1
|
Colom-Pellicer M, de Assis LVM, Rodríguez RM, Suárez M, Mulero M, Arola-Arnal A, Oster H, Aragonès G, Calvo E. Grape seed procyanidins modulate PER2 circadian rhythm and lipid metabolism of white adipose tissue explants in a time-dependent manner. Int J Food Sci Nutr 2025:1-13. [PMID: 40300822 DOI: 10.1080/09637486.2025.2494151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025]
Abstract
The consumption of grape seed procyanidin extract (GSPE) may improve metabolic alterations and molecular clock desynchrony in white adipose tissue (WAT), depending on administration timing and metabolic status. To test this hypothesis, inguinal WAT explants from lean and obese PERIOD2::LUCIFERASE (PER2::LUC) circadian reporter mice were treated at the peak or trough of the PER2 luminescence rhythm with metabolites present in the serum of GSPE-administered rats (GSPM). PER2::LUC rhythms of explants from obese animals presented a lower amplitude, longer period and a phase delay. GSPM treatment increased luminescence amplitude and period compared to untreated explants, but only when it was given at the trough of PER2::LUC luminescence. GSPM upregulated lipogenesis and lipolysis genes in explants from lean mice, mostly when given at the luminescence peak. This study provides a valuable platform for testing the effects of natural products ex vivo and warrants further investigation into the chrono-utilisation of plant bioactive compounds.
Collapse
Affiliation(s)
- Marina Colom-Pellicer
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Romina M Rodríguez
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Suárez
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Arola-Arnal
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Lübeck, Germany
| | - Gerard Aragonès
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Enrique Calvo
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Niu B, Gao W, Li F, Pei Z, Wang H, Tian F, Zhao J, Lu W. Enhancing colonic health with encapsulated grape seed anthocyanins: Oral capsule for Colon-targeted delivery. Food Chem 2025; 469:142544. [PMID: 39721444 DOI: 10.1016/j.foodchem.2024.142544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Grape seed anthocyanins (GSA) offer health benefits and protect against diseases, including colitis. Its unpleasant smell and instability prevent widespread application. Antisolvent pretreatment GSA was encapsulated in chitosan-phytic acid 3D gel network. SEM and X-ray diffraction results demonstrate that pretreatment reduces GSA particle size and exhibits amorphous structure. FTIR confirmed they were physically encapsulated and not covalently bound. Its subsequent simulations digestion and fermentation showed only 26.69 % upper digestive tract leakage and altered gut microbiota and metabolites profile. In DSS-induced colitis model, it ameliorated the symptoms, including diarrhea, bloody stools, weight loss, and DAI score. Additionally, it regulates colitis mice pro- and anti-inflammatory cytokines, modifies cecum and colon SCFA profile, improves intestinal barrier, and restores colonic cell redox equilibrium. Collectively, GSA ameliorates experimental colitis via inhibiting TRL4/NF-κB and activating Nrf2 signaling pathway. In conclusion, we propose our GSA capsule can effectively deliver an intact parent form of GSA to the colon and has the potential to be a colonic health strategy.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenyu Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Li
- The Second People's Hospital of Anhui Province, Anhui, Hefei, China; Affiliated Hospital of Anhui Medical College, Anhui, Hefei, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Soltani S, Asoudeh F, Motallaei M, Kolahdouz-Mohammadi R, Forbes SC, Abdollahi S. Whole grapes or grape products on body weight, anthropometrics, and adipokines: systematic review and meta-analysis of randomized controlled trials. Int J Food Sci Nutr 2025; 76:122-133. [PMID: 39800850 DOI: 10.1080/09637486.2024.2449037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 03/15/2025]
Abstract
This meta-analysis aims to compile all randomised controlled trials (RCTs) that examined the effects of grapes or grape products on adult anthropometric measures and serum adipokines. We searched PubMed, Scopus, Google scholar, Web of Science and CENTRAL databases published before January 2022. Random-effects model was used to combine mean differences between intervention and placebo groups. A minimal reduction was revealed for BMI following consumption of grapes/grape products [weighted mean difference (WMD): -0.14 kg]; however, no significant effects were observed on body weight, except for trials conducting in female (n = 3 studies; WMD: -0.68 kg), and those enrolled patients with metabolic syndrome (n = 3 studies; WMD: -0.62 kg). No significant effect was found for waist circumference, body fat, waist to hip ratio, serum level of leptin and adiponectin. Our findings showed that grapes or grape products have no significant anti-obesity effects on body weight, anthropometric measures, or adipokines. However, BMI showed a trivial decrease, which should not be considered given the low quality of the studies.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Asoudeh
- Department of Clinical Nutrition, School of Nuritional Siceinces and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Motallaei
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Feldman F, Koudoufio M, Sané AT, Marcil V, Sauvé MF, Butcher J, Patey N, Martel C, Spahis S, Duan H, Figeys D, Desjardins Y, Stintzi A, Levy E. Therapeutic Potential of Cranberry Proanthocyanidins in Addressing the Pathophysiology of Metabolic Syndrome: A Scrutiny of Select Mechanisms of Action. Antioxidants (Basel) 2025; 14:268. [PMID: 40227220 PMCID: PMC11939394 DOI: 10.3390/antiox14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Metabolic syndrome (MetS) constitutes a spectrum of interconnected conditions comprising obesity, dyslipidemia, hypertension, and insulin resistance (IR). While a singular, all-encompassing treatment for MetS remains elusive, an integrative approach involving tailored lifestyle modifications and emerging functional food therapies holds promise in preventing its multifaceted manifestations. Our main objective was to scrutinize the efficacy of cranberry proanthocyanidins (PAC, 200 mg/kg/day for 12 weeks) in mitigating MetS pathophysiology in male mice subjected to standard Chow or high-fat/high-fructose (HFHF) diets while unravelling intricate mechanisms. The administration of PAC, in conjunction with an HFHF diet, significantly averted obesity, evidenced by reductions in body weight, adiposity across various fat depots, and adipocyte hypertrophy. Similarly, PAC prevented HFHF-induced hyperglycemia and hyperinsulinemia while also lessening IR. Furthermore, PAC proved effective in alleviating key risk factors associated with cardiovascular diseases by diminishing plasma saturated fatty acids, as well as levels of triglycerides, cholesterol, and non-HDL-C levels. The rise in adiponectin and drop in circulating levels of inflammatory markers showcased PAC's protective role against inflammation. To better clarify the mechanisms behind PAC actions, gut-liver axis parameters were examined, showing significant enhancements in gut microbiota composition, microbiota-derived metabolites, and marked reductions in intestinal and hepatic inflammation, liver steatosis, and key biomarkers associated with endoplasmic reticulum (ER) stress and lipid metabolism. This study enhances our understanding of the complex mechanisms underlying the development of MetS and provides valuable insights into how PAC may alleviate cardiometabolic dysfunction in HFHF mice.
Collapse
Affiliation(s)
- Francis Feldman
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Mireille Koudoufio
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Alain Théophile Sané
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
| | - Valérie Marcil
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Mathilde Foisy Sauvé
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - James Butcher
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 1M5, Canada; (J.B.); (H.D.); (D.F.); (A.S.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Natalie Patey
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC H3C 3J7, Canada;
| | - Catherine Martel
- Montreal Heart Institute Research Centre, Montreal, QC H1T 1C8, Canada;
- Departement of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Schohraya Spahis
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Haonan Duan
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 1M5, Canada; (J.B.); (H.D.); (D.F.); (A.S.)
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 1M5, Canada; (J.B.); (H.D.); (D.F.); (A.S.)
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 4L3, Canada;
| | - Alain Stintzi
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 1M5, Canada; (J.B.); (H.D.); (D.F.); (A.S.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emile Levy
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| |
Collapse
|
5
|
Ding W, Liu Y, Liu Y, Wang G, Liu X, Peng X, Li H, Li Z. Research Progress in Nutritional Components, Biological Activity, and Processing and Utilization of Chenopodium quinoa Willd. ACS FOOD SCIENCE & TECHNOLOGY 2025; 5:411-427. [DOI: 10.1021/acsfoodscitech.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Affiliation(s)
- Wei Ding
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yue Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yingqi Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Guizhen Wang
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xianjun Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xinli Peng
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Hao Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Zhandong Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| |
Collapse
|
6
|
de Souza LVM, Dos Santos KS, Barcellos TDMA, Alvares TDS. The effect of flour-based foods intake in the reduction of cardiometabolic risk: A systematic review. Crit Rev Food Sci Nutr 2024; 64:9400-9411. [PMID: 37222569 DOI: 10.1080/10408398.2023.2212758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cardiometabolic risk triggers a state of chronic and subclinical inflammation, conferring a higher risk of morbidity and mortality. Thus, minimal processing of foods with high nutritional value, in the form of flour, becomes an effective dietary strategy in preventing and treating cardiometabolic risk factors. This systematic review aims to evaluate the evidence on the effect of flour-based food intake on reducing the most common cardiometabolic risk factors. We included all randomized controlled trials published up to April 2023 in the main databases PubMed, Scopus and Web of Science. Eleven clinical trials were included. The amount of flour used in the studies ranged from 1.5 g to 36 g/day, and the supplementation period ranged from six weeks to 120 days. Green jackfruit flour, green banana flour, soy flour, flour from rind of the yellow passion fruit, and fenugreek powder demonstrated significant results in improve parameters of glucose homeostasis. Chia flour, green banana flour, soy flour, and fenugreek powder showed improvements in blood pressure measurements. Brazil nut flour and chia flour reduced total cholesterol. Chia flour also increased HDL cholesterol levels. The evidence presented in the current systematic review indicates that flour-derived foods intake is related to improve cardiometabolic risk factors parameters.
Collapse
Affiliation(s)
- Leonardo Victor Miranda de Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Karen Souza Dos Santos
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Tatiana de Muros Amaral Barcellos
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Thiago da Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Chu L, Zhang S, Wu W, Gong Y, Chen Z, Wen Y, Wang Y, Wang L. Grape seed proanthocyanidin extract alleviates inflammation in experimental colitis mice by inhibiting NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2572-2582. [PMID: 38205677 DOI: 10.1002/tox.24129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Ulcerative colitis (UC) is a complex inflammatory disease of colorectum that induces abnormal immune responses and severely affects the quality of life of the patients. Grape seed proanthocyanidin extract (GSPE) exerts anti-inflammatory and antioxidant functions in many inflammatory diseases. The objective of this study was to investigate the potential therapeutic effects and underlying mechanisms of GSPE in UC using a dextran sodium sulfate (DSS)-induced mouse UC model and a lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage model. In this study, we found that the GSPE markedly prevented DSS-induced weight loss and colon length shortening in UC mice. Further investigations showed that GSPE significantly attenuated the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and elevated the expression of anti-inflammatory cytokine IL-10 in the colon tissues and serum of DSS-induced colitis mice by suppressing NF-κB signaling pathway. Furthermore, LPS-induced inflammation in RAW264.7 cells was also reversed by GSPE. Taken together, our results confirm that GSPE can ameliorate inflammatory response in experimental colitis via inhibiting NF-κB signaling pathway. This study advances the research progress on a potentially effective therapeutic strategy for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lei Chu
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Shaoru Zhang
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Weidong Wu
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Yuqing Gong
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zhenshi Chen
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Yanting Wen
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lihui Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Chen C, Chen L, Mao C, Jin L, Wu S, Zheng Y, Cui Z, Li Z, Zhang Y, Zhu S, Jiang H, Liu X. Natural Extracts for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306553. [PMID: 37847896 DOI: 10.1002/smll.202306553] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Collapse
Affiliation(s)
- Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Lin Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
9
|
Hao Y, Liu M, Ni H, Bai Y, Hao Q, Zhang L, Kang X, Lyu M, Wang S. Preparation of Sweet Potato Porous Starch by Marine Dextranase and Its Adsorption Characteristics. Foods 2024; 13:549. [PMID: 38397526 PMCID: PMC10888179 DOI: 10.3390/foods13040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Dextranase (EC 3.2.1.11) is primarily applied in food, sugar, and pharmaceutical industries. This study focuses on using a cold shock Escherichia coli expression system to express marine dextranase SP5-Badex; enzyme activity increased about 2.2-fold compared to previous expression. This enzyme was employed to produce sweet potato porous starch, with special emphasis on the pore size of the starch. The water and oil adsorption rates of the porous starch increased by 1.43 and 1.51 times, respectively. Extensive Fourier transform infrared spectroscopy and X-ray diffraction revealed that the crystal structure of the sweet potato starch was unaltered by enzymatic hydrolysis. The adsorption capacities of the porous starch for curcumin and proanthocyanidins were 9.59 and 12.29 mg/g, respectively. Notably, the stability of proanthocyanidins was significantly enhanced through their encapsulation in porous starch. After 2.5 h of ultraviolet irradiation, the free radical scavenging rate of the encapsulated proanthocyanidins remained at 95.10%. Additionally, after 30 days of sunlight exposure, the free radical scavenging rate of the encapsulated proanthocyanidins (84.42%) was significantly higher than that (24.34%) observed in the control group. These research findings provide substantial experimental evidence for preparing sweet potato porous starch using marine dextranase.
Collapse
Affiliation(s)
- Yue Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hao Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Bai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingfang Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
10
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
11
|
Zhou B, Chen D, Zhang T, Song C, Zhang X, Lin L, Huang J, Peng X, Liu Y, Wu G, Li J, Chen W. Recent advancements in the discovery of small-molecule non-nucleoside inhibitors targeting SARS-CoV-2 RdRp. Biomed Pharmacother 2024; 171:116180. [PMID: 38266622 DOI: 10.1016/j.biopha.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 plays a pivotal role in the life cycle of the novel coronavirus and stands as a significant and promising target for anti-SARS-CoV-2 drugs. Non-nucleoside inhibitors (NNIs), as a category of compounds directed against SARS-CoV-2 RdRp, exhibit a unique and highly effective mechanism, effectively overcoming various factors contributing to drug resistance against nucleoside inhibitors (NIs). This review investigates various NNIs, including both natural and synthetic inhibitors, that closely interacting with the SARS-CoV-2 RdRp with valid evidences from in vitro and in silico studies.
Collapse
Affiliation(s)
- Bangdi Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Dianming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Tingyan Zhang
- School of Nusing, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenggui Song
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Xianwu Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Leying Lin
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Jiuzhong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Yuanchang Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Gaorong Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Jingyuan Li
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
12
|
Wahyuningtyas ED, Triwardhani A, Ardani IGAW, Surboyo MDC. The Effect of Grape Seed Extract on the Alveolar, Jaw, and Skeletal Bone Remodeling: A Scoping Review. Eur J Dent 2024; 18:73-85. [PMID: 37311556 PMCID: PMC10959605 DOI: 10.1055/s-0043-1768975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Herbal medicine has an important part in promoting and maintaining human health. One of them was grape seed extract (GSE). Various potentials of GSE in human health have been explored, and its potential for maintaining bone health is promising. Some initial research has provided evidence that the GSE was able to affect bone remodeling (bone resorption and bone formation). This scoping review analyzed and discussed all the reports on the effect of GSE on bone healing and bone remodeling in animals in the alveolar bone, jaw bone, and skeletal bone. The further purpose is to give an opportunity to research and development of supplementation of GSE for humans.The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines were used to compose this scoping review through database on Scopus, PubMed, Science Direct, Web of Science, Embase, and manual search until December 2022. The inclusion criteria were a study that analyzed the effect of supplementation GSE on all bones.All included study was in vivo study with supplementation of GSE. The supplementation of GSE affects the alveolar bone, jaw bones, and skeletal bone by promoting bone formation and inhibiting bone resorption by suppressing inflammation, apoptosis pathways, and osteoclastogenesis. It not only supports bone remodeling in bone inflammation, osteonecrosis, osteoporosis, and arthritis but also the GSE increases bone health by increasing the density and mineral deposition in trabecula and cortical bone.The supplementation of GSE supports bone remodeling by interfering with the inflammation process and bone formation not only by preventing bone resorption but also by maintaining bone density.
Collapse
Affiliation(s)
| | - Ari Triwardhani
- Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - I Gusti Aju Wahju Ardani
- Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
13
|
Qiao X, Wang H, He Y, Song D, Altawil A, Wang Q, Yin Y. Grape Seed Proanthocyanidin Ameliorates LPS-induced Acute Lung Injury By Modulating M2a Macrophage Polarization Via the TREM2/PI3K/Akt Pathway. Inflammation 2023; 46:2147-2164. [PMID: 37566293 PMCID: PMC10673742 DOI: 10.1007/s10753-023-01868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Acute lung injury (ALI) is an acute and progressive pulmonary inflammatory disease that is difficult to cure and has a poor prognosis. Macrophages, which have various phenotypes and diverse functions, play an essential role in the pathogenesis of ALI. Grape seed proanthocyanidin (GSP) has received much attention over several decades, and many biological activities such as anti-apoptotic, antioxidant, and anti-inflammatory have been identified. This study aimed to determine the effect of GSP on lipopolysaccharide (LPS)-induced ALI. In this study, we established an ALI mouse model by tracheal instillation of LPS, and by pre-injection of GSP into mice to examine the effect of GSP on the ALI mouse model. Using H&E staining, flow cytometry, and ELISA, we found that GSP attenuated LPS-induced lung pathological changes and decreased inflammatory cytokine expression in ALI mice. In addition, GSP reduced the recruitment of monocyte-derived macrophages to the lung and significantly promoted the polarization of primary mouse lung macrophages from M1 to M2a induced by LPS. In vitro, GSP also decreased the expression levels of inflammatory cytokines such as TNF-α, IL-6, IL-1β, and M1 macrophage marker iNOS induced by LPS in MH-S cells, while increasing the expression levels of M2a macrophage marker CD206. Bioinformatics analysis identified TREM2 and the PI3K/Akt pathway as candidate targets and signaling pathways that regulate M1/M2a macrophage polarization in ALI, respectively. Furthermore, GSP activated PI3K/Akt and increased TREM2 expression in vivo and in vitro. Meanwhile, GSP's impact on M2a polarization and inflammation suppression was attenuated by the PI3K inhibitor LY294002 or siRNA knockdown TREM2. In addition, GSP-enhanced PI3K/Akt activity was prevented by TREM2 siRNA. In conclusion, this study demonstrated that GSP could ameliorate LPS-induced ALI by modulating macrophage polarization from M1 to M2a via the TREM2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yulin He
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Dongfang Song
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Jabri MA, Hajaji S, Omrani A, Ben Youssef M, Sebai H. Myrtle Berries Seeds Prevent Dyslipidemia, Inflammation, and Excessive Cardiac Reactive Oxygen Species Production in Response to High-Fat Diet-Induced Obesity. J Med Food 2023; 26:631-640. [PMID: 37566463 DOI: 10.1089/jmf.2021.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Anthocyanins are the major polyphenols in myrtle berries seeds aqueous extract (MBSAE). This study investigates the protective potentials of MBSAE against obesity lipotoxicity and inflammation induced by a high-fat diet (HFD). It also describes the underlying mechanisms involved in its protective effects, with special attention to myocardial reactive oxygen species (ROS) production. Male Wistar rats were fed HFD for 6 weeks to induce obesity. MBSAE (100 mg/kg, b.w., p.o.) was orally administered to HFD-fed rats. Anti-obesity effects were triggered by the inhibitory action of the MBSAE against the weights of the body, its relative heart and the total abdominal fat. Treatment with MBSAE also restored the lipid profile to baseline compared with the HFD rats and lowered also the white blood cells count, including neutrophils, lymphocytes, and basophils number as well as cytokines (tumor necrosis factor-α, interleukin [IL]-6, and IL-1β) levels in the rats serum, thus improving the tissue inflammatory status associated with obesity. Exposure of rats to HFD during 6 weeks induces a myocardial oxidative stress as assessed by deleterious effects on lipoperoxidation state, antioxidant enzyme (SOD, CAT, and GPx) activities as well as sulfhydryl groups and GSH rates. Of importance, our study shows also that HFD provokes a heart ROS (H2O2, OH•, and O2•-) overload. Of interest, all these oxidative heart disturbances were clearly ended by MBSAE treatment. Therefore, consumption of MBSAE as a natural extract may be a potential therapeutic strategy to treat obesity-associated diseases.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Soumaya Hajaji
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Ameni Omrani
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Meriam Ben Youssef
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Hichem Sebai
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
15
|
Navarro-Masip È, Manocchio F, Rodríguez RM, Bravo FI, Torres-Fuentes C, Muguerza B, Aragonès G. Photoperiod-Dependent Effects of Grape-Seed Proanthocyanidins on Adipose Tissue Metabolic Markers in Healthy Rats. Mol Nutr Food Res 2023; 67:e2300035. [PMID: 37423963 DOI: 10.1002/mnfr.202300035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Indexed: 07/11/2023]
Abstract
SCOPE Variations in photoperiod patterns drive metabolic adaptations in mammals, involving important changes in body weight and adiposity. Moreover, (poly)phenols can help heterotrophs adopt metabolic adaptations to face the upcoming environmental conditions. Particularly, proanthocyanidins from grape-seeds show photoperiod-dependent effects on different metabolic parameters. The present study aims to explore whether grape-seed proanthocyanidin extract (GSPE) consumption differently affects the expression of metabolic markers in WAT (subcutaneous and visceral depots) and BAT in a photoperiod-dependent manner. METHODS AND RESULTS GSPE (25 mg kg-1 day-1 ) is orally administrated for 4 weeks to healthy rats exposed to three photoperiods (L6, L12, and L18). In WAT, GSPE consumption significantly upregulates the expression of lipolytic genes in all photoperiods, being accompanied by increased serum concentrations of glycerol and corticosterone only under the L6 photoperiod. Moreover, adiponectin mRNA levels are significantly upregulated in response to GSPE regardless of the photoperiod, whereas Tnfα and Il6 expression are only downregulated in L6 and L18 photoperiods but not in L12. In BAT, GSPE upregulates Pgc1α expression in all groups, whereas the expression of Pparα is only increased in L18. CONCLUSIONS The results indicate that GSPE modulates the expression of important metabolic markers of WAT and BAT in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Romina M Rodríguez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| |
Collapse
|
16
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Bonafos B, Feillet-Coudray C, Casas F, Bravo FI, Calvo E, Ávila-Román J, Mulero M. Rhythm and ROS: Hepatic Chronotherapeutic Features of Grape Seed Proanthocyanidin Extract Treatment in Cafeteria Diet-Fed Rats. Antioxidants (Basel) 2023; 12:1606. [PMID: 37627601 PMCID: PMC10452039 DOI: 10.3390/antiox12081606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Béatrice Bonafos
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Christine Feillet-Coudray
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - François Casas
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| |
Collapse
|
17
|
Nie F, Liu L, Cui J, Zhao Y, Zhang D, Zhou D, Wu J, Li B, Wang T, Li M, Yan M. Oligomeric Proanthocyanidins: An Updated Review of Their Natural Sources, Synthesis, and Potentials. Antioxidants (Basel) 2023; 12:antiox12051004. [PMID: 37237870 DOI: 10.3390/antiox12051004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Oligomeric Proanthocyanidins (OPCs), as a class of compounds widely found in plants, are particularly abundant in grapes and blueberries. It is a polymer comprising many different monomers, such as catechins and epicatechins. The monomers are usually linked to each other by two types of links, A-linkages (C-O-C) and B-linkages (C-C), to form the polymers. Numerous studies have shown that compared to high polymeric procyanidins, OPCs exhibit antioxidant properties due to the presence of multiple hydroxyl groups. This review describes the molecular structure and natural source of OPCs, their general synthesis pathway in plants, their antioxidant capacity, and potential applications, especially the anti-inflammatory, anti-aging, cardiovascular disease prevention, and antineoplastic functions. Currently, OPCs have attracted much attention, being non-toxic and natural antioxidants of plant origin that scavenge free radicals from the human body. This review would provide some references for further research on the biological functions of OPCs and their application in various fields.
Collapse
Affiliation(s)
- Fanxuan Nie
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lili Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiamin Cui
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuquan Zhao
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
18
|
Gao P, Fang L, Pan Y, Jiang L. Effect of Grape Seed Proanthocyanidins on Fat Metabolism and Adipocytokines in Obese Rats. Metabolites 2023; 13:metabo13040568. [PMID: 37110226 PMCID: PMC10142576 DOI: 10.3390/metabo13040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the effect of Grape Seed Proanthocyanidin (GSP) on fat metabolism and adipocytokines in obese rats. Fifty 5-week-old rats were randomly assigned to five groups (n = 10 per group) and given either a basal diet, a high-fat diet, or a high-fat diet supplemented with GSP (25, 50, and 100 mg/d) per group. The experiment lasted for five weeks, including a one-week adaptation period and a four-week treatment period. At the end of the experimental period, serum and adipose tissue samples were collected and analyzed. Additionally, we co-cultured 3T3-L1 preadipocytes with varying concentrations of GSP to explore its effect on adipocyte metabolism. The results demonstrated that GSP supplementation reduced weight, daily gain, and abdominal fat weight coefficient (p < 0.05). It also decreased levels of glucose, cholesterol (TC) (p < 0.05), triglycerides (TG) (p < 0.05), low-density lipoprotein (LDL), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) in adipose tissue. Furthermore, GSP addition caused adipocyte crumpling in vitro and reduced the mRNA expression of COX-2, LEP, and TNF-α in adipocytes in vitro. These findings provide compelling evidence for exploring the role of GSP in the prevention and treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Pengxiang Gao
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Luoyun Fang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yucong Pan
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
19
|
A Review on Berry Seeds—A Special Emphasis on Their Chemical Content and Health-Promoting Properties. Nutrients 2023; 15:nu15061422. [PMID: 36986152 PMCID: PMC10058722 DOI: 10.3390/nu15061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Berries are important components of the human diet, valued for their high content of nutrients and active compounds. Berry seeds are also important objects of scientific investigation as, in some cases, they can have a higher concentration of certain phytochemicals than other parts of the fruit. Moreover, they are often byproducts of the food industry that can be reused to make oil, extracts, or flour. We have reviewed available literature related to the chemical content and biological activity of seeds from five different berry species—red raspberry (Rubus idaeus L. and Rubus coreanus Miq.), strawberry (Fragaria x ananassa), grape (Vitis vinifera L.), sea buckthorn (Hippophae rhamnoides L.), and cranberry (Vaccinium macrocarpon Ait.). We have searched various databases, including PubMed, Web of Knowledge, ScienceDirect, and Scopus. Last search was conducted on 16.01.2023. Various preparations from berry seeds are valuable sources of bioactive phytochemicals and could be used as functional foods or to make pharmaceuticals or cosmetics. Some products, like oil, flour, or extracts, are already available on the market. However, many preparations and compounds still lack appropriate evidence for their effectiveness in vivo, so their activity should first be assessed in animal studies and clinical trials.
Collapse
|
20
|
Alomair MK, Alobaid AA, Almajed MAA, Alabduladheem LS, Alkhalifah EA, Mohamed ME, Younis NS. Grape Seed Extract and Urolithiasis: Protection Against Oxidative Stress and Inflammation. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221145069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background Grape seed extract (GSE) has demonstrated various pharmacological actions. Urolithiasis is the occurrence of calculus in the renal system. The present study evaluated the anti-urolithic effect of GSE on ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Materials and Methods Rats were assigned into six groups; Normal control and Normal + GSE, in which rats received standard drinking water and GSE orally daily, respectively; Urolithiatic animals received EG with AC in drinking water for 28 days; Urolithiatic animals + GSE, in which rats were administered EG with AC in drinking water and GSE 100 and 200 mg/kg orally; and Urolithiatic + cystone, where rats received EG with AC in drinking water and 750 g/kg of cystone as a standard drug orally. Results Urolithiatic animals showed a significant decrease in excreted magnesium and citrate and antioxidant enzymes, whereas they exhibited amplified oxalate crystal numbers, urinary excreted calcium, phosphate, oxalate ions, uric acid, intensified renal function parameters, lipid peroxidation, and inflammatory mediators. Management with GSE and cystone significantly augmented urolithiasis inhibitors (excreted magnesium and citrate) and amplified the antioxidant enzymes’ activities. GSE reduced oxalate crystal numbers and urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid excretion, lessened renal function parameters, and declined lipid peroxidation and the inflammatory mediators. Conclusion GSE could protect against EG-induced renal stones as evidenced by mitigated kidney dysfunction, histological alterations, and oxalate crystal formation. This action may be related to the antioxidant as well as anti-inflammatory activities of the extracts.
Collapse
Affiliation(s)
- Manar Khalid Alomair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Amjad Abdullah Alobaid
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Marwah Abdulaziz Ali Almajed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Lama Salman Alabduladheem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Maged Elsayed Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nancy Safwat Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
21
|
Photoperiod Conditions Modulate Serum Oxylipins Levels in Healthy and Obese Rats: Impact of Proanthocyanidins and Gut Microbiota. Nutrients 2023; 15:nu15030707. [PMID: 36771413 PMCID: PMC9920779 DOI: 10.3390/nu15030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Seasonal rhythms are emerging as a key factor influencing gut microbiota and bioactive compounds functionality as well as several physiological processes such as inflammation. In this regard, their impact on the modulation of oxylipins (OXLs), which are important lipid mediators of inflammatory processes, has not been investigated yet. Hence, we aimed to investigate the effects of photoperiods on OXLs metabolites in healthy and obesogenic conditions. Moreover, we evaluated if the impact of proanthocyanidins and gut microbiota on OXLs metabolism is influenced by photoperiod in obesity. To this purpose, Fischer 344 rats were housed under different photoperiod conditions (L6: 6 h light, L12: 12 h light or L18:18 h light) and fed either a standard chow diet (STD) or a cafeteria diet (CAF) for 9 weeks. During the last 4 weeks, obese rats were daily administered with an antibiotic cocktail (ABX), an oral dose of a grape seed proanthocyanidin extract (GSPE), or with their combination. CAF feeding and ABX treatment affected OXLs in a photoperiod dependent-manner. GSPE significantly altered prostaglandin E2 (PGE2) levels, only under L6 and mitigated ABX-mediated effects only under L18. In conclusion, photoperiods affect OXLs levels influenced by gut microbiota. This is the first time that the effects of photoperiod on OXLs metabolites have been demonstrated.
Collapse
|
22
|
Song Y, Yu H, Sun Q, Pei F, Xia Q, Gao Z, Li X. Grape seed proanthocyanidin extract targets p66Shc to regulate mitochondrial biogenesis and dynamics in diabetic kidney disease. Front Pharmacol 2023; 13:1035755. [PMID: 36686673 PMCID: PMC9853208 DOI: 10.3389/fphar.2022.1035755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial biogenesis and dynamics are associated with renal mitochondrial dysfunction and the pathophysiological development of diabetic kidney disease (DKD). Decreased p66Shc expression prevents DKD progression by significantly regulating mitochondrial function. Grape seed proanthocyanidin extract (GSPE) is a potential therapeutic medicine for multiple kinds of diseases. The effect of GSPE on the mitochondrial function and p66Shc in DKD has not been elucidated. Hence, we decided to identify p66Shc as a therapeutic target candidate to probe whether GSPE has a renal protective effect in DKD and explored the underlying mechanisms. METHODS In vivo, rats were intraperitoneally injected with streptozotocin (STZ) and treated with GSPE. Biochemical changes, mitochondrial morphology, the ultrastructure of nephrons, and protein expression of mitochondrial biogenesis (SIRT1, PGC-1α, NRF1, TFAM) and dynamics (DRP1, MFN1) were determined. In vitro, HK-2 cells were transfected with p66Shc and treated with GSPE to evaluate changes in cell apoptosis, reactive oxygen species (ROS), mitochondrial quality, the protein expression. RESULTS In vivo, GSPE significantly improved the renal function of rats, with less proteinuria and a lower apoptosis rate in the injured renal tissue. Besides, GSPE treatment increased SIRT1, PGC-1α, NRF1, TFAM, and MFN1 expression, decreased p66Shc and DRP1 expression. In vitro, overexpression of p66Shc decreased the resistance of HK-2 cells to high glucose toxicity, as shown by increased apoptosis and ROS production, decreased mitochondrial quality and mitochondrial biogenesis, and disturbed mitochondrial dynamic homeostasis, ultimately leading to mitochondrial dysfunction. While GSPE treatment reduced p66Shc expression and reversed these changes. CONCLUSION GSPE can maintain the balance between mitochondrial biogenesis and dynamics by negatively regulating p66Shc expression.
Collapse
Affiliation(s)
- Yiyun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiaoling Sun
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Pei
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Xia
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaoli Gao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Nephrology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China,*Correspondence: Zhaoli Gao, ; Xianhua Li,
| | - Xianhua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Zhaoli Gao, ; Xianhua Li,
| |
Collapse
|
23
|
Sahakyan G, Vejux A, Sahakyan N. The Role of Oxidative Stress-Mediated Inflammation in the Development of T2DM-Induced Diabetic Nephropathy: Possible Preventive Action of Tannins and Other Oligomeric Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249035. [PMID: 36558167 PMCID: PMC9786776 DOI: 10.3390/molecules27249035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy is manifested in more than 10% of people with diabetes. It is a common cause of kidney failure and end-stage kidney disease. Understanding of mechanisms underlying the initiation and development of diabetes-induced kidney injuries will allow for the development of more effective methods of prevention and treatment of the disease. Diabetic nephropathy is a wide-ranging complication of diabetes, and it is necessary to discuss the "weight" of pro-inflammatory pathways and molecules in the progress of renal injuries during the development of the disease. A large spectrum of pro-inflammatory molecules and pathways participate in different stages of the pathophysiological progression of diabetic nephropathy, including pro-inflammatory cytokines, chemokines, their receptors, adhesion molecules, and transcription factors. On the other hand, it is known that one of the consequences of hyperglycemia-induced ROS generation is the up-regulation of pro-inflammatory cascades, which, in turn, activate the transcription of genes encoding cytokines-chemokines, growth factors, and extracellular matrix proteins. It is a proven fact that a variety of plant secondary metabolites, such as tannins, flavonoids, and other polyphenols, demonstrate significant anti-diabetic, redox-modulating properties and effectively modulate the inflammatory response. Thus, this review is discussing the possible role of plant phenols in the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gohar Sahakyan
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
| | - Anne Vejux
- Team “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, University Bourgogne Franche-Comté, UFR Sciences Vie Terre et Environnement, 21000 Dijon, France
- Correspondence: (A.V.); (N.S.); Tel.: +33 3-80-39-37-01 (A.V.); Tel.: +374-60-71-05-07 (N.S.)
| | - Naira Sahakyan
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Department of Biochemistry, Microbiology & Biotechnology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
- Correspondence: (A.V.); (N.S.); Tel.: +33 3-80-39-37-01 (A.V.); Tel.: +374-60-71-05-07 (N.S.)
| |
Collapse
|
24
|
Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol 2022; 75:466-481. [PMID: 36508341 DOI: 10.1093/jpp/rgac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Acute myocardial ischemia is one of the major causes of illness in western society. Reduced coronary blood supply leads to cell death and loss of cardiomyocyte population, resulting in serious and often irreversible consequences on myocardial function. Mitochondrial potassium (mitoK) channels have been identified as fine regulators of mitochondrial function and, consequently, in the metabolism of the whole cell, and in the mechanisms underlying the cardioprotection. Interestingly, mitoK channels represent a novel putative target for treating cardiovascular diseases, particularly myocardial infarction, and their modulators represent an interesting tool for pharmacological intervention. In this review, we took up the challenge of selecting flavonoids that show cardioprotective properties through the activation of mitoK channels.
Key findings
A brief overview of the main information on mitoK channels and their participation in the induction of cytoprotective processes was provided. Then, naringenin, quercetin, morin, theaflavin, baicalein, epigallocatechin gallate, genistein, puerarin, luteolin and proanthocyanidins demonstrated to be effective modulators of mitoK channels activity, mediating many beneficial effects.
Summary
The pathophysiological role of mitoK channels has been investigated as well as the impact of flavonoids on this target with particular attention to their potential role in the prevention of cardiovascular disorders.
Collapse
Affiliation(s)
- Rafał P Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Department of Pharmacy, University of Pisa , Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Faculty of Chemistry, University of Warsaw , Warsaw , Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, SGGW , Warsaw , Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa , Italy
| |
Collapse
|
25
|
Effects of Irvingia gabonensis Extract on Metabolism, Antioxidants, Adipocytokines, Telomere Length, and Aerobic Capacity in Overweight/Obese Individuals. Nutrients 2022; 14:nu14214646. [PMID: 36364907 PMCID: PMC9656030 DOI: 10.3390/nu14214646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
We investigated the effects of Irvingia gabonensis (IG) kernel extract on the metabolism, adiposity indices, redox status, inflammation, adipocytokines, blood leukocyte relative telomere length (RTL), and aerobic capacity of overweight/obese individuals. All participants used the first 12-week phase to monitor body weight. They were then randomly divided into two groups: (1) 300 mg IG or (2) placebo (PLA). Both groups took one tablet per day for 12 weeks. The variables were measured before supplementation and after 3, 6, and 12 weeks of supplementation. RTL and aerobic capacity were measured before and after 12 weeks. Compared with the PLA, the IG increased plasma vitamin C after supplementation at 6 (p < 0.01) and 12 weeks (p < 0.05) and serum adiponectin after 3 weeks (p < 0.05). Compared with before supplementation, plasma malondialdehyde in the IG and serum leptin in the PLA were decreased after 12-week supplementation, without any differences between the groups. There were no differences between groups with respect to metabolism, inflammation, RTL, and aerobic capacity after the supplementation. We suggest that 12-week daily IG supplementation improved plasma vitamin C and adiponectin. The findings show the possible mechanism contributing to the effect of IG supplementation on a reduction in obesity-related complications.
Collapse
|
26
|
Zhou DD, Li J, Xiong RG, Saimaiti A, Huang SY, Wu SX, Yang ZJ, Shang A, Zhao CN, Gan RY, Li HB. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022; 11:2755. [PMID: 36140883 PMCID: PMC9497968 DOI: 10.3390/foods11182755] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/19/2022] Open
Abstract
Grape (Vitis vinifera L.) is one of the most popular fruits worldwide. It contains various bioactive compounds, such as proanthocyanidins, anthocyanins, flavonols, phenolic acids and stilbenes, the contents of which could vary considerably in grape skin, pulp and seed. Many studies have revealed that grape possesses a variety of health benefits, such as antioxidant, anti-inflammatory, gut-microbiota-modulating, anticancer and cardioprotective effects. Grape is eaten as fresh fruit and is also used as raw material to produce various products, such as wine, grape juice and raisins. Moreover, the byproducts of grape, such as grape pomace and grape seed, have many applications in the food industry. In this paper, the bioactive compounds in grape are briefly summarized based on literature published in recent years. In addition, the health benefits of grape and its bioactive components are discussed, with special attention paid to the underlying mechanisms. Furthermore, the applications of grape in the food industry are elucidated, especially the applications of grape pomace and grape seed. This paper can contribute to understanding the health benefits and mechanisms of grape and its bioactive compounds, as well as the promotion of the use of grape in the food industry.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
27
|
Ferreira YAM, Jamar G, Estadella D, Pisani LP. Proanthocyanidins in grape seeds and their role in gut microbiota-white adipose tissue axis. Food Chem 2022; 404:134405. [DOI: 10.1016/j.foodchem.2022.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022]
|
28
|
Arreaza-Gil V, Escobar-Martínez I, Muguerza B, Aragonès G, Suárez M, Torres-Fuentes C, Arola-Arnal A. The effects of grape seed proanthocyanidins in cafeteria diet-induced obese Fischer 344 rats are influenced by faecal microbiota in a photoperiod dependent manner. Food Funct 2022; 13:8363-8374. [PMID: 35916585 DOI: 10.1039/d2fo01206e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyphenols are of high interest due to their beneficial health effects, including anti-obesity properties. The gut microbiota may play an important role in polyphenol-mediated effects as these bacteria are significantly involved in the metabolism of polyphenols. Moreover, seasonal rhythms have been demonstrated to influence both the gut microbiota composition and polyphenol bioavailability. Thus, the goal of this study was to evaluate the impact of photoperiods and microbiota on polyphenol functionality in an obesogenic context. Towards this aim, cafeteria diet-fed Fischer 344 rats were housed under three different photoperiod conditions (L6: 6 h of light, L12: 12 h of light and L18: 18 h of light) for 9 weeks. During the last 4 weeks of the experiment, rats were daily administered with an oral dose of a grape seed proanthocyanidin extract (GSPE) (25 mg per kg body weight). Additionally, rats treated with GSPE and an antibiotic cocktail (ABX) in their drinking water were included for a better understanding of the gut microbiota role in GSPE functionality. Vehicle and non-ABX treated rats were included as controls. GSPE decreased body weight gain and fat depots only under L18 conditions. Interestingly, the gut microbiota composition was strongly altered in this photoperiod. GSPE + ABX-treated rats gained significantly less body weight compared to the rats of the rest of the treatments under L18 conditions. These results suggest that GSPE functionality is modulated by the gut microbiota in a photoperiod dependent manner. These novel findings corroborate seasonal rhythms as key factors that must be taken into account when investigating the effects of polyphenols in the treatment or prevention of chronic diseases.
Collapse
Affiliation(s)
- Verónica Arreaza-Gil
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Iván Escobar-Martínez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Gerard Aragonès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| |
Collapse
|
29
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
30
|
Sun HY, Gu AX, Huang BY, Zhang T, Li JP, Shan AS. Dietary Grape Seed Proanthocyanidin Alleviates the Liver Injury Induced by Long-Term High-Fat Diets in Sprague Dawley Rats. Front Vet Sci 2022; 9:959906. [PMID: 35990272 PMCID: PMC9382112 DOI: 10.3389/fvets.2022.959906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
In mammals, the liver is the most important organ that plays a vital function in lipid metabolism. Grape seed proanthocyanidin (GSPE) is a kind of natural polyphenolic compound primarily obtained from grape skin and seeds. Recent research found it had high bioavailability in defending against obesity, hyperlipidemia, inflammatory, oxidative stress, and targeting liver tissue. However, the mechanism of GSPE in regulating obesity induced by dietary high-fat (HF) was not fully understood, particularly the influences on liver functions. Therefore, this study aimed to investigate the effects of GSPE supplementation on the liver function and lipid metabolic parameters in rats fed HF diets long-term. A total of 40 healthy female Sprague Dawley rats were selected. After 8 weeks of obesity model feeding, the rats were randomly divided into four treatments: NC, standard diet; NC + GSPE, standard diet + 500 mg/kg body weight GSPE; HF, high-fat diet; HG + GSPE, high fat diet + 500 mg/kg body weight GSPE. Results indicated that long-term HF feeding caused severe liver problems including megalohepatia, steatosis, inflammation, and hepatocyte apoptosis. The supplementation of GSPE alleviated these symptoms. The results of the current experiment confirmed that GSPE addition up-regulated the expression of the Wnt3a/β-catenin signaling pathway, thereby restraining the liver cell endoplasmic reticulum stress and hepatocyte apoptosis. Furthermore, the microRNA-103 may play a role in this signal-regulated pathway. In summary, GSPE had a protective effect on the liver and the current experiment provided a reference for the application of GSPE in animal nutrition as a kind of natural feed additive.
Collapse
Affiliation(s)
| | | | | | | | - Jian Ping Li
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - An Shan Shan
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Yin H, Zhao Y, Sun Y, Liu J, Han Y, Dai Z. Effectiveness of Proanthocyanidin plus Trimetazidine in the Treatment of Non-Small-Cell Lung Cancer with Radiation Heart Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2338622. [PMID: 35692580 PMCID: PMC9187471 DOI: 10.1155/2022/2338622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
This study was intended to explore the effect of proanthocyanidin (PC) combined with trimetazidine in non-small-cell lung cancer (NSCLC) with radiation-induced heart damage (RIHD). It was a prospective randomized controlled study that 86 NSCLC patients with radiation treatment in Cangzhou People's Hospital from January 2019 and June 2021 were enrolled and randomized to either the control group or the study group via the random table method, 43 cases in each group. The control group received trimetazidine, and the study group additionally received PC. The incidence of RIHD-related clinical manifestation, RIHD-related ECG, and RIHD-related cardiac ultrasound change were all lower in the study group. After radiotherapy, the serum level of superoxide dismutase (SOD) was higher, and malondialdehyde (MDA) was lower in the study group when compared with the control group. After radiotherapy, the serum levels of brain natriuretic peptide (BNP), cardiac troponin (cTnT), creatine kinase (CK), and creatine kinase isoenzymes (CKMB) were all lower in the study group when compared with the control group. The efficacy of PC plus trimetazidine for NSCLC with RIHD is superior to trimetazidine alone, and it significantly mitigates radiation-induced inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Hang Yin
- Ward I, Department of Cardiovascular Medicine, Cangzhou People's Hospital, Cangzhou, China
| | - Yue Zhao
- Department II of Radiotherapy, Cangzhou Central Hospital, Cangzhou, China
| | - Yucui Sun
- Ward I, Department of Cardiovascular Medicine, Cangzhou People's Hospital, Cangzhou, China
| | - Jia Liu
- Ward I, Department of Cardiovascular Medicine, Cangzhou People's Hospital, Cangzhou, China
| | - Yingjun Han
- Ward I, Department of Cardiovascular Medicine, Cangzhou People's Hospital, Cangzhou, China
| | - Zhentao Dai
- Ward I, Department of Cardiovascular Medicine, Cangzhou People's Hospital, Cangzhou, China
| |
Collapse
|
32
|
Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041363. [PMID: 35209151 PMCID: PMC8877132 DOI: 10.3390/molecules27041363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Abstract
Conventional extraction methods of proanthocyanidins (PAC) are based on toxic organic solvents, which can raise concerns about the use of extracts in supplemented food and nutraceuticals. Thus, a PAC extraction method was developed for grape seeds (GS) and grape seed powder using food-grade ethanol by optimizing the extraction conditions to generate the maximum yield of PAC. Extraction parameters, % ethanol, solvent: solid (s:s) ratio, sonication time, and temperature were optimized by the central composite design of the response surface method. The yields of PAC under different extraction conditions were quantified by the methylcellulose precipitable tannin assay. The final optimum conditions were 47% ethanol, 10:1 s:s ratio (v:w), 53 min sonication time, and 60 °C extraction temperature. High-performance liquid chromatography analysis revealed the presence of catechin, procyanidin B2, oligomeric and polymeric PAC in the grape seed-proanthocyanidin extracts (GS-PAC). GS-PAC significantly reduced reactive oxygen species and lipid accumulation in the palmitic-acid-induced mouse hepatocytes (AML12) model of steatosis. About 50% of the PAC of the GS was found to be retained in the by-product of wine fermentation. Therefore, the developed ethanol-based extraction method is suitable to produce PAC-rich functional ingredients from grape by-products to be used in supplemented food and nutraceuticals.
Collapse
|
33
|
Tabnak P, Masrouri S, Mafakheri A. Natural products in suppressing glioma progression: A focus on the role of microRNAs. Phytother Res 2022; 36:1576-1599. [PMID: 35174549 DOI: 10.1002/ptr.7414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/07/2021] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Abstract
Glioma is one of the most common malignancies of the central nervous system. Due to inadequate response to the current treatments available, glioma has been at the center of recent cancer studies searching for novel treatment strategies. This has prompted an intensive search using linkage studies and preliminary evidence to gain efficient insight into the mechanisms involved in the alleviation of the pathogenesis of glioma mediated by miRNAs, a group of noncoding RNAs that affect gene expression posttranscriptionally. Dysregulated expression of miRNAs can exacerbate the malignant features of tumor cells in glioma and other cancers. Natural products can exert anticancer effects on glioma cells by stimulating the expression levels of tumor suppressor miRNAs and repressing the expression levels of oncogenic miRNAs. In this review, we aimed to collect and analyze the literature addressing the roles of natural products in the treatment of glioma, with an emphasis on their involvement in the regulation of miRNAs.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Masrouri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asrin Mafakheri
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
34
|
Lin KN, Zhao W, Huang SY, Li H. Grape seed proanthocyanidin extract induces apoptosis of HL-60/ADR cells via the Bax/Bcl-2 caspase-3/9 signaling pathway. Transl Cancer Res 2022; 10:3939-3947. [PMID: 35116693 PMCID: PMC8797540 DOI: 10.21037/tcr-21-920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Background Our previous study detailed the direct induction of apoptosis by grape seed proanthocyanidin extract (GSPE) in a multidrug resistant human acute myeloid leukemia (AML) HL-60/adriamycin (HL-60/ADR) cell line, although the mechanism of this effect was not detailed. This study aims to elucidate the mechanism underlying GSPE-induced cell apoptosis in HL-60/ADR cells. Methods HL-60/ADR cells were studied to evaluate effects of GSPE (0–100 µg/mL); a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to identify the cytotoxic effect of varying GSPE concentrations. Trypan blue staining was used to observe changes in cell viability; flow cytometry assays were used to verify apoptosis. Expression of Bax and Bcl-2 mRNA was analyzed using real-time polymerase chain reaction (PCR). Activity of caspase-3 and caspase-9 was also detected. Results Here, GSPE was found to inhibit HL-60/ADR cell growth and induce cell apoptosis in a dose-dependent manner. Real-time PCR findings revealed that GSPE concentrations above 75 µg/mL significantly increase expression of Bax mRNA (P<0.001). GSPE concentrations above 25 µg/mL were found to significantly decrease expression of Bcl-2 mRNA (P<0.01), while concentrations above 50 µg/mL were found to significantly increase caspase-3 activity after 6, 12 and 24 h (P<0.01). However, only 100 µg/mL GSPE was found to significantly increase caspase-9 activity (P<0.001 at 6 and 12 h; P<0.05 at 24 h). Conclusions GSPE inhibits the proliferation of HL-60/ADR cells by the induction of apoptosis in a dose-dependent manner via the Bax/Bcl-2 caspase-3/9 signaling pathway.
Collapse
Affiliation(s)
- Ka-Na Lin
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhao
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Ying Huang
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Busquets O, Carrasco M, Espinosa-Jiménez T, Ettcheto M, Verdaguer E, Auladell C, Bullò M, Camins A, Pinent M, Rodríguez-Gallego E, Folch J. GSPE pre-treatment protects against long-term cafeteria diet-induced mitochondrial and inflammatory affectations in the hippocampus of rats. Nutr Neurosci 2021; 25:2627-2637. [PMID: 34789070 DOI: 10.1080/1028415x.2021.1995118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Deregulations like the loss of sensitivity to insulin (insulin resistance) and chronic inflammation are alterations very commonly found in sporadic forms of neurodegenerative pathologies. Thus, finding strategies to protect against them, may lead to a reduction in the incidence and/or affectation of these pathologies. The grape seed-derived proanthocyanidins extract (GSPE) is a mixture of compounds highly enriched in polyphenols and flavonoids that have shown to have a wide range of therapeutic benefits due to their antioxidant and anti-inflammatory properties. OBJECTIVES This study aimed to assess the protective effects of a short pre-treatment of GSPE in the hippocampus against a prolonged feeding with cafeteria diet. METHODS GSPE was administered for 10 days followed by 12 weeks of cafeteria diet. We analyzed transcriptional activity of genes and protein expression of key mediators of neurodegeneration in brain samples. RESULTS Results indicated that GSPE was able to protect against cellular damage through the activation of AKT, as well as promote the maintenance of mitochondrial function by conserving the OXPHOS complexes and upregulating the antioxidant SOD. DISCUSSION We observed that GSPE decreased inflammatory activation as observed through the downregulation of JNK, IL6 and TNFα, just like the reduction in reactive profile of astrocytes. Overall, the data presented here offers an interesting and hopeful initial step for future long-term studies on the beneficial effects of a supplementation of common diets with polyphenol and flavonoid substances for the amelioration of typical early hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marina Carrasco
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ester Verdaguer
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, University of Barcelona, Barcelona, Spain
| | - Carme Auladell
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, University of Barcelona, Barcelona, Spain
| | - Mònica Bullò
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) dirigido por Jordi Salas en la Fundación Instituto de Investigación Sanitaria Pere Virgili, Tarragona, Spain.,Fundació Institut d'Investigació Sanitaria Pere Virgili (IISPV), Tarragona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Fundació Institut d'Investigació Sanitaria Pere Virgili (IISPV), Tarragona, Spain
| |
Collapse
|
36
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
37
|
Sierra-Cruz M, Miguéns-Gómez A, Grau-Bové C, Rodríguez-Gallego E, Blay M, Pinent M, Ardévol A, Terra X, Beltrán-Debón R. Grape-Seed Proanthocyanidin Extract Reverts Obesity-Related Metabolic Derangements in Aged Female Rats. Nutrients 2021; 13:nu13062059. [PMID: 34208508 PMCID: PMC8234113 DOI: 10.3390/nu13062059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and ageing are current issues of global concern. Adaptive homeostasis is compromised in the elderly, who are more likely to suffer age-related health issues, such as obesity, metabolic syndrome, and cardiovascular disease. The current worldwide prevalence of obesity and higher life expectancy call for new strategies for treating metabolic disorders. Grape-seed proanthocyanidin extract (GSPE) is reported to be effective in ameliorating these pathologies, especially in young animal models. In this study, we aimed to test the effectiveness of GSPE in modulating obesity-related pathologies in aged rats fed an obesogenic diet. To do so, 21-month-old rats were fed a high-fat/high-sucrose diet (cafeteria diet) for 11 weeks. Two time points for GSPE administration (500 mg/kg body weight), i.e., a 10-day preventive GSPE treatment prior to cafeteria diet intervention and a simultaneous GSPE treatment with the cafeteria diet, were assayed. Body weight, metabolic parameters, liver steatosis, and systemic inflammation were analysed. GSPE administered simultaneously with the cafeteria diet was effective in reducing body weight, total adiposity, and liver steatosis. However, the preventive treatment was effective in reducing only mesenteric adiposity in these obese, aged rats. Our results confirm that the simultaneous administration of GSPE improves metabolic disruptions caused by the cafeteria diet also in aged rats.
Collapse
|
38
|
An Q, Gong X, Le L, Zhu D, Xiang D, Geng F, Zhu H, Peng L, Zou L, Zhao G, Wan Y. Prospects for Proanthocyanidins from Grape Seed: Extraction Technologies and Diverse Bioactivity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qi An
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Chinese Academy Of Agricultural Sciences, Beijing, Peoples R, China
| | - Xuxiao Gong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Liqing Le
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Dazhou Zhu
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Chinese Academy Of Agricultural Sciences, Beijing, Peoples R, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Hong Zhu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Chinese Academy Of Agricultural Sciences, Beijing, Peoples R, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| |
Collapse
|
39
|
Proanthocyanidins Should Be a Candidate in the Treatment of Cancer, Cardiovascular Diseases and Lipid Metabolic Disorder. Molecules 2020; 25:molecules25245971. [PMID: 33339407 PMCID: PMC7766935 DOI: 10.3390/molecules25245971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The conventional view of using medicines as routine treatment of an intractable disease is being challenged in the face of extensive and growing evidence that flavonoids in foods, especially proanthocyanidins (PAs), can participate in tackling fatal diseases like cancer, cardiovascular and lipid metabolic diseases, both as a precautionary measure or as a dietary treatment. Although medical treatment with medicines will remain necessary in some cases, at least in the short term, PAs’ function as antioxidant, anti-inflammatory drugs, signal pathway regulators remain critical in many diseases. This review article demonstrates the physical and biological properties of PAs, summarizes the health benefits of PAs found by researchers previously, and shows the possibility and importance of being a dietary treatment substance.
Collapse
|
40
|
Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020; 9:antiox9101018. [PMID: 33092099 PMCID: PMC7589608 DOI: 10.3390/antiox9101018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.
Collapse
Affiliation(s)
- Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Shahjalal Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Abu B. Siddik
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Vijay K. Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA;
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
- Correspondence: ; Tel.: +1-806-834-1713
| |
Collapse
|