20
|
Yu YL, Diao NN, Li YZ, Meng XH, Jiao WL, Feng JB, Liu ZP, Lu N. Low expression level of HMBOX1 in high-grade serous ovarian cancer accelerates cell proliferation by inhibiting cell apoptosis. Biochem Biophys Res Commun 2018; 501:380-386. [DOI: 10.1016/j.bbrc.2018.04.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
|
21
|
Zhang P, Liu Q, Yan S, Yuan G, Shen J, Li G. Homeobox‑containing protein 1 loss is associated with clinicopathological performance in glioma. Mol Med Rep 2017; 16:4101-4106. [PMID: 28731165 DOI: 10.3892/mmr.2017.7050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
Homeobox-containing protein 1 (HMBOX1) is a novel member of the homeobox family, and abnormal expression of HMBOX1 has been observed in several types of carcinoma. A total of 144 cases of confirmed glioma diagnoses were included in the present study. Grading was performed according to the World Health Organization (WHO) grading system for central nervous system neoplasm. Immunohistochemical staining of HMBOX1, proliferation marker protein Ki‑67 (Ki‑67) and microvessel density (MVD) was performed, and scores were calculated. HMBOX1 mRNA levels were detected using the reverse transcription quantitative polymerase chain reaction. It was identified that the expression of HMBOX1 was reduced in glioma tissue compared with normal brain tissue (P<0.05). The expression of HMBOX1 was downregulated significantly in WHO grade IV tumors compared with WHO grades II and III (P<0.05). HMBOX1 expression was significantly correlated with WHO grade, Karnofsky Performance Score, MVD and Ki‑67 expression; however, not associated with age or gender. Log‑rank testing did not demonstrate that HMBOX1 expression was associated with prognosis. In conclusion, HMBOX1 may be a potential diagnostic marker in glioma.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qinglin Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaofeng Yan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guang Yuan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Shen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
22
|
Zhou S, Xiao Y, Zhuang Y, Liu Y, Zhao H, Yang H, Xie C, Zhou F, Zhou Y. Knockdown of homeobox containing 1 increases the radiosensitivity of cervical cancer cells through telomere shortening. Oncol Rep 2017. [PMID: 28628186 DOI: 10.3892/or.2017.5707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeobox containing 1 (HMBOX1) modulates telomere length in various types of tumor cells by binding to double‑stranded telomeric DNA. There is a negative correlation between telomere length and radiosensitivity in tumor cells. In the present study, we aimed to investigate the relationship among HMBOX1, telomere and radiosensitivity in cervical cancer cells. Lentivirus-based shRNAs were used to establish stable transfected cell lines in which protein and mRNA levels of HMBOX1 were notably decreased. Knockdown of HMBOX1 increased the radiosensitivity of HeLa and C33A cells. TERT protein was also decreased while HMBOX1 was downregulated. Knockdown of HMBOX1 shortened telomere length in the HeLa cells, while TERT overexpression rescued telomere shortening in the HeLa-HMBOX1 cells. Knockdown of HMBOX1 increased the apoptosis rate, decreased radiation-induced DNA damage foci, and inhibited the expression of ATM, ATR, p-ATM, p-ATR and BRCA1 in the homologous recombination repair pathway. Our data suggest a possible role of HMBOX1 in regulating radiosensitivity in cervical cancer cells. Moreover, HMBOX1 may be a potential factor in the radiotherapy of cervical cancer.
Collapse
Affiliation(s)
- Shuliang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Youde Xiao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yafei Zhuang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yinyin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hong Zhao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
23
|
Ma H, Su L, Zhang S, Kung H, Miao J. Inhibition of ANXA7 GTPase activity by a small molecule promotes HMBOX1 translation of vascular endothelial cells in vitro and in vivo. Int J Biochem Cell Biol 2016; 79:33-40. [DOI: 10.1016/j.biocel.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/28/2022]
|
24
|
Browne JA, Yang R, Eggener SE, Leir SH, Harris A. HNF1 regulates critical processes in the human epididymis epithelium. Mol Cell Endocrinol 2016; 425:94-102. [PMID: 26808453 PMCID: PMC4799753 DOI: 10.1016/j.mce.2016.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/26/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023]
Abstract
The luminal environment of the epididymis participates in sperm maturation and impacts male fertility. It is dependent on the coordinated expression of many genes encoding proteins with a role in epithelial transport. We identified cis-regulatory elements for critical genes in epididymis function, by mapping open chromatin genome-wide in human epididymis epithelial (HEE) cells. Bioinformatic predictions of transcription factors binding to the regulatory elements suggested an important role for hepatocyte nuclear factor 1 (HNF1) in the transcriptional program of these cells. Chromatin immunoprecipitation and deep sequencing (ChIP-seq) revealed HNF1 target genes in HEE cells. In parallel, the contribution of HNF1 to the transcriptome of HEE cells was determined by RNA-seq, following siRNA-mediated depletion of both HNF1α and HNF1β transcription factors. Repression of these factors caused differential expression of 1892 transcripts (902 were downregulated and 990 upregulated) in comparison to non-targeting siRNAs. Differentially expressed genes with HNF1 ChIP-seq peaks within 20 kb were subject to gene ontology process enrichment analysis. Among the most significant processes associated with down-regulated genes were epithelial transport of water, phosphate and bicarbonate, all critical processes in epididymis epithelial function. Measurements of intracellular pH (pHi) confirmed a role for HNF1 in regulating the epididymis luminal environment.
Collapse
Affiliation(s)
- James A Browne
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA
| | - Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA
| | - Scott E Eggener
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA.
| |
Collapse
|
25
|
Ma Y, Gong J, Liu Y, Guo W, Jin B, Wang X, Chen L. MicroRNA-30c promotes natural killer cell cytotoxicity via up-regulating the expression level of NKG2D. Life Sci 2016; 151:174-181. [PMID: 26968781 DOI: 10.1016/j.lfs.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
AIMS Natural killer (NK) cells play critical roles in antitumor immunity. Our previous study showed that over-expression of miR-30c-1* enhanced NKL cell cytotoxicity through up-regulation of tumor necrosis factor-α via directly targeting transcription factor homeobox containing 1. MiR-30c, the complimentary microRNA of miR-30c-1*, has been found to exert regulatory effect on T cell function. However, the effect of miR-30c on NK cells is unknown. Therefore, this study aimed to investigate whether miR-30c could play a role to enhance NK cell activation and cytotoxicity. MAIN METHODS Chemosynthesis exogenous miR-30c mimics and miR-30c inhibitor were transfected into NKL cells and isolated human peripheral blood NK cells, respectively. The expression levels of NK group 2, member D (NKG2D), CD107a and FasL on cell surface and cytotoxic ability of miRNAs transfected NKL cells against SMMC-7721 cells were evaluated. KEY FINDINGS MiR-30c could increase the expression of NKG2D and CD107a on NKL cells, and enhance cytotoxic ability of NKL cells to kill SMMC-7721 cells. Moreover, miR-30c could up-regulate the expression of FasL on both NKL cells and human peripheral blood NK cells. However, the peripheral blood NK cells from only four in ten healthy donors appeared high expression levels of NKG2D and CD107a after miR-30c transfection. SIGNIFICANCE MiR-30c could promote the cytotoxicity of NKL cells in vitro by up-regulating the expression levels of NKG2D, CD107a and FasL. However, the effect of miR-30c on ex vivo NK cells from different human individuals is diverse, indicating that miR-30c may play complicate and fine adjustment in immune system.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Jiuyu Gong
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Hospital of Hubei Armed Police Corps, Wuhan, Hubei 430000, China
| | - Yuan Liu
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenwei Guo
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China.
| | - Lihua Chen
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
HMBOX1 interacts with MT2A to regulate autophagy and apoptosis in vascular endothelial cells. Sci Rep 2015; 5:15121. [PMID: 26456220 PMCID: PMC4600982 DOI: 10.1038/srep15121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/16/2015] [Indexed: 12/03/2022] Open
Abstract
We previously found that Homeobox containing 1 (HMBOX1) was required for bone mesenchymal stem cell (BMSC) and mouse embryonic stem cell (ESC) differentiation into vascular endothelial cells (VECs). However, the function of HMBOX1 in VECs is still unknown. In this study, we found that HMBOX1 was abundantly expressed in the cytoplasm of human umbilical vascular endothelial cells (HUVECs). Knockdown of HMBOX1 induced apoptosis and inhibited autophagy. Overexpression of HMBOX1 inhibited apoptosis induced by fibroblast growth factor 2 deprivation and promoted autophagy. Metallothionein 2A (MT2A) was identified as an interaction protein with HMBOX1 by yeast two-hybrid assay, and confirmed by co-immunoprecipitation. Overexpression of HMBOX1 elevated intracellular free zinc level. Knockdown of MT2A inhibited this phenomenon. Moreover, N,N,N = ,N = -tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a zinc chelator, reversed the anti-apoptosis and pro-autophagy effects of HMBOX1. In conclusion, HMBOX1 regulated intracellular free zinc level by interacting with MT2A to inhibit apoptosis and promote autophagy in VECs.
Collapse
|
27
|
Chen J, Chen S, Wang J, Zhang M, Gong Z, Wei Y, Li L, Zhang Y, Zhao X, Jiang S, Yu L. Cyclophilin J is a novel peptidyl-prolyl isomerase and target for repressing the growth of hepatocellular carcinoma. PLoS One 2015; 10:e0127668. [PMID: 26020957 PMCID: PMC4447340 DOI: 10.1371/journal.pone.0127668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
Cyclophilin J (CYPJ) is a new member of the peptidyl-prolyl cis/trans-isomerase (PPIase) identified with upregulated expression in human glioma. However, the biological function of CYPJ remained unclear. We aimed to study the role of CYPJ in hepatocellular carcinoma (HCC) carcinogenesis and its therapeutic potential. We determined the expression of CYPJ in HCC/adjacent normal tissues using Western blot, Northern blot and semi-quantitative RT-PCR, analyzed the biochemical characteristics of CYPJ, and resolved the 3D-structure of CYPJ/Cyclosporin A (CsA) complex. We also studied the roles of CYPJ in cell cycle, cyclin D1 regulation, in vitro and in vivo tumor growth. We found that CYPJ expression was upregulated in over 60% HCC tissues. The PPIase activity of CYPJ could be inhibited by the widely used immunosuppressive drug CsA. CYPJ was found expressed in the whole cell of HCC with preferential location at the cell nucleus. CYPJ promoted the transition of cells from G1 phase to S phase in a PPIase-dependent manner by activating cyclin D1 promoter. CYPJ overexpression accelerated liver cell growth in vitro (cell growth assay, colony formation) and in vivo (xenograft tumor formation). Inhibition of CYPJ by its inhibitor CsA or CYPJ-specific RNAi diminished the growth of liver cancer cells in vitro and in vivo. In conclusion, CYPJ could facilitate HCC growth by promoting cell cycle transition from G1 to S phase through the upregulation of cyclin D1. Suppression of CYPJ could repress the growth of HCC, which makes CYPJ a potential target for the development of new strategies to treat this malignancy.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Shandong Research Center of Stem Cell Engineering, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
- * E-mail: (SJ); (JC)
| | - Shuai Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Jiahui Wang
- Shandong Research Center of Stem Cell Engineering, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Mingjun Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Zhaohua Gong
- Department of Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Li Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xuemei Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Songmin Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- * E-mail: (SJ); (JC)
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
28
|
Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Boström P, Che L, Zhang C, Spiegelman BM, Rosenzweig A. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 2015; 21:584-95. [PMID: 25863248 PMCID: PMC4393846 DOI: 10.1016/j.cmet.2015.02.014] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/17/2015] [Accepted: 02/13/2015] [Indexed: 01/26/2023]
Abstract
Exercise induces physiological cardiac growth and protects the heart against pathological remodeling. Recent work suggests exercise also enhances the heart's capacity for repair, which could be important for regenerative therapies. While microRNAs are important in certain cardiac pathologies, less is known about their functional roles in exercise-induced cardiac phenotypes. We profiled cardiac microRNA expression in two distinct models of exercise and found microRNA-222 (miR-222) was upregulated in both. Downstream miR-222 targets modulating cardiomyocyte phenotypes were identified, including HIPK1 and HMBOX1. Inhibition of miR-222 in vivo completely blocked cardiac and cardiomyocyte growth in response to exercise while reducing markers of cardiomyocyte proliferation. Importantly, mice with inducible cardiomyocyte miR-222 expression were resistant to adverse cardiac remodeling and dysfunction after ischemic injury. These studies implicate miR-222 as necessary for exercise-induced cardiomyocyte growth and proliferation in the adult mammalian heart and show that it is sufficient to protect the heart against adverse remodeling.
Collapse
Affiliation(s)
- Xiaojun Liu
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Junjie Xiao
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Han Zhu
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Xin Wei
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Colin Platt
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Federico Damilano
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Chunyang Xiao
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Vassilios Bezzerides
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Cardiovascular Department of Boston Children's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Pontus Boström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lin Che
- Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Chunxiang Zhang
- Rush Medical College, Rush University, Chicago, IL 60612, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Anthony Rosenzweig
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Massachusetts General Hospital Cardiovascular Division and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Wang FW, Zhao F, Qian XY, Yu ZZ, Zhao J, Su L, Zhang Y, Zhang SL, Zhao BX, Miao JY. Identification of a small molecule preventing BMSC senescence in vitro by improving intracellular homeostasis via ANXA7 and Hmbox1. RSC Adv 2014. [DOI: 10.1039/c4ra10404h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABO was discovered to be a novel anti-aging chemical in cultured BMSCs by improving intracellular homeostasis.
Collapse
Affiliation(s)
- Fang-Wu Wang
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Fei Zhao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Xing-Yang Qian
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Zhe-Zhen Yu
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Jing Zhao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Le Su
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Shandong University Qilu Hospital
- Jinan, P.R. China
| | - Shang-Li Zhang
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Jun-Ying Miao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
- The Key Laboratory of Cardiovascular Remodeling and Function Research
| |
Collapse
|
30
|
Feng X, Luo Z, Jiang S, Li F, Han X, Hu Y, Wang D, Zhao Y, Ma W, Liu D, Huang J, Songyang Z. The telomere-associated homeobox-containing protein TAH1/HMBOX1 participates in telomere maintenance in ALT cells. J Cell Sci 2013; 126:3982-9. [PMID: 23813958 DOI: 10.1242/jcs.128512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The majority of cancer cells rely on elevated telomerase expression and activity for rapid growth and proliferation. Telomerase-negative cancer cells, by contrast, often employ the alternative lengthening of telomeres (ALT) pathway to maintain telomeres. ALT cells are characterized by long and dynamic telomeres and the presence of ALT-associated promyelocytic leukemia (PML) bodies (APBs). Previous work has shown the importance of APBs to the ALT pathway, but their formation and precise role remain unclear. Here, we demonstrate that a homeobox-containing protein known as HMBOX1 can directly bind telomeric double-stranded DNA and associate with PML nuclear bodies. Hence, we renamed this protein TAH1 for telomere-associated homeobox-containing protein 1. TAH1 knockdown significantly reduced the number of APBs and led to an increase in DNA damage response signals at telomeres. Importantly, TAH1 inhibition also notably reduced the presence of telomere C-circles, indicating altered ALT activity. Our findings point to TAH1 as a novel link between pathways that regulate DNA damage responses, PML nuclear bodies, and telomere homeostasis in ALT cells, and provide insight into how ALT cells may achieve sustained growth and proliferation independent of the telomerase.
Collapse
Affiliation(s)
- Xuyang Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kappei D, Butter F, Benda C, Scheibe M, Draškovič I, Stevense M, Novo CL, Basquin C, Araki M, Araki K, Krastev DB, Kittler R, Jessberger R, Londoño-Vallejo JA, Mann M, Buchholz F. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment. EMBO J 2013; 32:1681-701. [PMID: 23685356 PMCID: PMC3680732 DOI: 10.1038/emboj.2013.105] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 04/15/2013] [Indexed: 11/09/2022] Open
Abstract
Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase-telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC-based DNA-protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere-binding protein 1 (HOT1). HOT1 directly and specifically binds double-stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase-dependent telomere elongation.
Collapse
Affiliation(s)
- Dennis Kappei
- Medical Systems Biology, Faculty of Medicine Carl Gustav Carus, University Cancer Center, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Han L, Shao J, Su L, Gao J, Wang S, Zhang Y, Zhang S, Zhao B, Miao J. A chemical small molecule induces mouse embryonic stem cell differentiation into functional vascular endothelial cells via Hmbox1. Stem Cells Dev 2012; 21:2762-9. [PMID: 22671696 DOI: 10.1089/scd.2012.0055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Embryonic stem cells (ESCs) can differentiate to endothelial progenitor cells and vascular endothelial cells (VECs), but the mechanism is largely unknown. In this study, we synthesized 2 chiral compounds (R-ABO and S-ABO) and identified R-ABO as an effective inducer of ESC differentiation into VECs. Furthermore, we found that R-ABO induced ESC differentiation into VECs via homeobox containing 1 (Hmbox1) that acted upstream of fibroblast growth factor 2 (FGF-2). The data suggest that R-ABO is a novel tool for ESC differentiation into VECs, and Hmbox1 is a key regulator in this differentiation process. These findings provide information on a novel target and a new platform for further investigating the gene control of ESC differentiation to VECs.
Collapse
Affiliation(s)
- Lei Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schenk LK, Bolger SJ, Luginbuhl K, Gonzales PA, Rinschen MM, Yu MJ, Hoffert JD, Pisitkun T, Knepper MA. Quantitative proteomics identifies vasopressin-responsive nuclear proteins in collecting duct cells. J Am Soc Nephrol 2012; 23:1008-18. [PMID: 22440904 DOI: 10.1681/asn.2011070738] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nuclear proteins and identified significant changes in the abundance of 65, including previously established targets of vasopressin signaling in the collecting duct. Vasopressin-induced changes in the abundance of the transcription factors JunB, Elf3, Gatad2b, and Hmbox1; transcriptional co-regulators Ctnnb1 (β-catenin) and Crebbp; subunits of the Mediator complex; E3 ubiquitin ligase Nedd4; nuclear transport regulator RanGap1; and several proteins associated with tight junctions and adherens junctions. Bioinformatic analysis showed that many of the quantified transcription factors have putative binding sites in the 5'-flanking regions of genes coding for the channel proteins Aqp2, Aqp3, Scnn1b (ENaCβ), and Scnn1g (ENaCγ), which are known targets of vasopressin. Immunoblotting demonstrated that the increase in β-catenin in nuclear fractions was accompanied by an even larger increase in its phosphorylated form (pSer552). The findings provide a new online database resource for nuclear proteomics (http://helixweb.nih.gov/ESBL/Database/mNPD/) and generate new hypotheses regarding vasopressin-mediated transcriptional regulation in the collecting duct.
Collapse
Affiliation(s)
- Laura K Schenk
- National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1603, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gong J, Liu R, Zhuang R, Zhang Y, Fang L, Xu Z, Jin L, Wang T, Song C, Yang K, Wei Y, Yang A, Jin B, Chen L. miR-30c-1* promotes natural killer cell cytotoxicity against human hepatoma cells by targeting the transcription factor HMBOX1. Cancer Sci 2012; 103:645-52. [PMID: 22320217 DOI: 10.1111/j.1349-7006.2012.02207.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/12/2011] [Accepted: 12/25/2011] [Indexed: 01/02/2023] Open
Abstract
Natural killer (NK) cells play a critical role in antitumor immunity, and the activation of NK cells is regulated by a series of NK cell receptors. Here, we show that crosslinking CD226, an important NK cell receptor, with the anti-CD226 mAb LeoA1 on NKL cells, regulated the expression of several microRNA and transmembrane tumor necrosis factor-α. Among them, miR-30c-1(*) was noticed because overexpression of miR-30c-1(*) triggered upregulation of transmembrane tumor necrosis factor-α expression and enhanced NK cell cytotoxicity against hepatoma cell lines SMMC-7721 and HepG2. Furthermore, we proved that the inhibitory transcription factor HMBOX1, which depressed the activation of NK cells, was the direct target gene of miR-30c-1(*). In conclusion, our results revealed a novel regulatory mechanism: miR-30c-1(*) promoted NK cell cytotoxicity against hepatoma cells by targeting HMBOX1.
Collapse
Affiliation(s)
- Jiuyu Gong
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu L, Zhang C, Zheng X, Tian Z, Zhang J. HMBOX1, homeobox transcription factor, negatively regulates interferon-γ production in natural killer cells. Int Immunopharmacol 2011; 11:1895-900. [PMID: 21839858 DOI: 10.1016/j.intimp.2011.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 12/30/2022]
Abstract
HMBOX1 is a new member of homeobox family and predicted to be a transcriptional repressor, its function in NK cells is completely unclear. Previously we found that overexpression of HMBOX1 downregulated mRNA level of IFN-γ in NK cells during our gene screening work. In present study, we investigate the relationship between HMBOX1 and IFN-γ in detail. Firstly, we describe the properties of HMBOX1 gene transcription in activated NK cells, and found that the transcriptional levels of HMBOX1 were significantly decreased in NK cells after activated by IL-2, IL-15 and IL-12, which was opposite to the expression profile of IFN-γ. Subsequently, over-expression of HMBOX1 significantly inhibited the expression and production of IFN-γ in NK cells in response to the stimulation of tumor cell K562 or PMA/ionomycin. Additionally, by luciferase reporter assay, HMBOX1 displayed suppressive effect on the transcription activity of IFN-γ promoter. These findings indicated that HMBOX1 may function as a negative regulator of IFN-γ in NK cells.
Collapse
Affiliation(s)
- Longyan Wu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | |
Collapse
|
36
|
Wu L, Zhang C, Zhang J. HMBOX1 negatively regulates NK cell functions by suppressing the NKG2D/DAP10 signaling pathway. Cell Mol Immunol 2011; 8:433-40. [PMID: 21706044 DOI: 10.1038/cmi.2011.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
HMBOX1 is a new member of the homeobox family. Homeobox members have been reported to participate in embryonic development and systemic metabolism, but the function of HMBOX1 remains unclear, especially in the hematopoietic system. Here, we show that HMBOX1 is expressed at a high level in primary human NK cells but is expressed at much lower levels in NK cell lines. Overexpression of HMBOX1 significantly inhibited NK cell activities, including natural cytotoxicity against tumor cells, the level of CD107a (a marker protein for degranulation) and the production of cytolytic proteins (perforin and granzymes). More interestingly, HMBOX1 negatively regulated the expression of NKG2D and the activation of the NKG2D/DAP10 signaling pathway in NK cells. This effect was reversed by knocking down HMBOX1. Taken together, these findings demonstrate that HMBOX1 may act as a negative regulator of NK cell functions via suppressing the NKG2D/DAP10 signaling pathway.
Collapse
Affiliation(s)
- Longyan Wu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | |
Collapse
|
37
|
Dai J, Zhang C, Tian Z, Zhang J. Expression profile of HMBOX1, a novel transcription factor, in human cancers using highly specific monoclonal antibodies. Exp Ther Med 2011; 2:487-490. [PMID: 22977529 DOI: 10.3892/etm.2011.240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/02/2011] [Indexed: 01/28/2023] Open
Abstract
Homeobox containing 1 (HMBOX1) is a novel transcription factor. However, the expression of HMBOX1 and its functions in human cancer tissues and cell lines have not been fully defined. We generated two specific monoclonal antibodies, 2A5F4 and 4A4F2, against human HMBOX1. In the present study, these two anti-HMBOX1 antibodies were used to investigate the protein expression profile of HMBOX1 in various human cancer tissues and cell lines. The results showed that HMBOX1 in kidney tissue was mainly expressed in the renal tubule; the expression level of HMBOX1 was much higher in clear-cell carcinoma of the kidney originating from the renal tubule. Additionally, high levels of HMBOX1 protein were detected not only in pancreatic cancer tissue but also in the adjacent normal tissue. Notably, the expression level of HMBOX1 in liver cancer was dramatically decreased compared with that in the adjacent normal tissue. Abnormal expression of HMBOX1 in different types of carcinoma tissues suggests that HMBOX1 may be involved in the pathobiology of tumors.
Collapse
Affiliation(s)
- Jun Dai
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | | | | | | |
Collapse
|
38
|
Su L, Zhao H, Sun C, Zhao B, Zhao J, Zhang S, Su H, Miao J. Role of Hmbox1 in endothelial differentiation of bone-marrow stromal cells by a small molecule. ACS Chem Biol 2010; 5:1035-43. [PMID: 20822188 DOI: 10.1021/cb100153r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone marrow stromal cells (BMSCs) play critical roles in repairing endothelium damage. However, the mechanisms underlying BMSC differentiation into vascular endothelial cells (VECs) is not well understood. We aimed to find new factors involved in this process by exploiting a novel chemical inducer in a gene microarray assay. We first identified a novel benzoxazine derivative (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine; ABO) that can induce BMSC differentiation to VECs in a capillary-like tube formation assay, promote analysis of endothelial cell-specific marker expression, and facilitate uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated low-density lipoprotein (Dil-Ac-LDL). Microarray analysis of BMSCs treated with ABO for 4 h revealed changes in only a handful of genes. The only one upregulated was homeobox-containing 1 (Hmbox1) gene, whereas six genes, including IP-10 and others, were downregulated. The upregulation of Hmbox1 and downregulation of IP-10 were confirmed by RT-PCR, quantitative PCR (qPCR), and Western blot analysis. It is reported that IP-10 could suppresse EC differentiation into capillary structures. In this study ABO could not induce BMSC differentiation to VECs in the presence of IP-10. Small interfering RNA knockdown of Hmbox1 blocked ABO-induced BMSC differentiation and increased the level of IP-10 but decreased Ets-1. Thus, ABO is a novel inducer for BMSC differentiation to VECs, and Hmbox1 is a key factor in the differentiation. IP-10 and Ets-1 might be relevant targets of Hmbox1 in BMSC differentiation to VECs. These findings provide information on a novel target and a new platform for further investigating the gene control of BMSC differentiation to VECs.
Collapse
Affiliation(s)
- Le Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - HongLing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - ChunHui Sun
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - BaoXiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - ShangLi Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - Hua Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - JunYing Miao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| |
Collapse
|
39
|
Lesch BJ, Bargmann CI. The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 2010; 24:1802-15. [PMID: 20713521 DOI: 10.1101/gad.1932610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Differentiated neurons balance the need to maintain a stable identity with their flexible responses to dynamic environmental inputs. Here we characterize these opposing influences on gene expression in Caenorhabditis elegans olfactory neurons. Using transcriptional reporters that are expressed differentially in two olfactory neurons, AWC(ON) and AWC(OFF), we identify mutations that affect the long-term maintenance of appropriate chemoreceptor expression. A newly identified gene from this screen, the conserved transcription factor hmbx-1, stabilizes AWC gene expression in adult animals through dosage-sensitive interactions with its transcriptional targets. The late action of hmbx-1 complements the early role of the transcriptional repressor gene nsy-7: Both repress expression of multiple AWC(OFF) genes in AWC(ON) neurons, but they act at different developmental stages. Environmental signals are superimposed onto this stable cell identity through at least two different transcriptional pathways that regulate individual chemoreceptor genes: a cGMP pathway regulated by sensory activity, and a daf-7 (TGF-beta)/daf-3 (SMAD repressor) pathway regulated by specific components of the density-dependent C. elegans dauer pheromone.
Collapse
Affiliation(s)
- Bluma J Lesch
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
40
|
Zhang M, Chen S, Li Q, Ling Y, Zhang J, Yu L. Characterization of a novel human HMBOX1 splicing variant lacking the homeodomain and with attenuated transcription repressor activity. Mol Biol Rep 2009; 37:2767-72. [PMID: 19757162 DOI: 10.1007/s11033-009-9815-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/03/2009] [Indexed: 01/13/2023]
Abstract
We previously identified the human HMBOX1 (homeobox containing 1) gene, which represents a distinct group of HNF transcription factors, and is a potential transcription repressor with highly expression in pancreas. In our present work, we found that there exists a splicing variant of HMBOX1, designated HMBOX1b. Compared to HMBOX1, HMBOX1b encodes a 304 amino acids protein that shares the N-terminal region but has no homeodomain and the C-terminal region because of an alternative exon 7 which results in reading frame shifting. Unlike the highly pancreatic expression of HMBOX1, HMBOX1b was ubiquitous expressed in all human tissues detected by RT-PCR. Immunofluorescence staining showed that HMBOX1b accumulated in both cytoplasm and nucleus, and transcriptional reporter assays indicated that HMBOX1b only retained faint transcriptional repressive activity. Taken together, our findings suggest a distinct role of HMBOX1b, and the control of mRNA splicing might be involved in homeobox genes regulation.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Purification of proteins associated with specific genomic Loci. Cell 2009; 136:175-86. [PMID: 19135898 DOI: 10.1016/j.cell.2008.11.045] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/12/2008] [Accepted: 11/21/2008] [Indexed: 11/24/2022]
Abstract
Eukaryotic DNA is bound and interpreted by numerous protein complexes in the context of chromatin. A description of the full set of proteins that regulate specific loci is critical to understanding regulation. Here, we describe a protocol called proteomics of isolated chromatin segments (PICh) that addresses this issue. PICh uses a specific nucleic acid probe to isolate genomic DNA with its associated proteins in sufficient quantity and purity to allow identification of the bound proteins. Purification of human telomeric chromatin using PICh identified the majority of known telomeric factors and uncovered a large number of novel associations. We compared proteins found at telomeres maintained by the alternative lengthening of telomeres (ALT) pathway to proteins bound at telomeres maintained by telomerase. We identified and validated several proteins, including orphan nuclear receptors, that specifically bind to ALT telomeres, establishing PICh as a useful tool for characterizing chromatin composition.
Collapse
|
42
|
De Marco A, Biancotto C, Knezevich A, Maiuri P, Vardabasso C, Marcello A. Intragenic transcriptional cis-activation of the human immunodeficiency virus 1 does not result in allele-specific inhibition of the endogenous gene. Retrovirology 2008; 5:98. [PMID: 18983639 PMCID: PMC2586024 DOI: 10.1186/1742-4690-5-98] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/04/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) favors integration in active genes of host chromatin. It is believed that transcriptional interference of the viral promoter over the endogenous gene or vice versa might occur with implications in HIV-1 post-integrative transcriptional latency. RESULTS In this work a cell line has been transduced with a HIV-based vector and selected for Tat-inducible expression. These cells were found to carry a single silent integration in sense orientation within the second intron of the HMBOX1 gene. The HIV-1 Tat transactivator induced the viral LTR and repressed HMBOX1 expression independently of vector integration. Instead, single-cell quantitative in situ hybridization revealed that allele-specific transcription of HMBOX1 carrying the integrated provirus was not affected by the transactivation of the viral LTR in cis. CONCLUSION A major observation of the work is that the HIV-1 genome has inserted in genes that are also repressed by Tat and this could be an advantage for the virus during transcriptional reactivation. In addition, it has also been observed that transcription of the provirus and of the endogenous gene in which it is integrated may coexist at the same time in the same genomic location.
Collapse
Affiliation(s)
- Alex De Marco
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol 2007; 5:47. [PMID: 17963489 PMCID: PMC2211742 DOI: 10.1186/1741-7007-5-47] [Citation(s) in RCA: 301] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 10/26/2007] [Indexed: 12/19/2022] Open
Abstract
Background The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described. Results We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'. Conclusion We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.
Collapse
Affiliation(s)
- Peter W H Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | | | |
Collapse
|