1
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
2
|
Shokrgozar S, Momeni F, Zarabi H, Abdollahi E, Khalkhali M, Najafi K, Soleimani R, Pazhooman S, Zare R. Efficacy of metformin on the body mass index of patients under treatment with SSRI drugs referred to psychiatry clinics of Rasht. Heliyon 2024; 10:e34320. [PMID: 39145027 PMCID: PMC11320478 DOI: 10.1016/j.heliyon.2024.e34320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Objective Serotonin reuptake inhibitors cause weight gain, leading to drug discontinuation, relapse, and worsening of symptoms. This study aims to investigates the effect of metformin on weight loss, anthropometric indicators and laboratory assessments in patients of Rasht city. Methods This clinical trial study with parallel-group design was organized based on 60 patients in treatment group (undergoing metformin) and 60 patients in control group (undergoing routine treatment) in Shafa hospital during July 2019 to January 2020. First, we determined the overweight patients. After that, a psychiatric assistant randomly divides them into two groups, intervention and control. Both groups of patients will be explained in terms of how they were studied and whether or not they received metformin. In order to statistical analysis of collected data, we applied the Mann-Whitney U test and repeated measures ANOVA. For conducting all analysis, the IBM SPSS Statistics 28 software was used. Results The mean BMI and abdominal circumference decreased significantly in the intervention group. The wrist circumference in the intervention group decreased over time, but this difference was not statistically significant. There was no statistically significant difference between the average changes of the mean values of the laboratory assessment among the group. Conclusion Weight gain can cause problems related to compliance with treatment and anxiety and depression. On the other hand, in our study, metformin was not superior to lifestyle improvements and practicing preventive methods for weight control. Further research on SSRIs and monitoring of anthropometric indices is recommended.
Collapse
Affiliation(s)
- Somayeh Shokrgozar
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Momeni
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Homa Zarabi
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elahe Abdollahi
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadrasoul Khalkhali
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kiomars Najafi
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Robabeh Soleimani
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sabra Pazhooman
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Roghayeh Zare
- Biostatistics Neuroscience Research Center, Guilan University of Medical Science, Rasht, Iran
| |
Collapse
|
3
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Min SH, Song DK, Lee CH, Roh E, Kim MS. Hypothalamic AMP-Activated Protein Kinase as a Whole-Body Energy Sensor and Regulator. Endocrinol Metab (Seoul) 2024; 39:1-11. [PMID: 38356211 PMCID: PMC10901667 DOI: 10.3803/enm.2024.1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
5´-Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a cellular energy sensor, is an essential enzyme that helps cells maintain stable energy levels during metabolic stress. The hypothalamus is pivotal in regulating energy balance within the body. Certain neurons in the hypothalamus are sensitive to fluctuations in food availability and energy stores, triggering adaptive responses to preserve systemic energy equilibrium. AMPK, expressed in these hypothalamic neurons, is instrumental in these regulatory processes. Hypothalamic AMPK activity is modulated by key metabolic hormones. Anorexigenic hormones, including leptin, insulin, and glucagon-like peptide 1, suppress hypothalamic AMPK activity, whereas the hunger hormone ghrelin activates it. These hormonal influences on hypothalamic AMPK activity are central to their roles in controlling food consumption and energy expenditure. Additionally, hypothalamic AMPK activity responds to variations in glucose concentrations. It becomes active during hypoglycemia but is deactivated when glucose is introduced directly into the hypothalamus. These shifts in AMPK activity within hypothalamic neurons are critical for maintaining glucose balance. Considering the vital function of hypothalamic AMPK in the regulation of overall energy and glucose balance, developing chemical agents that target the hypothalamus to modulate AMPK activity presents a promising therapeutic approach for metabolic conditions such as obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Do Kyeong Song
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Eun Roh
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
6
|
Song Y, Yin D, Zhang Z, Chi L. Research progress of treatment of functional dyspepsia with traditional Chinese medicine compound based on cell signal pathway. Front Pharmacol 2023; 13:1089231. [PMID: 36699059 PMCID: PMC9868459 DOI: 10.3389/fphar.2022.1089231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Functional dyspepsia (FD) is the most common clinical gastrointestinal disease, with complex and prolonged clinical symptoms. The prevalence of FD is increasing year by year, seriously affecting the quality of life of patients. The main causes of FD are related to abnormal gastrointestinal dynamics, increased visceral sensitivity, Helicobacter pylori (HP) infection, intestinal flora disturbance and psychological factors. A review of the relevant literature reveals that the mechanisms of traditional Chinese medicine (TCM) in the treatment of FD mainly involve the following pathways:5-HT signal pathway, AMPK signal pathway,C-kit signal pathway, CRF signal pathway, PERK signal pathway,NF-κB signal pathway. Based on a holistic concept, TCM promotes gastrointestinal motility, regulates visceral sensitivity and alleviates gastrointestinal inflammation through multiple signal pathways, reflecting the advantages of multi-level, multi-pathway and multi-targeted treatment of FD.
Collapse
Affiliation(s)
- Yujiao Song
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Yujiao Song, ; Defei Yin, ; Zhenyi Zhang, ; Lili Chi,
| | - Defei Yin
- Digestive System Department II, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Yujiao Song, ; Defei Yin, ; Zhenyi Zhang, ; Lili Chi,
| | - Zhenyi Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Yujiao Song, ; Defei Yin, ; Zhenyi Zhang, ; Lili Chi,
| | - Lili Chi
- Digestive System Department II, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Yujiao Song, ; Defei Yin, ; Zhenyi Zhang, ; Lili Chi,
| |
Collapse
|
7
|
Elton AC, Cedarstrom V, Quraishi A, Wuertz B, Murray K, Markowski TW, Seabloom D, Ondrey FG. Metabolic and Metabolomic Effects of Metformin in Murine Model of Pulmonary Adenoma Formation. Nutr Cancer 2023; 75:1014-1027. [PMID: 36688306 DOI: 10.1080/01635581.2023.2165692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epidemiologic studies of diabetic patients treated with metformin identified significantly lower incidences of cancer. From this, there is growing interest in the use of metformin to treat and prevent cancer. Studies have investigated chemopreventive mechanisms including alterations in calorie intake, cancer metabolism, and cell signaling. Repurposing the drug is challenging due to its metabolic effects and non-uniform effects on different types of cancer. In our previously published studies, we observed that benzo[a]pyrene treated mice receiving metformin significantly reduced lung adenomas; however, mice had reduced weight gain. In this study, we compared chemoprevention diets with and without metformin to evaluate the effects of diet vs. effects of metformin. We also performed tandem mass spectrometry on mouse serum to assess metabolomic alterations associated with metformin treatment. In metformin cohorts, the rate of weight gain was reduced, but weights did not vary between diets. There was no weight difference between diets without metformin. Interestingly, caloric intake was increased in metformin treated mice. Metabolomic analysis revealed metabolite alterations consistent with metformin treatment. Based on these results, we conclude that previous reductions in lung adenomas may have been occurred from anticancer effects of metformin rather than a potentially toxic effect such as calorie restriction.
Collapse
Affiliation(s)
- Andrew C Elton
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vannesa Cedarstrom
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Arman Quraishi
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Beverly Wuertz
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin Murray
- Center for Mass Spectrometry & Proteomics, Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd W Markowski
- Center for Mass Spectrometry & Proteomics, Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Donna Seabloom
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Frank G Ondrey
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Jin BY, Kim HJ, Oh MJ, Ha NH, Jeong YT, Choi SH, Lee JS, Kim NH, Kim DH. Metformin acts as a dual glucose regulator in mouse brain. Front Pharmacol 2023; 14:1108660. [PMID: 37153803 PMCID: PMC10157063 DOI: 10.3389/fphar.2023.1108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Aims: Metformin improves glucose regulation through various mechanisms in the periphery. Our previous study revealed that oral intake of metformin activates several brain regions, including the hypothalamus, and directly activates hypothalamic S6 kinase in mice. In this study, we aimed to identify the direct effects of metformin on glucose regulation in the brain. Materials and methods: We investigated the role of metformin in peripheral glucose regulation by directly administering metformin intracerebroventricularly in mice. The effect of centrally administered metformin (central metformin) on peripheral glucose regulation was evaluated by oral or intraperitoneal glucose, insulin, and pyruvate tolerance tests. Hepatic gluconeogenesis and gastric emptying were assessed to elucidate the underlying mechanisms. Liver-specific and systemic sympathetic denervation were performed. Results: Central metformin improved the glycemic response to oral glucose load in mice compared to that in the control group, and worsened the response to intraperitoneal glucose load, indicating its dual role in peripheral glucose regulation. It lowered the ability of insulin to decrease serum glucose levels and worsened the glycemic response to pyruvate load relative to the control group. Furthermore, it increased the expression of hepatic G6pc and decreased the phosphorylation of STAT3, suggesting that central metformin increased hepatic glucose production. The effect was mediated by sympathetic nervous system activation. In contrast, it induced a significant delay in gastric emptying in mice, suggesting its potent role in suppressing intestinal glucose absorption. Conclusion: Central metformin improves glucose tolerance by delaying gastric emptying through the brain-gut axis, but at the same time worsens it by increasing hepatic glucose production via the brain-liver axis. However, with its ordinary intake, central metformin may effectively enhance its glucose-lowering effect through the brain-gut axis, which could surpass its effect on glucose regulation via the brain-liver axis.
Collapse
Affiliation(s)
- Bo-Yeong Jin
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun-Ju Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Mi-Jeong Oh
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Na-Hee Ha
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- *Correspondence: Dong-Hoon Kim,
| |
Collapse
|
9
|
Ferreira V, Folgueira C, Guillén M, Zubiaur P, Navares M, Sarsenbayeva A, López-Larrubia P, Eriksson JW, Pereira MJ, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight. Metabolism 2022; 137:155335. [PMID: 36272468 DOI: 10.1016/j.metabol.2022.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| |
Collapse
|
10
|
Ghusn W, Hurtado MD, Acosta A. Weight-centric treatment of type 2 diabetes mellitus. OBESITY PILLARS 2022; 4:100045. [PMID: 37990663 PMCID: PMC10662009 DOI: 10.1016/j.obpill.2022.100045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2023]
Abstract
Background Chronic non-communicable diseases (CNCD) represent a major cause of morbidity and mortality. Type 2 diabetes mellitus (T2DM) is one of the most prevalent CNCD that is associated with a significant medical and economic burden. One of the main modifiable risk factors of T2DM is obesity. Many medications used for T2DM can lead to weight gain, worsening one of the root causes of this disease. Methods In this clinical review, we study the effect of medications for T2DM on body weight. We used MEDLINE, Google scholar, PubMed, Scopus, and Embase databases to search for relevant studies between 1 January 1950 to 20 September 2022 in English language. Here, we review the most prescribed medications for T2DM and summarize their effect on patients' body weight. We will also present an expert opinion on a recommended weight-centric approach to treat T2DM. Results Multiple T2DM medications have been associated with weight gain. Insulin, sulfonylureas, thiazolidinediones and meglitinides may increase body weight. However, biguanides (e.g., metformin), glucagon-like peptide-1 agonists (e.g., semaglutide, liraglutide, tirzepatide), sodium-glucose cotransporter 2 inhibitors, and amylin analogs (e.g., pramlintide) are associated with significant weight loss. Dipeptidyl peptidase-4 inhibitors are considered weight neutral medications. Experts in the fields of endocrinology and obesity recommend utilizing a weight-centric approach when treating T2DM. Conclusion Considering the high prevalence and debilitating complication of T2DM, it is of utmost importance to shift from a weight gain approach (i.e., insulin, sulfonylureas) into a weight loss/neutral one (i.e., GLP-1 agonists, SGLT-2 inhibitors, metformin).
Collapse
Affiliation(s)
- Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MNMayo Clinic, Rochester, MN, USA
| | - Maria Daniela Hurtado
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MNMayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Tarry-Adkins JL, Grant ID, Ozanne SE, Reynolds RM, Aiken CE. Efficacy and Side Effect Profile of Different Formulations of Metformin: A Systematic Review and Meta-Analysis. Diabetes Ther 2021; 12:1901-1914. [PMID: 34075573 PMCID: PMC8266931 DOI: 10.1007/s13300-021-01058-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Metformin is among the most frequently prescribed drugs worldwide for a variety of indications. Although metformin has several important advantages, for example being easy to store and administer, it is associated with a high incidence of gastrointestinal side effects. Slower-release formulations of metformin may reduce the incidence of side effects while maintaining efficacy; however, there is a lack of systematic evidence available to guide head-to-head comparisons between different metformin formulations. METHODS PubMed, Web of Science, OVID EMBASE, MEDLINE, The Cochrane database and Clinicaltrials.gov were systematically searched (from inception to 25 January 2021). Trials that randomized adult participants to extended-release formulation of metformin (met-XR), delayed-release (met-DR) or immediate-release metformin (met-IR) were included. Two reviewers independently assessed articles for eligibility and risk-of-bias, with conflicts resolved by a third reviewer. Outcome measures were change in fasting plasma glucose (FPG), glycated haemoglobin (HbA1c), body weight, BMI, lipid profile and side effects. Meta-analyses were conducted using random-effects models. RESULTS Fifteen studies (n = 3765) met eligibility criteria. There was no significant difference between the efficacy of met-IR, met-XR or met-DR in changing FPG (p = 0.93). A non-significant reduction in mean body weight was observed in individuals randomized to met-XR vs. met-IR (- 1.03 kg, 95% CI - 2.12 to 0.05, p = 0.06). Individuals randomized to met-XR vs. met-IR had lower low-density lipoprotein (LDL) cholesterol levels (- 5.73 mg/dl, 95% CI - 7.91 to - 3.56, p < 0.00001). Gastrointestinal (GI) side effects were markedly reduced in patients randomised to met-DR vs. met-IR (OR 0.45, 95% CI 0.26-0.80, p = 0.006). CONCLUSION Our results demonstrate equal efficacy of longer-acting formulations (met-XR, met-DR) versus immediate-release metformin formulations in terms of glycaemic control. There were insufficient studies available to compare the efficacy of different metformin formulations outside of diabetes care. However met-XR was associated with reduced serum LDL cholesterol concentrations, while met-DR was strongly associated with reduced GI side effects, which could improve drug compliance.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0SW, UK.
| | - Imogen D Grant
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0SW, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Rebecca M Reynolds
- Centre for Cardiovascular Science, Queens Medical Research Institute, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Catherine E Aiken
- Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0SW, UK
| |
Collapse
|
12
|
Efficacy and safety of the metformin-mazindol anorectic combination in rat. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:279-291. [PMID: 33151165 DOI: 10.2478/acph-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2020] [Indexed: 01/19/2023]
Abstract
The current study investigates the anorectic interaction and safety of the mazindol-metformin combination in rats. Isobologram and interaction index were used to determine anorectic interaction between mazindol and metformin in the sweetened milk model. The safety profile of the mazindol-metformin combination was determined by measuring anxiety, blood pressure, hematic biometry and blood chemistry. An acute dose of mazindol and metformin administered per os, individually or as a mixture, has reduced the milk consumption in rats in a dose-dependent manner. Theoretical effective dose 40 (ED40t) did not differ from the experimental effective dose 40 (ED40e) obtained with the mazindol-metformin mixture in the anorexia experiments, by Student's t-test. In addition, the interaction index confirmed the additive anorectic effect between both drugs. A single oral dose of ED40e mazindol-metformin mixture induced anxiolysis in the elevated plus-maze test. Moreover, oral administration of mazindol-metformin combination for 3 months significantly decreased glycemia, but not blood pressure nor other parameters of hematic biometry and blood chemistry. Results suggest that mazindol-metformin combination exerts an additive anorectic effect, as well as anxiolytic and hypoglycemic properties. Mazindol-metformin combination might be useful in obese patients with anxiety disorders or diabetes risk factors.
Collapse
|
13
|
p-Coumaric Acid Enhances Hypothalamic Leptin Signaling and Glucose Homeostasis in Mice via Differential Effects on AMPK Activation. Int J Mol Sci 2021; 22:ijms22031431. [PMID: 33572687 PMCID: PMC7867021 DOI: 10.3390/ijms22031431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
AMP-activated protein kinase (AMPK) plays a crucial role in the regulation of energy homeostasis in both peripheral metabolic organs and the central nervous system. Recent studies indicated that p-Coumaric acid (CA), a hydroxycinnamic phenolic acid, potentially activated the peripheral AMPK pathway to exert beneficial effects on glucose metabolism in vitro. However, CA’s actions on central AMPK activity and whole-body glucose homeostasis have not yet been investigated. Here, we reported that CA exhibited different effects on peripheral and central AMPK activation both in vitro and in vivo. Specifically, while CA treatment promoted hepatic AMPK activation, it showed an inhibitory effect on hypothalamic AMPK activity possibly by activating the S6 kinase. Furthermore, CA treatment enhanced hypothalamic leptin sensitivity, resulting in increased proopiomelanocortin (POMC) expression, decreased agouti-related peptide (AgRP) expression, and reduced daily food intake. Overall, CA treatment improved blood glucose control, glucose tolerance, and insulin sensitivity. Together, these results suggested that CA treatment enhanced hypothalamic leptin signaling and whole-body glucose homeostasis, possibly via its differential effects on AMPK activation.
Collapse
|
14
|
Metformin and Systemic Metabolism. Trends Pharmacol Sci 2020; 41:868-881. [PMID: 32994049 DOI: 10.1016/j.tips.2020.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Metformin can improve patients' hyperglycemia through significant suppression of hepatic glucose production. However, up to 300 times higher concentrations of metformin accumulate in the intestine than in the circulation, where it alters nutrient metabolism in intestinal epithelial cells and microbiome, leading to increased lactate production. Hepatocytes use lactate to make glucose at the cost of energy expenditure, creating a futile intestine-liver cycle. Furthermore, metformin reduces blood lipopolysaccharides and its initiated low-grade inflammation and increased oxidative phosphorylation in liver and adipose tissues. These metformin effects result in the improvement of insulin sensitivity and glucose utilization in extrahepatic tissues. In this review, I discuss the current understanding of the impact of metformin on systemic metabolism and its molecular mechanisms of action in various tissues.
Collapse
|
15
|
Shu H, Wang M, Song M, Sun Y, Shen X, Zhang J, Jin X. Acute Nicotine Treatment Alleviates LPS-Induced Impairment of Fear Memory Reconsolidation Through AMPK Activation and CRTC1 Upregulation in Hippocampus. Int J Neuropsychopharmacol 2020; 23:687-699. [PMID: 32516360 PMCID: PMC7727489 DOI: 10.1093/ijnp/pyaa043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fear memory is a fundamental capability for animals and humans to survive. Its impairment results in the disability to avoid danger. When memory is reactivated, a reconsolidation process, which can be disrupted by various stimuli, including inflammation, is required to become permanent. Nicotine has been shown to improve cognitive deficits induced by inflammation and other stimuli. Therefore, in the present study, we investigated the effect of nicotine on lipopolysaccharide (LPS)-induced impairment of fear memory reconsolidation and the underlying mechanism. METHODS Step-through inhibitory avoidance task was recruited to study fear memory of rat, i.p. LPS (0.5 mg/kg) treatment was used to induce inflammation, and western blot and immunostaining were applied to detect protein expression and distribution in medial prefrontal cortex and hippocampus. RESULTS Our data showed that LPS induced fear memory reconsolidation impairment without affecting retrieval. In addition, LPS significantly increased inflammation factors tumor necrosis factor-α and interleukin-1 beta and decreased CREB-regulated transcription coactivator 1 (CRTC1) expression and adenosine monophosphate-activated protein kinase (AMPK) activation in hippocampus. More importantly, LPS significantly decreased CRTC1 expression and AMPK activation in neurons by activating microglia cells. Of note, either nicotine treatment or activation of AMPK by intracerebroventricular infusion of metformin reduced LPS-induced impairment of fear memory reconsolidation and ameliorated inflammation factor tumor necrosis factor-α and interleukin-1 beta as well as the expression of CRTC1. CONCLUSIONS In conclusion, our results showed that acute nicotine treatment alleviates LPS-induced impairment of fear memory reconsolidation through activation of AMPK and upregulation of CRTC1 in hippocampus.
Collapse
Affiliation(s)
- Hui Shu
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China,Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, China
| | - Mengwei Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Song
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianzhi Shen
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- School of Medicine, Ningbo University, Ningbo, China,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, China,Correspondence: Xinchun Jin, PhD, School of Basic Medical Sciences, Capital Medical University, Beijing, 100054, China () or Junfang Zhang, PhD, Ningbo University, Ningbo, 315211, China ()
| | - Xinchun Jin
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China,Correspondence: Xinchun Jin, PhD, School of Basic Medical Sciences, Capital Medical University, Beijing, 100054, China () or Junfang Zhang, PhD, Ningbo University, Ningbo, 315211, China ()
| |
Collapse
|
16
|
Biondo LA, Teixeira AAS, de O. S. Ferreira KC, Neto JCR. Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin. Curr Pharm Des 2020; 26:932-945. [PMID: 31969093 DOI: 10.2174/1381612826666200122124116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Background:
Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases
have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore,
these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that
modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are
common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in
lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular
targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts
through the AMPK pathway.
Objective:
The aim of this study was to review TZD and metformin as pharmacological treatments for insulin
resistance associated with obesity and cancer.
Conclusions:
Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in
hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of
reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has
similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side
effects caused by chemotherapy.
Collapse
Affiliation(s)
- Luana A. Biondo
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A. S. Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karen C. de O. S. Ferreira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose C. R. Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Singh R, Bansal Y, Sodhi RK, Singh DP, Bishnoi M, Kondepudi KK, Medhi B, Kuhad A. Berberine attenuated olanzapine-induced metabolic alterations in mice: Targeting transient receptor potential vanilloid type 1 and 3 channels. Life Sci 2020; 247:117442. [PMID: 32081663 DOI: 10.1016/j.lfs.2020.117442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) channels are emerging therapeutic targets for metabolic disorders. Berberine, which is a modulator of TRPV1, has proven antiobesity and antidiabetic potentials. The present study was aimed to investigate the protective effects of berberine in olanzapine-induced alterations in hypothalamic appetite control, inflammation and metabolic aberrations in mice targeting TRPV1 channels. Female BALB/c mice (18-23 g) were treated with olanzapine (6 mg/kg, p.o.) for six weeks to induce metabolic alterations, while berberine (100 and 200 mg/kg, p.o.) and metformin (100 mg/kg, p.o) were used as test and standard interventions respectively. Weekly assessment of feed-water intake, body temperature and body weight was done, while locomotion was measured at the end of week 1 and 6. Serum glucose and lipid profile were assessed by biochemical methods, while other serum biomarkers were assessed by ELISA. qPCR was used to quantify the mRNA expression in the hypothalamus. Olanzapine treatment significantly increased the feed intake, weight gain, adiposity index, while reduced body temperature and locomotor activity which were reversed by berberine treatment. Berberine treatment reduced serum ghrelin and leptin levels as well decrease in hypothalamic mRNA expression of orexigenic neuropeptides, inflammatory markers and ghrelin receptor in olanzapine-treated mice. Olanzapine treatment increased expression of TRPV1/TRPV3 in the hypothalamus which was significantly decreased by berberine treatment. Our results suggest that berberine, by TRPV1/TRPV3 modulation, attenuated the olanzapine-induced metabolic alterations in mice. Hence berberine supplementation in psychiatric patients could be a preventive approach to reduce the metabolic adverse effects of antipsychotics.
Collapse
Affiliation(s)
- Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dhirendra Pratap Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India; Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; ICMR-National Institute of Occupational Health (NIOH), Ahmedabad 380016, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Metformin has multiple benefits for health beyond its anti-hyperglycemic properties. The purpose of this manuscript is to review the mechanisms that underlie metformin's effects on obesity. RECENT FINDINGS Metformin is a first-line therapy for type 2 diabetes. Large cohort studies have shown weight loss benefits associated with metformin therapy. Metabolic consequences were traditionally thought to underlie this effect, including reduction in hepatic gluconeogenesis and reduction in insulin production. Emerging evidence suggests that metformin-associated weight loss is due to modulation of hypothalamic appetite regulatory centers, alteration in the gut microbiome, and reversal of consequences of aging. Metformin is also being explored in the management of obesity's sequelae such as hepatic steatosis, obstructive sleep apnea, and osteoarthritis. Multiple mechanisms underlie the weight loss-inducing and health-promoting effects of metformin. Further exploration of these pathways may be important in identifying new pharmacologic targets for obesity and other aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Armen Yerevanian
- Department of Medicine, Diabetes Unit, Endocrine Division, and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6224, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit, Endocrine Division, and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6224, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
19
|
Shpakov AO, Derkach KV. Molecular Mechanisms of the Effects of Metformin on the Functional Activity of Brain Neurons. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11055-018-0657-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Derkach KV, Sukhov IB, Bondareva VM, Shpakov AO. Effect of Metformin on Metabolic Parameters and Hypothalamic Signaling Systems in Rats with Obesity Induced by a High-Carbohydrate and High-Fat Diet. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057018030037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Derkach KV, Zakharova IO, Romanova IV, Zorina II, Mikhrina AL, Shpakov AO. Metabolic parameters and functional state of hypothalamic signaling systems in AY/a mice with genetic predisposition to obesity and the effect of metformin. DOKL BIOCHEM BIOPHYS 2018; 477:377-381. [DOI: 10.1134/s1607672917060096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/22/2022]
|
22
|
Azad BB, Rota V, Yu L, Mcgirr R, Amant AHS, Lee TY, Dhanvantari S, Luyt LG. Synthesis and Evaluation of Optical and PET GLP-1 Peptide Analogues for GLP-1R Imaging. Mol Imaging 2017. [DOI: 10.2310/7290.2014.00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Babak Behnam Azad
- Departments of Chemistry, Medical Biophysics, Medicine, Pathology, Medical Imaging, Oncology, The University of Western Ontario; Lawson Health Research Institute; London Regional Cancer Program, London, ON
| | - Vanessa Rota
- Departments of Chemistry, Medical Biophysics, Medicine, Pathology, Medical Imaging, Oncology, The University of Western Ontario; Lawson Health Research Institute; London Regional Cancer Program, London, ON
| | - Lihai Yu
- Departments of Chemistry, Medical Biophysics, Medicine, Pathology, Medical Imaging, Oncology, The University of Western Ontario; Lawson Health Research Institute; London Regional Cancer Program, London, ON
| | - Rebecca Mcgirr
- Departments of Chemistry, Medical Biophysics, Medicine, Pathology, Medical Imaging, Oncology, The University of Western Ontario; Lawson Health Research Institute; London Regional Cancer Program, London, ON
| | - André H. St. Amant
- Departments of Chemistry, Medical Biophysics, Medicine, Pathology, Medical Imaging, Oncology, The University of Western Ontario; Lawson Health Research Institute; London Regional Cancer Program, London, ON
| | - Ting-Yim Lee
- Departments of Chemistry, Medical Biophysics, Medicine, Pathology, Medical Imaging, Oncology, The University of Western Ontario; Lawson Health Research Institute; London Regional Cancer Program, London, ON
| | - Savita Dhanvantari
- Departments of Chemistry, Medical Biophysics, Medicine, Pathology, Medical Imaging, Oncology, The University of Western Ontario; Lawson Health Research Institute; London Regional Cancer Program, London, ON
| | - Leonard G. Luyt
- Departments of Chemistry, Medical Biophysics, Medicine, Pathology, Medical Imaging, Oncology, The University of Western Ontario; Lawson Health Research Institute; London Regional Cancer Program, London, ON
| |
Collapse
|
23
|
Molecular mechanisms of appetite and obesity: a role for brain AMPK. Clin Sci (Lond) 2017; 130:1697-709. [PMID: 27555613 DOI: 10.1042/cs20160048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/07/2016] [Indexed: 01/15/2023]
Abstract
Feeding behaviour and energy storage are both crucial aspects of survival. Thus, it is of fundamental importance to understand the molecular mechanisms regulating these basic processes. The AMP-activated protein kinase (AMPK) has been revealed as one of the key molecules modulating energy homoeostasis. Indeed, AMPK appears to be essential for translating nutritional and energy requirements into generation of an adequate neuronal response, particularly in two areas of the brain, the hypothalamus and the hindbrain. Failure of this physiological response can lead to energy imbalance, ultimately with extreme consequences, such as leanness or obesity. Here, we will review the data that put brain AMPK in the spotlight as a regulator of appetite.
Collapse
|
24
|
Crago J, Bui C, Grewal S, Schlenk D. Age-dependent effects in fathead minnows from the anti-diabetic drug metformin. Gen Comp Endocrinol 2016; 232:185-90. [PMID: 26752244 DOI: 10.1016/j.ygcen.2015.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 12/08/2015] [Accepted: 12/31/2015] [Indexed: 12/20/2022]
Abstract
The anti-diabetic drug metformin is thought to be the pharmaceutical most deposited into the aquatic environment by mass at up to 6tons per year from individual WWTPs in urban areas. Recent studies have shown that exposure to 40ug/L of metformin increased the relative expression of the egg yolk precursor protein vitellogenin in adult male fathead minnows (Pimephales promelas) (FHM). For this study, the expression of several other genes involved in estrogen biosynthesis, clearance and downstream effects were assessed in FHM after treatment to three concentrations of metformin, to better understand the estrogenic effects of metformin on FHM. In contrast to the previous study, although upward trends were observed, metformin failed to significantly alter the expression of VTG, ERα, GnRH3, and CYP3A126 in adult male FHM. However, a concentration-dependent response to metformin was observed in younger 80-90day juvenile FHM. A 17.7-, 22-, and 22-fold increase in the relative expression of VTG mRNA in juvenile FHM exposed to 1, 10, and 100μg/L as compared to the control was observed. There was also a 3.3-, 4.7-, and 5.5-fold increase in GnRH3 in juvenile FHM exposed to 1, 10, and 100μg/L as compared to the control. Similarly, a 14-, 16-, and 24-fold increase in the relative expression of CYP3A126 mRNA was measured in juvenile FHM exposed to 1, 10 and 100μg/L metformin as compared to the control. These results indicate that juvenile FHM were more susceptible to the estrogenic effects of metformin during a 7-d exposure than older, sexually mature male FHM.
Collapse
Affiliation(s)
- Jordan Crago
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, Milwaukee, WI 53204, USA.
| | - Cindy Bui
- Department of Environmental Science, University of California-Riverside, Riverside, CA 92521, USA
| | - Sanji Grewal
- Department of Environmental Science, University of California-Riverside, Riverside, CA 92521, USA
| | - Daniel Schlenk
- Department of Environmental Science, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Novelle MG, Ali A, Diéguez C, Bernier M, de Cabo R. Metformin: A Hopeful Promise in Aging Research. Cold Spring Harb Perspect Med 2016; 6:a025932. [PMID: 26931809 DOI: 10.1101/cshperspect.a025932] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Even though the inevitable process of aging by itself cannot be considered a disease, it is directly linked to life span and is the driving force behind all age-related diseases. It is an undisputable fact that age-associated diseases are among the leading causes of death in the world, primarily in industrialized countries. During the last several years, an intensive search of antiaging treatments has led to the discovery of a variety of drugs that promote health span and/or life extension. The biguanide compound metformin is widely used for treating people with type 2 diabetes and appears to show protection against cancer, inflammation, and age-related pathologies. Here, we summarize the recent developments about metformin use in translational aging research and discuss its role as a potential geroprotector.
Collapse
Affiliation(s)
- Marta G Novelle
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland 21224 Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | - Carlos Diéguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland 21224
| |
Collapse
|
26
|
Intracerebroventricular metformin decreases body weight but has pro-oxidant effects and decreases survival. Neurochem Res 2014; 40:514-23. [PMID: 25492133 DOI: 10.1007/s11064-014-1496-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Metformin (Met), which is an insulin-sensitizer, decreases insulin resistance and fasting insulin levels. The precise molecular target of Met is unknown; however, several reports have shown an inhibitory effect on mitochondrial complex I of the electron transport chain (ETC), which is a related site for reactive oxygen species production. In addition to peripheral effects, Met is capable of crossing the blood-brain barrier, thus regulating the central mechanism involved in appetite control. The present study explores the effects of intracerebroventricular (i.c.v.) infusion of Met on ROS production on brain, insulin sensitivity and metabolic and oxidative stress outcomes in CF1 mice. Metformin (Met 50 and 100 µg) was injected i.c.v. in mice daily for 7 days; the brain mitochondrial H2O2 production, food intake, body weight and fat pads were evaluated. The basal production of H2O2 of isolated mitochondria from the hippocampus and hypothalamus was significantly increased by Met (100 µg). There was increased peripheral sensitivity to insulin (Met 100 µg) and glucose tolerance tests (Met 50 and 100 µg). Moreover, Met decreased food intake, body weight, body temperature, fat pads and survival rates. Additionally, Met (1, 4 or 10 mM) decreased mitochondrial viability and increased the production of H2O2 in neuronal cell cultures. In summary, our data indicate that a high dose of Met injected directly into the brain has remarkable neurotoxic effects, as evidenced by hypothermia, hypoglycemia, disrupted mitochondrial ETC flux and decreased survival rate.
Collapse
|
27
|
Rouquet T, Clément P, Gaigé S, Tardivel C, Roux J, Dallaporta M, Bariohay B, Troadec JD, Lebrun B. Acute oral metformin enhances satiation and activates brainstem nesfatinergic neurons. Obesity (Silver Spring) 2014; 22:2552-62. [PMID: 25236366 DOI: 10.1002/oby.20902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/18/2014] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The study was designed to determine metformin effects on meal pattern, gastric emptying, energy expenditure, and to identify metformin-sensitive neurons and their phenotype. METHODS This study was performed on C57BL/6J and obese/diabetic (db/db) mice. Metformin (300 mg/kg) was administered by oral gavage. Food intake, meal pattern, oxygen consumption (VO2 ), and carbon dioxide production (VCO2 ) were obtained using an Oxylet Physiocage System. Gastric emptying assay and real-time RT-PCR from dorsal vagal complex extracts were also performed. C-Fos expression was used as a marker of neuronal activation. Phenotypic characterization of activated neurons was performed using either proopiomelanocortin (POMC)-Tau-Topaz GFP transgenic mice or NUCB2/nesfatin-1 and tyrosine hydroxylase (TH) labeling. RESULTS Acute per os metformin treatment slowed down gastric emptying, reduced meal size, but not meal number in a leptin-independent manner, and transiently decreased energy expenditure in a leptin-dependent manner. Metformin specifically activated central circuitry within the brainstem, independently of vagal afferents. Finally, while POMC neurons seemed sparsely activated, we report that a high proportion of the c-Fos positive cells were nesfatinergic neurons, some of which coexpressing TH. CONCLUSIONS Altogether, these results show that metformin modifies satiation by activating brainstem circuitry and suggest that NUCB2/nesfatin-1 could be involved in this metformin effect.
Collapse
Affiliation(s)
- Thaïs Rouquet
- EA 4674, Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif, FST St Jérôme, Aix-Marseille Université, Marseille, France; Biomeostasis CRO, FST St Jérôme, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.
Collapse
Affiliation(s)
- Christopher J Lynch
- Cellular and Molecular Physiology Department, The Pennsylvania State University, 500 University Drive, MC-H166, Hershey, PA 17033, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center, and Department of Pediatrics, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Despite the known glucose-lowering effects of metformin, more recent clinical interest lies in its potential as a weight loss drug. Herein, we discuss the potential mechanisms by which metformin decreases appetite and opposes unfavorable fat storage in peripheral tissues. RECENT FINDINGS Many individuals struggle to maintain clinically relevant weight loss from lifestyle and bariatric surgery interventions. Long-term follow-up from the Diabetes Prevention Program demonstrates that metformin produces durable weight loss, and decreased food intake by metformin is the primary weight loss mechanism. Although the effect of metformin on appetite is likely to be multifactorial, changes in hypothalamic physiology, including leptin and insulin sensitivity, have been documented. In addition, novel work in obesity highlights the gastrointestinal physiology and circadian rhythm changes by metformin as not only affecting food intake, but also the regulation of fat oxidation and storage in liver, skeletal muscle, and adipose tissue. SUMMARY Metformin induces modest weight loss in overweight and obese individuals at risk for diabetes. A more detailed understanding of how metformin induces weight loss will likely lead to optimal co-prescription of lifestyle modification with pharmacology for the treatment of obesity independent of diabetes.
Collapse
Affiliation(s)
- Steven K Malin
- aDepartment of Pathobiology, Lerner Research Institute, Cleveland Clinic bDepartment of Endocrinology, Diabetes and Metabolism, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
30
|
Duan Y, Zhang R, Zhang M, Sun L, Dong S, Wang G, Zhang J, Zhao Z. Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus. Neural Regen Res 2014; 8:2379-88. [PMID: 25206548 PMCID: PMC4146045 DOI: 10.3969/j.issn.1673-5374.2013.25.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/06/2013] [Indexed: 12/25/2022] Open
Abstract
Metformin may reduce food intake and body weight, but the anorexigenic effects of metformin are still poorly understood. In this study, Sprague-Dawley rats were administered a single intracere-broventricular dose of metformin and compound C, in a broader attempt to investigate the regula-tory effects of metformin on food intake and to explore the possible mechanism. Results showed that central administration of metformin significantly reduced food intake and body weight gain, par-ticularly after 4 hours. A reduction of neuropeptide Y expression and induction of AMP-activated protein kinase phosphorylation in the hypothalamus were also observed 4 hours after metformin administration, which could be reversed by compound C, a commonly-used antagonist of AMP-activated protein kinase. Furthermore, metformin also improved lipid metabolism by reducing plasma low-density lipoprotein. Our findings suggest that under normal physiological conditions, central regulation of appetite by metformin is related to a decrease in neuropeptide Y gene expres-sion, and that the activation of AMP-activated protein kinase may simply be a response to the anorexigenic effect of metformin.
Collapse
Affiliation(s)
- Yale Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Rui Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Lijuan Sun
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Suzhen Dong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Gang Wang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| |
Collapse
|
31
|
Sivertsen B, Holliday N, Madsen AN, Holst B. Functionally biased signalling properties of 7TM receptors - opportunities for drug development for the ghrelin receptor. Br J Pharmacol 2014; 170:1349-62. [PMID: 24032557 DOI: 10.1111/bph.12361] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/17/2013] [Accepted: 08/06/2013] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several different signalling pathways including Gαq , Gαi/o , Gα12/13 and arrestin recruitment. These multiple signalling pathways allow for functionally biased signalling, where one signalling pathway may be favoured over another either by selective ligands or through mutations in the receptor. In the present review, we have described how ligands and mutations in the 7TM receptor may bias the receptors to favour either one G-protein over another or to promote G-protein independent signalling pathways rather than G-protein-dependent pathways. For the ghrelin receptor, both agonist and inverse agonists have been demonstrated to signal more strongly through the Gαq -coupled pathway than the Gα12/13 -coupled pathway. Similarly a ligand that promotes Gαq coupling over Gαi coupling has been described and it has been suggested that several different active conformations of the receptor may exist dependent on the properties of the agonist. Importantly, ligands with such biased signalling properties may allow the development of drugs that selectively modulate only the therapeutically relevant physiological functions, thereby decreasing the risk of side effects. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- B Sivertsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
32
|
Volarevic V, Misirkic M, Vucicevic L, Paunovic V, Simovic Markovic B, Stojanovic M, Milovanovic M, Jakovljevic V, Micic D, Arsenijevic N, Trajkovic V, Lukic ML. Metformin aggravates immune-mediated liver injury in mice. Arch Toxicol 2014; 89:437-50. [PMID: 24770553 DOI: 10.1007/s00204-014-1263-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/15/2014] [Indexed: 12/16/2022]
Abstract
Hepatotoxicity of the antidiabetic drug metformin has been reported, but the underlying mechanisms remain unclear. We here investigated the effect of metformin in immune-mediated liver damage. While not hepatotoxic alone, metformin (200 mg/kg) aggravated concanavalin A (Con A, 12 mg/kg)-induced hepatitis, an experimental model of T cell-mediated liver injury, in both relatively resistant BALB/c and highly susceptible C57Bl/6 mice. Metformin + Con A-treated mice had elevated serum levels of pro-inflammatory cytokines TNF-α and IFN-γ, accompanied by a massive mononuclear cell infiltration in the liver. This was associated with the higher numbers of CD4(+) T cells producing TNF-α, IFN-γ and IL-17, CD4(+) T cells expressing chemokine receptor CXCR3 and activation marker CD27, CD4(+)CD62L(-)CCR7(-) and CD8(+)CD62L(-)CCR7(-) effector memory cells, IFN-γ producing NK cells, IL-4 and IL-17 producing NKT cells and IL-12 producing macrophages/dendritic cells. The percentage of CD4(+)CXCR3(+)Tbet(+)IL-10(+) and CD4(+)CD69(+)CD25(-) regulatory T cells was reduced. Metformin stimulated inducible nitric oxide synthase (iNOS) expression in the liver and spleen, and genetic deletion of iNOS attenuated the hepatotoxicity of metformin. Metformin increased the autophagic light chain 3 conversion and mRNA expression of important autophagy-inducing (beclin-1, Atg5 and GABARAP) and pro-apoptotic (p21, p27, Puma, Noxa, Bax, Bad, Bak1, Bim and Apaf1), but not anti-apoptotic molecules (Bcl-xL, survivin and XIAP), which correlated with the apoptotic caspase-3/PARP cleavage in the liver. The autophagy inhibitor chloroquine (20 mg/kg) prevented liver injury and apoptotic changes induced by metformin. Therefore, metformin aggravates immune-mediated hepatitis by promoting autophagy and activation of immune cells, affecting effector, as well as liver-specific regulatory T cells and iNOS expression.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34 000, Kragujevac, Serbia,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The growth hormone secretagogue receptor: its intracellular signaling and regulation. Int J Mol Sci 2014; 15:4837-55. [PMID: 24651458 PMCID: PMC3975427 DOI: 10.3390/ijms15034837] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 01/29/2023] Open
Abstract
The growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed.
Collapse
|
34
|
Abstract
Metformin has been the mainstay of therapy for diabetes mellitus for many years; however, the mechanistic aspects of metformin action remained ill-defined. Recent advances revealed that this drug, in addition to its glucose-lowering action, might be promising for specifically targeting metabolic differences between normal and abnormal metabolic signalling. The knowledge gained from dissecting the principal mechanisms by which metformin works can help us to develop novel treatments. The centre of metformin's mechanism of action is the alteration of the energy metabolism of the cell. Metformin exerts its prevailing, glucose-lowering effect by inhibiting hepatic gluconeogenesis and opposing the action of glucagon. The inhibition of mitochondrial complex I results in defective cAMP and protein kinase A signalling in response to glucagon. Stimulation of 5'-AMP-activated protein kinase, although dispensable for the glucose-lowering effect of metformin, confers insulin sensitivity, mainly by modulating lipid metabolism. Metformin might influence tumourigenesis, both indirectly, through the systemic reduction of insulin levels, and directly, via the induction of energetic stress; however, these effects require further investigation. Here, we discuss the updated understanding of the antigluconeogenic action of metformin in the liver and the implications of the discoveries of metformin targets for the treatment of diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Ida Pernicova
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| |
Collapse
|
35
|
Tajima K, Nakamura A, Shirakawa J, Togashi Y, Orime K, Sato K, Inoue H, Kaji M, Sakamoto E, Ito Y, Aoki K, Nagashima Y, Atsumi T, Terauchi Y. Metformin prevents liver tumorigenesis induced by high-fat diet in C57Bl/6 mice. Am J Physiol Endocrinol Metab 2013; 305:E987-98. [PMID: 23964070 DOI: 10.1152/ajpendo.00133.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is increasing with the growing epidemics of obesity and diabetes. NAFLD encompasses a clinicopathologic spectrum of disease ranging from isolated hepatic steatosis to NASH, which is a more aggressive form of fatty liver disease, to cirrhosis and, finally, hepatocellular carcinoma (HCC). The exact mechanism behind the development of HCC in NASH remains unclear; however, it has been established that hepatic steatosis is the important risk factor in the development of HCC. Metformin has recently drawn attention because of its potential antitumor effect. Here, we investigated the effects of metformin on high-fat diet (HFD)-induced liver tumorigenesis, using a mouse model of NASH and liver tumor. Metformin prevented long-term HFD-induced liver tumorigenesis in C57Bl/6 mice. Of note, metformin failed to protect against liver tumorigenesis in mice that had already begun to develop NAFLD. Metformin improved short-term HFD-induced fat accumulation in the liver, associated with the suppression of adipose tissue inflammation. Collectively, these results suggest that metformin may prevent liver tumorigenesis via suppression of liver fat accumulation in the early stage, before the onset of NAFLD, which seems to be associated with a delay in the development of inflammation of the adipose tissue.
Collapse
Affiliation(s)
- K Tajima
- Department of Endocrinology and Metabolism
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim HJ, Park EY, Oh MJ, Park SS, Shin KH, Choi SH, Chun BG, Kim DH. Central administration of metformin into the third ventricle of C57BL/6 mice decreases meal size and number and activates hypothalamic S6 kinase. Am J Physiol Regul Integr Comp Physiol 2013; 305:R499-505. [DOI: 10.1152/ajpregu.00099.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Administration of metformin is known to reduce both body weight and food intake. Although the hypothalamus is recognized as a critical regulator of energy balance and body weight, there is currently no evidence for an effect of metformin in the hypothalamus. Therefore, we sought to determine the central action of metformin on energy balance and body weight, as well as its potential involvement with key hypothalamic energy sensors, including adenosine monophosphate-activated protein kinase (AMPK) and S6 kinase (S6K). We used meal pattern analysis and a conditioned taste aversion (CTA) test and measured energy expenditure in C56BL/6 mice administered metformin (0, 7.5, 15, or 30 μg) into the third ventricle (I3V). Furthermore, we I3V-administered either control or metformin (30 μg) and compared the phosphorylation of AMPK and S6K in the mouse mediobasal hypothalamus. Compared with the control, I3V administration of metformin decreased body weight and food intake in a dose-dependent manner and did not result in CTA. Furthermore, the reduction in food intake induced by I3V administration of metformin was accomplished by decreases in both nocturnal meal size and number. Compared with the control, I3V administration of metformin significantly increased phosphorylation of S6K at Thr389 and AMPK at Ser485/491 in the mediobasal hypothalamus, while AMPK phosphorylation at Thr172 was not significantly altered. Moreover, I3V rapamycin pretreatment restored the metformin-induced anorexia and weight loss. These results suggest that the reduction in food intake induced by the central administration of metformin in the mice may be mediated by activation of S6K pathway.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; and
| | - Eun-Young Park
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; and
| | - Mi-Jeong Oh
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; and
| | - Sung-Soo Park
- Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; and
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; and
| | - Boe-Gwun Chun
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; and
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea; and
| |
Collapse
|
37
|
Vitzel KF, Bikopoulos G, Hung S, Curi R, Ceddia RB. Loss of the anorexic response to systemic 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside administration despite reducing hypothalamic AMP-activated protein kinase phosphorylation in insulin-deficient rats. PLoS One 2013; 8:e71944. [PMID: 23967267 PMCID: PMC3743807 DOI: 10.1371/journal.pone.0071944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period. Blood was collected for circulating leptin measurement and the hypothalami were extracted for the determination of suppressor of cytokine signaling 3 (SOCS3) content, as well as the content and phosphorylation of AMP-kinase (AMPK), acetyl-CoA carboxylase (ACC), and the signal transducer and activator of transcription 3 (STAT3). Rats were thoroughly dissected for adiposity and lean body mass (LBM) determinations. In non-diabetic rats, despite reducing adiposity, AICAR increased (∼1.7-fold) circulating leptin and reduced hypothalamic SOCS3 content and food intake by 67% and 25%, respectively. The anorexic effect of AICAR was lost in diabetic rats, even though hypothalamic AMPK and ACC phosphorylation markedly decreased in these animals. Importantly, hypothalamic SOCS3 and STAT3 levels remained elevated and reduced, respectively, after treatment of insulin-deficient rats with AICAR. Diabetic rats were lethargic and displayed marked losses of fat and LBM. AICAR treatment increased ambulatory activity and whole-body energy expenditure while also attenuating diabetes-induced fat and LBM losses. In conclusion, AICAR did not reverse hyperphagia, but it promoted anti-catabolic effects on skeletal muscle and fat, enhanced spontaneous physical activity, and improved the ability of rats to cope with the diabetes-induced dysfunctional alterations in glucose metabolism and whole-body energy homeostasis.
Collapse
Affiliation(s)
- Kaio F. Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - George Bikopoulos
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Steven Hung
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Rolando B. Ceddia
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
38
|
Choi HJ, Ki KH, Yang JY, Jang BY, Song JA, Baek WY, Kim JH, An JH, Kim SW, Kim SY, Kim JE, Shin CS. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation. PLoS One 2013; 8:e65505. [PMID: 23843943 PMCID: PMC3699588 DOI: 10.1371/journal.pone.0065505] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/25/2013] [Indexed: 12/19/2022] Open
Abstract
Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days). Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed), and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.
Collapse
Affiliation(s)
- Hyung Jin Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Ho Ki
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Bo Young Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ah Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Wook-Young Baek
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun An
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Yeon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|