1
|
Kong T, Seo SK, Han YS, Seo WM, Kim B, Kim J, Cho YJ, Lee S, Kang KS. Primed Mesenchymal Stem Cells by IFN-γ and IL-1β Ameliorate Acute Respiratory Distress Syndrome through Enhancing Homing Effect and Immunomodulation. Biomol Ther (Seoul) 2025; 33:311-324. [PMID: 39973472 PMCID: PMC11893491 DOI: 10.4062/biomolther.2025.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe condition characterized by extensive lung inflammation and increased alveolar-capillary permeability, often triggered by infections or systemic inflammatory responses. Mesenchymal stem cells (MSCs)-based therapy holds promise for treating ARDS, as MSCs manifest immunomodulatory and regenerative properties that mitigate inflammation and enhance tissue repair. Primed MSCs, modified to augment specific functionalities, demonstrate superior therapeutic efficacy in targeted therapies compared to naive MSCs. This study explored the immunomodulatory potential of MSCs using mixed lymphocyte reaction (MLR) assays and co-culture experiments with M1/M2 macrophages. Additionally, RNA sequencing was employed to identify alterations in immune and inflammation-related factors in primed MSCs. The therapeutic effects of primed MSCs were assessed in an LPS-induced ARDS mouse model, and the underlying mechanisms were investigated through spatial transcriptomics analysis. The study revealed that MSCs primed with IFN-γ and IL-1β significantly enhanced the suppression of T cell activity compared to naive MSCs, concurrently inhibiting TNF-α while increasing IL-10 production in macrophages. Notably, combined treatment with these two cytokines resulted in a significant upregulation of immune and inflammation-regulating factors. Furthermore, our analyses elucidated the mechanisms behind the therapeutic effects of primed MSCs, including the inhibition of inflammatory cell infiltration in lung tissue, modulation of immune and inflammatory responses, and enhancement of elastin fiber formation. Signaling pathway analysis confirmed that efficacy could be enhanced by modulating NFκB and TNF-α signaling. In conclusion, in early-phase ARDS, primed MSCs displayed enhanced homing capabilities, improved lung function, and reduced inflammation.
Collapse
Affiliation(s)
- Taeho Kong
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul 08590, Republic of Korea
| | - Su Kyoung Seo
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul 08590, Republic of Korea
| | - Yong-Seok Han
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul 08590, Republic of Korea
| | - Woo Min Seo
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul 08590, Republic of Korea
| | - Bokyong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Jieun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul 08590, Republic of Korea
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul 08590, Republic of Korea
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Elkholy AR, El-Sheakh AR, Suddek GM. Nilotinib alleviates paraquat-induced hepatic and pulmonary injury in rats via the Nrf2/Nf-kB axis. Int Immunopharmacol 2023; 124:110886. [PMID: 37678030 DOI: 10.1016/j.intimp.2023.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture. It exerts its toxic effects mainly as a result of its redox cycle via the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The aim of this study was to estimate the beneficial protective role of nilotinib (NIL) on PQ-induced hepatic and pulmonary toxicity in rats. METHODS Male wistar rats were randomly divided into four groups, namely control, PQ (15 mg/kg), PQ plus NIL (5 mg/kg) and PQ plus NIL (10 mg/kg). NIL (5 and 10 mg/kg/day) was taken by oral syringe for five days followed by a single intra-peritoneal administration of PQ (15 mg/kg) on sixth day. RESULTS Pretreatment with NIL relieved the histological damage in liver and lung tissues and improved hepatic biochemical markers. It significantly (p < 0.05) reduced serum levels of ALT, AST, ALP, Y-GT and total bilirubin while increased that of albumin. Meanwhile, NIL significantly (p < 0.05) reduced oxidative stress markers via reduction of malondialdhyde (MDA) and elevation of glutathione (GSH) contents in liver and lung tissues. In addition, it significantly (p < 0.05) decreased the inflammation by reducing hepatic and pulmonary tumor necrosis factor alpha (TNF-α) and nuclear transcription factor kappa B (NF-KB/p65) contents. Nilotinib also down-regulated apoptosis by reducing cysteinyl aspartate-specific proteinase-3 (caspase-3). Furthermore, it upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and microtubule-associated protein 1A/1B-light chain 3 II (LC3II) in liver and lung tissues. SIGNIFICANCE NIL suppressed PQ-induced inflammation, oxidative stress and apoptosis in liver and lung tissues by modulating Nrf2/Nf-kB axis.
Collapse
Affiliation(s)
- Azza R Elkholy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future studies and Risks management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
3
|
Ayala R, Fernández RA, García‐Gutiérrez V, Alvarez‐Larrán A, Osorio S, Sánchez‐Pina JM, Carreño‐Tarragona G, Álvarez N, Gómez‐Casares MT, Duran A, Gorrochategi J, Hernández‐Boluda JC, Martínez‐López J. Janus kinase inhibitor ruxolitinib in combination with nilotinib and prednisone in patients with myelofibrosis (RuNiC study): A phase Ib, multicenter study. EJHAEM 2023; 4:401-409. [PMID: 37206258 PMCID: PMC10188506 DOI: 10.1002/jha2.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/21/2023]
Abstract
This phase Ib, non-randomized, open-label study evaluates the safety and tolerability of ruxolitinib in combination with nilotinib and prednisone in patients with naïve or ruxolitinib-resistant myelofibrosis (MF). A total of 15 patients with primary or secondary MF received the study treatment; 13 patients had received prior ruxolitinib treatment (86.7%). Eight patients completed seven cycles (53.3%) and six patients completed twelve cycles of treatment (40%). All the patients experienced at least one adverse event (AE) during the study (the most common AEs were hyperglycemia, asthenia, and thrombocytopenia), and 14 patients registered at least one treatment-related AE (the most common treatment-related AEs were hyperglycemia (22.2%; three grade 3 cases). Five treatment-related serious AEs (SAEs) were reported in two patients (13.3%). No deaths were registered throughout the study. No dose-limiting toxicity was observed. Four out of fifteen (27%) patients experienced a 100% spleen size reduction at Cycle 7, and two additional patients achieved a >50% spleen size reduction, representing an overall response rate of 40% at Cycle 7. In conclusion, the tolerability of this combination was acceptable, and hyperglycemia was the most frequent treatment-related AE. Ruxolitinib in combination with nilotinib and prednisone showed relevant clinical activity in patients with MF. This trial was registered with EudraCT Number 2016-005214-21.
Collapse
Affiliation(s)
- Rosa Ayala
- Haematological Malignancies Clinical Research UnitHospital Universitario 12 de Octubre, Universidad Complutense, CNIO, CIBERONCMadridSpain
| | | | | | | | - Santiago Osorio
- Hematology Department Hospital General UGregorio MarañónMadridSpain
| | | | | | - Noemi Álvarez
- Department of Translational HematologyResearch Institute Hospital 12 de Octubre (i+12)MadridSpain
| | | | - Antonia Duran
- Hematology Department Hospital Universitario Son EspasesPalma de MallorcaSpain
| | | | | | - Joaquín Martínez‐López
- Haematological Malignancies Clinical Research UnitHospital Universitario 12 de Octubre, Universidad Complutense, CNIO, CIBERONCMadridSpain
| |
Collapse
|
4
|
Islam MA, Kibria MK, Hossen MB, Reza MS, Tasmia SA, Tuly KF, Mosharof MP, Kabir SR, Kabir MH, Mollah MNH. Bioinformatics-based investigation on the genetic influence between SARS-CoV-2 infections and idiopathic pulmonary fibrosis (IPF) diseases, and drug repurposing. Sci Rep 2023; 13:4685. [PMID: 36949176 PMCID: PMC10031699 DOI: 10.1038/s41598-023-31276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Some recent studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and idiopathic pulmonary fibrosis (IPF) disease might stimulate each other through the shared genes. Therefore, in this study, an attempt was made to explore common genomic biomarkers for SARS-CoV-2 infections and IPF disease highlighting their functions, pathways, regulators and associated drug molecules. At first, we identified 32 statistically significant common differentially expressed genes (cDEGs) between disease (SARS-CoV-2 and IPF) and control samples of RNA-Seq profiles by using a statistical r-package (edgeR). Then we detected 10 cDEGs (CXCR4, TNFAIP3, VCAM1, NLRP3, TNFAIP6, SELE, MX2, IRF4, UBD and CH25H) out of 32 as the common hub genes (cHubGs) by the protein-protein interaction (PPI) network analysis. The cHubGs regulatory network analysis detected few key TFs-proteins and miRNAs as the transcriptional and post-transcriptional regulators of cHubGs. The cDEGs-set enrichment analysis identified some crucial SARS-CoV-2 and IPF causing common molecular mechanisms including biological processes, molecular functions, cellular components and signaling pathways. Then, we suggested the cHubGs-guided top-ranked 10 candidate drug molecules (Tegobuvir, Nilotinib, Digoxin, Proscillaridin, Simeprevir, Sorafenib, Torin 2, Rapamycin, Vancomycin and Hesperidin) for the treatment against SARS-CoV-2 infections with IFP diseases as comorbidity. Finally, we investigated the resistance performance of our proposed drug molecules compare to the already published molecules, against the state-of-the-art alternatives publicly available top-ranked independent receptors by molecular docking analysis. Molecular docking results suggested that our proposed drug molecules would be more effective compare to the already published drug molecules. Thus, the findings of this study might be played a vital role for diagnosis and therapies of SARS-CoV-2 infections with IPF disease as comorbidity risk.
Collapse
Affiliation(s)
- Md Ariful Islam
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Kaderi Kibria
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Selim Reza
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Samme Amena Tasmia
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khanis Farhana Tuly
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Parvez Mosharof
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- School of Business, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Hadiul Kabir
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
5
|
In Humanized Sickle Cell Mice, Imatinib Protects Against Sickle Cell-Related Injury. Hemasphere 2023; 7:e848. [PMID: 36874380 PMCID: PMC9977487 DOI: 10.1097/hs9.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Drug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression. Here, we show that imatinib, an oral tyrosine kinase inhibitor developed for the treatment of chronic myelogenous leukemia, acts as multimodal therapy targeting signal transduction pathways involved in the pathogenesis of both anemia and inflammatory vasculopathy of humanized murine model for SCD. In addition, imatinib inhibits the platelet-derived growth factor-B-dependent pathway, interfering with the profibrotic response to hypoxia/reperfusion injury, used to mimic acute VOCs. Our data indicate that imatinib might be considered as possible new therapeutic tool for chronic treatment of SCD.
Collapse
|
6
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
7
|
Alrashedi MG, Ali AS, Ahmed OA, Ibrahim IM. Local Delivery of Azithromycin Nanoformulation Attenuated Acute Lung Injury in Mice. Molecules 2022; 27:8293. [PMID: 36500388 PMCID: PMC9739299 DOI: 10.3390/molecules27238293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.
Collapse
Affiliation(s)
- Mohsen G. Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Osama Abdelhakim Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Kadam AH, Kandasamy K, Buss T, Cederstrom B, Yang C, Narayanapillai S, Rodriguez J, Levin MD, Koziol J, Olenyuk B, Borok Z, Chrastina A, Schnitzer JE. Targeting caveolae to pump bispecific antibody to TGF-β into diseased lungs enables ultra-low dose therapeutic efficacy. PLoS One 2022; 17:e0276462. [PMID: 36413536 PMCID: PMC9681080 DOI: 10.1371/journal.pone.0276462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
The long-sought-after "magic bullet" in systemic therapy remains unrealized for disease targets existing inside most tissues, theoretically because vascular endothelium impedes passive tissue entry and full target engagement. We engineered the first "dual precision" bispecific antibody with one arm pair to precisely bind to lung endothelium and drive active delivery and the other to precisely block TGF-β effector function inside lung tissue. Targeting caveolae for transendothelial pumping proved essential for delivering most of the injected intravenous dose precisely into lungs within one hour and for enhancing therapeutic potency by >1000-fold in a rat pneumonitis model. Ultra-low doses (μg/kg) inhibited inflammatory cell infiltration, edema, lung tissue damage, disease biomarker expression and TGF-β signaling. The prodigious benefit of active vs passive transvascular delivery of a precision therapeutic unveils a new promising drug design, delivery and therapy paradigm ripe for expansion and clinical testing.
Collapse
Affiliation(s)
- Anil H. Kadam
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Kathirvel Kandasamy
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Chun Yang
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Sreekanth Narayanapillai
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Juan Rodriguez
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Michael D. Levin
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jim Koziol
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Zea Borok
- Department of Medicine, UCSD School of Medicine, La Jolla, California, United States of America
| | - Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
- Institute for Engineering in Medicine, UCSD, La Jolla, California, United States of America
| |
Collapse
|
9
|
Rieg AD, Suleiman S, Anker C, Bünting NA, Verjans E, Spillner J, Kalverkamp S, von Stillfried S, Braunschweig T, Uhlig S, Martin C. Platelet-derived growth factor (PDGF)-BB regulates the airway tone via activation of MAP2K, thromboxane, actin polymerisation and Ca 2+-sensitisation. Respir Res 2022; 23:189. [PMID: 35841089 PMCID: PMC9287894 DOI: 10.1186/s12931-022-02101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PDGFR-inhibition by the tyrosine kinase inhibitor (TKI) nintedanib attenuates the progress of idiopathic pulmonary fibrosis (IPF). However, the effects of PDGF-BB on the airway tone are almost unknown. We studied this issue and the mechanisms beyond, using isolated perfused lungs (IPL) of guinea pigs (GPs) and precision-cut lung slices (PCLS) of GPs and humans. METHODS IPL: PDGF-BB was perfused after or without pre-treatment with the TKI imatinib (perfused/nebulised) and its effects on the tidal volume (TV), the dynamic compliance (Cdyn) and the resistance were studied. PCLS (GP) The bronchoconstrictive effects of PDGF-BB and the mechanisms beyond were evaluated. PCLS (human): The bronchoconstrictive effects of PDGF-BB and the bronchorelaxant effects of imatinib were studied. All changes of the airway tone were measured by videomicroscopy and indicated as changes of the initial airway area. RESULTS PCLS (GP/human): PDGF-BB lead to a contraction of airways. IPL: PDGF-BB decreased TV and Cdyn, whereas the resistance did not increase significantly. In both models, inhibition of PDGFR-(β) (imatinib/SU6668) prevented the bronchoconstrictive effect of PDGF-BB. The mechanisms beyond PDGF-BB-induced bronchoconstriction include activation of MAP2K and TP-receptors, actin polymerisation and Ca2+-sensitisation, whereas the increase of Ca2+ itself and the activation of EP1-4-receptors were not of relevance. In addition, imatinib relaxed pre-constricted human airways. CONCLUSIONS PDGFR regulates the airway tone. In PCLS from GPs, this regulatory mechanism depends on the β-subunit. Hence, PDGFR-inhibition may not only represent a target to improve chronic airway disease such as IPF, but may also provide acute bronchodilation in asthma. Since asthma therapy uses topical application. This is even more relevant, as nebulisation of imatinib also appears to be effective.
Collapse
Affiliation(s)
- Annette D Rieg
- Department of Anaesthesiology, Medical Faculty RWTH-Aachen, Aachen, Germany.
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Carolin Anker
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Nina A Bünting
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Eva Verjans
- Department of Paediatrics, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Jan Spillner
- Department of Cardiac and Thorax Surgery, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Sebastian Kalverkamp
- Department of Cardiac and Thorax Surgery, Medical Faculty RWTH-Aachen, Aachen, Germany
| | | | - Till Braunschweig
- Institute of Pathology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| |
Collapse
|
10
|
Atmowihardjo L, Schippers JR, Bartelink IH, Bet PM, van Rein N, Purdy K, Cavalla D, Comberiati V, McElroy A, Snape SD, Bogaard HJ, Heunks L, Juffermans N, Schultz M, Tuinman PR, Bos LDJ, Aman J. The INVENT COVID trial: a structured protocol for a randomized controlled trial investigating the efficacy and safety of intravenous imatinib mesylate (Impentri®) in subjects with acute respiratory distress syndrome induced by COVID-19. Trials 2022; 23:158. [PMID: 35172891 PMCID: PMC8848942 DOI: 10.1186/s13063-022-06055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has led to a disruptive increase in the number of intensive care unit (ICU) admissions with acute respiratory distress syndrome (ARDS). ARDS is a severe, life-threatening medical condition characterized by widespread inflammation and vascular leak in the lungs. Although there is no proven therapy to reduce pulmonary vascular leak in ARDS, recent studies demonstrated that the tyrosine kinase inhibitor imatinib reinforces the endothelial barrier and prevents vascular leak in inflammatory conditions, while leaving the immune response intact. METHODS This is a randomized, double-blind, parallel-group, placebo-controlled, multicenter clinical trial of intravenous (IV) imatinib mesylate in 90 mechanically ventilated subjects with COVID-19-induced ARDS. Subjects are 18 years or older, admitted to the ICU for mechanical ventilation, meeting the Berlin criteria for moderate-severe ARDS with a positive polymerase chain reaction test for SARS-CoV2. Participants will be randomized in a 1:1 ratio to either imatinib (as mesylate) 200 mg bis in die (b.i.d.) or placebo IV infusion for 7 days, or until ICU discharge or death. The primary study outcome is the change in Extravascular Lung Water Index (EVLWi) between day 1 and day 4. Secondary outcome parameters include changes in oxygenation and ventilation parameters, duration of invasive mechanical ventilation, number of ventilator-free days during the 28-day study period, length of ICU stay, and mortality during 28 days after randomization. Additional secondary parameters include safety, tolerability, and pharmacokinetics. DISCUSSION The current study aims to investigate the efficacy and safety of IV imatinib in mechanically ventilated subjects with COVID-19-related ARDS. We hypothesize that imatinib decreases pulmonary edema, as measured by extravascular lung water using a PiCCO catheter. The reduction in pulmonary edema may reverse hypoxemic respiratory failure and hasten recovery. As pulmonary edema is an important contributor to ARDS, we further hypothesize that imatinib reduces disease severity, reflected by a reduction in 28-day mortality, duration of mechanical ventilation, and ICU length of stay. TRIAL STATUS Protocol version and date: V3.1, 16 April 2021. Recruitment started on 09 March 2021. Estimated recruitment period of approximately 40 weeks. TRIAL REGISTRATION ClinicalTrials.gov NCT04794088 . Registered on 11 March 2021.
Collapse
Affiliation(s)
- Leila Atmowihardjo
- Dept. of Intensive Care, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Job R. Schippers
- Dept. of Pulmonology, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Hospital Pharmacy, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - Pierre M. Bet
- Hospital Pharmacy, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - Nienke van Rein
- Hospital Pharmacy, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | | | | | | | | | | | - Harm Jan Bogaard
- Dept. of Pulmonology, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - Leo Heunks
- Dept. of Intensive Care, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Nicole Juffermans
- Dept. of Intensive Care, Onze Lieve Vrouwe Gasthuis (OLVG), Amsterdam, The Netherlands
| | - Marcus Schultz
- Dept. of Intensive Care, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Pieter R. Tuinman
- Dept. of Intensive Care, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Lieuwe D. J. Bos
- Dept. of Pulmonology, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - Jurjan Aman
- Dept. of Pulmonology, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Chang CJ, Lin CF, Chen BC, Lin PY, Chen CL. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 2021; 74:131-142. [PMID: 34590785 DOI: 10.1002/iub.2559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases (CRDs), including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), lung cancer, and asthma, are significant global health problems due to their prevalence and rising incidence. The roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in controlling tyrosine phosphorylation of targeting proteins modulate multiple physiological cellular responses and contribute to the pathogenesis of CRDs. Src homology-2 domain-containing PTP2 (SHP2) plays a pivotal role in modulating downstream growth factor receptor signaling and cytoplasmic PTKs, including MAPK/ERK, PI3K/AKT, and JAK/STAT pathways, to regulate cell survival and proliferation. In addition, SHP2 mutation and activation are commonly implicated in tumorigenesis. However, little is known about SHP2 in chronic pulmonary inflammation and fibrosis. This review discusses the potential involvement of SHP2 deregulation in chronic pulmonary inflammation and fibrosis, as well as the therapeutic effects of targeting SHP2 in CRDs.
Collapse
Affiliation(s)
- Chun-Jung Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Han J, Li G, Hou M, Ng J, Kwon MY, Xiong K, Liang X, Taglauer E, Shi Y, Mitsialis SA, Kourembanas S, El-Chemaly S, Lederer JA, Rosas IO, Perrella MA, Liu X. Intratracheal transplantation of trophoblast stem cells attenuates acute lung injury in mice. Stem Cell Res Ther 2021; 12:487. [PMID: 34461993 PMCID: PMC8404310 DOI: 10.1186/s13287-021-02550-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a common lung disorder that affects millions of people every year. The infiltration of inflammatory cells into the lungs and death of the alveolar epithelial cells are key factors to trigger a pathological cascade. Trophoblast stem cells (TSCs) are immune privileged, and demonstrate the capability of self-renewal and multipotency with differentiation into three germ layers. We hypothesized that intratracheal transplantation of TSCs may alleviate ALI. METHODS ALI was induced by intratracheal delivery of bleomycin (BLM) in mice. After exposure to BLM, pre-labeled TSCs or fibroblasts (FBs) were intratracheally administered into the lungs. Analyses of the lungs were performed for inflammatory infiltrates, cell apoptosis, and engraftment of TSCs. Pro-inflammatory cytokines/chemokines of lung tissue and in bronchoalveolar lavage fluid (BALF) were also assessed. RESULTS The lungs displayed a reduction in cellularity, with decreased CD45+ cells, and less thickening of the alveolar walls in ALI mice that received TSCs compared with ALI mice receiving PBS or FBs. TSCs decreased infiltration of neutrophils and macrophages, and the expression of interleukin (IL) 6, monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine (KC) in the injured lungs. The levels of inflammatory cytokines in BALF, particularly IL-6, were decreased in ALI mice receiving TSCs, compared to ALI mice that received PBS or FBs. TSCs also significantly reduced BLM-induced apoptosis of alveolar epithelial cells in vitro and in vivo. Transplanted TSCs integrated into the alveolar walls and expressed aquaporin 5 and prosurfactant protein C, markers for alveolar epithelial type I and II cells, respectively. CONCLUSION Intratracheal transplantation of TSCs into the lungs of mice after acute exposure to BLM reduced pulmonary inflammation and cell death. Furthermore, TSCs engrafted into the alveolar walls to form alveolar epithelial type I and II cells. These data support the use of TSCs for the treatment of ALI.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gu Li
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Minmin Hou
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Xiaoliang Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77024, USA
| | - Elizabeth Taglauer
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - S Alex Mitsialis
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stella Kourembanas
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77024, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Theret M, Low M, Rempel L, Li FF, Tung LW, Contreras O, Chang CK, Wu A, Soliman H, Rossi FMV. In vitro assessment of anti-fibrotic drug activity does not predict in vivo efficacy in murine models of Duchenne muscular dystrophy. Life Sci 2021; 279:119482. [PMID: 33891939 DOI: 10.1016/j.lfs.2021.119482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/09/2023]
Abstract
AIM Fibrosis is the most common complication from chronic diseases, and yet no therapy capable of mitigating its effects is available. Our goal is to unveil specific signaling regulating the fibrogenic process and to identify potential small molecule candidates that block fibrogenic differentiation of fibro/adipogenic progenitors. METHOD We performed a large-scale drug screen using muscle-resident fibro/adipogenic progenitors from a mouse model expressing EGFP under the Collagen1a1 promotor. We first confirmed that the EGFP was expressed in response to TGFβ1 stimulation in vitro. Then we treated cells with TGFβ1 alone or with drugs from two libraries of known compounds. The drugs ability to block the fibrogenic differentiation was quantified by imaging and flow cytometry. From a two-rounds screening, positive hits were tested in vivo in the mice model for the Duchenne Muscular Dystrophy (mdx mice). The histopathology of the muscles was assessed with picrosirius red (fibrosis) and laminin staining (myofiber size). KEY FINDINGS From the in vitro drug screening, we identified 21 drugs and tested 3 in vivo on the mdx mice. None of the three drugs significantly improved muscle histopathology. SIGNIFICANCE The in vitro drug screen identified various efficient compounds, none of them strongly inhibited fibrosis in skeletal muscle of mdx mice. To explain these observations, we hypothesize that in Duchenne Muscular Dystrophy, in which fibrosis is a secondary event due to chronic degeneration and inflammation, the drugs tested could have adverse effect on regeneration or inflammation, balancing off any positive effects and leading to the absence of significant results.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Marcela Low
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lucas Rempel
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fang Fang Li
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lin Wei Tung
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Chih-Kai Chang
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrew Wu
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Hesham Soliman
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Minia University, Minia, Egypt
| | - Fabio M V Rossi
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
14
|
Serrya MS, Nader MA, Abdelmageed ME. Hepatoprotective effect of the tyrosine kinase inhibitor nilotinib against cyclosporine-A induced liver injury in rats through blocking the Bax/Cytochrome C/caspase-3 apoptotic signaling pathway. J Biochem Mol Toxicol 2021; 35:1-13. [PMID: 33710703 DOI: 10.1002/jbt.22764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022]
Abstract
Cyclosporine-A (CsA) is a powerful immunosuppressive agent and hepatotoxicity results from CsA treatment. This study aimed to elucidate the effectiveness of tyrosine kinase inhibitor nilotinib against CsA-induced hepatotoxicity and the underlying molecular mechanisms. Male Sprague-Dawley rats were allocated into four groups and received drugs for 28 days as follows: Control group: received vehicle, Nilotinib group: received nilotinib (20 mg/kg orally), CsA group: received CsA by subcutaneous injection (20 mg/kg daily), CsA-nilotinib: received nilotinib and CsA. Serum lactate dehydrogenase (LDH), liver function biomarkers, hepatic levels of oxidative stress biomarkers, nuclear factor erythroid-2 like-2 (Nrf2), total antioxidant capacity (TAC), interleukin-2 (IL-2), IL-1β, IL-6, and cytochrome-C were assessed. Additionally, the protein levels and mRNA expression of Bcl2 associated X protein (Bax), caspase-3, nuclear factor-κB (NF-κB), hemoxygenase-1 (HO-1) were measured. Moreover, liver tissues were assessed histopathologically using hematoxylin-eosin and Masson trichrome stain. Nilotinib treatment decreased serum LDH, alanine aminotransferase, aspartate aminotransferase, and γ-glutamyltransferase (γ-GT), hepatic malondialdehyde, and cytochrome-C. It also increased superoxide dismutase, reduced glutathione, glutathione reductase, glutathione peroxidase, glutathione-S-transferase (GST), TAC, and Nrf2 compared to CsA-injected rats. In addition, nilotinib decreased NF-κB, IL-1β, IL-6, Bax, and caspase-3, while elevated IL-2 and immunoexpression of HO-1. Additionally, mRNA expression of Bax and caspase-3 was elevated and that of HO-1 and inhibitory protein κB-α was reduced in the nilotinib-treated group. Moreover, nilotinib significantly attenuated CsA-induced histopathological alterations. Nilotinib may have a promising role as a hepato-protective through its antiapoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Marwa S Serrya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Shen YH, Cheng MH, Liu XY, Zhu DW, Gao J. Sodium Houttuyfonate Inhibits Bleomycin Induced Pulmonary Fibrosis in Mice. Front Pharmacol 2021; 12:596492. [PMID: 33716736 PMCID: PMC7947865 DOI: 10.3389/fphar.2021.596492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary fibrosis (PF) could severely disrupt the normal lung architecture and function with fatal consequences. Currently, there is no effective treatment for PF or idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the effects of Sodium Houttuyfonate (SH) on bleomycin (BLM) induced PF mice model. Our results indicated that SH could attenuate BLM induced lung injury by reducing the inflammation, fibrogenesis and lung/body weight ratio. The proposed mechanisms for the protective effects of SH include: 1) improvement of pulmonary function in BLM mice, for instance, it can elevate the vital capacity (VC), increase the forced expiratory flow at 50% of forced vital capacity (FEF50) and improve other pulmonary function indices; 2) inhibition of collagen formation in BLM mice; 3) attenuation of the elevation of inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which are triggered by BLM administration; 4) reduction of the mRNA level and protein production of transforming growth factor-β1 (TGF-β1) in BLM mice. Furthermore, it was found that the protective effects of SH against BLM induced PF in mice was comparable to that of prednisone acetate (PA) tablets, a widely used drug for immunological diseases. Although Houttuynia Cordata Thunb has been widely used in China for lung infection and inflammation, the mechanism has not yet been fully elucidated. Our study provides the evidence that SH is an effective compound against pulmonary injury, irritation and fibrogenesis.
Collapse
Affiliation(s)
- Yun-Hui Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Han Cheng
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Xin-Yu Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - De-Wei Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Gao
- The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Mansour HH, Omran MM, Hasan HF, El Kiki SM. Modulation of bleomycin-induced oxidative stress and pulmonary fibrosis by N-acetylcysteine in rats via AMPK/SIRT1/NF-κβ. Clin Exp Pharmacol Physiol 2020; 47:1943-1952. [PMID: 32658336 DOI: 10.1111/1440-1681.13378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
The efficacy of bleomycin (BLM) as an antineoplastic drug is limited to the development of dose and time-dependent pulmonary fibrosis. This study was intended to investigate the effect of N-acetylcysteine (NAC) on BLM-induced pulmonary fibrosis in rats. Twenty rats were randomly divided to the following four groups: Group one served as control; group two received BLM (15 mg/kg, intraperitoneal (ip)) for five consecutive days; group three received NAC (200 mg/kg, ip) for five consecutive days; and group four received NAC 1 hour before BLM for 5 days. The expression of connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), silent information regulator l (SIRT1), AMP-activated protein kinase (AMPK) were determined by qRT-PCR in lung tissues. The changes in transforming growth factor-beta1 (TGF-β1), tumour necrosis factor-α (TNF-α), interleukin-β1 (IL-β1) and nuclear factor kappa-β (NF-κβ) in serum were measured by ELISA. The tissue antioxidant status was determined biochemically. BLM administration caused pulmonary fibrosis as evidenced by increased levels of inflammatory mediators (TGF-β1, TNF-α, IL-β1 and NF-κβ) in serum (P < .05), elevated lipid peroxidation and nitric oxide and depleted endogenous antioxidants in lung tissue (P < .05). The expression levels of SIRT1 and AMPK were significantly decreased (P < .05), while the expression levels of CTGF and PDGF were increased significantly in the BLM group as compared to the control group (P < .05). These alterations were normalized by NAC intervention. NAC markedly attenuated the lung histopathological changes and reduced collagen deposition. These results suggest that NAC exerted an ameliorative effect against BLM-induced oxidative damage and pulmonary fibrosis via SIRT1/ AMPK/ NF-κβ pathways.
Collapse
Affiliation(s)
- Heba H Mansour
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hesham F Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Shereen M El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
17
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Juglanin alleviates bleomycin-induced lung injury by suppressing inflammation and fibrosis via targeting sting signaling. Biomed Pharmacother 2020; 127:110119. [DOI: 10.1016/j.biopha.2020.110119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
|
19
|
Lu CH, Chen CM, Ma J, Wu CJ, Chen LC, Kuo ML. DNA methyltransferase inhibitor alleviates bleomycin-induced pulmonary inflammation. Int Immunopharmacol 2020; 84:106542. [PMID: 32361570 DOI: 10.1016/j.intimp.2020.106542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) is a severe disease characterized by several inflammatory responses in the lung with high mortality. We applied a mouse model of the pulmonary inflammation induced by the intratracheal instillation of bleomycin which is widely used to induce ALI and fibrosis in animal models. We hypothesized that DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), with its anti-inflammatory benefits, might attenuate bleomycin-induced ALI through the alleviation of inflammation in the lung. We quantified white blood cells with cell blood count (CBC) test, lung inflammation by analyzing cells in the collected bronchoalveolar lavage fluid (BALF) and histological analysis of the lung tissues, and gene expression levels by real-time PCR. Intratracheal administration of bleomycin in mice induced pulmonary inflammation, characterized by increased neutrophil infiltration and inflammatory cytokine expression in the lungs. Mice treated with 5-Aza showed a significant reduction of lung neutrophilia, together with lower expressions of CXCL2 and MCP-1. Furthermore, 5-Aza treatment decreased the expression of proinflammatory cytokines in the lung tissue. Collectively, our data show that DNA methyltransferase inhibitor can alleviate the lung inflammation of bleomycin-induced ALI, indicating an alternative treatment option for the inflammation-triggered lung injury.
Collapse
Affiliation(s)
- Chun-Hao Lu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Épalinges, Switzerland
| | - Chun-Ming Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jason Ma
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Jang Wu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Peng LY, Yuan M, Shi HT, Li JH, Song K, Huang JN, Yi PF, Fu BD, Shen HQ. Protective Effect of Piceatannol Against Acute Lung Injury Through Protecting the Integrity of Air-Blood Barrier and Modulating the TLR4/NF-κB Signaling Pathway Activation. Front Pharmacol 2020; 10:1613. [PMID: 32038265 PMCID: PMC6988518 DOI: 10.3389/fphar.2019.01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Acute lung injury (ALI) is a common and complex inflammatory lung syndrome with higher morbidity and mortality rate. Piceatannol (PIC) has anti-inflammation and anti-oxidant properties. The study was designed to explore the effect and the action mechanisms of PIC on lipopolysaccharide (LPS)-induced ALI. Twenty-four hours after LPS challenge, mice from different treatment groups were euthanized, and the bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected. Then the degree of pulmonary edema, lung pathological changes, myeloperoxidase (MPO) activity, and the production of pro-inflammatory cytokines were detected. Additionally, the messenger RNA (mRNA) expressions associated with cell adhesion molecules and tight junction were analyzed through quantitative real-time (qRT)-PCR, and the TLR4/NF-κB activation was examined by western blot. The results showed that PIC significantly inhibited LPS-induced lung edema, histopathological damage, MPO activity, cell infiltration, and pro-inflammatory cytokines production. Moreover, PIC notably suppressed mRNA expressions associated with inflammation and cell adhesion molecules. Furthermore, PIC also alleviated LPS-induced damage of air-blood barrier through reducing the levels of total proteins in BALF and recovering the expression of occludin and ZO-1 in the lung tissues. We also found that PIC remarkably restrained the LPS-induced TLR4/NF-κB pathway activation in lung tissues. In conclusion, PIC may be potential to treat LPS-induced acute lung injury (ALI) via regulating air-blood barrier and TLR4/NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Yuan
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hai-Tao Shi
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing-He Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiang-Ni Huang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
21
|
Rasky A, Habiel DM, Morris S, Schaller M, Moore BB, Phan S, Kunkel SL, Phillips M, Hogaboam C, Lukacs NW. Inhibition of the stem cell factor 248 isoform attenuates the development of pulmonary remodeling disease. Am J Physiol Lung Cell Mol Physiol 2019; 318:L200-L211. [PMID: 31747308 DOI: 10.1152/ajplung.00114.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stem cell factor (SCF) and its receptor c-kit have been implicated in inflammation, tissue remodeling, and fibrosis. Ingenuity Integrated Pathway Analysis of gene expression array data sets showed an upregulation of SCF transcripts in idiopathic pulmonary fibrosis (IPF) lung biopsies compared with tissue from nonfibrotic lungs that are further increased in rapid progressive disease. SCF248, a cleavable isoform of SCF, was abundantly and preferentially expressed in human lung fibroblasts and fibrotic mouse lungs relative to the SCF220 isoform. In fibroblast-mast cell coculture studies, blockade of SCF248 using a novel isoform-specific anti-SCF248 monoclonal antibody (anti-SCF248), attenuated the expression of COL1A1, COL3A1, and FN1 transcripts in cocultured IPF but not normal lung fibroblasts. Administration of anti-SCF248 on days 8 and 12 after bleomycin instillation in mice significantly reduced fibrotic lung remodeling and col1al, fn1, acta2, tgfb, and ccl2 transcript expression. In addition, bleomycin increased numbers of c-kit+ mast cells, eosinophils, and ILC2 in lungs of mice, whereas they were not significantly increased in anti-SCF248-treated animals. Finally, mesenchymal cell-specific deletion of SCF significantly attenuated bleomycin-mediated lung fibrosis and associated fibrotic gene expression. Collectively, these data demonstrate that SCF is upregulated in diseased IPF lungs and blocking SCF248 isoform significantly ameliorates fibrotic lung remodeling in vivo suggesting that it may be a therapeutic target for fibrotic lung diseases.
Collapse
Affiliation(s)
- Andrew Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Opsidio, LLC, Bryn Mawr, Pennsylvania
| | | | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Opsidio, LLC, Bryn Mawr, Pennsylvania
| | - Matthew Schaller
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sem Phan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Cory Hogaboam
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Zaghloul MS, Abdelrahman RS. Nilotinib ameliorates folic acid-induced acute kidney injury through modulation of TWEAK and HSP-70 pathways. Toxicology 2019; 427:152303. [DOI: 10.1016/j.tox.2019.152303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/01/2019] [Accepted: 10/01/2019] [Indexed: 01/09/2023]
|
23
|
Samaha MM, Said E, Salem HA. Nilotinib enhances β-islets integrity and secretory functions in a rat model of STZ-induced diabetes mellitus. Eur J Pharmacol 2019; 860:172569. [DOI: 10.1016/j.ejphar.2019.172569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
|
24
|
Protective effect of a polyphenols-rich extract from Inonotus Sanghuang on bleomycin-induced acute lung injury in mice. Life Sci 2019; 230:208-217. [DOI: 10.1016/j.lfs.2019.05.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Chen S, Liu G, Chen J, Hu A, Zhang L, Sun W, Tang W, Liu C, Zhang H, Ke C, Wu J, Chen X. Ponatinib Protects Mice From Lethal Influenza Infection by Suppressing Cytokine Storm. Front Immunol 2019; 10:1393. [PMID: 31293574 PMCID: PMC6598400 DOI: 10.3389/fimmu.2019.01393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive inflammation associated with the uncontrolled release of pro-inflammatory cytokines is the main cause of death from influenza virus infection. Previous studies have indicated that inhibition of interferon gamma-induced protein 10 (IP-10), interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), or their cognate receptors has beneficial effects. Here, by using monocytic U937 cells that capable of secreting the three important cytokines during influenza A virus infection, we measured the inhibitory activities on the production of three cytokines of six anti-inflammatory compounds reported in other models of inflammation. We found that ponatinib had a highly inhibitory effect on the production of all three cytokines. We tested ponatinib in a mouse influenza model to assess its therapeutic effects with different doses and administration times and found that the delayed administration of ponatinib was protective against lethal influenza A virus infection without reducing virus titers. Therefore, we suggest that ponatinib may serve as a new immunomodulator in the treatment of influenza.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ge Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jungang Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ao Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenyu Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chang Ke
- Wuhan Virolead Biopharmaceutical Company, Wuhan, China
| | - Jianguo Wu
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
He J, Qi D, Tang XM, Deng W, Deng XY, Zhao Y, Wang DX. Rosiglitazone promotes ENaC-mediated alveolar fluid clearance in acute lung injury through the PPARγ/SGK1 signaling pathway. Cell Mol Biol Lett 2019; 24:35. [PMID: 31160894 PMCID: PMC6540532 DOI: 10.1186/s11658-019-0154-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pulmonary edema is one of the pathological characteristics of acute respiratory distress syndrome (ARDS). The epithelial sodium channel (ENaC) is thought to be the rate-limiting factor for alveolar fluid clearance (AFC) during pulmonary edema. The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone was shown to stimulate ENaC-mediated salt absorption in the kidney. However, its role in the lung remains unclear. Here, we investigated the role of the PPARγ agonist in the lung to find out whether it can regulate AFC during acute lung injury (ALI). We also attempted to elucidate the mechanism for this. Methods Our ALI model was established through intratracheal instillation of lipopolysaccharide (LPS) in C57BL/6 J mice. The mice were randomly divided into 4 groups of 10. The control group underwent a sham operation and received an equal quantity of saline. The three experimental groups underwent intratracheal instillation of 5 mg/kg LPS, followed by intraperitoneal injection of 4 mg/kg rosiglitazone, 4 mg/kg rosiglitazone plus 1 mg/kg GW9662, or only equal quantity of saline. The histological morphology of the lung, the levels of TNF-α and IL-1β in the bronchoalveolar lavage fluid (BALF), the level of AFC, and the expressions of αENaC and serum and glucocorticoid-induced kinase-1 (SGK1) were determined. Type 2 alveolar (AT II) cells were incubated with rosiglitazone (15 μM) with or without GW9662 (10 μM). The expressions of αENaC and SGK1 were determined 24 h later. Results A mouse model of ALI was successfully established. Rosiglitazone significantly ameliorated the lung injury, decreasing the TNF-α and IL-1β levels in the BALF, enhancing AFC, and promoting the expressions of αENaC and SGK1 in ALI mice, which were abolished by the specific PPARγ blocker GW9662. In vitro, rosiglitazone increased the expressions of αENaC and SGK1. This increase was prevented by GW9662. Conclusions Rosiglitazone ameliorated the lung injury and promoted ENaC-mediated AFC via a PPARγ/SGK1-dependent signaling pathway, alleviating pulmonary edema in a mouse model of ALI.
Collapse
Affiliation(s)
- Jing He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Di Qi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Xu-Mao Tang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Wang Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Xin-Yu Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| | - Dao-Xin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010 China
| |
Collapse
|
27
|
Kinoshita T, Goto T. Molecular Mechanisms of Pulmonary Fibrogenesis and Its Progression to Lung Cancer: A Review. Int J Mol Sci 2019; 20:ijms20061461. [PMID: 30909462 PMCID: PMC6471841 DOI: 10.3390/ijms20061461] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, and limited to the lungs. Despite the increasing research interest in the pathogenesis of IPF, unfavorable survival rates remain associated with this condition. Recently, novel therapeutic agents have been shown to control the progression of IPF. However, these drugs do not improve lung function and have not been tested prospectively in patients with IPF and coexisting lung cancer, which is a common comorbidity of IPF. Optimal management of patients with IPF and lung cancer requires understanding of pathogenic mechanisms and molecular pathways that are common to both diseases. This review article reflects the current state of knowledge regarding the pathogenesis of pulmonary fibrosis and summarizes the pathways that are common to IPF and lung cancer by focusing on the molecular mechanisms.
Collapse
Affiliation(s)
- Tomonari Kinoshita
- Division of General Thoracic Surgery, Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 1608582, Japan.
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi 4008506, Japan.
| |
Collapse
|
28
|
Ballester B, Milara J, Cortijo J. Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. Int J Mol Sci 2019; 20:ijms20030593. [PMID: 30704051 PMCID: PMC6387034 DOI: 10.3390/ijms20030593] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 2–4 years after diagnosis. A significant number of IPF patients have risk factors, such as a history of smoking or concomitant emphysema, both of which can predispose the patient to lung cancer (LC) (mostly non-small cell lung cancer (NSCLC)). In fact, IPF itself increases the risk of LC development by 7% to 20%. In this regard, there are multiple common genetic, molecular, and cellular processes that connect lung fibrosis with LC, such as myofibroblast/mesenchymal transition, myofibroblast activation and uncontrolled proliferation, endoplasmic reticulum stress, alterations of growth factors expression, oxidative stress, and large genetic and epigenetic variations that can predispose the patient to develop IPF and LC. The current approved IPF therapies, pirfenidone and nintedanib, are also active in LC. In fact, nintedanib is approved as a second line treatment in NSCLC, and pirfenidone has shown anti-neoplastic effects in preclinical studies. In this review, we focus on the current knowledge on the mechanisms implicated in the development of LC in patients with IPF as well as in current IPF and LC-IPF candidate therapies based on novel molecular advances.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Pharmacy Unit, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Research and teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain.
| |
Collapse
|
29
|
Peyvandipour A, Saberian N, Shafi A, Donato M, Draghici S. A novel computational approach for drug repurposing using systems biology. Bioinformatics 2018; 34:2817-2825. [PMID: 29534151 PMCID: PMC6084573 DOI: 10.1093/bioinformatics/bty133] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/07/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Motivation Identification of novel therapeutic effects for existing US Food and Drug Administration (FDA)-approved drugs, drug repurposing, is an approach aimed to dramatically shorten the drug discovery process, which is costly, slow and risky. Several computational approaches use transcriptional data to find potential repurposing candidates. The main hypothesis of such approaches is that if gene expression signature of a particular drug is opposite to the gene expression signature of a disease, that drug may have a potential therapeutic effect on the disease. However, this may not be optimal since it fails to consider the different roles of genes and their dependencies at the system level. Results We propose a systems biology approach to discover novel therapeutic roles for established drugs that addresses some of the issues in the current approaches. To do so, we use publicly available drug and disease data to build a drug-disease network by considering all interactions between drug targets and disease-related genes in the context of all known signaling pathways. This network is integrated with gene-expression measurements to identify drugs with new desired therapeutic effects based on a system-level analysis method. We compare the proposed approach with the drug repurposing approach proposed by Sirota et al. on four human diseases: idiopathic pulmonary fibrosis, non-small cell lung cancer, prostate cancer and breast cancer. We evaluate the proposed approach based on its ability to re-discover drugs that are already FDA-approved for a given disease. Availability and implementation The R package DrugDiseaseNet is under review for publication in Bioconductor and is available at https://github.com/azampvd/DrugDiseaseNet. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Adib Shafi
- Computer Science, Wayne State University, Detroit, MI, USA
| | - Michele Donato
- Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Computer Science, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
30
|
Contreras O, Villarreal M, Brandan E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet Muscle 2018; 8:5. [PMID: 29463296 PMCID: PMC5819301 DOI: 10.1186/s13395-018-0150-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) are effective therapies with demonstrated antineoplastic activity. Nilotinib is a second-generation FDA-approved TKI designed to overcome Imatinib resistance and intolerance in patients with chronic myelogenous leukemia (CML). Interestingly, TKIs have also been shown to be an efficient treatment for several non-malignant disorders such fibrotic diseases, including those affecting skeletal muscles. Methods We investigated the role of Nilotinib on skeletal myogenesis using the well-established C2C12 myoblast cell line. We evaluated the impact of Nilotinib during the time course of skeletal myogenesis. We compared the effect of Nilotinib with the well-known p38 MAPK inhibitor SB203580. MEK1/2 UO126 and PI3K/AKT LY294002 inhibitors were used to identify the signaling pathways involved in Nilotinib-related effects on myoblast. Adult primary myoblasts were also used to corroborate the inhibition of myoblasts fusion and myotube-nuclei positioning by Nilotinib. Results We found that Nilotinib inhibited myogenic differentiation, reducing the number of myogenin-positive myoblasts and decreasing myogenin and MyoD expression. Furthermore, Nilotinib-mediated anti-myogenic effects impair myotube formation, myosin heavy chain expression, and compromise myotube-nuclei positioning. In addition, we found that p38 MAPK is a new off-target protein of Nilotinib, which causes inhibition of p38 phosphorylation in a similar manner as the well-characterized p38 inhibitor SB203580. Nilotinib induces the activation of ERK1/2 and AKT on myoblasts but not in myotubes. We also found that Nilotinib stimulates myoblast proliferation, a process dependent on ERK1/2 and AKT activation. Conclusions Our findings suggest that Nilotinib may have important negative effects on muscle homeostasis, inhibiting myogenic differentiation but stimulating myoblasts proliferation. Additionally, we found that Nilotinib stimulates the activation of ERK1/2 and AKT. On the other hand, we suggest that p38 MAPK is a new off-target of Nilotinib. Thus, there is a necessity for future studies to investigate the long-term effects of TKIs on skeletal muscle homeostasis, along with potential detrimental effects in cell differentiation and proliferation in patients receiving TKI therapies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0150-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|
31
|
Kang JW, Jeong JH, Moon NJ. The Anti-fibrotic Effect of Nilotinib on Tenon's Capsule Fibroblasts in Vitro. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2018. [DOI: 10.3341/jkos.2018.59.6.549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jeong Woo Kang
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Hoon Jeong
- Department of Ophthalmology, Konyang University College of Medicine, Daejeon, Korea
| | - Nam Ju Moon
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Wujak L, Schnieder J, Schaefer L, Wygrecka M. LRP1: A chameleon receptor of lung inflammation and repair. Matrix Biol 2017; 68-69:366-381. [PMID: 29262309 DOI: 10.1016/j.matbio.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
The lung displays a remarkable capability to regenerate following injury. Considerable effort has been made thus far to understand the cardinal processes underpinning inflammation and reconstruction of lung tissue. However, the factors determining the resolution or persistence of inflammation and efficient wound healing or aberrant remodeling remain largely unknown. Low density lipoprotein receptor-related protein 1 (LRP1) is an endocytic/signaling cell surface receptor which controls cellular and molecular mechanisms driving the physiological and pathological inflammatory reactions and tissue remodeling in several organs. In this review, we will discuss the impact of LRP1 on the consecutive steps of the inflammatory response and its role in the balanced tissue repair and aberrant remodeling in the lung.
Collapse
Affiliation(s)
- Lukasz Wujak
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Jennifer Schnieder
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Liliana Schaefer
- Goethe University School of Medicine, University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
33
|
El-Agamy DS, Shebl AM, Shaaban AA. Modulation ofd-galactosamine/lipopolysacharride–induced fulminant hepatic failure by nilotinib. Hum Exp Toxicol 2017; 37:51-60. [DOI: 10.1177/0960327117689910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- DS El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt
| | - AM Shebl
- Faculty of Medicine, Department of Pathology, Mansoura University, Mansoura, Egypt
| | - AA Shaaban
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
34
|
Kang HS, Rhee CK, Lee HY, Yoon HK, Kwon SS, Lee SY. Different anti-remodeling effect of nilotinib and fluticasone in a chronic asthma model. Korean J Intern Med 2016; 31:1150-1158. [PMID: 27764539 PMCID: PMC5094918 DOI: 10.3904/kjim.2015.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/05/2015] [Accepted: 08/16/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Inhaled corticosteroids are the most effective treatment currently available for asthma, but their beneficial effect against airway remodeling is limited. The tyrosine kinase inhibitor nilotinib has inhibitory activity against c-kit and the platelet-derived growth factor receptor. We compared the effects of fluticasone and nilotinib on airway remodeling in a chronic asthma model. We also examined whether co-treatment with nilotinib and fluticasone had any synergistic effect in preventing airway remodeling. METHODS We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized female BALB/c-mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated with fluticasone and/or nilotinib intranasally during the OVA challenge. RESULTS Mice chronically exposed to OVA developed eosinophilic airway inflammation and showed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Both fluticasone and nilotinib attenuated airway smooth muscle thickening. However, only nilotinib suppressed fibrotic changes, demonstrating inhibition of collagen deposition. Fluticasone reduced pro-inflammatory cells, such as eosinophils, and several cytokines, such as interleukin 4 (IL-4), IL-5, and IL-13, induced by repeated OVA challenges. On the other hand, nilotinib reduced transforming growth factor β1 levels in bronchoalveolar lavage fluid and inhibited fibroblast proliferation significantly. CONCLUSIONS These results suggest that fluticasone and nilotinib suppressed airway remodeling in this chronic asthma model through anti-inflammatory and anti-fibrotic pathways, respectively.
Collapse
Affiliation(s)
- Hye Seon Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hea Yon Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Soon Seok Kwon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon, Korea
| | - Sook Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sook Young Lee, M.D. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6061 Fax: +82-2-596-2158 E-mail:
| |
Collapse
|
35
|
Can G, Ayvaz S, Can H, Karaboğa İ, Demirtaş S, Akşit H, Yılmaz B, Korkmaz U, Kurt M, Karaca T. The efficacy of tyrosine kinase inhibitor dasatinib on colonic mucosal damage in murine model of colitis. Clin Res Hepatol Gastroenterol 2016; 40:504-516. [PMID: 26823039 DOI: 10.1016/j.clinre.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Ulcerative colitis is an inflammatory condition of the colon in the gastrointestinal system. Currently, the most potent medications used for ulcerative colitis produce no response in 20-30% of cases. There is a need for more efficient and reliable medications. Tyrosine kinase inhibitors have shown efficacy in some inflammatory diseases. Although dasatinib, a tyrosine kinase inhibitor, suppresses proinflammatory cytokines in colonic tissue, there are a few cases of hemorrhagic colitis with dasatinib. There is no study investigating the effect of dasatinib on experimental colitis. We aimed to investigate the effect of dasatinib in a colitis model induced with acetic acid in our study. METHODS In the study, 24 male Sprague-Dawley rats randomly distributed into 4 groups of 6 rats each as control, dasatinib, colitis and dasatinib+colitis groups. For colitis induction, 4% acetic acid was used. Sacrificing of the rats was performed on the seventh day. Disease activity, morphologic and histological injury, superoxide dismutase, myeloperoxidase and malondialdehyde activity, TNFα and CD3 expression were assessed in colonic tissue. RESULTS Apart from malondialdehyde, significant difference in all parameters between the control and colitis groups was determined. Difference between the colitis and colitis+dasatinib groups was not significant in only weight loss and biochemical parameters. Though dasatinib does not fully resolve the changes in colitis, there was significant regression. CONCLUSIONS Dasatinib decreased the inflammation in a rodent model of colitis. It may be provide this effect by the suppression of TNFα. Dasatinib may be one of the treatment options for ulcerative colitis.
Collapse
Affiliation(s)
- Güray Can
- Department of Gastroenterology, Abant İzzet Baysal University, Faculty of Medicine, Gölköy, 14280 Bolu, Turkey.
| | - Süleyman Ayvaz
- Department of Pediatric Surgery, Trakya University, Faculty of Medicine, Edirne, Turkey.
| | - Hatice Can
- Department of Internal Medicine, Abant İzzet Baysal University, Faculty of Medicine, Bolu, Turkey.
| | - İhsan Karaboğa
- Department of Histology and Embryology, Trakya University, Faculty of Medicine, Edirne, Turkey.
| | - Selim Demirtaş
- Department of Histology and Embryology, Trakya University, Faculty of Medicine, Edirne, Turkey.
| | - Hasan Akşit
- Department of Biochemistry, Balıkesir University, Faculty of Veterinary, Balıkesir, Turkey.
| | - Bülent Yılmaz
- Department of Gastroenterology, Selçuk University, Faculty of Medicine, Konya, Turkey.
| | - Uğur Korkmaz
- Department of Gastroenterology, Abant İzzet Baysal University, Faculty of Medicine, Gölköy, 14280 Bolu, Turkey.
| | - Mevlüt Kurt
- Department of Gastroenterology, Abant İzzet Baysal University, Faculty of Medicine, Gölköy, 14280 Bolu, Turkey.
| | - Turan Karaca
- Department of Histology and Embryology, Trakya University, Faculty of Medicine, Edirne, Turkey.
| |
Collapse
|
36
|
Fiore D, Judson RN, Low M, Lee S, Zhang E, Hopkins C, Xu P, Lenzi A, Rossi FMV, Lemos DR. Pharmacological blockage of fibro/adipogenic progenitor expansion and suppression of regenerative fibrogenesis is associated with impaired skeletal muscle regeneration. Stem Cell Res 2016; 17:161-9. [PMID: 27376715 DOI: 10.1016/j.scr.2016.06.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Acute skeletal muscle injury triggers an expansion of fibro/adipogenic progenitors (FAPs) and a transient stage of fibrogenesis characterized by extracellular matrix deposition. While the perpetuation of such phase can lead to permanent tissue scarring, the consequences of its suppression remain to be studied. Using a model of acute muscle damage we were able to determine that pharmacological inhibition of FAP expansion by Nilotinib, a tyrosine kinase inhibitor with potent antifibrotic activity, exerts a detrimental effect on myogenesis during regeneration. We found that Nilotinib inhibits the damage-induced expansion of satellite cells in vivo, but it does not affect in vitro proliferation, suggesting a non cell-autonomous effect. Nilotinib impairs regenerative fibrogenesis by preventing the injury-triggered expansion and differentiation of resident CD45(-):CD31(-):α7integrin(-):Sca1(+) mesenchymal FAPs. Our data support the notion that the expansion of FAPs and transient fibrogenesis observed during regeneration play an important trophic role toward tissue-specific stem cells.
Collapse
Affiliation(s)
- Daniela Fiore
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Viale Regina Elena, 324, Rome 00161, Italy.
| | - Robert N Judson
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Marcela Low
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Sunny Lee
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Erica Zhang
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Claudia Hopkins
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Peter Xu
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Andrea Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Viale Regina Elena, 324, Rome 00161, Italy.
| | - Fabio M V Rossi
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Dario R Lemos
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
37
|
Abstract
Systemic sclerosis is a heterogeneous condition characterized by microvascular damage, dysregulation of the immune system, and progressive fibrosis affecting skin and internal organs. Currently, there are no approved disease-modifying therapies, and management mostly involves treatment of organ-specific complications. In recent years, major advances have greatly improved our understanding of the disease process, especially the molecular mechanisms by which fibrosis becomes self-sustaining. We discuss selected aspects of these mechanisms with a focus on those relevant to ongoing efforts to develop disease-modifying therapies. We also discuss advances in identification of patient subtypes, and selected examples of potential disease-modifying therapies in clinical development.
Collapse
|
38
|
Trajano LASN, Trajano ETL, Lanzetti M, Mendonça MSA, Guilherme RF, Figueiredo RT, Benjamim CF, Valenca SS, Costa AMA, Porto LC. Elastase modifies bleomycin-induced pulmonary fibrosis in mice. Acta Histochem 2016; 118:203-12. [PMID: 26852294 DOI: 10.1016/j.acthis.2015.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/17/2015] [Accepted: 12/23/2015] [Indexed: 01/24/2023]
Abstract
Pulmonary fibrosis (PF) is characterized by excessive accumulation of collagen in the lungs. Emphysema is characterized by loss of the extracellular matrix (ECM) and alveolar enlargement. We studied the co-participation of elastase-induced mild emphysema in bleomycin-induced PF in mice by analyzing oxidative stress, inflammation and lung histology. C57BL/6 mice were divided into four groups: control; bleomycin (0.1U/mouse); elastase (using porcine pancreatic elastase (PPE)+bleomycin (3U/mouse 14 days before 0.1U/mouse of bleomycin; PPE+B); elastase (3U/mouse). Mice were humanely sacrificed 7, 14 and 21 days after treatment with bleomycin or vehicle. PF was observed 14 days and 21 days after bleomycin treatment but was observed after 14 days only in the PPE+B group. In the PPE+B group at 21 days, we observed many alveoli and alveolar septa with few PF areas. We also observed marked and progressive increases of collagens 7, 14 and 21 days after bleomycin treatment whereas, in the PPE+B group, collagen deposition was observed only at 14 days. There was a reduction in activities of the antioxidant enzymes superoxide dismutase (p<0.05), catalase (p<0.01) and glutathione peroxidase (p<0.01) parallel with an increase in nitrite (p<0.01) 21 days after bleomycin treatment compared with the control group. These endpoints were also reduced (p<0.05, p<0.05 and p<0.01, respectively) and increased (p<0.01) in the PPE+B group at 21 days compared with the control group. Interleukin (IL)-1β expression was upregulated (p<0.01) whereas IL-6 was downregulated (p<0.05) in the PPE+B group at 21 days compared with the control group. PF and emphysema did not coexist in our model of lung disease and despite increased levels of oxidative stress and inflammatory markers after combined stimulus (elastase and bleomycin) overall histology was improved to that of the nearest control group.
Collapse
|
39
|
Ahlfeld SK, Wang J, Gao Y, Snider P, Conway SJ. Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:777-93. [PMID: 26878215 DOI: 10.1016/j.ajpath.2015.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022]
Abstract
Septation of the gas-exchange saccules of the morphologically immature mouse lung requires regulated timing, spatial direction, and dosage of transforming growth factor (TGF)-β signaling. We found that neonatal hyperoxia acutely initially diminished saccular TGF-β signaling coincident with alveolar simplification. However, sustained hyperoxia resulted in a biphasic response and subsequent up-regulation of TGF-β signaling, ultimately resulting in bronchopulmonary dysplasia. Significantly, we found that the TGF-β-induced matricellular protein (TGFBI) was similarly biphasically altered in response to hyperoxia. Moreover, genetic ablation revealed that TGFBI was required for normal alveolar structure and function. Although the phenotype was not neonatal lethal, Tgfbi-deficient lungs were morphologically abnormal. Mutant septal tips were stunted, lacked elastin-positive tips, exhibited reduced proliferation, and contained abnormally persistent alveolar α-smooth muscle actin myofibroblasts. In addition, Tgfbi-deficient lungs misexpressed TGF-β-responsive follistatin and serpine 1, and transiently suppressed myofibroblast platelet-derived growth factor α differentiation marker. Finally, despite normal lung volume, Tgfbi-null lungs displayed diminished elastic recoil and gas exchange efficiency. Combined, these data demonstrate that initial suppression of the TGF-β signaling apparatus, as well as loss of key TGF-β effectors (like TGFBI), underlies early alveolar structural defects, as well as long-lasting functional deficits routinely observed in chronic lung disease of infancy patients. These studies underline the complex (and often contradictory) role of TGF-β and indicate a need to design studies to associate alterations with initial appearance of phenotypical changes suggestive of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Shawn K Ahlfeld
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jian Wang
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yong Gao
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paige Snider
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
40
|
Dadrich M, Nicolay NH, Flechsig P, Bickelhaupt S, Hoeltgen L, Roeder F, Hauser K, Tietz A, Jenne J, Lopez R, Roehrich M, Wirkner U, Lahn M, Huber PE. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis. Oncoimmunology 2015; 5:e1123366. [PMID: 27467922 PMCID: PMC4910723 DOI: 10.1080/2162402x.2015.1123366] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022] Open
Abstract
Background: Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods: C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results: Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion: Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement: RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined inhibition of TGFβ and PDGF signaling is more effective in attenuating radiation-induced lung damage compared to blocking either pathway alone. We used the TGFβ-receptor I inhibitor galunisertib, an effective anticancer compound in preclinical models and the PDGFR inhibitors imatinib and SU9518, a sunitinib analog. Our signaling data suggest that the reduction of TGFβ and PDGF signaling and the attenuation of SPP1 (Osteopontin) expression may be responsible for the observed benefits. With the clinical availability of similar compounds currently in phase-I/II trials as cancer therapeutics or already approved for certain cancers or idiopathic lung fibrosis (IPF), our study suggests that the combined application of small molecule inhibitors of TGFβ and PDGF signaling may offer a promising approach to treat radiation-associated toxicity in RT of lung cancer.
Collapse
Affiliation(s)
- Monika Dadrich
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiology, University Hospital Center, 400 INF, Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiation Oncology, University Hospital Center, 400 INF, Heidelberg, Germany
| | - Paul Flechsig
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiology, University Hospital Center, 400 INF, Heidelberg, Germany
| | - Sebastian Bickelhaupt
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Line Hoeltgen
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Falk Roeder
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiation Oncology, University Hospital Center, 400 INF, Heidelberg, Germany; Department of Radiation Oncology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Kai Hauser
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Alexandra Tietz
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Jürgen Jenne
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Ramon Lopez
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Manuel Roehrich
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Ute Wirkner
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF , Heidelberg, Germany
| | - Michael Lahn
- Oncology Early Clinical Investigation, Lilly Research Laboratories, Indianapolis , IN, USA
| | - Peter E Huber
- Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), 280 INF, Heidelberg, Germany; Department of Radiation Oncology, University Hospital Center, 400 INF, Heidelberg, Germany
| |
Collapse
|
41
|
Hakim GD, Soyturk M, Unlu M, Ataca P, Karaman M, Sagol O, Borekci E, Yilmaz O. Mucosal healing effect of nilotinib in indomethacin-induced enterocolitis: A rat model. World J Gastroenterol 2015; 21:12576-12585. [PMID: 26640333 PMCID: PMC4658611 DOI: 10.3748/wjg.v21.i44.12576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/15/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of nilotinib in a rat model of indomethacin-induced enterocolitis. METHODS Twenty-one Wistar albino female rats obtained from Dokuz Eylul University Department of Laboratory Animal Science were divided into the following three groups: control (n = 7), indomethacin (n = 7) and nilotinib (n = 7). A volume of 0.25 mL of physiological serum placebo was administered to the control and indomethacin groups through an orogastric tube for 13 d. To induce enterocolitis, the indomethacin and nilotinib groups received 7.5 mL/kg indomethacin dissolved in 5% sodium bicarbonate and administered subcutaneously in a volume of 0.5 mL twice daily for three days. Nilotinib was administered 20 mg/kg/d in two divided doses to the nilotinib group of rats for 13 d through an orogastric tube, beginning on the same day as indomethacin administration. For 13 d, the rats were fed a standard diet, and their weights were monitored daily. After the rats were sacrificed, the intestinal and colonic tissue samples were examined. The macroscopic and microscopic pathology scores were evaluated. The pathologist stained all tissue samples using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling method. Mucosal crypts and apoptotic cells were quantified. The platelet-derived growth factor receptor (PDGFR) α and β scores assessed by immunohistochemical staining method and tissue and serum tumor necrosis factor (TNF) α levels were determined by enzyme-linked immunosorbent assay. RESULTS Between days 1 and 13, the rats in the nilotinib and indomethacin groups lost significantly more weight than the controls (-11 g vs +14.14 g, P = 0.013; -30 g vs +14.14 g, P = 0.003). In the small intestinal and colonic tissues, the macroscopic scores were significantly lower in the nilotinib group than in the indomethacin group (1.14 ± 0.38 and 7.29 ± 2.98, P = 0.005; 1.14 ± 0.38 and 7.43 ± 2.64, P = 0.001, respectively), but the values of the nilotinib and indomethacin groups were similar to the control group. In the small intestinal and colonic tissues, the microscopic scores were significantly lower in the nilotinib group than in the indomethacin group (3.43 ± 2.99 and 7.67 ± 3.67, P = 0.043; 2.29 ± 0.76 and 8.80 ± 2.68, P = 0.003, respectively), but the values were similar to the control group. The PDGFR β scores in the small intestine and colon were significantly lower in the nilotinib group than in the indomethacin group (1.43 ± 0.79 and 2.43 ± 0.54, P = 0.021; 1.57 ± 0.54 and 3 ± 0, P =0.001), and the values were similar to controls. The colonic PDGFR α scores were significantly lower in the nilotinib group than in the indomethacin group (1.71 ± 0.49 and 3 ± 0, P = 0.001). The colonic apoptosis scores were significantly lower in the controls than in the nilotinib group (1.57 ± 1.13 and 4 ± 1.29, P = 0.007). Furthermore, the serum and tissue TNF-α levels were similar between the nilotinib and indomethacin groups. CONCLUSION In the indomethacin-induced enterocolitis rat model, nilotinib has a positive effect on the macroscopic and microscopic pathologic scores, ensuring considerable mucosal healing. Nilotinib decreases PDGFR α and β levels and increases the colonic apoptotic scores, but it has no significant effects on weight loss and the TNF-α levels.
Collapse
|
42
|
Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov 2015; 14:693-720. [PMID: 26338155 DOI: 10.1038/nrd4592] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis, which leads to progressive loss of tissue function and eventual organ failure, has been estimated to contribute to ~45% of deaths in the developed world, and so new therapeutics to modulate fibrosis are urgently needed. Major advances in our understanding of the mechanisms underlying pathological fibrosis are supporting the search for such therapeutics, and the recent approval of two anti-fibrotic drugs for idiopathic pulmonary fibrosis has demonstrated the tractability of this area for drug discovery. This Review examines the pharmacology and structural information for small molecules being evaluated for lung, liver, kidney and skin fibrosis. In particular, we discuss the insights gained from the use of these pharmacological tools, and how these entities can inform, and probe, emerging insights into disease mechanisms, including the potential for future drug combinations.
Collapse
|
43
|
Inomata M, Nishioka Y, Azuma A. Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis. CORE EVIDENCE 2015; 10:89-98. [PMID: 26346347 PMCID: PMC4555978 DOI: 10.2147/ce.s82905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis. The molecular mechanisms involved in the progression of IPF are not fully understood; however, the platelet-derived growth factor (PDGF)/PDGF receptor pathway is thought to play a critical role in fibrogenesis of the lungs. Other growth factors, including fibroblast growth factor and vascular endothelial growth factor, are also thought to contribute to the pathogenesis of pulmonary fibrosis. Nintedanib is an inhibitor of multiple tyrosine kinases, including receptors for PDGF, fibroblast growth factor, and vascular endothelial growth factor. In the Phase II TOMORROW trial, treatment with 150 mg of nintedanib twice daily showed a trend to slow the decline in lung function and significantly decrease acute exacerbations in patients with IPF, while showing an acceptable safety profile. The Phase III INPULSIS trials demonstrated a significant decrease in the annual rate of decline in forced vital capacity in IPF patients treated with 150 mg nintedanib twice daily. In the INPULSIS-2 trial, the time to the first acute exacerbation significantly increased in IPF patients who were treated with 150 mg of nintedanib twice daily. Pirfenidone, another antifibrotic drug, was shown to limit the decline in pulmonary function in patients with IPF in the ASCEND trial. Combination therapy with nintedanib and pirfenidone is anticipated, although further evaluation of its long-term safety is needed. There is limited evidence for the safety of the combination therapy although a Phase II trial conducted in Japan demonstrated that combination therapy with nintedanib and pirfenidone was tolerable for 1 month. Available antifibrotic agents (ie, pirfenidone and N-acetylcysteine) have limited efficacy as single therapies for IPF; therefore, further study of combination therapy with antifibrotic agents is needed.
Collapse
Affiliation(s)
- Minoru Inomata
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo
| |
Collapse
|
44
|
Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 2015; 21:786-94. [PMID: 26053624 DOI: 10.1038/nm.3869] [Citation(s) in RCA: 506] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/29/2015] [Indexed: 12/14/2022]
Abstract
Depending on the inflammatory milieu, injury can result either in a tissue's complete regeneration or in its degeneration and fibrosis, the latter of which could potentially lead to permanent organ failure. Yet how inflammatory cells regulate matrix-producing cells involved in the reparative process is unknown. Here we show that in acutely damaged skeletal muscle, sequential interactions between multipotent mesenchymal progenitors and infiltrating inflammatory cells determine the outcome of the reparative process. We found that infiltrating inflammatory macrophages, through their expression of tumor necrosis factor (TNF), directly induce apoptosis of fibro/adipogenic progenitors (FAPs). In states of chronic damage, however, such as those in mdx mice, macrophages express high levels of transforming growth factor β1 (TGF-β1), which prevents the apoptosis of FAPs and induces their differentiation into matrix-producing cells. Treatment with nilotinib, a kinase inhibitor with proposed anti-fibrotic activity, can block the effect of TGF-β1 and reduce muscle fibrosis in mdx mice. Our findings reveal an unexpected anti-fibrotic role of TNF and suggest that disruption of the precisely timed progression from a TNF-rich to a TGF-β-rich environment favors fibrotic degeneration of the muscle during chronic injury.
Collapse
|
45
|
Rizzo AN, Aman J, van Nieuw Amerongen GP, Dudek SM. Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome. Arterioscler Thromb Vasc Biol 2015; 35:1071-9. [PMID: 25814671 DOI: 10.1161/atvbaha.115.305085] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 01/27/2023]
Abstract
The vascular endothelium separates circulating fluid and inflammatory cells from the surrounding tissues. Vascular leak occurs in response to wide-spread inflammatory processes, such as sepsis and acute respiratory distress syndrome, because of the formation of gaps between endothelial cells. Although these disorders are leading causes of mortality in the intensive care unit, no medical therapies exist to restore endothelial cell barrier function. Recent evidence highlights a key role for the Abl family of nonreceptor tyrosine kinases in regulating vascular barrier integrity. These kinases have well-described roles in cancer progression and neuronal morphogenesis, but their functions in the vasculature have remained enigmatic until recently. The Abl family kinases, c-Abl (Abl1) and Abl related gene (Arg, Abl2), phosphorylate several cytoskeletal effectors that mediate vascular permeability, including nonmuscle myosin light chain kinase, cortactin, vinculin, and β-catenin. They also regulate cell-cell and cell-matrix junction dynamics, and the formation of actin-based cellular protrusions in multiple cell types. In addition, both c-Abl and Arg are activated by hyperoxia and contribute to oxidant-induced endothelial cell injury. These numerous roles of Abl kinases in endothelial cells and the current clinical usage of imatinib and other Abl kinase inhibitors have spurred recent interest in repurposing these drugs for the treatment of vascular barrier dysfunction. This review will describe the structure and function of Abl kinases with an emphasis on their roles in mediating vascular barrier integrity. We will also provide a critical evaluation of the potential for exploiting Abl kinase inhibition as a novel therapy for inflammatory vascular leak syndromes.
Collapse
Affiliation(s)
- Alicia N Rizzo
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Jurjan Aman
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Steven M Dudek
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Grimminger F, Günther A, Vancheri C. The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 2015; 45:1426-33. [PMID: 25745048 DOI: 10.1183/09031936.00149614] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/06/2014] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a median survival time from diagnosis of 2-3 years. Although the pathogenic pathways have not been fully elucidated, IPF is believed to be caused by persistent epithelial injury in genetically susceptible individuals. Tyrosine kinases are involved in a range of signalling pathways that are essential for cellular homeostasis. However, there is substantial evidence from in vitro studies and animal models that receptor tyrosine kinases, such as the platelet-derived growth factor receptor, vascular endothelial growth factor receptor and fibroblast growth factor receptor, and non-receptor tyrosine kinases, such as the Src family, play critical roles in the pathogenesis of pulmonary fibrosis. For example, the expression and release of tyrosine kinases are altered in patients with IPF, while specific tyrosine kinases stimulate the proliferation of lung fibroblasts in vitro. Agents that inhibit tyrosine kinases have shown anti-fibrotic and anti-inflammatory effects in animal models of pulmonary fibrosis. Recently, the tyrosine kinase inhibitor nintedanib has shown positive results in two phase III trials in patients with IPF. Here, we summarise the evidence for involvement of specific tyrosine kinases in the pathogenesis of IPF and the development of tyrosine kinase inhibitors as treatments for IPF.
Collapse
Affiliation(s)
- Friedrich Grimminger
- Dept of Hematology/Oncology, University Hospital of Giessen and Marburg, Marburg, Germany
| | - Andreas Günther
- Dept of Pulmonary and Critical Care Medicine, ILD Program, University Hospital of Giessen and Marburg, Marburg, Germany
| | - Carlo Vancheri
- "Regional Centre for Rare Lung Diseases", Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
47
|
Sharp C, Millar AB, Medford ARL. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 2015; 89:420-34. [PMID: 25925331 DOI: 10.1159/000381102] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
The clinical syndrome of acute lung injury (ALI) occurs as a result of an initial acute systemic inflammatory response. This can be consequent to a plethora of insults, either direct to the lung or indirect. The insult results in increased epithelial permeability, leading to alveolar flooding with a protein-rich oedema fluid. The resulting loss of gas exchange leads to acute respiratory failure and typically catastrophic illness, termed acute respiratory distress syndrome (ARDS), requiring ventilatory and critical care support. There remains a significant disease burden, with some estimates showing 200,000 cases each year in the USA with a mortality approaching 50%. In addition, there is a significant burden of morbidity in survivors. There are currently no disease-modifying therapies available, and the most effective advances in caring for these patients have been in changes to ventilator strategy as a result of the ARDS network studies nearly 15 years ago. Here, we will give an overview of more recent advances in the understanding of the cellular biology of ALI and highlight areas that may prove fertile for future disease-modifying therapies.
Collapse
Affiliation(s)
- Charles Sharp
- Academic Respiratory Unit, University of Bristol, Southmead Hospital, Westbury-on-Trym, UK
| | | | | |
Collapse
|
48
|
Letsiou E, Rizzo AN, Sammani S, Naureckas P, Jacobson JR, Garcia JGN, Dudek SM. Differential and opposing effects of imatinib on LPS- and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 308:L259-69. [PMID: 25480336 DOI: 10.1152/ajplung.00323.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction underlies the pathophysiology of vascular disorders such as acute lung injury (ALI) syndromes. Recent work has identified the Abl family kinases (c-Abl and Arg) as important regulators of endothelial cell (EC) barrier function and suggests that their inhibition by currently available pharmaceutical agents such as imatinib may be EC protective. Here we describe novel and differential effects of imatinib in regulating lung pathophysiology in two clinically relevant experimental models of ALI. Imatinib attenuates endotoxin (LPS)-induced vascular leak and lung inflammation in mice but exacerbates these features in a mouse model of ventilator-induced lung injury (VILI). We next explored these discrepant observations in vitro through investigation of the roles for Abl kinases in cultured lung EC. Imatinib attenuates LPS-induced lung EC permeability, restores VE-cadherin junctions, and reduces inflammation by suppressing VCAM-1 expression and inflammatory cytokine (IL-8 and IL-6) secretion. Conversely, in EC exposed to pathological 18% cyclic stretch (CS) (in vitro model of VILI), imatinib decreases VE-cadherin expression, disrupts cell-cell junctions, and increases IL-8 levels. Downregulation of c-Abl expression with siRNA attenuates LPS-induced VCAM-1 expression, whereas specific reduction of Arg reduces VE-cadherin expression in 18% CS-challenged ECs to mimic the imatinib effects. In summary, imatinib exhibits pulmonary barrier-protective and anti-inflammatory effects in LPS-injured mice and lung EC; however, imatinib exacerbates VILI as well as dysfunction in 18% CS-EC. These findings identify the Abl family kinases as important modulators of EC function and potential therapeutic targets in lung injury syndromes.
Collapse
Affiliation(s)
- E Letsiou
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - A N Rizzo
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - S Sammani
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - P Naureckas
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - J R Jacobson
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| | - J G N Garcia
- Arizona Health Sciences Center, University of Arizona, Arizona
| | - S M Dudek
- University of Illinois at Chicago, Division of Pulmonary, Critical Care, Sleep, and Allergy, Illinois; and
| |
Collapse
|
49
|
Aschner Y, Zemans RL, Yamashita CM, Downey GP. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest 2014; 146:1081-1091. [PMID: 25287998 DOI: 10.1378/chest.14-0397] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and ARDS fall within a spectrum of pulmonary disease that is characterized by hypoxemia, noncardiogenic pulmonary edema, and dysregulated and excessive inflammation. While mortality rates have improved with the advent of specialized ICUs and lung protective mechanical ventilation strategies, few other therapies have proven effective in the management of ARDS, which remains a significant clinical problem. Further development of biomarkers of disease severity, response to therapy, and prognosis is urgently needed. Several novel pathways have been identified and studied with respect to the pathogenesis of ALI and ARDS that show promise in bridging some of these gaps. This review will focus on the roles of matrix metalloproteinases and protein tyrosine kinases in the pathobiology of ALI in humans, and in animal models and in vitro studies. These molecules can act independently, as well as coordinately, in a feed-forward manner via activation of tyrosine kinase-regulated pathways that are pivotal in the development of ARDS. Specific signaling events involving proteolytic processing by matrix metalloproteinases that contribute to ALI, including cytokine and chemokine activation and release, neutrophil recruitment, transmigration and activation, and disruption of the intact alveolar-capillary barrier, will be explored in the context of these novel molecular pathways.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Cory M Yamashita
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Gregory P Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO; Immunology, University of Colorado Denver, Aurora, CO.
| |
Collapse
|
50
|
Abstract
This review documents important progress made in 2013 in the field of critical care respirology, in particular with regard to acute respiratory failure and acute respiratory distress syndrome. Twenty-five original articles published in the respirology and critical care sections of Critical Care are discussed in the following categories: pre-clinical studies, protective lung ventilation – how low can we go, non-invasive ventilation for respiratory failure, diagnosis and prognosis in acute respiratory distress syndrome and respiratory failure, and promising interventions for acute respiratory distress syndrome.
Collapse
|