1
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
2
|
Synthesis, biological evaluation and molecular modeling studies of novel 1,2,3-triazole-linked menadione-furan derivatives as P2X7 inhibitors. J Bioenerg Biomembr 2022; 54:227-239. [PMID: 36070071 DOI: 10.1007/s10863-022-09947-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
The P2X7 receptor (P2X7R) is an ion channel that promotes the passage of ions through the membrane through brief stimulation once activated by ATP, its endogenous opener. However, prolonged stimulation with ATP, which occurs in pathological processes, opens a nonselective pore in the plasma membrane, allowing the passage of large molecules and leading to cytokine release or even cell death. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Considering the booming of biomass upgrading reactions in recent years and the continued efforts to synthesize biologically active molecules containing the 1,2,3-triazole ring, in the present work, we aimed to investigate whether triazole-linked menadione-furan derivatives could present P2X7R inhibitory activity. The novel compounds were tested for their inhibitory activity on ATP-induced dye uptake in peritoneal macrophages. Some have shown promising results, having displayed IC50 values lower than that of the P2X7R inhibitor BBG. Molecular docking studies also indicated that the active compounds bind to an allosteric site on P2X7R, presenting potential P2X7R inhibition.
Collapse
|
3
|
The Impact of Inflammatory Stimuli on Xylosyltransferase-I Regulation in Primary Human Dermal Fibroblasts. Biomedicines 2022; 10:biomedicines10061451. [PMID: 35740472 PMCID: PMC9220250 DOI: 10.3390/biomedicines10061451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 12/25/2022] Open
Abstract
Inflammation plays a vital role in regulating fibrotic processes. Beside their classical role in extracellular matrix synthesis and remodeling, fibroblasts act as immune sentinel cells participating in regulating immune responses. The human xylosyltransferase-I (XT-I) catalyzes the initial step in proteoglycan biosynthesis and was shown to be upregulated in normal human dermal fibroblasts (NHDF) under fibrotic conditions. Regarding inflammation, the regulation of XT-I remains elusive. This study aims to investigate the effect of lipopolysaccharide (LPS), a prototypical pathogen-associated molecular pattern, and the damage-associated molecular pattern adenosine triphosphate (ATP) on the expression of XYLT1 and XT-I activity of NHDF. We used an in vitro cell culture model and mimicked the inflammatory tissue environment by exogenous LPS and ATP supplementation. Combining gene expression analyses, enzyme activity assays, and targeted gene silencing, we found a hitherto unknown mechanism involving the inflammasome pathway components cathepsin B (CTSB) and caspase-1 in XT-I regulation. The suppressive role of CTSB on the expression of XYLT1 was further validated by the quantification of CTSB expression in fibroblasts from patients with the inflammation-associated disease Pseudoxanthoma elasticum. Altogether, this study further improves the mechanistic understanding of inflammatory XT-I regulation and provides evidence for fibroblast-targeted therapies in inflammatory diseases.
Collapse
|
4
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
5
|
Calzaferri F, Ruiz-Ruiz C, de Diego AMG, de Pascual R, Méndez-López I, Cano-Abad MF, Maneu V, de Los Ríos C, Gandía L, García AG. The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases. Med Res Rev 2020; 40:2427-2465. [PMID: 32677086 DOI: 10.1002/med.21710] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/25/2022]
Abstract
Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.
Collapse
Affiliation(s)
- Francesco Calzaferri
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Ruiz-Ruiz
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio M G de Diego
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo de Pascual
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iago Méndez-López
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - María F Cano-Abad
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, San Vicente del Raspeig, Spain
| | - Cristóbal de Los Ríos
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Gandía
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Pereira JMS, Barreira AL, Gomes CR, Ornellas FM, Ornellas DS, Miranda LC, Cardoso LR, Coutinho-Silva R, Schanaider A, Morales MM, Leite M, Takiya CM. Brilliant blue G, a P2X7 receptor antagonist, attenuates early phase of renal inflammation, interstitial fibrosis and is associated with renal cell proliferation in ureteral obstruction in rats. BMC Nephrol 2020; 21:206. [PMID: 32471386 PMCID: PMC7260756 DOI: 10.1186/s12882-020-01861-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Previous study showed that purinergic P2X7 receptors (P2X7R) reach the highest expression in the first week after unilateral ureteral obstruction (UUO) in mice, and are involved in the process of inflammation, apoptosis and fibrosis of renal tissue. We, herein, document the role of purinergic P2X7 receptors activation on the third day of UUO, as assessed by means of BBG as its selective inhibitor. Methods We investigated the effects of brilliant blue G (BBG), a P2X7R antagonist, in the third day of kidney tissue response to UUO in rats. For this purpose, male Wistar rats submitted to UUO or sham operated, received BBG or vehicle (V), comprising four groups: UUO-BBG, UUO-V, sham-BBG and sham-V. The kidneys were harvested on day 3 UUO and prepared for histology, immunohistochemistry (P2X7R, PCNA, CD-68, α-sma, TGF-β1, Heat-shock protein-47, TUNEL assay), quantitative real-time PCR (IL-1β, procollagens type I, III, and IV) for mRNA quantification. Results The group UUO-V presented an enhancement in tubular cell P2X7-R expression, increase influx of macrophages and myofibroblasts, HSP-47 and TGF- β1 expression. Also, upregulation of procollagen types I, III, and IV, and IL-1β mRNAs were seen. On the other hand, group UUO-BBG showed lower expression of procollagens and IL-1β mRNAs, as well as less immunoreactivity of HSP-47, TGF-β, macrophages, myofibroblasts, and tubular apoptosis. This group also presented increased epithelial cell proliferation. Conclusion BBG, a known highly selective inhibitor of P2X7R, attenuated renal inflammation, collagen synthesis, renal cell apoptosis, and enhanced renal cell proliferation in the early phase of rat model of UUO.
Collapse
Affiliation(s)
- José Monteiro Sad Pereira
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Barreira
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Conrado Rodrigues Gomes
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Mateus Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Carlos Miranda
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Ronaldo Cardoso
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Schanaider
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Cirurgia Experimental, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurilo Leite
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Christina Maeda Takiya
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
González-Casacuberta I, Juárez-Flores DL, Morén C, Garrabou G. Bioenergetics and Autophagic Imbalance in Patients-Derived Cell Models of Parkinson Disease Supports Systemic Dysfunction in Neurodegeneration. Front Neurosci 2019; 13:894. [PMID: 31551675 PMCID: PMC6748355 DOI: 10.3389/fnins.2019.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide affecting 2-3% of the population over 65 years. This prevalence is expected to rise as life expectancy increases and diagnostic and therapeutic protocols improve. PD encompasses a multitude of clinical, genetic, and molecular forms of the disease. Even though the mechanistic of the events leading to neurodegeneration remain largely unknown, some molecular hallmarks have been repeatedly reported in most patients and models of the disease. Neuroinflammation, protein misfolding, disrupted endoplasmic reticulum-mitochondria crosstalk, mitochondrial dysfunction and consequent bioenergetic failure, oxidative stress and autophagy deregulation, are amongst the most commonly described. Supporting these findings, numerous familial forms of PD are caused by mutations in genes that are crucial for mitochondrial and autophagy proper functioning. For instance, late and early onset PD associated to mutations in Leucine-rich repeat kinase 2 (LRRK2) and Parkin (PRKN) genes, responsible for the most frequent dominant and recessive inherited forms of PD, respectively, have emerged as promising examples of disease due to their established role in commanding bioenergetic and autophagic balance. Concomitantly, the development of animal and cell models to investigate the etiology of the disease, potential biomarkers and therapeutic approaches are being explored. One of the emerging approaches in this context is the use of patient's derived cells models, such as skin-derived fibroblasts that preserve the genetic background and some environmental cues of the patients. An increasing number of reports in these PD cell models postulate that deficient mitochondrial function and impaired autophagic flux may be determinant in PD accelerated nigral cell death in terms of limitation of cell energy supply and accumulation of obsolete and/or unfolded proteins or dysfunctional organelles. The reliance of neurons on mitochondrial oxidative metabolism and their post-mitotic nature, may explain their increased vulnerability to undergo degeneration upon mitochondrial challenges or autophagic insults. In this scenario, proper mitochondrial function and turnover through mitophagy, are gaining in strength as protective targets to prevent neurodegeneration, together with the use of patient-derived fibroblasts to further explore these events. These findings point out the presence of molecular damage beyond the central nervous system (CNS) and proffer patient-derived cell platforms to the clinical and scientific community, which enable the study of disease etiopathogenesis and therapeutic approaches focused on modifying the natural history of PD through, among others, the enhancement of mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Diana Luz Juárez-Flores
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Constanza Morén
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| |
Collapse
|
8
|
Pavlou S, Augustine J, Cunning R, Harkin K, Stitt AW, Xu H, Chen M. Attenuating Diabetic Vascular and Neuronal Defects by Targeting P2rx7. Int J Mol Sci 2019; 20:ijms20092101. [PMID: 31035433 PMCID: PMC6540042 DOI: 10.3390/ijms20092101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal vascular and neuronal degeneration are established pathological features of diabetic retinopathy. Data suggest that defects in the neuroglial network precede the clinically recognisable vascular lesions in the retina. Therefore, new treatments that target early-onset neurodegeneration would be expected to have great value in preventing the early stages of diabetic retinopathy. Here, we show that the nucleoside reverse transcriptase inhibitor lamivudine (3TC), a newly discovered P2rx7 inhibitor, can attenuate progression of both neuronal and vascular pathology in diabetic retinopathy. We found that the expression of P2rx7 was increased in the murine retina as early as one month following diabetes induction. Compared to non-diabetic controls, diabetic mice treated with 3TC were protected against the formation of acellular capillaries in the retina. This occurred concomitantly with a maintenance in neuroglial function, as shown by improved a- and b-wave amplitude, as well as oscillatory potentials. An improvement in the number of GABAergic amacrine cells and the synaptophysin-positive area was also observed in the inner retina of 3TC-treated diabetic mice. Our data suggest that 3TC has therapeutic potential since it can target both neuronal and vascular defects caused by diabetes.
Collapse
Affiliation(s)
- Sofia Pavlou
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Josy Augustine
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Rónán Cunning
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Kevin Harkin
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
9
|
Zhang CM, Huang X, Lu HL, Meng XM, Song NN, Chen L, Kim YC, Chen J, Xu WX. Diabetes-induced damage of gastric nitric oxide neurons mediated by P2X7R in diabetic mice. Eur J Pharmacol 2019; 851:151-160. [PMID: 30796903 DOI: 10.1016/j.ejphar.2019.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023]
Abstract
It is generally considered that enteric neuropathy is one of the causative factors in diabetic gastroparesis. Our previous study demonstrated that there is a loss of NOS neurons in diabetic mice. However, the underlying mechanism remains unclear. The present study was designed to clarify the relationship between neuronal P2X7R and NOS neuron damage. The effect of P2X7R on diabetes-induced gastric NOS neurons damage and its mechanism were investigated by using quantitative RT-PCR,immunofluorescence, western blot, isometric force recording, intracellular calcium ([Ca2+]i) measurement and whole-cell patch clamp techniques. The immunohistochemistry and western blot results showed that nNOS expression was significantly down-regulated in diabetic mice, meanwhile, electric field stimulation-induced NOS sensitive relaxation was significantly suppressed. Myenteric neurons expressed P2X7R and pannexin1, and the mRNA and protein level of P2X7R and pannexin1 were up-regulated in diabetic mice. BzATP, a P2X7R activator, evoked [Ca2+]i increase in Hek293 cells with heterologous expression of P2X7R (Hek293-P2X7R cells) and the same dose of ATP-induced [Ca2+]i was more obvious in Hek293-P2X7R cells than in Hek293 cells. Application of BzATP activated an inward current of Hek293-P2X7R in a dose dependent manner. Hek293-P2X7R but not untransfected Hek293 cells could take up of YO-PRO-1. In addition, the uptake of YO-PRO-1 by Hek293-P2X7R was blocked by oxATP, a P2X7 antagonist and CBX, a pannexin1 inhibitor. The results suggest that the P2X7R of enteric neurons may be involved in diabetes-induced NOS neuron damage via combining with pannexin-1 to form transmembrane pores which induce macromolecular substances and calcium into the cells.
Collapse
Affiliation(s)
- Chun-Mei Zhang
- Department of Pediatric Surgery, Xin Hua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, 1665 Kong Jiang Road, 200092 Shanghai, India; Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Xu Huang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Hong-Li Lu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Xiang-Min Meng
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Ni-Na Song
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Lu Chen
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Young-Chul Kim
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jie Chen
- Department of Pediatric Surgery, Xin Hua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, 1665 Kong Jiang Road, 200092 Shanghai, India.
| | - Wen-Xie Xu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
10
|
Wu H, Wen F, Jiang M, Liu Q, Nie Y. LncRNA uc.48+ is involved in the diabetic immune and inflammatory responses mediated by P2X7 receptor in RAW264.7 macrophages. Int J Mol Med 2018; 42:1152-1160. [PMID: 29750294 DOI: 10.3892/ijmm.2018.3661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/27/2018] [Indexed: 11/05/2022] Open
Abstract
High glucose combined with high FFAs can contribute to the unfavorable development of type 2 diabetes mellitus (T2DM) and monocytes/macrophages are important in the occurrence and development of T2DM, which is regarded as a type of low‑grade inflammation. Although our previous study demonstrated that increased expression of P2X7 receptor (P2X7R) in peripheral blood monocytes may alter the innate immune system and that long non‑coding (lnc)RNA uc.48+ was involved in diabetic neuropathic pain, the involvement of uc.48+ mediated by the P2X7R in monocyte/macrophages during T2DM has not been reported. In the present study, the effectsof uc.48+ small interference RNA (siRNA) on factors, including the mRNA and protein expression of P2X7R, apoptosis and proliferation, levels of reactive oxygen species (ROS), cytokine levels, and expression of phosphorylated (p‑) extracellular signal‑regulated kinase (ERK)1/2, were examined in RAW264.7 macrophages following exposure to high glucose and high plasma free fatty acids (FFAs). After RAW264.7 cells were transfected with uc.48+ siRNA under high glucose conditions and FFAs treatment, the mRNA expression levels of uc.48+ and P2X7 receptor were detected by reverse transcription‑polymerase chain reaction. The protein mass of P2X7 receptor and ERK signaling pathway were assessed by western blotting. ROS and calcium concentrations, and culture supernatant cytokine content [tumor necrosis factor‑α, interleukin (IL)‑10, IL‑1β] were detected by fluorescent probes and ELISA respectively. Cell viability and apoptosis were determined by MTS test and flow cytometry, respectively. It was found that treatment of RAW264.7 cells with high glucose and FFAs, which exhibited increased expression of uc.48+, evoked P2X7R‑mediated immune and inflammatory responses through several means, including cytokine secretion, ROS formation, and activation of the ERK signaling pathway. The uc.48+ siRNA regulated these factors and thus influenced the course and outcome of the immune and inflammatory responses mediated by P2X7R.
Collapse
Affiliation(s)
- Hong Wu
- Department of Clinical Laboratory, First Affiliated Hospital, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fang Wen
- Department of Clinical Laboratory, First Affiliated Hospital, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei Jiang
- Department of Clinical Laboratory, First Affiliated Hospital, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiang Liu
- Institute of Blood Transfusion, Jiangxi Province Blood Center, Nanchang, Jiangxi 330077, P.R. China
| | - Yijun Nie
- Department of Clinical Laboratory, First Affiliated Hospital, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018; 9:52. [PMID: 29467654 PMCID: PMC5808178 DOI: 10.3389/fphar.2018.00052] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.
Collapse
Affiliation(s)
- Luiz E B Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Department of Surgery, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Chen Z, He L, Li L, Chen L. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 2018; 479:196-207. [PMID: 29366837 DOI: 10.1016/j.cca.2018.01.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 10/24/2022]
Abstract
The P2X7 purinergic receptor, a calcium permeable cationic channel, is activated by extracellular ATP. Most studies show that P2X7 receptor plays an important role in the nervous system diseases, immune response, osteoporosis and cancer. Mounting evidence indicates that P2X7 receptor is also associated with cardiovascular disease. For example, the P2X7 receptor activated by ATP can attenuate myocardial ischemia-reperfusion injury. By contrast, inhibition of P2X7 receptor decreases arrhythmia after myocardial infarction, prolongs cardiac survival after a long term heart transplant, alleviates the dilated cardiomyopathy and the autoimmune myocarditis process. The P2X7 receptor also mitigates vascular diseases including atherosclerosis, hypertension, thrombosis and diabetic retinopathy. This review focuses on the latest research on the role and therapeutic potential of P2X7 receptor in cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
13
|
Subauste CS. CD40, a Novel Inducer of Purinergic Signaling: Implications to the Pathogenesis of Experimental Diabetic Retinopathy. Vision (Basel) 2017; 1:vision1030020. [PMID: 31740645 PMCID: PMC6835793 DOI: 10.3390/vision1030020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy is a leading complication of diabetes. Death of capillary cells with resulting capillary degeneration is a central feature of this disease. Chronic low-grade inflammation has been linked to the development of retinal capillary degeneration in diabetes. CD40 is an upstream inducer of a broad range of inflammatory responses in the diabetic retina and is required for death of retinal capillary cells. Recent studies uncovered CD40 as a novel inducer of purinergic signaling and identified the CD40-ATP-P2X7 pathway as having a key role in the induction of inflammation in the diabetic retina and programmed cell death of retinal endothelial cells.
Collapse
Affiliation(s)
- Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-2785
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Jun HK, Jung YJ, Choi BK. Inflammasome activators induce fibronectin expression and release in macrophages. Cell Microbiol 2017; 19. [PMID: 27870323 DOI: 10.1111/cmi.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022]
Abstract
Extracellular fibronectin (Fn) can activate pro-inflammatory pathways and serves as an endogenous danger signalling molecule; thus, it has been suggested as a biomarker for several diseases. In the present study, we found that pathogen-derived activators of the inflammasomes induce the expression and secretion of Fn in macrophages through a mechanism involving adenosine triphosphate and caspase-1 activation. We also found that plasma Fn induces caspase-1 activation and cell death in macrophages, epithelial cells, and fibroblasts. Together, these results indicate that Fn plays a critical role in inflammasome-activated cells by amplifying caspase-1 activation and inducing inflammatory cell death.
Collapse
Affiliation(s)
| | | | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea.,Dental Research Institute, School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| |
Collapse
|
15
|
|
16
|
Geraghty NJ, Watson D, Adhikary SR, Sluyter R. P2X7 receptor in skin biology and diseases. World J Dermatol 2016; 5:72-83. [DOI: 10.5314/wjd.v5.i2.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel present on immune and other cells. Activation of this receptor by its natural ligand extracellular adenosine triphosphate results in a variety of downstream responses, including the release of pro-inflammatory mediators and cell death. In normal skin, P2X7 is present on keratinocytes, Langerhans cells and fibroblasts, while the presence of this receptor on other cutaneous cells is mainly inferred from studies of equivalent cell types present in other tissues. Mast cells in normal skin however express negligible amounts of P2X7, which can be upregulated in cutaneous disease. This review discusses the potential significance of P2X7 in skin biology, and the role of this receptor in inflammatory skin disorders such as irritant and chronic dermatitis, psoriasis, graft-versus-host disease, as well is in wound healing, transplantation and skin cancer.
Collapse
|
17
|
Xu H, He L, Liu C, Tang L, Xu Y, Xiong M, Yang M, Fan Y, Hu F, Liu X, Ding L, Gao Y, Xu C, Li G, Liu S, Wu B, Zou L, Liang S. LncRNA NONRATT021972 siRNA attenuates P2X7 receptor expression and inflammatory cytokine production induced by combined high glucose and free fatty acids in PC12 cells. Purinergic Signal 2016; 12:259-68. [PMID: 26865268 DOI: 10.1007/s11302-016-9500-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/03/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy (DNP) is a frequent chronic complication of diabetes mellitus with potentially life-threatening outcomes. High glucose and elevated free fatty acids (FFAs) have been recently recognized as major causes of nervous system damage in diabetes. Our previous study has indicated extracellular stimuli, such as high glucose and/or FFA stress, may activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway and induce a p38 MAPK-dependent sensitization of the P2X7 receptor and release of inflammatory factors in PC12 cells, while the mechanisms underlying remain to be elucidated. Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes, including activation of a series of pathway signalings. Here, we showed combined high D-glucose and FFAs (HGHF) induced an increment of lncRNA-NONRATT021972 (NONCODE ID, nc021972) in PC12 cells. Nc021972 small interference RNA (siRNA) alleviated HGHF-induced activation of p38 MAPK, expression of the P2X7 receptor, and [Ca(2+)]i increment upon P2X7 receptor activation. Further experiments showed that there existed a crosstalk between nc021972 and the p38 MAPK signaling pathway. Inhibition of p38 MAPK signaling decreased nc021972-induced expression of the P2X7 receptor and [Ca(2+)]i increment upon P2X7 receptor activation. Also, nc021972 siRNA inhibited HGHF-induced PC12 release of TNF-α and IL-6 and rescued decreased cell viability mediated by the P2X7 receptor. Therefore, inhibition of nc021972 may serve as a novel therapeutic strategy for diabetes complicated with nervous inflammatory diseases.
Collapse
Affiliation(s)
- Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Luling He
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changle Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lan Tang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yonghu Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Mengqi Xiong
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Mei Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yongfang Fan
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Fangfang Hu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xingzi Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Ding
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
18
|
De Marchi E, Orioli E, Dal Ben D, Adinolfi E. P2X7 Receptor as a Therapeutic Target. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:39-79. [PMID: 27038372 DOI: 10.1016/bs.apcsb.2015.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P2X7 receptor is an ATP-gated cation channel that upon agonist interaction leads to cellular influx of Na(+) and Ca(2+) and efflux of K(+). P2X7 is expressed by a wide variety of cells and its activation mediates a large number of biological processes like inflammation, neuromodulation, cell death or cell proliferation and it has been associated to related pathological conditions including infectious, inflammatory, autoimmune, neurological, and musculoskeletal disorders and, in the last years, to cancer. This chapter describes structural features of P2X7, chemical properties of its agonist, antagonist, and allosteric modulators and summarizes recent advances on P2X7 receptor as therapeutic target in the aforementioned diseases. We also give an overview on recent literature suggesting that P2X7 single-nucleotide polymorphisms could be exploited as diagnostic biomarkers for the development of tailored therapies.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
Trans-resveratrol attenuates high fatty acid-induced P2X7 receptor expression and IL-6 release in PC12 cells: possible role of P38 MAPK pathway. Inflammation 2015; 38:327-37. [PMID: 25348860 DOI: 10.1007/s10753-014-0036-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic neuropathy (DNP) is the most common chronic complication of diabetes. Elevated free fatty acids (FFAs) have been recently recognized as major causes of inflammation and are relevant to the functional changes of nerve system in diabetes. Trans-resveratrol (RESV), a polyphenolic natural compound, has long been acknowledged to have anti-inflammation properties and may exert a neuroprotective effect on neuronal damage in diabetes, while the mechanisms underlying are largely unknown. Our previous study on differential PC12 cells cultured with high FFAs has shown chronic FFAs overload increased PC12 interleukin (IL)-6 release mediated by P2X7 receptor, a ligand-gated cation channel activated by extracellular adenosine triphosphate (ATP); a high FFA-induced activation of P38 mitogen-activated protein kinase (MAPK) pathway was pointed to be a potential underlying mechanism. Data from this study indicated that RESV, in a dose-dependent manner, reduced high FFA-induced IL-6 release by impeding the activation of P2X7 receptor, as shown by the results that both high FFA-elevated P2X7 receptor messenger RNA (mRNA) and protein expression as well as high FFA-evoked [Ca(2+)]i in response to 3'-O-(4-benzoyl) benzoyl-ATP (a selective P2X7 receptor agonist) were significantly attenuated. Meanwhile, high FFA-induced activation of P38 MAPK, an essential prerequisite for high FFA-activated P2X7 receptor and subsequent IL-6 release, was also dose-dependently abrogated by RESV. Furthermore, RESV may hamper the activation of P38a MAPK (one paramount P38 isoform) via forming hydrogen bonding with Thr175 residue, surrounding the two residues (Thy180 and Tyr182) essential for canonical activation of P38a MAPK. Taken together, RESV could inhibit high FFA-induced inflammatory IL-6 release mediated by P2X7 receptor through deactivation of P38 MAPK signaling pathway. All these results outline the potential mechanisms involved in the neuroprotective roles of RESV and highlight the clinical application of RESV in treatment of inflammation in relation to DNP.
Collapse
|
20
|
Kreft E, Kowalski R, Jankowski M, Szczepańska-Konkel M. Renal vasculature reactivity to agonist of P2X7 receptor is increased in streptozotocin-induced diabetes. Pharmacol Rep 2015; 68:71-4. [PMID: 26721355 DOI: 10.1016/j.pharep.2015.06.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/20/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Diabetic nephropathy is characterized by the dysfunction of renal microvasculature. The involvement of the P2X7 receptor, being a part of the purinergic system, is presumable in this process. The aim of our study was to investigate the P2X7 receptor-mediated renal microvasculature response and renal metabolism of extracellular adenine nucleotides in diabetic rats. METHODS Study was performed on streptozotocin-induced diabetic Wistar rats. The vascular response to BzATP, an agonist of the P2X7 receptor, was monitored based on the changes of cortical blood flow (CBF), glomerular filtration rate (GFR) and glomerular inulin space (GIS). The renal interstitial fluid (RIF) was probed by microdialysis technique and concentrations of ATP and adenosine were measured. Activity on NTDPase and 5'-nucleotidases was measured on renal membranes. RESULTS Diabetic kidneys were characterized by decreased ATP RIF and increased adenosine RIF concentrations with accompanied enhancement of NTDPase and 5'-nucleotidase activities. BzATP induced a more pronounced increase of CBF and decrease of GFR and GIS in diabetes rats. These effects were abolished by A438079, an antagonist of the P2X7 receptor. CONCLUSIONS It is possible that increased P2X7 receptor reactivity may be involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Ewelina Kreft
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Robert Kowalski
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland; Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Science, Gdańsk, Poland.
| | | |
Collapse
|
21
|
Sathanoori R, Swärd K, Olde B, Erlinge D. The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells. PLoS One 2015; 10:e0125111. [PMID: 25938443 PMCID: PMC4418812 DOI: 10.1371/journal.pone.0125111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
Endothelial cells lining the blood vessels are principal players in vascular inflammatory responses. Dysregulation of endothelial cell function caused by hyperglycemia, dyslipidemia, and hyperinsulinemia often result in impaired vasoregulation, oxidative stress, inflammation, and altered barrier function. Various stressors including high glucose stimulate the release of nucleotides thus initiating signaling via purinergic receptors. However, purinergic modulation of inflammatory responses in endothelial cells caused by high glucose and palmitate remains unclear. In the present study, we investigated whether the effect of high glucose and palmitate is mediated by P2X7 and P2X4 and if they play a role in endothelial cell dysfunction. Transcript and protein levels of inflammatory genes as well as reactive oxygen species production, endothelial-leukocyte adhesion, and cell permeability were investigated in human umbilical vein endothelial cells exposed to high glucose and palmitate. We report high glucose and palmitate to increase levels of extracellular ATP, expression of P2X7 and P2X4, and inflammatory markers. Both P2X7 and P2X4 antagonists inhibited high glucose and palmitate-induced interleukin-6 levels with the former having a significant effect on interleukin-8 and cyclooxygenase-2. The effect of the antagonists was confirmed with siRNA knockdown of the receptors. In addition, P2X7 mediated both high glucose and palmitate-induced increase in reactive oxygen species levels and decrease in endothelial nitric oxide synthase. Blocking P2X7 inhibited high glucose and palmitate-induced expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as leukocyte-endothelial cell adhesion. Interestingly, high glucose and palmitate enhanced endothelial cell permeability that was dependent on both P2X7 and P2X4. Furthermore, antagonizing the P2X7 inhibited high glucose and palmitate-mediated activation of p38-mitogen activated protein kinase. These findings support a novel role for P2X7 and P2X4 coupled to induction of inflammatory molecules in modulating high glucose and palmitate-induced endothelial cell activation and dysfunction.
Collapse
Affiliation(s)
- Ramasri Sathanoori
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Björn Olde
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
22
|
P2X receptors regulate adenosine diphosphate release from hepatic cells. Purinergic Signal 2014; 10:587-93. [PMID: 25059924 DOI: 10.1007/s11302-014-9419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2-4 h. Nucleotide release from hepatic cells is stimulated by the Ca(2+) ionophore, ionomycin, and by the P2 receptor agonist, 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10-100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca(2+) levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.
Collapse
|
23
|
Sugiyama T. Role of P2X 7 receptors in the development of diabetic retinopathy. World J Diabetes 2014; 5:141-145. [PMID: 24748927 PMCID: PMC3990313 DOI: 10.4239/wjd.v5.i2.141] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/04/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
The P2X7 receptor is one of the members of the family of purinoceptors which are ligand-gated membrane ion channels activated by extracellular adenosine 5’-triphosphate. A unique feature of the P2X7 receptor is that its activation can result in the formation of large plasma membrane pores that allow not only the flux of ions but also of hydrophilic molecules of up to 900 Da. Recent studies indicate that P2X7-mediated signaling can trigger apoptotic cell death after ischemia and during the course of certain neurodegenerative disorders. Expression of the P2X7 receptor has been demonstrated in most types of cells in the retina. This purinoceptor mediates the contraction of pericytes and regulates the spatial and temporal dynamics of the vasomotor response through cell-to-cell electrotonic transmission within the microvascular networks. Of potential clinical significance, investigators have found that diabetes markedly boosts the vulnerability of retinal microvessels to the lethal effect of P2X7 receptor activation. This purinergic vasotoxicity may result in reduced retinal blood flow and disrupted vascular function in the diabetic retina. With recent reports indicating an association between P2X7 receptor activation and inflammatory cytokine expression in the retina, this receptor may also exacerbate the development of diabetic retinopathy by a mechanism involving inflammation.
Collapse
|
24
|
Abstract
The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic signalling, we will focus on the role of purinergic signalling and its changes associated with diabetes in the pancreas and selected tissues/organ systems affected by hyperglycaemia and other stress molecules of diabetes. Since this is the first review of this kind, a comprehensive historical angle is taken, and common and divergent roles of receptors for nucleotides and nucleosides in different organ systems will be given. This integrated picture will aid our understanding of the challenges of the potential and currently used drugs targeted to specific organ/cells or disorders associated with diabetes.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF UK
- Department of Pharmacology, Melbourne University, Melbourne, Australia
| | - Ivana Novak
- Molecular and Integrative Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
25
|
Abstract
Inflammasomes are the central processing units (CPUs) responsible for decoding and integrating signals of foreignness, damage, danger, and distress released by pathogens, cells, and tissues. It was initially thought that the inflammasomes participated only in pathogen recognition and in the pathogenesis of a few, rare, hereditary inflammatory disorders. On the contrary, it is now clear that they have a central role in the pathogenesis of basically all types of chronic inflammation, in metabolic diseases and cancer. So far, six or possibly eight inflammasome subtypes have been identified. Their main, but by no means exclusive, function is to catalyze conversion of pro-IL-1β and pro-IL-18 into their respective mature forms. However, the different inflammasome subtypes may also participate in additional responses, e.g., proliferation, regulation of glycolytic metabolism, or cell activation, albeit it is not clear whether these effects are still mediated through IL-1β release or via modulation of other caspase-1-dependent or -independent pathways. Central to inflammasome organization and activity are proteins belonging to the nucleotide binding domain, leucine-rich repeat, or NOD-like receptor family. One relevant exception is the AIM2 inflammasome. NOD-like receptors belong to the superfamily of pattern recognition receptors, a group of highly conserved molecules specialized in the recognition of invariant molecular patterns diffused across species. Given their potent proinflammatory activity, it is anticipated that inflammasome activation is tightly controlled. In this review, I will summarize essential features of the known NOD-like receptors, the basic molecular structure of inflammasomes, their participation in pathophysiological responses, and their possible exploitation for therapy.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
26
|
Xu H, Wu B, Jiang F, Xiong S, Zhang B, Li G, Liu S, Gao Y, Xu C, Tu G, Peng H, Liang S, Xiong H. High fatty acids modulate P2X(7) expression and IL-6 release via the p38 MAPK pathway in PC12 cells. Brain Res Bull 2013; 94:63-70. [PMID: 23438872 DOI: 10.1016/j.brainresbull.2013.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 01/01/2023]
Abstract
Diabetic neuropathy (DNP) is the most common chronic complication of diabetes. Elevated free fatty acids (FFAs) have been recently recognized as a major cause of nervous system damage in diabetes. P2X receptors play a primary role in regulation of neuronal interleukin (IL)-6 release, which is of paramount relevance to the functional changes of nerve system. The present study aimed to investigate the effects of high FFAs on the P2X7 expression and IL-6 release in PC12 cells. High FFAs induced P2X7 expression and IL-6 release significantly in PC12 cells. Moreover, high FFAs enhanced ATP or BzATP-induced Ca(2+) signals in PC12 cells. Inhibition of P2X7 by transfection with P2X7-siRNA or co-culture with BBG (a specific P2X7 inhibitor) at high concentrations of FFAs decreased ATP or BzATP-promoted Ca(2+) signals and IL-6 release in PC12 cells. High FFAs induced the phosphorylation of p38 in PC12 cells. Blockade of p38 pathways by SB-203580 inhibited P2X7 up-expression, ATP or BzATP-evoked [Ca(2+)]i rises as well as IL-6 release in PC12 cells exposed to high FFAs. Therefore, high concentrations of FFAs increased the expression of P2X7 in PC12 cells via activation of p38 mitogen-activated protein kinase (MAPK) signaling pathway, which contributed to P2X7-mediated IL-6 release from PC12 cells.
Collapse
Affiliation(s)
- Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sparks DL, Chatterjee C. Purinergic signaling, dyslipidemia and inflammatory disease. Cell Physiol Biochem 2012; 30:1333-9. [PMID: 23095900 DOI: 10.1159/000343322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome is a compound obesity disorder, wherein the abnormal metabolism of glucose and lipid is associated with the development of chronic inflammatory diseases. The prevalence of this disease is increasing in the developed world, but the causative linkage between these metabolic disorders has remained obscure. Metabolic disease may be associated with chronic nucleotide secretion, purinergic signaling and activation of inflammatory pathways. Purinergic signaling has been implicated in impaired glucose metabolism and inflammatory disease and may contribute to dyslipidemia. Our research shows that purinergic signaling disrupts hepatic lipoprotein metabolism by blocking insulin receptor signaling and by activating cellular autophagic pathways. Chronic stimulation of purinergic signaling may therefore be causative to glucose and lipid metabolic disorders and associated with the development of cardiovascular disease.
Collapse
Affiliation(s)
- Daniel L Sparks
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada.
| | | |
Collapse
|
28
|
Abstract
During embryonic development, the skin, the largest organ of the human body, and nervous system are both derived from the neuroectoderm. Consequently, several key factors and mechanisms that influence and control central or peripheral nervous system activities are also present and hence involved in various regulatory mechanisms of the skin. Apparently, this is the case for the ion and non-ion selective channels as well. Therefore, in this review, we shall focus on delineating the regulatory roles of the channels in skin physiology and pathophysiology. First, we introduce key cutaneous functions and major characteristics of the channels in question. Then, we systematically detail the involvement of a multitude of channels in such skin processes (e.g. skin barrier formation, maintenance, and repair, immune mechanisms, exocrine secretion) which are mostly defined by cutaneous non-neuronal cell populations. Finally, we close by summarizing data suggesting that selected channels are also involved in skin diseases such as e.g. atopic dermatitis, psoriasis, non-melanoma cancers and malignant melanoma, genetic and autoimmune diseases, etc., as well as in skin ageing.
Collapse
Affiliation(s)
- Attila Oláh
- DE-MTA Lendület Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | | | | |
Collapse
|
29
|
Trueblood KE, Mohr S, Dubyak GR. Purinergic regulation of high-glucose-induced caspase-1 activation in the rat retinal Müller cell line rMC-1. Am J Physiol Cell Physiol 2011; 301:C1213-23. [PMID: 21832250 DOI: 10.1152/ajpcell.00265.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic activation of proinflammatory caspase-1 in the retinas of diabetic animals and patients in vivo and retinal Müller cells in vitro is well documented. In this study we characterized how elevated glucose and extracellular purines contribute to the activation of caspase-1 in a cultured rat Müller cell (rMC-1) model. The ability of high glucose (25 mM, 24 h) to activate caspase-1 was attenuated by either apyrase, which metabolizes extracellular ATP to AMP, or adenosine deaminase (ADA), which metabolizes extracellular adenosine to inosine. This suggested that autocrine stimulation of ATP-sensing P2 receptors and adenosine-sensing P1 receptors may in part mediate the response to high glucose. Exogenous ATP, 5'-N-ethylcarboxamido-adenosine (NECA), a nonselective P1 receptor agonist, or forskolin (FSK) increased caspase-1 activity in rMC-1 cells cultured in control glucose (5 mM) medium. Accumulation of active caspase-1 was also increased by dipyridamole, which suppresses adenosine reuptake. High-glucose stimulation of caspase-1 was attenuated by suramin, a nonselective P2 antagonist, or A2 adenosine receptor antagonists, but not by antagonism of P2X7 ATP-gated ion channel receptors. Although high glucose increased P2X7 mRNA, neither P2X7 protein nor function was detected in rMC-1 cells. The increased caspase-1 activity stimulated by high glucose, FSK, NECA, or ATP was correlated with increased gene expression of caspase-1 and thioredoxin-interacting-protein (TXNIP). These findings support a novel role for autocrine P1 and P2 purinergic receptors coupled to cAMP signaling cascades and transcriptional induction of caspase-1 in mediating the high-glucose-induced activation of caspase-1 and secretion of IL-1β in a cell culture model of nonhematopoietic retinal Müller cells.
Collapse
Affiliation(s)
- Katherine E Trueblood
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
30
|
Expression and function of P2X(7) receptor and CD39/Entpd1 in patients with type 2 diabetes and their association with biochemical parameters. Cell Immunol 2011; 269:135-43. [PMID: 21492831 DOI: 10.1016/j.cellimm.2011.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/26/2011] [Accepted: 03/21/2011] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is an important contributor to the insulin resistance observed in type 2 diabetes (T2D). We evaluated the expression and function of the P2X(7) receptor and CD39/Entpd1, molecules involved in the cellular regulation of inflammation, in peripheral blood mononuclear cells from T2D patients, and their correlation with the concentration of HbA1c in blood. T2D patients with deficient metabolic control (DC) showed increased proportion of P2X(7)(+) cells compared with healthy individuals; T2D-DC subjects also displayed higher proportion of CD14(+), CD4(+) and CD19(+) subpopulations of P2X(7)(+) cells when compared with T2D patients with acceptable metabolic control. A significant association was observed between the proportion of P2X(7)(+)CD14(+) cells and blood concentration of LDL-c. In addition, the percentages of CD39(+) cells and CD39(+)CD19(+) cells were significantly associated with HbA1c and fasting plasma glucose levels. No changes were observed in the function of P2X(7)(+) cells from T2D patients; however, enhanced CD39/Entpd1 enzyme activity and low serum levels of IL-17 were detected. Therefore, CD39(+) cells could have a balancing regulatory role in the inflammatory process observed in patients with T2D.
Collapse
|
31
|
Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 2010; 3:re1. [PMID: 20068232 DOI: 10.1126/scisignal.3104re1] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
32
|
P2X(7) Receptors as a Transducer in the Co-Occurrence of Neurological/Psychiatric and Cardiovascular Disorders: A Hypothesis. Cardiovasc Psychiatry Neurol 2009; 2009:545263. [PMID: 20029625 PMCID: PMC2790226 DOI: 10.1155/2009/545263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 06/19/2009] [Indexed: 01/24/2023] Open
Abstract
Background. Over-stimulation of the purinergic P2X7 receptor may bring about cellular dysfunction and injury in settings of neurodegeneration, chronic inflammation, as well as in psychiatric and cardiovascular diseases. Here we speculate how P2X7 receptor over-activation may lead to the co-occurrence of neurological and psychiatric disorders with cardiovascular disorders. Presentation. We hypothesize that proinflammatory cytokines, in particular interleukin-1β, are key players in the pathophysiology of neurological, psychiatric, and cardiovascular diseases. Critically, this premise is based on a role for the P2X7 receptor in triggering a rise in these cytokines. Given the broad distribution of P2X7 receptors in nervous, immune, and vascular tissue cells, this receptor is proposed as central in linking the nervous, immune, and cardiovascular systems. Testing. Investigate, retrospectively, whether a bidirectional link can be established between illnesses with a proinflammatory component (e.g., inflammatory and chronic neuropathic pain) and cardiovascular disease, for example, hypertension, and whether patients treated with anti-inflammatory drugs have a lower incidence of disease complications. Positive outcome would indicate a prospective study to evaluate therapeutic efficacy of P2X7 receptor antagonists. Implications. It should be stressed that sufficient direct evidence does not exist at present supporting our hypothesis. However, a positive outcome would encourage the further development of P2X7 receptor antagonists and their application to limit the co-occurrence of neurological, psychiatric, and cardiovascular disorders.
Collapse
|
33
|
Glas R, Sauter NS, Schulthess FT, Shu L, Oberholzer J, Maedler K. Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor antagonist and beta cell function and survival. Diabetologia 2009; 52:1579-88. [PMID: 19396427 PMCID: PMC2709906 DOI: 10.1007/s00125-009-1349-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/03/2009] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS In obesity, beta cells activate compensatory mechanisms to adapt to the higher insulin demand. Interleukin-1 receptor antagonist (IL-1Ra) prevents obesity-induced hyperglycaemia and is a potent target for the treatment of diabetes, but the mechanisms of its secretion and regulation in obesity are unknown. In the present study, we hypothesise the regulation of IL-1Ra secretion by purinergic P2X(7) receptors in islets. METHODS Production and regulation of P2X(7) were studied in pancreatic sections from lean and obese diabetic patients, non-diabetic controls and in isolated islets. IL-1Ra, IL-1beta and insulin secretion, glucose tolerance and beta cell mass were studied in P2x7 (also known as P2Rx7)-knockout mice. RESULTS P2X(7) levels were elevated in beta cells of obese patients, but downregulated in patients with type 2 diabetes mellitus. Elevated glucose and non-esterified fatty acids rapidly activated P2X(7) and IL-1Ra secretion in human islets, and this was inhibited by P2X(7) blockade. In line with our results in vitro, P2x7-knockout mice had a lower capacity to secrete IL-1Ra. They exhibited severe and rapid hyperglycaemia, glucose intolerance and impaired beta cell function in response to a high-fat/high-sucrose diet, were unable to compensate by increasing their beta cell mass in response to the diet and showed increased beta cell apoptosis. CONCLUSIONS/INTERPRETATION Our study shows a tight correlation of P2X(7) activation, IL-1Ra secretion and regulation of beta cell mass and function. The increase in P2X(7) production is one mechanism that may explain how beta cells compensate by adapting to the higher insulin demand. Disturbances within that system may result in the progression of diabetes.
Collapse
Affiliation(s)
- R Glas
- Department of Medicine, Larry L. Hillblom Islet Research Center, UCLA, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
34
|
P2X(7) Receptors in Neurological and Cardiovascular Disorders. Cardiovasc Psychiatry Neurol 2009; 2009:861324. [PMID: 20029634 PMCID: PMC2794459 DOI: 10.1155/2009/861324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/26/2009] [Accepted: 04/27/2009] [Indexed: 01/22/2023] Open
Abstract
P2X receptors are ATP-gated cation channels that mediate fast excitatory transmission in diverse regions of the brain and spinal cord. Several P2X receptor subtypes, including P2X(7), have the unusual property of changing their ion selectivity during prolonged exposure to ATP, which results in a channel pore permeable to molecules as large as 900 daltons. The P2X(7) receptor was originally described in cells of hematopoietic origin, and mediates the influx of Ca(2+) and Na(+) and Ca(2+) and Na(+) ions as well as the release of proinflammatory cytokines. P2X(7) receptors may affect neuronal cell death through their ability to regulate the processing and release of interleukin-1beta, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X(7), a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X(7) receptors provides an inflammatory stimulus, and P2X(7) receptor-deficient mice have substantially attenuated inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X(7) receptor activity, by regulating the release of proinflammatory cytokines, may be involved in the pathophysiology of depression. Apoptotic cell death occurs in a number of vascular diseases, including atherosclerosis, restenosis, and hypertension, and may be linked to the release of ATP from endothelial cells, P2X(7) receptor activation, proinflammatory cytokine production, and endothelial cell apoptosis. In this context, the P2X(7) receptor may be viewed as a gateway of communication between the nervous, immune, and cardiovascular systems.
Collapse
|
35
|
Duarte JMN, Oses JP, Rodrigues RJ, Cunha RA. Modification of purinergic signaling in the hippocampus of streptozotocin-induced diabetic rats. Neuroscience 2007; 149:382-91. [PMID: 17869435 DOI: 10.1016/j.neuroscience.2007.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Diabetic encephalopathy is a recognized complication of untreated diabetes resulting in a progressive cognitive impairment accompanied by modification of hippocampal function. The purinergic system is a promising novel target to control diabetic encephalopathy since it might simultaneously control hippocampal synaptic plasticity and glucose handling. We now tested whether streptozotocin-induced diabetes led to a modification of extracellular ATP homeostasis and density of membrane ATP (P2) receptors in the hippocampus, a brain structure involved in learning and memory. The extracellular levels of ATP, evaluated in the cerebrospinal fluid, were reduced by 60.4+/-17.0% in diabetic rats. Likewise, the evoked release of ATP as well as its extracellular catabolism was also decreased in hippocampal nerve terminals of diabetic rats by 52.8+/-10.9% and 38.7+/-6.5%, respectively. Western blot analysis showed that the density of several P2 receptors (P2X(3,5,7) and P2Y(2,6,11)) was decreased in hippocampal nerve terminals. This indicates that the synaptic ATP signaling is globally depressed in diabetic rats, which may contribute for diabetes-associated decrease of synaptic plasticity. In contrast, the density of P2 receptors (P2X(1,2,5,6,7) and P2Y(6) but not P2Y(2)) increased in whole hippocampal membranes, suggesting an adaptation of non-synaptic P2 receptors to sense decreased levels of extracellular ATP in diabetic rats, which might be aimed at preserving the non-synaptic purinergic signaling.
Collapse
Affiliation(s)
- J M N Duarte
- Centre for Neurosciences of Coimbra, Faculty of Medicine, Institute of Biochemistry, University of Coimbra, 3004-504 Coimbra, Portugal.
| | | | | | | |
Collapse
|
36
|
Lo Monaco A, Gulinelli S, Castellino G, Solini A, Ferrari D, La Corte R, Trotta F, Di Virgilio F. Increased sensitivity to extracellular ATP of fibroblasts from patients affected by systemic sclerosis. Ann Rheum Dis 2007; 66:1124-5. [PMID: 17626974 PMCID: PMC1954715 DOI: 10.1136/ard.2006.065078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2007] [Indexed: 11/04/2022]
|
37
|
Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K. The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond) 2007; 4:5. [PMID: 17367517 PMCID: PMC1838907 DOI: 10.1186/1476-9255-4-5] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/16/2007] [Indexed: 01/06/2023] Open
Abstract
The inflammatory process, orchestrated against a variety of injurious stimuli, is composed of three inter-related phases; initiation, propagation and resolution. Understanding the interplay between these three phases and harnessing the beneficial properties of inflammation whilst preventing its damaging effects, will undoubtedly lead to the advent of much needed therapies, particularly in chronic disease states. The P2X7 receptor (P2X7R) is increasingly recognised as an important cell surface regulator of several key inflammatory molecules including IL-1beta, IL-18, TNF-alpha and IL-6. Moreover, as P2X7R-dependent cytokine production is driven by activating the inflammasome, antagonists of this receptor are likely to have therapeutic potential as novel anti-inflammatory therapies. The function of the P2X7R in inflammation, immunity and its potential role in disease will be reviewed and discussed.
Collapse
Affiliation(s)
- Martin F Lister
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - John Sharkey
- Astellas CNS Research in Edinburgh, The Chancellor's Building, The University of Edinburgh, 49 Little France Crescent, EH16 4SB, UK
| | - Deborah A Sawatzky
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Joseph P Hodgkiss
- Astellas CNS Research in Edinburgh, The Chancellor's Building, The University of Edinburgh, 49 Little France Crescent, EH16 4SB, UK
| | - Donald J Davidson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Keith Finlayson
- Astellas CNS Research in Edinburgh, The Chancellor's Building, The University of Edinburgh, 49 Little France Crescent, EH16 4SB, UK
| |
Collapse
|
38
|
Solini A, Santini E, Nannipieri M, Ferrannini E. High glucose and homocysteine synergistically affect the metalloproteinases-tissue inhibitors of metalloproteinases pattern, but not TGFB expression, in human fibroblasts. Diabetologia 2006; 49:2499-506. [PMID: 16896935 DOI: 10.1007/s00125-006-0377-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 06/16/2006] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Atherosclerosis is particularly aggressive in patients with diabetes. Hyperhomocysteinaemia causes oxidative stress and cytokine secretion: its atherogenic effect is mediated by an enhanced inflammatory response. Matrix metalloproteinases (MMPs) regulate extracellular matrix degradation and remodelling, and contribute to the vulnerability of the atherosclerotic lesion. Fibroblasts contribute to collagen biosynthesis and participate in plaque remodelling via expression and release of MMP2 and MMP9. To explore the role of hyperhomocysteinaemia in cellular pathways involved in plaque growth and stability in diabetic patients, we studied the effect of hyperhomocysteinaemia in human fibroblasts grown in the presence of normal or high glucose concentrations. MATERIALS AND METHODS In fibroblasts of five normal subjects, grown at 5.5 or 22 mmol/l glucose and treated with homocysteine, we determined: (1) MMP2, MMP9 and tissue inhibitor of metalloproteinases (TIMP)-1 (an MMP inhibitor) production by western blot analysis; (2) their activity by zymography; (3) TGFB1 expression by real-time PCR; and (4) TGFB, fibronectin and IL6 release by ELISA. RESULTS Hyperhomocysteinaemia increased the production and enzymatic activity of MMP2 and MMP9, the effect being more pronounced in high glucose. Conversely, TIMP1 production was reduced by hyperhomocysteinaemia in both conditions, especially in high glucose. Hyperhomocysteinaemia also stimulated IL6 release, at least in part through nuclear factor-kappaB activation. TGFB1 expression was not affected by hyperhomocysteinaemia either in normal or in high glucose. CONCLUSIONS/INTERPRETATION Homocysteine upregulates the MMP-TIMP pathway and IL6 release, the effect being stronger in the presence of high glucose. These actions of homocysteine may contribute to the increased atherogenesis observed in diabetic patients with poor metabolic control.
Collapse
Affiliation(s)
- A Solini
- Department of Internal Medicine, University of Pisa, Via Roma, 67, I-56100, Pisa, Italy.
| | | | | | | |
Collapse
|
39
|
Skaper SD, Facci L, Culbert AA, Evans NA, Chessell I, Davis JB, Richardson JC. P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro. Glia 2006; 54:234-42. [PMID: 16817206 DOI: 10.1002/glia.20379] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The P2X(7) receptor has been implicated in the release of cytokines and in the induction of cell death, and is up-regulated in a transgenic mouse model of Alzheimer's disease. Using cocultures of rat cortical neurons and microglia, we show that ATP and the more potent P2X(7) agonist benzoylbenzoyl-ATP (BzATP) cause neuronal cell injury. The deleterious effects of BzATP-treated microglia were prevented by nonselective P2X antagonists (PPADS and oxidized ATP) and by the more selective P2X(7) antagonist Brilliant Blue G. Similar concentrations of BzATP caused release of superoxide and nitric oxide from isolated microglia, and neuronal cell injury was attenuated by a superoxide dismutase mimetic and by a peroxynitrite decomposition catalyst, suggesting a role for reactive oxide species. Cocultures composed of wild-type cortical neurons, and microglia from P2X(7) receptor-deficient mice failed to exhibit neuronal cell injury in the presence of BzATP, but retained sensitivity to injury when microglia were derived from genotypically matched normal (P2X(7) (+/+) mice), thereby establishing P2X(7) involvement in the injury process. P2X(7) receptor activation on microglia thus appears necessary for microglial-mediated injury of neurons, and proposes that targeting P2X(7) receptors may constitute a novel approach for the treatment of acute and chronic neurodegenerative disorders where a microglial component is evident.
Collapse
Affiliation(s)
- Stephen D Skaper
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Third Avenue, Harlow CM19 5AW, Essex, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
40
|
Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, Di Virgilio F, Ferrari D. P2X(7) receptor: Death or life? Purinergic Signal 2005; 1:219-27. [PMID: 18404507 PMCID: PMC2096546 DOI: 10.1007/s11302-005-6322-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/28/2005] [Accepted: 01/31/2005] [Indexed: 01/08/2023] Open
Abstract
The P2X7 plasma membrane receptor is an intriguing molecule that is endowed with the ability to kill cells, as well as to activate many responses and even stimulate proliferation. Here, the authors give an overview on the multiplicity and complexity of P2X7-mediated responses, discussing recent information on this receptor. Particular attention has been paid to early and late signs of apoptosis and necrosis linked to activation of the receptor and to the emerging field of P2X7 function in carcinogenesis.
Collapse
Affiliation(s)
- Elena Adinolfi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F. A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 2005; 16:3659-65. [PMID: 15944221 PMCID: PMC1182305 DOI: 10.1091/mbc.e05-03-0222] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ATP is emerging as an ubiquitous extracellular messenger. However, measurement of ATP concentrations in the pericellular space is problematic. To this aim, we have engineered a firefly luciferase-folate receptor chimeric protein that retains the N-terminal leader sequence and the C-terminal GPI anchor of the folate receptor. This chimeric protein, named plasma membrane luciferase (pmeLUC), is targeted and localized to the outer aspect of the plasma membrane. PmeLUC is sensitive to ATP in the low micromolar to millimolar level and is insensitive to all other nucleotides. To identify pathways for nonlytic ATP release, we transfected pmeLUC into cells expressing the recombinant or native P2X7 receptor (P2X7R). Both cell types release large amounts of ATP (100-200 microM) in response to P2X7R activation. This novel approach unveils a hitherto unsuspected nonlytic pathway for the release of large amounts of ATP that might contribute to spreading activation and recruitment of immune cells at inflammatory sites.
Collapse
Affiliation(s)
- Patrizia Pellegatti
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara 44100, Italy
| | | | | | | | | |
Collapse
|