1
|
Shilyansky JS, Chan CJ, Xiao S, Gribovskaja-Rupp I, Quelle DE, Howe JR, Dillon JS, Ear PH. GLP-1R agonist promotes proliferation of neuroendocrine neoplasm cells expressing GLP-1 receptors. Surgery 2025; 179:108943. [PMID: 39665969 DOI: 10.1016/j.surg.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Semaglutide is a glucagon-like peptide 1 (GLP-1) analog that binds to GLP-1 receptors (GLP-1R) on beta-cells and neuronal cells and is used for treating type 2 diabetes and obesity. Insulin-secreting pancreatic neuroendocrine neoplasms have been reported to express high levels of GLP-1R protein, raising the possibility that GLP-1 receptor agonists could promote tumor growth. Our goal was to quantify GLP-1R expression levels in 6 neuroendocrine neoplasm cellular models and determine their proliferative response to semaglutide treatment. METHODS Gene expression of GLP-1R in neuroendocrine neoplasm cells (BON, GOT1, NT-3, NEC913, NEC1452, and NEC1583) was measured by quantitative polymerase chain reaction. Protein expression was determined by immunofluorescent staining and Western blotting. Neuroendocrine neoplasm cells were incubated with semaglutide, and cell growth was measured using a cell viability assay. Mice harboring GOT1 xenografts were treated with semaglutide, and tumor volumes were measured. RESULTS BON, NEC1452, and NEC1583 cells expressed significantly lower levels of GLP-1R transcript and protein than GOT1, NT-3, and NEC913 cells. GOT1 and NT-3 showed the highest response to semaglutide treatment, with a 19% and 22% increase in growth. Semaglutide promotes tumor growth in mice with GOT1 xenografts by 72%. CONCLUSION The impact of the GLP-1 receptor agonist semaglutide on neuroendocrine cancer growth is understudied. Our data revealed that 50% of neuroendocrine neoplasm cell lines tested expressed GLP-1R, and semaglutide treatment promoted their growth. These results indicate a potential risk in the use of semaglutide in patients with neuroendocrine neoplasms expressing GLP-1R. Investigations into a larger set of neuroendocrine neoplasms would be important because they are highly heterogeneous.
Collapse
Affiliation(s)
| | - Casandro J Chan
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sophia Xiao
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Dawn E Quelle
- Department of Pharmacology and Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA
| | - James R Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Joseph S Dillon
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Po Hien Ear
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA.
| |
Collapse
|
2
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research. Cancers (Basel) 2025; 17:108. [PMID: 39796734 PMCID: PMC11719888 DOI: 10.3390/cancers17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies. Methods: Previously, we collected metadata of academic publications on organoids or organ-on-chip platforms from PubMed, Web of Science, Scopus, EMBASE, and bioRxiv, published between January 2011 and June 2023. Here, we selected documents from this metadata corpus that were computationally determined as relevant to tumor research and analyzed them using an in-house text analysis algorithm. Additionally, we collected and analyzed metadata from ClinicalTrials.gov of clinical studies related to tumor organoids or ToC as of March 2023. Results and Discussion: From 3551 academic publications and 139 clinical trials, we identified 55 and 24 tumor classes modeled as tumor organoids and ToC models, respectively. The research was particularly active in neural and hepatic/pancreatic tumor organoids, as well as gastrointestinal, neural, and reproductive ToC models. Comparative analysis with cancer statistics showed that lung, lymphatic, and cervical tumors were under-represented in tumor organoid research. Our findings also illustrate varied research topics, including tumor physiology, therapeutic approaches, immune cell involvement, and analytical techniques. Mapping the research geographically highlighted the focus on colorectal cancer research in the Netherlands, though overall the specific research focus of countries did not reflect regional cancer prevalence. These insights not only map the current research landscape but also indicate potential new directions in tumor model research.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Richard P. Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
3
|
Wang K, Fischer A, Maccio U, Hantel C, Beuschlein F, Grossman AB, Pacak K, Nölting S. Pre-clinical phaeochromocytoma and paraganglioma models: Cell lines, animal models, and a human primary culture model. Best Pract Res Clin Endocrinol Metab 2024; 38:101913. [PMID: 38972796 DOI: 10.1016/j.beem.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
While the establishment of human phaeochromocytoma and paraganglioma (PPGL) cell lines has proven to be particularly difficult over several decades of research, there are other reliable pre-clinical PPGL models currently available. This review provides a summary of these models, together with our recently established personalised drug screening platform using patient-derived PPGL primary cultures. Such currently available PPGL models include murine and rat PPGL cell lines, of which only one cell line (PC12) is publicly accessible through a cell repository, and PPGL animal models, of which the patient-derived xenograft models are promising but complex to establish. We have developed next-generation implementation of human PPGL primary cultures, enabling reliable and personalised drug screening and an individualised analysis of tumour drug responsivity based on the tumour's unique genetic, biochemical, immunohistochemical and clinical profile. Overall, reliable PPGL models, including patient-derived primary culture models, are essential to advance pre-clinical research in the field of PPGLs.
Collapse
Affiliation(s)
- Katharina Wang
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland; Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Felix Beuschlein
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland; The LOOP Zurich - Medical Research Center, 8044 Zurich, Switzerland
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892, USA
| | - Svenja Nölting
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.
| |
Collapse
|
4
|
April-Monn SL, Kirchner P, Detjen K, Bräutigam K, Trippel MA, Grob T, Statzer C, Maire RS, Kollàr A, Chouchane A, Kunze CA, Horst D, Sadowski MC, Schrader J, Marinoni I, Wiedenmann B, Perren A. Patient derived tumoroids of high grade neuroendocrine neoplasms for more personalized therapies. NPJ Precis Oncol 2024; 8:59. [PMID: 38429350 PMCID: PMC10907580 DOI: 10.1038/s41698-024-00549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
There are no therapeutic predictive biomarkers or representative preclinical models for high-grade gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), a highly aggressive, fatal, and heterogeneous malignancy. We established patient-derived (PD) tumoroids from biobanked tissue samples of advanced high-grade GEP-NEN patients and applied this model for targeted rapid ex vivo pharmacotyping, next-generation sequencing, and perturbational profiling. We used tissue-matched PD tumoroids to profile individual patients, compared ex vivo drug response to patients' clinical response to chemotherapy, and investigated treatment-induced adaptive stress responses.PD tumoroids recapitulated biological key features of high-grade GEP-NEN and mimicked clinical response to cisplatin and temozolomide ex vivo. When we investigated treatment-induced adaptive stress responses in PD tumoroids in silico, we discovered and functionally validated Lysine demethylase 5 A and interferon-beta, which act synergistically in combination with cisplatin. Since ex vivo drug response in PD tumoroids matched clinical patient responses to standard-of-care chemotherapeutics for GEP-NEN, our rapid and functional precision oncology approach could expand personalized therapeutic options for patients with advanced high-grade GEP-NEN.
Collapse
Affiliation(s)
- Simon L April-Monn
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3008, Bern, Switzerland
| | - Philipp Kirchner
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
| | - Katharina Detjen
- Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Hepatology and Gastroenterology, Berlin, Germany
| | - Konstantin Bräutigam
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
| | - Mafalda A Trippel
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
| | - Tobias Grob
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
| | - Cyril Statzer
- Department of Health Sciences and Technology, Eidgenoessische Technische Hochschule Zuerich, Schwerzenbach-Zuerich, 8603, Switzerland
| | - Renaud S Maire
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
| | - Attila Kollàr
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Aziz Chouchane
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
| | - Catarina A Kunze
- Institute of Pathology, Charité Universitaetsmedizin Berlin, Rudolf-Virchow-Haus, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité Universitaetsmedizin Berlin, Rudolf-Virchow-Haus, Berlin, Germany
| | - Martin C Sadowski
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
| | - Jörg Schrader
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland
- Bern Center for Precision Medicine, University & University Hospital of Bern, 3008, Bern, Switzerland
| | - Bertram Wiedenmann
- Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Hepatology and Gastroenterology, Berlin, Germany
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, 3008, Bern, Switzerland.
- Bern Center for Precision Medicine, University & University Hospital of Bern, 3008, Bern, Switzerland.
| |
Collapse
|
5
|
Graf SD, Keber CU, Hattesohl A, Teply-Szymanski J, Hattesohl S, Guder M, Gercke N, Di Fazio P, Slater EP, Jesinghaus M, Denkert C, Bartsch DK, Lehman B. Mesenteric fibrosis in patients with small intestinal neuroendocrine tumors is associated with enrichment of alpha-smooth muscle actin-positive fibrosis and COMP-expressing stromal cells. J Neuroendocrinol 2024; 36:e13364. [PMID: 38246597 DOI: 10.1111/jne.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Neuroendocrine tumors of the small intestine (SI-NETs) often develop lymph node metastasis (LNM)-induced mesenteric fibrosis (MF). MF can cause intestinal obstruction as well as ischemia and render surgical resection technically challenging. The underlying pathomechanisms of MF are still not well understood. We examined mesenteric LNM and the surrounding stroma compartment from 24 SI-NET patients, including 11 with in situ presentation of strong MF (MF+) and 13 without MF (MF-). Differential gene expression was assessed with the HTG EdgeSeq Oncology Biomarker Panel comparing MF+ with MF- within LNM and paired stromal samples, respectively. Most interesting differentially expressed genes were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in combination with validation of associated protein levels utilizing immunohistochemistry (IHC) staining of MF+ and MF- formalin-fixed, paraffin-embedded (FFPE) patient samples. Overall, 14 genes measured with a 2549-gene expression panel were differentially expressed in MF+ patients compared to MF-. Of those, nine were differentially expressed genes in LNM and five genes in the stromal tissue (>2-fold change, p < .05). The top hits included increased COMP and COL11A1 expression in the stroma of MF+ patients compared to MF-, as well as decreased HMGA2, COL6A6, and SLC22A3 expression in LNM of MF+ patients compared to LNM of MF- patients. RT-qPCR confirmed high levels of COMP and COL11A1 in stroma samples of MF+ compared to MF- patients. IHC staining confirmed the enrichment of α-smooth muscle actin-positive fibrosis in MF+ compared to MF- patients with corresponding increase of COMP-expressing stromal cells in MF+. Since COMP is associated with the known driver for fibrosis development transforming growth factor beta and with a cancer-associated fibroblasts enriched environment, it seems to be a promising new target for MF research.
Collapse
Affiliation(s)
- Sebastian D Graf
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Corinna U Keber
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Akira Hattesohl
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Julia Teply-Szymanski
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Sophia Hattesohl
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Marc Guder
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Norman Gercke
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Emily P Slater
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Bettina Lehman
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
6
|
Hu C, Ye M, Bai J, Liu P, Lu F, Chen J, Xu Y, Yan L, Yu P, Xiao Z, Gu D, Xu L, Tian Y, Tang Q. FOXA2-initiated transcriptional activation of INHBA induced by methylmalonic acid promotes pancreatic neuroendocrine neoplasm progression. Cell Mol Life Sci 2024; 81:50. [PMID: 38252148 PMCID: PMC10803496 DOI: 10.1007/s00018-023-05084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin βA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.
Collapse
Affiliation(s)
- Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Pengfei Liu
- Department of Gastroenterology, Jiangyin People's Hospital, Jiangyin, Jiangsu Province, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Yanling Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Zequan Xiao
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili State, China
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
7
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
8
|
Lu F, Ye M, Hu C, Chen J, Yan L, Gu D, Xu L, Tian Y, Bai J, Tang Q. FABP5 regulates lipid metabolism to facilitate pancreatic neuroendocrine neoplasms progression via FASN mediated Wnt/β-catenin pathway. Cancer Sci 2023; 114:3553-3567. [PMID: 37302809 PMCID: PMC10475765 DOI: 10.1111/cas.15883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are among the most frequently occurring neuroendocrine neoplasms (NENs) and require targeted therapy. High levels of fatty acid binding protein 5 (FABP5) are involved in tumor progression, but its role in pNENs remains unclear. We investigated the mRNA and protein levels of FABP5 in pNEN tissues and cell lines and found them to be upregulated. We evaluated changes in cell proliferation using CCK-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays and examined the effects on cell migration and invasion using transwell assays. We found that knockdown of FABP5 suppressed the proliferation, migration, and invasion of pNEN cell lines, while overexpression of FABP5 had the opposite effect. Co-immunoprecipitation experiments were performed to clarify the interaction between FABP5 and fatty acid synthase (FASN). We further showed that FABP5 regulates the expression of FASN via the ubiquitin proteasome pathway and both proteins facilitate the progression of pNENs. Our study demonstrated that FABP5 acts as an oncogene by promoting lipid droplet deposition and activating the WNT/β-catenin signaling pathway. Moreover, the carcinogenic effects of FABP5 can be reversed by orlistat, providing a novel therapeutic intervention option.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| |
Collapse
|
9
|
Forsythe SD, Pu T, Andrews SG, Madigan JP, Sadowski SM. Models in Pancreatic Neuroendocrine Neoplasms: Current Perspectives and Future Directions. Cancers (Basel) 2023; 15:3756. [PMID: 37568572 PMCID: PMC10416968 DOI: 10.3390/cancers15153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.
Collapse
Affiliation(s)
- Steven D. Forsythe
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Tracey Pu
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stephen G. Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - James P. Madigan
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Samira M. Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| |
Collapse
|
10
|
Liu Y, Li N, Zhu Y. Pancreatic Organoids: A Frontier Method for Investigating Pancreatic-Related Diseases. Int J Mol Sci 2023; 24:4027. [PMID: 36835437 PMCID: PMC9959977 DOI: 10.3390/ijms24044027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The pancreas represents an important organ that has not been comprehensively studied in many fields. To fill this gap, many models have been generated, and traditional models have shown good performance in addressing pancreatic-related diseases, but are increasingly struggling to keep up with the need for further research due to ethical issues, genetic heterogeneity and difficult clinical translation. The new era calls for new and more reliable research models. Therefore, organoids have been proposed as a novel model for the evaluation of pancreatic-related diseases such as pancreatic malignancy, diabetes, and pancreatic cystic fibrosis. Compared with common traditional models, including 2D cell culture and gene editing mice, organoids derived from living humans or mice cause minimal harm to the donor, raise fewer ethical concerns, and reasonably address the claims of heterogeneity, which allows for the further development of pathogenesis studies and clinical trial analysis. In this review, we analyse studies on the use of pancreatic organoids in research on pancreatic-related diseases, discuss the advantages and disadvantages, and hypothesize future trends.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Jiangxi Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| |
Collapse
|
11
|
Vitale G, Carra S, Alessi Y, Campolo F, Pandozzi C, Zanata I, Colao A, Faggiano A. Carcinoid Syndrome: Preclinical Models and Future Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24043610. [PMID: 36835022 PMCID: PMC9961914 DOI: 10.3390/ijms24043610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Carcinoid syndrome represents a debilitating paraneoplastic disease, caused by the secretion of several substances, occurring in about 10-40% of patients with well-differentiated neuroendocrine tumors (NETs). The main signs and symptoms associated with carcinoid syndrome are flushing, diarrhea, hypotension, tachycardia, bronchoconstriction, venous telangiectasia, dyspnea and fibrotic complications (mesenteric and retroperitoneal fibrosis, and carcinoid heart disease). Although there are several drugs available for the treatment of carcinoid syndrome, the lack of therapeutic response, poor tolerance or resistance to drugs are often reported. Preclinical models are indispensable tools for investigating the pathogenesis, mechanisms for tumor progression and new therapeutic approaches for cancer. This paper provides a state-of-the-art overview of in vitro and in vivo models in NETs with carcinoid syndrome, highlighting the future developments and therapeutic approaches in this field.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
- Correspondence: ; Tel.: +39-02-6191-12023; Fax: +39-02-6191-13033
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Ylenia Alessi
- Endocrine Unit, University Hospital “Gaetano Martino” of Messina, 98125 Messina, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Pandozzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Isabella Zanata
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
12
|
An Insight on Functioning Pancreatic Neuroendocrine Neoplasms. Biomedicines 2023; 11:biomedicines11020303. [PMID: 36830839 PMCID: PMC9953748 DOI: 10.3390/biomedicines11020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare neoplasms arising from islets of the Langerhans in the pancreas. They can be divided into two groups, based on peptide hormone secretion, functioning and nonfunctioning PanNENs. The first group is characterized by different secreted peptides causing specific syndromes and is further classified into subgroups: insulinoma, gastrinoma, glucagonoma, somatostatinoma, VIPoma and tumors producing serotonin and adrenocorticotrophic hormone. Conversely, the second group does not release peptides and is usually associated with a worse prognosis. Today, although the efforts to improve the therapeutic approaches, surgery remains the only curative treatment for patients with PanNENs. The development of high-throughput techniques has increased the molecular knowledge of PanNENs, thereby allowing us to understand better the molecular biology and potential therapeutic vulnerabilities of PanNENs. Although enormous advancements in therapeutic and molecular aspects of PanNENs have been achieved, there is poor knowledge about each subgroup of functioning PanNENs.Therefore, we believe that combining high-throughput platforms with new diagnostic tools will allow for the efficient characterization of the main differences among the subgroups of functioning PanNENs. In this narrative review, we summarize the current landscape regarding diagnosis, molecular profiling and treatment, and we discuss the future perspectives of functioning PanNENs.
Collapse
|
13
|
Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol 2023; 20:16-32. [PMID: 36307533 DOI: 10.1038/s41571-022-00696-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.
Collapse
|
14
|
D’Agosto S, Fiorini E, Pezzini F, Delfino P, Simbolo M, Vicentini C, Andreani S, Capelli P, Rusev B, Lawlor RT, Bassi C, Landoni L, Pea A, Luchini C, Scarpa A, Corbo V. Long-term organoid culture of a small intestinal neuroendocrine tumor. Front Endocrinol (Lausanne) 2023; 14:999792. [PMID: 37082125 PMCID: PMC10112019 DOI: 10.3389/fendo.2023.999792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/02/2023] [Indexed: 04/22/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and highly heterogeneous neoplasms whose incidence has markedly increased over the last decades. A grading system based on the tumor cells' proliferation index predicts high-risk for G3 NETs. However, low-to-intermediate grade (G1/G2) NETs have an unpredictable clinical course that varies from indolent to highly malignant. Cultures of human cancer cells enable to perform functional perturbation analyses that are instrumental to enhance our understanding of cancer biology. To date, no tractable and reliable long-term culture of G1/G2 NET has been reported to permit disease modeling and pharmacological screens. Here, we report of the first long-term culture of a G2 metastatic small intestinal NET that preserves the main genetic drivers of the tumor and retains expression patterns of the endocrine cell lineage. Replicating the tissue, this long-term culture showed a low proliferation index, and yet it could be propagated continuously without dramatic changes in the karyotype. The model was readily available for pharmacological screens using targeted agents and as expected, showed low tumorigenic capacity in vivo. Overall, this is the first long-term culture of NETs to faithfully recapitulate many aspects of the original neuroendocrine tumor.
Collapse
Affiliation(s)
- Sabrina D’Agosto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Caterina Vicentini
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Silvia Andreani
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Paola Capelli
- Azienda Ospedaliera Integrata dell’Università di Verona, Verona, Italy
| | - Borislav Rusev
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Rita T. Lawlor
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Claudio Bassi
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Pea
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
- *Correspondence: Vincenzo Corbo,
| |
Collapse
|
15
|
Translational research in neuroendocrine tumors (NETs): What's new in 2021? ANNALES D'ENDOCRINOLOGIE 2022; 83:469-471. [PMID: 36371349 DOI: 10.1016/j.ando.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
17
|
Gulde S, Foscarini A, April-Monn SL, Genio E, Marangelo A, Satam S, Helbling D, Falconi M, Toledo RA, Schrader J, Perren A, Marinoni I, Pellegata NS. Combined Targeting of Pathogenetic Mechanisms in Pancreatic Neuroendocrine Tumors Elicits Synergistic Antitumor Effects. Cancers (Basel) 2022; 14:5481. [PMID: 36428573 PMCID: PMC9688197 DOI: 10.3390/cancers14225481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are the second most common malignancy of the pancreas. Surgery remains the only curative treatment for localized disease. For patients with inoperable advanced or metastatic disease, few targeted therapies are available, but their efficacy is unpredictable and variable. Exploiting prior knowledge on pathogenetic processes involved in PanNEN tumorigenesis, we tested buparlisib (PI3K inhibitor) and ribociclib (CDK4/6 inhibitor), as single agents or in combination, in different preclinical models. First, we used cell lines representative of well-differentiated (INS-1E, NT-3) and poorly differentiated (BON-1) PanNENs. The combination of buparlisib with ribociclib reduced the proliferation of 2D and 3D spheroid cultures more potently than the individual drugs. Buparlisib, but not ribociclib, induced apoptosis. The anti-proliferative activity of the drugs correlated with downstream target inhibition at mRNA and protein levels. We then tested the drugs on primary islet microtissues from a genetic PanNET animal model (Men1-defective mice) and from wild-type mice: the drug combination was effective against the former without altering islet cell physiology. Finally, we treated PanNET patient-derived islet-like 3D tumoroids: the combination of buparlisib with ribociclib was effective in three out of four samples. Combined targeting of PI3K and CDK4/6 is a promising strategy for PanNENs spanning various molecular and histo-pathological features.
Collapse
Affiliation(s)
- Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Alessia Foscarini
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | | | - Edoardo Genio
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Alessandro Marangelo
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Swapna Satam
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | | | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rodrigo A. Toledo
- CIBERONC, Gastrointestinal and Endocrine Tumors, VHIO, 08035 Barcelona, Spain
| | - Jörg Schrader
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Medicine, Klinikum Nordfriesland, 25813 Husum, Germany
| | - Aurel Perren
- Institute of Pathology, University of Bern, 3012 Bern, Switzerland
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, 3012 Bern, Switzerland
| | - Natalia S. Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
18
|
Smolkova B, Kataki A, Earl J, Ruz-Caracuel I, Cihova M, Urbanova M, Buocikova V, Tamargo S, Rovite V, Niedra H, Schrader J, Kohl Y. Liquid biopsy and preclinical tools for advancing diagnosis and treatment of patients with pancreatic neuroendocrine neoplasms. Crit Rev Oncol Hematol 2022; 180:103865. [PMID: 36334880 DOI: 10.1016/j.critrevonc.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
|
19
|
Cuny T, van Koetsveld PM, Mondielli G, Dogan F, de Herder WW, Barlier A, Hofland LJ. Reciprocal Interactions between Fibroblast and Pancreatic Neuroendocrine Tumor Cells: Putative Impact of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143481. [PMID: 35884539 PMCID: PMC9321816 DOI: 10.3390/cancers14143481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Pancreatic neuroendocrine neoplasms (PNENs) present with a fibrotic stroma that constitutes the tumor microenvironment (TME). The role played by stromal fibroblasts in the growth of PNENs and their sensitivity to the mTOR inhibitor RAD001 has not yet been established. Methods: We investigated reciprocal interactions between (1) human PNEN cell lines (BON-1/QGP-1) or primary cultures of human ileal neuroendocrine neoplasm (iNEN) or PNEN and (2) human fibroblast cell lines (HPF/HFL-1). Proliferation was assessed in transwell (tw) co-culture or in the presence of serum-free conditioned media (cm), with and without RAD001. Colony formation and migration of BON-1/QGP-1 were evaluated upon incubation with HPFcm. Results: Proliferation of BON-1 and QGP-1 increased in the presence of HFL-1cm, HPFcm, HFL-1tw and HPFtw (BON-1: +46−70% and QGP-1: +42−55%, p < 0.001 vs. controls) and HPFcm significantly increased the number of BON-1 or QGP-1 colonies (p < 0.05). This stimulatory effect was reversed in the presence of RAD001. Likewise, proliferation of human iNEN and PNEN primary cultures increased in the presence of HFL-1 or HPF. Reciprocally, BON-1cm and BONtw stimulated the proliferation of HPF (+90 ± 61% and +55 ± 47%, respectively, p < 0.001 vs. controls), an effect less pronounced with QGP-1cm or QGPtw (+19 to +27%, p < 0.05 vs. controls). Finally, a higher migration potential for BON-1 and QGP-1 was found in the presence of HPFcm (p < 0.001 vs. controls). Conclusions: Fibroblasts in the TME of PNENs represent a target of interest, the stimulatory effect of which over PNENs is mitigated by the mTOR inhibitor everolimus.
Collapse
Affiliation(s)
- Thomas Cuny
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
- Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Hôpitaux Universitaires de Marseille, 13005 Marseille, France;
- DiPNET Team, U1251, INSERM, Marseille Medical Genetics, Aix-Marseille Université, CEDEX 05, 13385 Marseille, France;
| | - Peter M. van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
| | - Grégoire Mondielli
- DiPNET Team, U1251, INSERM, Marseille Medical Genetics, Aix-Marseille Université, CEDEX 05, 13385 Marseille, France;
| | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
| | - Wouter W. de Herder
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
| | - Anne Barlier
- Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Hôpitaux Universitaires de Marseille, 13005 Marseille, France;
- DiPNET Team, U1251, INSERM, Marseille Medical Genetics, Aix-Marseille Université, CEDEX 05, 13385 Marseille, France;
- Laboratory of Molecular Biology, Hôpital de la Conception, Hôpitaux Universitaires de Marseille, 13005 Marseille, France
| | - Leo J. Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
- Correspondence: ; Tel.: +31-10-703-46-33; Fax: +31-10-703-54-30
| |
Collapse
|
20
|
Doornebal EJ, Harris N, Riva A, Jagatia R, Pizanias M, Prachalias A, Menon K, Preziosi M, Zamalloa A, Miquel R, Zen Y, Orford MR, Eaton S, Heaton N, Ramage J, Palma E, Srirajaskanthan R, Chokshi S. Human Immunocompetent Model of Neuroendocrine Liver Metastases Recapitulates Patient-Specific Tumour Microenvironment. Front Endocrinol (Lausanne) 2022; 13:909180. [PMID: 35909511 PMCID: PMC9326114 DOI: 10.3389/fendo.2022.909180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroendocrine liver metastases (LM-NEN) develop in a considerable proportion of patients with gastroenteropancreatic neuroendocrine neoplasms. There is a paucity of experimental models that accurately recapitulate this complex metastatic human liver microenvironment precluding scientific and clinical advancements. Here, we describe the development of a novel personalised immunocompetent precision cut tumour slice (PCTS) model for LM-NEN using resected human liver tissue. The histological assessment throughout the culture demonstrated that slices maintain viability for at least 7 days and retain the cellular heterogeneity of the original tumour. Essential clinical features, such as patient-specific histoarchitecture, tumour grade, neuroendocrine differentiation and metabolic capacity, are preserved in the slices. The PCTS also replicate the tumor-specific immunological profile as shown by the innate and adaptive immunity markers analysis. Furthermore, the study of soluble immune checkpoint receptors in the culture supernatants proves that these immunomodulators are actively produced by LM-NEN and suggests that this process is epithelium-dependent. This model can be employed to investigate these pathways and provides a powerful platform for mechanistic, immunological and pre-clinical studies.
Collapse
Affiliation(s)
- Ewald Jan Doornebal
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Nicola Harris
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Antonio Riva
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Ravi Jagatia
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Michail Pizanias
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Andreas Prachalias
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Krishna Menon
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Melissa Preziosi
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Rosa Miquel
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital, London, United Kingdom
| | - Yoh Zen
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital, London, United Kingdom
| | - Michael Robert Orford
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nigel Heaton
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - John Ramage
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, King’s College Hospital, London, United Kingdom
| | - Elena Palma
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
- *Correspondence: Shilpa Chokshi, ; Elena Palma,
| | - Rajaventhan Srirajaskanthan
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, King’s College Hospital, London, United Kingdom
| | - Shilpa Chokshi
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
- *Correspondence: Shilpa Chokshi, ; Elena Palma,
| |
Collapse
|
21
|
Liverani C, Spadazzi C, Ibrahim T, Pieri F, Foca F, Calabrese C, De Vita A, Miserocchi G, Cocchi C, Vanni S, Ercolani G, Cavaliere D, Ranallo N, Chiadini E, Prisinzano G, Severi S, Sansovini M, Martinelli G, Bongiovanni A, Mercatali L. HRAS overexpression predicts response to Lenvatinib treatment in gastroenteropancreatic neuroendocrine tumors. Front Endocrinol (Lausanne) 2022; 13:1045038. [PMID: 36743926 PMCID: PMC9895371 DOI: 10.3389/fendo.2022.1045038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Neuroendocrine neoplasms (NENs) are a rare group of tumors exceptionally heterogeneous, with clinical presentation ranging from well differentiated more indolent tumors to poorly differentiated very aggressive forms. Both are often diagnosed after the metastatic spread and require appropriate medical treatment. A high priority need in the management of this disease is the identification of effective therapeutic strategies for advanced and metastatic patients. The recent TALENT trial demonstrated the efficacy of lenvatinib, a multi-tyrosine kinase inhibitor, in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) with no other treatment indication. Further development of this drug in advanced NETs is warranted. METHODS We investigated potential clinical and molecular determinants of lenvatinib response in human primary cultures derived from patients with GEP-NET of different grades and sites of origin. We correlated response to treatment with patient clinical characteristics, with the mutational status of 161-cancer associated genes and with the expression levels of MKI-related genes. RESULTS Lenvatinib exerted a significant antitumor activity in primary GEP-NET cells, with median survival inhibitions similar or higher than those of standard frontline treatments. Of the 11 primary cultures analyzed in our case series, 6 were classified as responder showing a significant survival inhibition, and 5 as non-responder. We observed that the overexpression of HRAS in the original tumor tissue compared to the matched healthy tissue significantly correlated with responsiveness of primary cells to lenvatinib (p=.048). All 5 non-responder cultures showed normal HRAS expression, while of the 6 responder cultures, 4 had HRAS overexpression. Overexpression of HRAS was not associated with gene mutation. None of the other evaluated clinical variables (grade, Ki67, site of origin and syndromic disease) or molecular markers correlated with response. DISCUSSION Lenvatinib appears to be a highly effective drug for the treatment of NETs. The evaluation of HRAS expression in the tumor tissue might improve patient selection and optimize therapeutic outcome.
Collapse
Affiliation(s)
- Chiara Liverani
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Spadazzi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Chiara Spadazzi,
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Federica Pieri
- Pathology Unit, “Morgagni-Pierantoni” Hospital, Forlì, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Calabrese
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessandro De Vita
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giacomo Miserocchi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudia Cocchi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Silvia Vanni
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giorgio Ercolani
- General and Oncologic Surgery, “Morgagni-Pierantoni” Hospital, Forlì, Italy
| | - Davide Cavaliere
- General and Oncologic Surgery, “Morgagni-Pierantoni” Hospital, Forlì, Italy
| | - Nicoletta Ranallo
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisa Chiadini
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanna Prisinzano
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Stefano Severi
- Unit of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Maddalena Sansovini
- Unit of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Laura Mercatali
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
22
|
Herring B, Jang S, Whitt J, Goliwas K, Aburjania Z, Dudeja V, Ren B, Berry J, Bibb J, Frost A, Chen H, Rose JB, Jaskula-Sztul R. Ex Vivo Modeling of Human Neuroendocrine Tumors in Tissue Surrogates. Front Endocrinol (Lausanne) 2021; 12:710009. [PMID: 35002949 PMCID: PMC8734644 DOI: 10.3389/fendo.2021.710009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022] Open
Abstract
Few models exist for studying neuroendocrine tumors (NETs), and there are mounting concerns that the currently available array of cell lines is not representative of NET biology. The lack of stable patient-derived NET xenograft models further limits the scientific community's ability to make conclusions about NETs and their response to therapy in patients. To address these limitations, we propose the use of an ex vivo 3D flow-perfusion bioreactor system for culturing and studying patient-derived NET surrogates. Herein, we demonstrate the utility of the bioreactor system for culturing NET surrogates and provide methods for evaluating the efficacy of therapeutic agents on human NET cell line xenograft constructs and patient-derived NET surrogates. We also demonstrate that patient-derived NET tissues can be propagated using the bioreactor system and investigate the near-infrared (NIR) dye IR-783 for its use in monitoring their status within the bioreactor. The results indicate that the bioreactor system and similar 3D culture models may be valuable tools for culturing patient-derived NETs and monitoring their response to therapy ex vivo.
Collapse
Affiliation(s)
- Brendon Herring
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kayla Goliwas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andra Frost
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
April-Monn SL, Andreasi V, Schiavo Lena M, Sadowski MC, Kim-Fuchs C, Buri MC, Ketkar A, Maire R, Di Domenico A, Schrader J, Muffatti F, Doglioni C, Partelli S, Falconi M, Perren A, Marinoni I. EZH2 Inhibition as New Epigenetic Treatment Option for Pancreatic Neuroendocrine Neoplasms (PanNENs). Cancers (Basel) 2021; 13:cancers13195014. [PMID: 34638497 PMCID: PMC8508156 DOI: 10.3390/cancers13195014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms are epigenetically driven tumors, but therapies against underlying epigenetic drivers are currently not available in the clinical practice. We aimed to investigate EZH2 (Enhancer of Zest homolog) expression in PanNEN and the impact of EZH2 inhibition in three different PanNEN preclinical models. EZH2 expression in PanNEN patient samples (n = 172) was assessed by immunohistochemistry and correlated with clinico-pathological data. Viability of PanNEN cell lines treated with EZH2 inhibitor (GSK126) was determined in vitro. Lentiviral transduction of shRNA targeting EZH2 was performed in QGP1 cells, and cell proliferation was measured. Rip1TAG2 mice underwent GSK126 treatment for three weeks starting from week 10 of age. Primary cells isolated from PanNEN patients (n = 6) were cultivated in 3D as islet-like tumoroids and monitored for 10 consecutive days upon GSK126 treatment. Viability was measured continuously for the whole duration of the treatment. We found that high EZH2 expression correlated with higher tumor grade (p < 0.001), presence of distant metastases (p < 0.001), and shorter disease-free survival (p < 0.001) in PanNEN patients. Inhibition of EZH2 in vitro in PanNEN cell lines and in patient-derived islet-like tumoroids reduced cell viability and impaired cell proliferation, while inhibition of EZH2 in vivo in Rip1TAG2 mice reduced tumor burden. Our results show that EZH2 is highly expressed in high-grade PanNENs, and during disease progression it may contribute to aberrations in the epigenetic cellular landscape. Targeting EZH2 may represent a valuable epigenetic treatment option for patients with PanNEN.
Collapse
Affiliation(s)
- Simon Leonhard April-Monn
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Valentina Andreasi
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.M.); (S.P.); (M.F.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Marco Schiavo Lena
- Unit of Pathology, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Martin Carl Sadowski
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
| | - Corina Kim-Fuchs
- Department of Visceral Surgery and Medicine, University Hospital Bern, University of Bern, 3008 Bern, Switzerland;
| | - Michelle Claudine Buri
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
| | - Avanee Ketkar
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
| | - Renaud Maire
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
| | - Annunziata Di Domenico
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
| | - Jörg Schrader
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Francesca Muffatti
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.M.); (S.P.); (M.F.)
| | - Claudio Doglioni
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- Unit of Pathology, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Stefano Partelli
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.M.); (S.P.); (M.F.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.M.); (S.P.); (M.F.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Aurel Perren
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
- Bern Center for Precision Medicine, University & University Hospital of Bern, 3008 Bern, Switzerland
- Correspondence: (A.P.); (I.M.)
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (S.L.A.-M.); (V.A.); (M.C.S.); (M.C.B.); (A.K.); (R.M.); (A.D.D.)
- Correspondence: (A.P.); (I.M.)
| |
Collapse
|
25
|
Rinke A, Auernhammer CJ, Bodei L, Kidd M, Krug S, Lawlor R, Marinoni I, Perren A, Scarpa A, Sorbye H, Pavel ME, Weber MM, Modlin I, Gress TM. Treatment of advanced gastroenteropancreatic neuroendocrine neoplasia, are we on the way to personalised medicine? Gut 2021; 70:1768-1781. [PMID: 33692095 DOI: 10.1136/gutjnl-2020-321300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasia (GEPNEN) comprises clinically as well as prognostically diverse tumour entities often diagnosed at late stage. Current classification provides a uniform terminology and a Ki67-based grading system, thereby facilitating management. Advances in the study of genomic and epigenetic landscapes have amplified knowledge of tumour biology and enhanced identification of prognostic and potentially predictive treatment subgroups. Translation of this genomic and mechanistic biology into advanced GEPNEN management is limited. 'Targeted' treatments such as somatostatin analogues, peptide receptor radiotherapy, tyrosine kinase inhibitors and mammalian target of rapamycin inhibitors are treatment options but predictive tools are lacking. The inability to identify clonal heterogeneity and define critical oncoregulatory pathways prior to therapy, restrict therapeutic efficacy as does the inability to monitor disease status in real time. Chemotherapy in the poor prognosis NEN G3 group, though associated with acceptable response rates, only leads to short-term tumour control and their molecular biology requires delineation to provide new and more specific treatment options.The future requires an exploration of the NEN tumour genome, its microenvironment and an identification of critical oncologic checkpoints for precise drug targeting. In the advance to personalised medical treatment of patients with GEPNEN, clinical trials need to be based on mechanistic and multidimensional characterisation of each tumour in order to identify the therapeutic agent effective for the individual tumour.This review surveys advances in NEN research and delineates the current status of translation with a view to laying the basis for a genome-based personalised medicine management of advanced GEPNEN.
Collapse
Affiliation(s)
- Anja Rinke
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine IV and Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Ludwig Maximilian University, LMU Klinikum, Munich, Germany
| | - Lisa Bodei
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Sebastian Krug
- Clinic for Internal Medicine I, Martin Luther University, Halle, Germany
| | - Rita Lawlor
- Applied Research on Cancer Centre, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Aldo Scarpa
- Applied Research on Cancer Centre, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Marianne Ellen Pavel
- Department of Internal Medicine I, Endocrinology, University of Erlangen, Erlangen, Germany
| | - Matthias M Weber
- Department of Internal Medicine I, Endocrinology, Johannes Gutenberg University Hospital Mainz, Mainz, Germany
| | - Irvin Modlin
- Gastroenterological and Endoscopic Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| |
Collapse
|
26
|
Gillette AA, Babiarz CP, VanDommelen AR, Pasch CA, Clipson L, Matkowskyj KA, Deming DA, Skala MC. Autofluorescence Imaging of Treatment Response in Neuroendocrine Tumor Organoids. Cancers (Basel) 2021; 13:cancers13081873. [PMID: 33919802 PMCID: PMC8070804 DOI: 10.3390/cancers13081873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NET) account for roughly 60% of all neuroendocrine tumors. Low/intermediate grade human GEP-NETs have relatively low proliferation rates that animal models and cell lines fail to recapitulate. Short-term patient-derived cancer organoids (PDCOs) are a 3D model system that holds great promise for recapitulating well-differentiated human GEP-NETs. However, traditional measurements of drug response (i.e., growth, proliferation) are not effective in GEP-NET PDCOs due to the small volume of tissue and low proliferation rates that are characteristic of the disease. Here, we test a label-free, non-destructive optical metabolic imaging (OMI) method to measure drug response in live GEP-NET PDCOs. OMI captures the fluorescence lifetime and intensity of endogenous metabolic cofactors NAD(P)H and FAD. OMI has previously provided accurate predictions of drug response on a single cell level in other cancer types, but this is the first study to apply OMI to GEP-NETs. OMI tested the response to novel drug combination on GEP-NET PDCOs, specifically ABT263 (navitoclax), a Bcl-2 family inhibitor, and everolimus, a standard GEP-NET treatment that inhibits mTOR. Treatment response to ABT263, everolimus, and the combination were tested in GEP-NET PDCO lines derived from seven patients, using two-photon OMI. OMI measured a response to the combination treatment in 5 PDCO lines, at 72 h post-treatment. In one of the non-responsive PDCO lines, heterogeneous response was identified with two distinct subpopulations of cell metabolism. Overall, this work shows that OMI provides single-cell metabolic measurements of drug response in PDCOs to guide drug development for GEP-NET patients.
Collapse
Affiliation(s)
- Amani A. Gillette
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA;
| | - Christopher P. Babiarz
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
| | | | - Cheri A. Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI 53705, USA;
| | - Kristina A. Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Dustin A. Deming
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI 53705, USA;
- Correspondence: (D.A.D.); (M.C.S.)
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA;
- Morgridge Institute for Research, Madison, WI 53715, USA;
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- Correspondence: (D.A.D.); (M.C.S.)
| |
Collapse
|
27
|
Antitumoral Activity of the MEK Inhibitor Trametinib (TMT212) Alone and in Combination with the CDK4/6 Inhibitor Ribociclib (LEE011) in Neuroendocrine Tumor Cells In Vitro. Cancers (Basel) 2021; 13:cancers13061485. [PMID: 33807122 PMCID: PMC8004919 DOI: 10.3390/cancers13061485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study assessed the antitumoral activity of the MEK inhibitor trametinib (TMT212) and the ERK1/2 inhibitor SCH772984, alone and in combination with the CDK4/6 inhibitor ribociclib (LEE011) in human neuroendocrine tumor (NET) cell lines in vitro. METHODS Human NET cell lines BON1, QGP-1, and NCI-H727 were treated with trametinib or SCH772984, alone and in combination with ribociclib, to assess cell proliferation, cell cycle distribution, and protein signaling using cell proliferation, flow cytometry, and Western blot assays, respectively. RESULTS Trametinib and SCH772984, alone and in combination with ribociclib, significantly reduced NET cell viability and arrested NET cells at the G1 phase of the cell cycle in all three cell lines tested. In addition, trametinib also caused subG1 events and apoptotic PARP cleavage in QGP1 and NCI-H727 cells. A western blot analysis demonstrated the use of trametinib alone and trametinib in combination with ribociclib to decrease the expression of pERK, cMyc, Chk1, pChk2, pCDK1, CyclinD1, and c-myc in a time-dependent manner in NCI-H727 and QGP-1 cells. CONCLUSIONS MEK and ERK inhibition causes antiproliferative effects in human NET cell lines in vitro. The combination of the MEK inhibitor trametinib (TMT212) with the CDK4/6 inhibitor ribociclib (LEE011) causes additive antiproliferative effects. Future preclinical and clinical studies of MEK inhibition in NETs should be performed.
Collapse
|
28
|
Detjen K, Hammerich L, Özdirik B, Demir M, Wiedenmann B, Tacke F, Jann H, Roderburg C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021; 111:217-236. [PMID: 32615560 DOI: 10.1159/000509864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare, heterogeneous group of tumors that originate from the endocrine system of the gastrointestinal tract and pancreas. GEP-NENs are subdivided according to their differentiation into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Since GEP-NENs represent rare diseases, only limited data from large prospective, randomized clinical trials are available, and recommendations for treatment of GEP-NEN are in part based on data from retrospective analyses or case series. In this context, tractable disease models that reflect the situation in humans and that allow to recapitulate the different clinical aspects and disease stages of GEP-NET or GEP-NEC are urgently needed. In this review, we highlight available data on mouse models for GEP-NEN. We discuss how these models reflect tumor biology of human disease and whether these models could serve as a tool for understanding the pathogenesis of GEP-NEN and for disease modeling and pharmacosensitivity assays, facilitating prediction of treatment response in patients. In addition, open issues applicable for future developments will be discussed.
Collapse
Affiliation(s)
- Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Henning Jann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany,
| |
Collapse
|
29
|
Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic. Cancers (Basel) 2020; 12:cancers12113170. [PMID: 33126717 PMCID: PMC7693644 DOI: 10.3390/cancers12113170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease.
Collapse
|