1
|
Loureiro D, Tout I, Narguet S, Bed CM, Roinard M, Sleiman A, Boyer N, Pons‐Kerjean N, Castelnau C, Giuly N, Tonui D, Soumelis V, El Benna J, Soussan P, Moreau R, Paradis V, Mansouri A, Asselah T. Mitochondrial stress in advanced fibrosis and cirrhosis associated with chronic hepatitis B, chronic hepatitis C, or nonalcoholic steatohepatitis. Hepatology 2023; 77:1348-1365. [PMID: 35971873 PMCID: PMC10026976 DOI: 10.1002/hep.32731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection causes oxidative stress (OS) and alters mitochondria in experimental models. Our goal was to investigate whether HBV might alter liver mitochondria also in humans, and the resulting mitochondrial stress might account for the progression of fibrosis in chronic hepatitis B (CHB). APPROACH AND RESULTS The study included 146 treatment-naïve CHB mono-infected patients. Patients with CHB and advanced fibrosis (AF) or cirrhosis (F3-F4) were compared to patients with no/mild-moderate fibrosis (F0-F2). Patients with CHB were further compared to patients with chronic hepatitis C (CHC; n = 33), nonalcoholic steatohepatatis (NASH; n = 12), and healthy controls ( n = 24). We detected oxidative damage to mitochondrial DNA (mtDNA), including mtDNA strand beaks, and identified multiple mtDNA deletions in patients with F3-F4 as compared to patients with F0-F2. Alterations in mitochondrial function, mitochondrial unfolded protein response, biogenesis, mitophagy, and liver inflammation were observed in patients with AF or cirrhosis associated with CHB, CHC, and NASH. In vitro , significant increases of the mitochondrial formation of superoxide and peroxynitrite as well as mtDNA damage, nitration of the mitochondrial respiratory chain complexes, and impairment of complex I occurred in HepG2 cells replicating HBV or transiently expressing hepatitits B virus X protein. mtDNA damage and complex I impairment were prevented with the superoxide-scavenging Mito-Tempo or with inducible nitric oxide synthase (iNOS)-specific inhibitor 1400 W. CONCLUSIONS Our results emphasized the importance of mitochondrial OS, mtDNA damage, and associated alterations in mitochondrial function and dynamics in AF or cirrhosis in CHB and NASH. Mitochondria might be a target in drug development to stop fibrosis progression.
Collapse
Affiliation(s)
- Dimitri Loureiro
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Issam Tout
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Stéphanie Narguet
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Cheikh Mohamed Bed
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Morgane Roinard
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Ahmad Sleiman
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Boyer
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Pons‐Kerjean
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Pharmacy, Hôpital Beaujon, Clichy, France
| | - Corinne Castelnau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Giuly
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Dorothy Tonui
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Vassili Soumelis
- Université de Paris Cité, INSERM U976 HIPI Unit, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint‐Louis, Paris, France
| | - Jamel El Benna
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | | | - Richard Moreau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Abdellah Mansouri
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Tarik Asselah
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| |
Collapse
|
2
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
3
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
4
|
Albhaisi S, Sanyal AJ. Applying Non-Invasive Fibrosis Measurements in NAFLD/NASH: Progress to Date. Pharmaceut Med 2020; 33:451-463. [PMID: 31933238 DOI: 10.1007/s40290-019-00305-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has now become a worldwide health issue due to the obesity epidemic, affecting approximately 90% of the obese population and 15-40% of the general population. It is the most common form of chronic liver disease in the United States. NAFLD constitutes a spectrum of diseases ranging in severity from mild, such as fatty liver, progressing into nonalcoholic steatohepatitis (NASH), then fibrosis, and ending with cirrhosis. NASH and increasing fibrosis stage are associated with increased morbidity and mortality; the fibrosis stage is therefore a critical element of risk stratification needed to determine therapeutic approach and also the response to treatment. Liver biopsy is considered the 'gold standard' in the diagnosis of NAFLD. However, it is not practical for widespread clinical use because it is invasive, costly, and associated with complications including occasional death. These limitations have driven the development of noninvasive tests that can accurately predict the fibrosis stage in those with NAFLD. In this review, we provide a concise overview of different non-invasive measurements used for NAFLD/NASH.
Collapse
Affiliation(s)
- Somaya Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Box 980102, Richmond, VA, 23298, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Box 980341, Richmond, VA, 23298, USA.
| |
Collapse
|
5
|
García-Ruiz C, Fernández-Checa JC. Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol Commun 2018; 2:1425-1439. [PMID: 30556032 PMCID: PMC6287487 DOI: 10.1002/hep4.1271] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Fatty liver disease is one of the most prevalent forms of chronic liver disease that encompasses both alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH) are intermediate stages of ALD and NAFLD, which can progress to more advanced forms, including cirrhosis and hepatocellular carcinoma. Oxidative stress and particularly alterations in mitochondrial function are thought to play a significant role in both ASH and NASH and recognized to contribute to the generation of reactive oxygen species (ROS), as documented in experimental models. Despite the evidence of ROS generation, the therapeutic efficacy of treatment with antioxidants in patients with fatty liver disease has yielded poor results. Although oxidative stress is considered to be the disequilibrium between ROS and antioxidants, there is evidence that a subtle balance among antioxidants, particularly in mitochondria, is necessary to avoid the generation of ROS and hence oxidative stress. Conclusion: As mitochondria are a major source of ROS, the present review summarizes the role of mitochondrial oxidative stress in ASH and NASH and presents emerging data indicating the need to preserve mitochondrial antioxidant balance as a potential approach for the treatment of human fatty liver disease, which may pave the way for the design of future trials to test the therapeutic role of antioxidants in fatty liver disease.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Cell Death and Proliferation Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior Investigaciones Científicas Barcelona Spain.,Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD Barcelona Spain
| | - José C Fernández-Checa
- Cell Death and Proliferation Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior Investigaciones Científicas Barcelona Spain.,Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD Barcelona Spain.,University of Southern California Research Center for ALPD Keck School of Medicine Los Angeles CA
| |
Collapse
|
6
|
Liu M, Tan J, He Z, He X, Hou DX, He J, Wu S. Inhibitory effect of blue honeysuckle extract on high-fat-diet-induced fatty liver in mice. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:288-293. [PMID: 30175257 PMCID: PMC6116862 DOI: 10.1016/j.aninu.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Blue honeysuckle is rich in polyphenols, and recently receiving attention because of its potential antioxidant and anti-inflammatory properties. Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease that develops hepatic inflammation and metabolic syndrome. The present study aims to study the effect of blue honeysuckle extract (BHE) on fat deposition and hepatic lipid peroxidation in a high-fat-diet (HFD)-induced mouse model. Mice were fed a normal diet (ND) or a HFD containing 0.5% or 1% of BHE or not for 45 d. Liver sections were stained by hematoxylin-eosin staining. Serum lipids were measured by a clinical analyzer. Insulin was examined by ELISA, and hepatic proteins were detected by Western blotting. Dietary supplementation of BHE dose-dependently suppressed HFD-induced obesity and hepatic fat deposition. Moreover, BHE improved glucose metabolism by increasing insulin sensitivity and attenuated oxidative stress potentially by up-regulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated pathway.
Collapse
Affiliation(s)
- Ming Liu
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Jijun Tan
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Ziyu He
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Xi He
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - De-Xing Hou
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Jianhua He
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Shusong Wu
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
7
|
Nuño-Lámbarri N, Barbero-Becerra VJ, Uribe M, Chávez-Tapia NC. Mitochondrial Molecular Pathophysiology of Nonalcoholic Fatty Liver Disease: A Proteomics Approach. Int J Mol Sci 2016; 17:281. [PMID: 26999105 PMCID: PMC4813145 DOI: 10.3390/ijms17030281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver condition that can progress to nonalcoholic steatohepatitis, cirrhosis and cancer. It is considered an emerging health problem due to malnourishment or a high-fat diet (HFD) intake, which is observed worldwide. It is well known that the hepatocytes’ apoptosis phenomenon is one of the most important features of NAFLD. Thus, this review focuses on revealing, through a proteomics approach, the complex network of protein interactions that promote fibrosis, liver cell stress, and apoptosis. According to different types of in vitro and murine models, it has been found that oxidative/nitrative protein stress leads to mitochondrial dysfunction, which plays a major role in stimulating NAFLD damage. Human studies have revealed the importance of novel biomarkers, such as retinol-binding protein 4, lumican, transgelin 2 and hemoglobin, which have a significant role in the disease. The post-genome era has brought proteomics technology, which allows the determination of molecular pathogenesis in NAFLD. This has led to the search for biomarkers which improve early diagnosis and optimal treatment and which may effectively prevent fatal consequences such as cirrhosis or cancer.
Collapse
Affiliation(s)
- Natalia Nuño-Lámbarri
- Traslational Research Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| | | | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation, Mexico City 14050, Mexico.
| |
Collapse
|
8
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Huang YS, Wang LY, Chang CH, Perng CL, Lin HC. Superoxide Dismutase 2 Genetic Variation as a Susceptibility Risk Factor for Alcoholic Cirrhosis. Alcohol Alcohol 2016; 51:633-637. [PMID: 26873981 DOI: 10.1093/alcalc/agw004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022] Open
Abstract
AIMS Superoxide dismutase 2 (SOD2) is an important antioxidant phase 2 enzyme. The associations of SOD2 genetic variation and the risk of advanced alcoholic liver diseases are still debatable. We aimed to investigate the association of the main SOD2 genetic variant (47T>C) and the susceptibility to alcoholic cirrhosis. METHODS A total of 80 patients with alcoholic cirrhosis (AC), 80 patients with alcoholic non-cirrhosis (ANC), 80 with viral hepatitis B-related cirrhosis (VC), and 165 healthy controls (HC) were enrolled into this study. A polymerase chain reaction was used to genotype their SOD2 47T>C (rs4880). RESULTS There was no statistical difference in the frequency distribution of the three SOD2 47T>C genotypes among groups. However, if individuals with C variant were grouped together, the AC group had higher frequency of SOD2 C/C or C/T genotype than ANC, VC and HC groups had (38.7% vs. 21.3%, 26.3% and 21.8%, respectively, P = 0.010). After adjustment for confounders, the SOD2 C/C and C/T genotypes remained associated with the risk of AC (adjusted OR: 2.79 and 3.50, respectively, P < 0.03, compared with ANC and HC groups). In contrast, there was no significant difference of SOD2 genetic variation between VC and HC groups. CONCLUSIONS Anti-oxidative enzyme SOD2 47T>C genetic variant may increase the susceptibility to AC. This suggests that oxidative stress plays a role in the development of AC.
Collapse
Affiliation(s)
- Yi-Shin Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Li Yueh Wang
- Division of Gastroenterology, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chih-Hao Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chin-Lin Perng
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
10
|
Abstract
Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O(2)(·-)) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O(2)(·-) scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.
Collapse
|
11
|
Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol accumulation in alcoholic liver disease: Role of ASMase and endoplasmic reticulum stress. Redox Biol 2014; 3:100-8. [PMID: 25453982 PMCID: PMC4297930 DOI: 10.1016/j.redox.2014.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease and a growing health concern in theworld. While the pathogenesis of ALD is poorly characterized key players identified in experimental models and patients, such as perturbations in mitochondrial structure and function, selective loss of antioxidant defense and susceptibility to inflammatory cytokines, contribute to ALD progression. Both oxidative stress and mitochondrial dysfunction compromise essential cellular functions and energy generation and hence are important pathogenic mechanisms of ALD. An important process mediating the mitochondrial disruption induced by alcohol intake is the trafficking of cholesterol to mitochondria, mediated by acid sphingomyelinase-induced endoplasmic reticulum stress, which contributes to increased cholesterol synthesis and StARD1upregulation. Mitochondrial cholesterol accumulation not only sensitizes to oxidative stress but it can contribute to the metabolic reprogramming in ALD, manifested by activation of the hypoxia inducible transcription factor 1 and stimulation of glycolysis and lactate secretion. Thus, a better understanding of the mechanisms underlying alcohol-mediated mitochondrial impairment and oxidative stress may lead to the identification of novel treatments for ALD. The present review briefly summarizes current knowledge on the cellular and molecular mechanisms contributing to alcohol-induced mitochondrial dysfunction and cholesterol accumulation and provides insights for potential therapeutic targets in ALD. Alcohol perturbs mitochondria function, which modulates ROS generation and alcohol metabolism. Alcohol stimulates mitochondrial cholesterol (mChol) accumulation. MChol accumulation impairs mitochondrial function and mediates alcohol-induced lipotoxicity. ASMase promotes mitochondrial dysfunction by stimulating mChol loading.
Collapse
Affiliation(s)
- Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain.
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Jose C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Consejo Superior Investigaciones Científicas (CSIC), IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain; Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Functional roles of protein nitration in acute and chronic liver diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:149627. [PMID: 24876909 PMCID: PMC4021747 DOI: 10.1155/2014/149627] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
Nitric oxide, when combined with superoxide, produces peroxynitrite, which is known to be an important mediator for a number of diseases including various liver diseases. Peroxynitrite can modify tyrosine residue(s) of many proteins resulting in protein nitration, which may alter structure and function of each target protein. Various proteomics and immunological methods including mass spectrometry combined with both high pressure liquid chromatography and 2D PAGE have been employed to identify and characterize nitrated proteins from pathological tissue samples to determine their roles. However, these methods contain a few technical problems such as low efficiencies with the detection of a limited number of nitrated proteins and labor intensiveness. Therefore, a systematic approach to efficiently identify nitrated proteins and characterize their functional roles is likely to shed new insights into understanding of the mechanisms of hepatic disease pathophysiology and subsequent development of new therapeutics. The aims of this review are to briefly describe the mechanisms of hepatic diseases. In addition, we specifically describe a systematic approach to efficiently identify nitrated proteins to study their causal roles or functional consequences in promoting acute and chronic liver diseases including alcoholic and nonalcoholic fatty liver diseases. We finally discuss translational research applications by analyzing nitrated proteins in evaluating the efficacies of potentially beneficial agents to prevent or treat various diseases in the liver and other tissues.
Collapse
|
13
|
Harrison-Findik DD, Lu S, Zmijewski EM, Jones J, Zimmerman MC. Effect of alcohol exposure on hepatic superoxide generation and hepcidin expression. World J Biol Chem 2013; 4:119-130. [PMID: 24340135 PMCID: PMC3856307 DOI: 10.4331/wjbc.v4.i4.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/03/2013] [Accepted: 11/16/2013] [Indexed: 02/05/2023] Open
Abstract
AIM: To understand the role of mitochondrial-produced superoxide (O2•-) in the regulation of iron-regulatory hormone, hepcidin by alcohol in the liver.
METHODS: For alcohol experiments, manganese superoxide dismutase knockout mice heterozygous for Sod2 gene expression (Sod2+/-) and age-matched littermate control mice (LMC), expressing Sod2 gene on both alleles, were exposed to either 10% (w/v) ethanol in the drinking water or plain water (control) for 7 d. Total cellular O2•- levels in hepatocytes isolated from the livers of mice were measured by electron paramagnetic resonance spectroscopy. The mitochondrial-targeted, O2•--sensitive fluorogenic probe, MitoSOX Red and flow cytometry were utilized to measure O2•- in mitochondria. Gene and protein expression were determined by Taqman Real-time quantitative PCR and Western blotting, respectively.
RESULTS: Sod2+/- mice expressed 40% less MnSOD protein (SOD2) in hepatocytes compared to LMC mice. The deletion of Sod2 allele did not alter the basal expression level of hepcidin in the liver. 10% ethanol exposure for 1 wk inhibited hepatic hepcidin mRNA expression three-fold both in Sod2+/- and LMC mice. O2•- levels in hepatocytes of untreated Sod2+/- mice were three-fold higher than in untreated LMC mice, as observed by electron paramagnetic resonance spectroscopy. O2•- levels in mitochondria of Sod2+/ mice were four-fold higher than in mitochondria of untreated LMC mice, as measured by MitoSOX Red fluorescence and flow cytometry. Alcohol induced a two-fold higher increase in O2•- levels in hepatocytes of LMC mice than in Sod2+/- mice compared to respective untreated counterparts. In contrast, 1 wk alcohol exposure did not alter mitochondrial O2•- levels in both Sod2+/- and control mice.
CONCLUSION: Mitochondrial O2•- is not involved in the inhibition of liver hepcidin transcription and thereby regulation of iron metabolism by alcohol. These findings also suggest that short-term alcohol consumption significantly elevates O2•- levels in hepatocytes, which appears not to originate from mitochondria.
Collapse
|
14
|
A recombinant trans-membrane protein hMnSOD–R9 inhibits the proliferation of cervical cancer cells in vitro. Mol Cell Biochem 2013; 385:79-86. [DOI: 10.1007/s11010-013-1816-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/13/2013] [Indexed: 12/30/2022]
|
15
|
Li Y, Deng Y, Tang Y, Yu H, Gao C, Liu L, Liu L, Yao P. Quercetin protects rat hepatocytes from oxidative damage induced by ethanol and iron by maintaining intercellular liable iron pool. Hum Exp Toxicol 2013; 33:534-41. [PMID: 23928830 DOI: 10.1177/0960327113499168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accumulating evidence has shown that ethanol-induced iron overload plays a crucial role in the development and progression of alcoholic liver disease. We designed the present study to investigate the potential protective effect of quercetin, a naturally occurring iron-chelating antioxidant on alcoholic iron overload and oxidative stress. Ethanol-incubated (100 mmol/L) rat primary hepatocytes were co-treated by quercetin (100 µmol/L) and different dose of ferric nitrilotriacetate (Fe-NTA) for 24 h. When the hepatic enzyme releases in the culture medium, redox status of hepatocytes and the intercellular labile iron pool (LIP) level were assayed. Our data showed that Fe-NTA dose dependently induced cellular leakage of aspartate transaminase and lactate dehydrogenase, glutathione depletion, superoxide dismutase inactivation, and overproduction of malondialdehyde) and reactive oxygen species (ROS) of intact and especially ethanol-incubated hepatocytes. The oxidative damage resulted from ethanol, Fe-NTA, and especially their combined treatment was substantially alleviated by quercetin, accompanying the corresponding normalization of intercellular LIP level. Iron in excess, thus, may aggravate ethanol hepatotoxicity through Fenton-active LIP, and quercetin attenuated ethanol-induced iron and oxidative stress. To maintain intercellular LIP contributes to the hepatoprotective effect of quercetin besides its direct ROS-quenching activity.
Collapse
Affiliation(s)
- Y Li
- 1Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
García-Ruiz C, Kaplowitz N, Fernandez-Checa JC. Role of Mitochondria in Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2013; 1:159-168. [PMID: 25343061 DOI: 10.1007/s40139-013-0021-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol-induced liver disease (ALD) is a major health concern of alcohol abuse and a leading cause of liver-related morbidity and mortality. The pathogenesis of ALD is multifactorial and still ill characterized. One of the hallmarks of ALD common for both patients and experimental models is the alteration in the architecture and function of mitochondria. Due to their primordial role in energy production, metabolism and cell fate decisions, these changes in mitochondria caused by alcohol are considered an important contributory factor in ALD. A better understanding of the mechanisms underlying alcohol-mediated mitochondrial alterations may shed light on ALD pathogenesis and provide novel avenues for treatment. The purpose of the current review is to briefly update the latest developments in ALD research regarding morphological and functional mitochondrial regulation including mitochondrial dynamics and biogenesis, mitochondrial protein acetylation and evidence for an endoplasmic reticulum stress-mitochondrial cholesterol link of potential relevance for ALD.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic and CIBEREHD, Barcelona, Spain
| | - Neil Kaplowitz
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern, California, Los Angeles, CA, USA
| | - José C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic and CIBEREHD, Barcelona, Spain. Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern, California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Holley AK, Dhar SK, St Clair DK. Curbing cancer's sweet tooth: is there a role for MnSOD in regulation of the Warburg effect? Mitochondrion 2013; 13:170-88. [PMID: 22820117 PMCID: PMC4604438 DOI: 10.1016/j.mito.2012.07.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023]
Abstract
Reactive oxygen species (ROS), while vital for normal cellular function, can have harmful effects on cells, leading to the development of diseases such as cancer. The Warburg effect, the shift from oxidative phosphorylation to glycolysis, even in the presence of adequate oxygen, is an important metabolic change that confers many growth and survival advantages to cancer cells. Reactive oxygen species are important regulators of the Warburg effect. The mitochondria-localized antioxidant enzyme manganese superoxide dismutase (MnSOD) is vital to survival in our oxygen-rich atmosphere because it scavenges mitochondrial ROS. MnSOD is important in cancer development and progression. However, the significance of MnSOD in the regulation of the Warburg effect is just now being revealed, and it may significantly impact the treatment of cancer in the future.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Daret K. St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
18
|
Ansenberger-Fricano K, Ganini DDS, Mao M, Chatterjee S, Dallas S, Mason RP, Stadler K, Santos JH, Bonini MG. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med 2013; 54:116-24. [PMID: 22982047 PMCID: PMC4155036 DOI: 10.1016/j.freeradbiomed.2012.08.573] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 12/28/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is an integral mitochondrial protein known as a first-line antioxidant defense against superoxide radical anions produced as by-products of the electron transport chain. Recent studies have shaped the idea that by regulating the mitochondrial redox status and H(2)O(2) outflow, MnSOD acts as a fundamental regulator of cellular proliferation, metabolism, and apoptosis, thereby assuming roles that extend far beyond its proposed antioxidant functions. Accordingly, allelic variations of MnSOD that have been shown to augment levels of MnSOD in mitochondria result in a 10-fold increase in prostate cancer risk. In addition, epidemiologic studies indicate that reduced glutathione peroxidase activity along with increases in H(2)O(2) further increase cancer risk in the face of MnSOD overexpression. These facts led us to hypothesize that, like its Cu,ZnSOD counterpart, MnSOD may work as a peroxidase, utilizing H(2)O(2) to promote mitochondrial damage, a known cancer risk factor. Here we report that MnSOD indeed possesses peroxidase activity that manifests in mitochondria when the enzyme is overexpressed.
Collapse
Affiliation(s)
- Kristine Ansenberger-Fricano
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
| | - Douglas da Silva Ganini
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Mao Mao
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
| | - Saurabh Chatterjee
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Shannon Dallas
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Janine H. Santos
- Department of Pharmacology and Physiology, New Jersey Medical School of the UMDNJ, Newark, NJ, 07103, USA
| | - Marcelo G. Bonini
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
19
|
Yang L, Wu D, Wang X, Cederbaum AI. Cytochrome P4502E1, oxidative stress, JNK, and autophagy in acute alcohol-induced fatty liver. Free Radic Biol Med 2012; 53:1170-80. [PMID: 22749809 PMCID: PMC3432162 DOI: 10.1016/j.freeradbiomed.2012.06.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/24/2012] [Accepted: 06/19/2012] [Indexed: 02/08/2023]
Abstract
Binge alcohol drinking induces hepatic steatosis. Recent studies showed that chronic ethanol-induced fatty liver was, at least in part, CYP2E1 dependent. The mechanism of acute alcohol-induced steatosis and whether CYP2E1 plays any role are still unclear. Increasing oxidative stress by alcohol can activate the JNK MAP kinase signaling pathway, suggesting that JNK might be a target for prevention of alcohol-induced steatosis. We used CYP2E1 knockout (KO) mice, a JNK inhibitor, and JNK1 or JNK2 knockout mice to test the role of CYP2E1, JNK, and the individual role of JNK1 and JNK2 in acute alcohol-induced steatosis. In wild-type (WT) mice, acute alcohol activates CYP2E1 and increases oxidative stress, which reciprocally increases activation of the JNK signaling pathway. Acute alcohol-induced fatty liver and oxidative stress were blunted in CYP2E1 KO mice and by the JNK inhibitor in WT mice. The antioxidant N-acetylcysteine decreased the acute alcohol-induced oxidative stress, the activation of JNK, and the steatosis but not the activation of CYP2E1. Acute alcohol decreased autophagy and increased expression of SREBP, effects blocked by the JNK inhibitor. Acute alcohol-induced fatty liver was the same in JNK1 and JNK2 KO mice as in WT mice; thus either JNK1 or JNK2 per se is sufficient for induction of steatosis by acute alcohol. The results show that acute alcohol elevation of CYP2E1, oxidative stress, and activation of JNK interact to lower autophagy and increase lipogenic SREBP resulting in fatty liver.
Collapse
Affiliation(s)
- Lili Yang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, Box 1603, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
20
|
Holley AK, Bakthavatchalu V, Velez-Roman JM, St. Clair DK. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci 2011; 12:7114-62. [PMID: 22072939 PMCID: PMC3211030 DOI: 10.3390/ijms12107114] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/28/2011] [Accepted: 10/08/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Vasudevan Bakthavatchalu
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Joyce M. Velez-Roman
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| |
Collapse
|