1
|
Bhatia HS, Dweck MR, Craig N, Capoulade R, Pibarot P, Trainor PJ, Whelton SP, Rikhi R, Lidani KCF, Post WS, Tsai MY, Criqui MH, Shapiro MD, Budoff MJ, DeFilippis AP, Thanassoulis G, Tsimikas S. Oxidized Phospholipids and Calcific Aortic Valvular Disease. J Am Coll Cardiol 2024; 84:2430-2441. [PMID: 39545902 DOI: 10.1016/j.jacc.2024.08.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Oxidized phospholipids (OxPLs) are carried by apolipoprotein B-100-containing lipoproteins (OxPL-apoB) including lipoprotein(a) (Lp[a]). Both OxPL-apoB and Lp(a) have been associated with calcific aortic valve disease (CAVD). OBJECTIVES This study aimed to evaluate the associations between OxPL-apoB, Lp(a) and the prevalence, incidence, and progression of CAVD. METHODS OxPL-apoB and Lp(a) were evaluated in MESA (Multi-Ethnic Study of Atherosclerosis) and a participant-level meta-analysis of 4 randomized trials of participants with established aortic stenosis (AS). In MESA, the association of OxPL-apoB and Lp(a) with aortic valve calcium (AVC) at baseline and 9.5 years was evaluated using multivariable ordinal regression models. In the meta-analysis, the association between OxPL-apoB and Lp(a) with AS progression (annualized change in peak aortic valve jet velocity) was evaluated using multivariable linear regression models. RESULTS In MESA, both OxPL-apoB and Lp(a) were associated with prevalent AVC (OR per SD: 1.19 [95% CI: 1.07-1.32] and 1.13 [95% CI: 1.01-1.27], respectively) with a significant interaction between the two (P < 0.01). Both OxPL-apoB and Lp(a) were associated with incident AVC at 9.5 years when evaluated individually (interaction P < 0.01). The OxPL-apoB∗Lp(a) interaction demonstrated higher odds of prevalent and incident AVC for OxPL-apoB with increasing Lp(a) levels. In the meta-analysis, when analyzed separately, both OxPL-apoB and Lp(a) were associated with faster increase in peak aortic valve jet velocity, but when evaluated together, only OxPL-apoB remained significant (ß: 0.07; 95% CI: 0.01-0.12). CONCLUSIONS OxPL-apoB is a predictor of the presence, incidence, and progression of AVC and established AS, particularly in the setting of elevated Lp(a) levels, and may represent a novel therapeutic target for CAVD.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Craig
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Philippe Pibarot
- Department of Cardiology, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Québec, Canada
| | - Patrick J Trainor
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Seamus P Whelton
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rishi Rikhi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Karita C F Lidani
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael H Criqui
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California, USA; Division of Preventive Medicine, Department of Family Medicine, University of California-San Diego, La Jolla, California, USA
| | - Michael D Shapiro
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Matthew J Budoff
- Division of Cardiology, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Andrew P DeFilippis
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George Thanassoulis
- Department of Medicine, Division of Experimental Medicine, McGill University Health Center, Montreal, Québec, Canada
| | - Sotirios Tsimikas
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Abstract
Prolonged or excessive exposure to oxidized phospholipids (OxPLs) generates chronic inflammation. OxPLs are present in atherosclerotic lesions and can be detected in plasma on apolipoprotein B (apoB)-containing lipoproteins. When initially conceptualized, OxPL-apoB measurement in plasma was expected to reflect the concentration of minimally oxidized LDL, but, surprisingly, it correlated more strongly with plasma lipoprotein(a) (Lp(a)) levels. Indeed, experimental and clinical studies show that Lp(a) particles carry the largest fraction of OxPLs among apoB-containing lipoproteins. Plasma OxPL-apoB levels provide diagnostic information on the presence and extent of atherosclerosis and improve the prognostication of peripheral artery disease and first and recurrent myocardial infarction and stroke. The addition of OxPL-apoB measurements to traditional cardiovascular risk factors improves risk reclassification, particularly in patients in intermediate risk categories, for whom improving decision-making is most impactful. Moreover, plasma OxPL-apoB levels predict cardiovascular events with similar or greater accuracy than plasma Lp(a) levels, probably because this measurement reflects both the genetics of elevated Lp(a) levels and the generalized or localized oxidation that modifies apoB-containing lipoproteins and leads to inflammation. Plasma OxPL-apoB levels are reduced by Lp(a)-lowering therapy with antisense oligonucleotides and by lipoprotein apheresis, niacin therapy and bariatric surgery. In this Review, we discuss the role of role OxPLs in the pathophysiology of atherosclerosis and Lp(a) atherogenicity, and the use of OxPL-apoB measurement for improving prognosis, risk reclassification and therapeutic interventions.
Collapse
Affiliation(s)
- Sotirios Tsimikas
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Marchi C, Zimetti F, Budoff MJ, Ronda N. Serum cholesterol loading capacity of macrophages is regulated by seropositivity and C-reactive protein in rheumatoid arthritis patients. Rheumatology (Oxford) 2023; 62:1254-1263. [PMID: 35809057 DOI: 10.1093/rheumatology/keac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Excessive cholesterol accumulation in macrophages is the pivotal step underlying atherosclerotic plaque formation. We here explore factors in the serum of patients with RA, and mechanisms through which they interact with and influence cholesterol loading capacity (CLC) of macrophages. METHODS In a cross-sectional observational cohort of 104 patients with RA, CLC was measured as intracellular cholesterol content in human THP-1-derived macrophages after incubation with patient serum. Low-density lipoprotein (LDL) oxidation was measured in terms of oxidized phospholipids on apoB100-containing particles (oxPL-apoB100). Antibodies against oxidized LDL (anti-oxLDL), proprotein convertase subtilisin/Kexin type-9 (PCSK9) and high-sensitivity CRP were also quantified. All analyses adjusted for atherosclerotic cardiovascular disease (ASCVD) risk score, obesity, total LDL, statin use, age at diagnosis, and anti-oxLDL IgM. RESULTS OxPL-apoB100, anti-oxLDL IgG and PCSK9 were positively associated with CLC (all P < 0.020). OxPL-apoB100 directly influenced CLC only in dual RF- and ACPA-positive patients [unstandardized b (95% bootstrap CI)=2.08 (0.38, 3.79)]. An indirect effect of oxPL-apoB100 on CLC through anti-oxLDL IgG increased, along with level of CRP [index of moderated mediation = 0.55 (0.05-1.17)]. CRP also moderated yet another indirect effect of oxPL-apoB100 on CLC through upregulation of PCSK9, but only among dual-seropositive patients [conditional indirect effect = 0.64 (0.13-1.30)]. CONCLUSION Oxidized LDL can directly influence CLC in dual-seropositive RA patients. Two additional and independent pathways-via anti-oxLDL IgG and PCSK9-may mediate the effects of oxPL-apoB100 on CLC, depending on CRP and seropositivity status. If externally validated, these findings may have clinical implications for cardiovascular risk prevention.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Sarah R Ormseth
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | | | - Elizabeth Hernandez
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Matthew J Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Ruder S, Mansfield B, Immelman AR, Varki N, Miu P, Raal F, Tsimikas S. Lp(a), oxidized phospholipids and oxidation-specific epitopes are increased in subjects with keloid formation. Lipids Health Dis 2022; 21:113. [PMID: 36320028 PMCID: PMC9623907 DOI: 10.1186/s12944-022-01720-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Keloid formation following trauma or surgery is common among darkly pigmented individuals. Since lipoprotein(a) [Lp(a)] has been postulated to have a putative role in wound healing, and also mediates atherosclerotic cardiovascular disease, it was assessed whether Lp(a), its associated oxidized phospholipids and other oxidation-specific biomarkers were associated with keloid formation. METHODS This case-control study included darkly pigmented individuals of African ancestry, 100 with keloid scarring and 100 non-keloid controls. The lipid panel, hsCRP, Lp(a), oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB), IgG and IgM apoB-immune complexes and IgG and IgM autoantibodies to a malondialdehyde mimotope (MDA-mimotope) were measured. Immunohistochemistry of keloid specimens was performed for both Lp(a) and OxPL staining. RESULTS Cases and controls were well matched for age, sex and lipid profile. Mean Lp(a) (57.8 vs. 44.2 mg/dL; P = 0.01, OxPL-apoB 17.4 vs. 15.7 nmol/L; P = 0.009) and IgG and IgM apoB-immune complexes and IgG and IgM MDA-mimotope levels were significantly higher in keloid cases. Keloid tissue stained strongly for OxPL. CONCLUSION Darkly pigmented individuals of African ancestry with keloids have higher plasma levels of Lp(a), OxPL-apoB and oxidation-specific epitopes. The commonality of excessive wound healing in keloids and chronic complications from coronary revascularization suggests avenues of investigation to define a common mechanism driven by Lp(a) and the innate response to oxidized lipids.
Collapse
Affiliation(s)
- Sundeep Ruder
- Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Brett Mansfield
- Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew Ronald Immelman
- Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nissi Varki
- Department of Pathology, University of California, San Diego, USA
| | - Phuong Miu
- Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine, University of California, 9500 Gilman Drive, 92093- 0682 San Diego, USA
| | - Frederick Raal
- Carbohydrate & Lipid Metabolism Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine, University of California, 9500 Gilman Drive, 92093- 0682 San Diego, USA
| |
Collapse
|
6
|
Structure and Dynamics of Oxidized Lipoproteins In Vivo: Roles of High-Density Lipoprotein. Biomedicines 2021; 9:biomedicines9060655. [PMID: 34201176 PMCID: PMC8229488 DOI: 10.3390/biomedicines9060655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/30/2023] Open
Abstract
Oxidative modification of lipoproteins is implicated in the occurrence and development of atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic; however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular diseases. A modified structure of oxLDL, which was increased in the plasma of patients with acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of oxLDL and oxHDL in circulation.
Collapse
|
7
|
Yvan-Charvet L, Bonacina F, Guinamard RR, Norata GD. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc Res 2020; 115:1393-1407. [PMID: 31095280 DOI: 10.1093/cvr/cvz127] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation represents the driving feature of many diseases, including atherosclerosis, cancer, autoimmunity and infections. It is now established that metabolic processes shape a proper immune response and within this context the alteration in cellular cholesterol homeostasis has emerged as a culprit of many metabolic abnormalities observed in chronic inflammatory diseases. Cholesterol accumulation supports the inflammatory response of myeloid cells (i.e. augmentation of toll-like receptor signalling, inflammasome activation, and production of monocytes and neutrophils) which is beneficial in the response to infections, but worsens diseases associated with chronic metabolic inflammation including atherosclerosis. In addition to the innate immune system, cells of adaptive immunity, upon activation, have also been shown to undergo a reprogramming of cellular cholesterol metabolism, which results in the amplification of inflammatory responses. Aim of this review is to discuss (i) the molecular mechanisms linking cellular cholesterol metabolism to specific immune functions; (ii) how cellular cholesterol accumulation sustains chronic inflammatory diseases such as atherosclerosis; (iii) the immunometabolic profile of patients with defects of genes affecting cholesterol metabolism including familial hypercholesterolaemia, cholesteryl ester storage disease, Niemann-Pick type C, and immunoglobulin D syndrome/mevalonate kinase deficiency. Available data indicate that cholesterol immunometabolism plays a key role in directing immune cells function and set the stage for investigating the repurposing of existing 'metabolic' drugs to modulate the immune response.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rodolphe Renè Guinamard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Giuseppe Danilo Norata
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.,Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| |
Collapse
|
8
|
Tyurina YY, St Croix CM, Watkins SC, Watson AM, Epperly MW, Anthonymuthu TS, Kisin ER, Vlasova II, Krysko O, Krysko DV, Kapralov AA, Dar HH, Tyurin VA, Amoscato AA, Popova EN, Bolevich SB, Timashev PS, Kellum JA, Wenzel SE, Mallampalli RK, Greenberger JS, Bayir H, Shvedova AA, Kagan VE. Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. J Leukoc Biol 2019; 106:57-81. [PMID: 31071242 PMCID: PMC6626990 DOI: 10.1002/jlb.3mir0119-004rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA3 and LTB4, by an iPLA2 γ inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claudette M St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tamil S Anthonymuthu
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena R Kisin
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena N Popova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Sergey B Bolevich
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Peter S Timashev
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Itabe H, Kato R, Sawada N, Obama T, Yamamoto M. The Significance of Oxidized Low-Density Lipoprotein in Body Fluids as a Marker Related to Diseased Conditions. Curr Med Chem 2019. [PMID: 29521196 DOI: 10.2174/0929867325666180307114855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of ox-LDL and LDL rather than oxLDL concentration alone has also been focused. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in the circulatory system.
Collapse
Affiliation(s)
- Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Rina Kato
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Naoko Sawada
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
10
|
Kato R, Hayashi M, Aiuchi T, Sawada N, Obama T, Itabe H. Temporal and spatial changes of peroxiredoxin 2 levels in aortic media at very early stages of atherosclerotic lesion formation in apoE-knockout mice. Free Radic Biol Med 2019; 130:348-360. [PMID: 30395970 DOI: 10.1016/j.freeradbiomed.2018.10.458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/21/2023]
Abstract
The events that trigger early onset of atherosclerotic lesion formation are poorly understood. Initially, microscopic atherosclerotic lesions appear in the aortic root in 10-week-old apoE-knockout mice that are fed normal chow. Using proteome and immunohistochemical analyses, we investigated proteins in aortic media whose expression changes in athero-prone regions at the beginning of lesion formation. Protein profiles of the root/arch and thoracic/abdominal regions of aortas in 10-week-old apoE-knockout mice were analyzed using 2D-gel electrophoresis. Proteins in 81 spots with different abundance were identified. Among them, we focused on proteins related to oxidative stress and smooth muscle cells (SMCs). The level of peroxiredoxin 2 (Prx2), a major cellular antioxidant enzyme that reduces hydrogen peroxide, was lower in aortic root/arch compared with thoracic/abdominal aorta. Immunohistochemical staining demonstrated that Prx2 expression in SMCs in the aortic root was high at 4 weeks and decreased at 10 weeks in apoE-knockout mice, while Prx2 expression in the aorta was unchanged in wild-type mice. The level of Prx2 expression correlated positively with the SMC differentiation markers, α-smooth muscle actin and transgelin, suggesting that a decline in Prx2 expression accompanies SMC dedifferentiation. Accumulated acrolein-modified proteins and the infiltration of macrophages in aortic media were observed in areas with low Prx2 expression. These results showed that Prx2 expression declines in athero-prone aortic root before lesion formation, and this reduction in Prx2 expression correlates with lipid peroxidation, SMC dedifferentiation, and macrophage recruitment.
Collapse
Affiliation(s)
- Rina Kato
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masataka Hayashi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Naoko Sawada
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
11
|
Zhang Q, Ai Y, Dong H, Wang J, Xu L. Circulating Oxidized Low-Density Lipoprotein is a Strong Risk Factor for the Early Stage of Coronary Heart Disease. IUBMB Life 2018; 71:277-282. [PMID: 30414358 DOI: 10.1002/iub.1966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
This study aimed to detect the circulating oxidized low-density lipoprotein (ox-LDL) levels of controls and patients with stable angina pectoris (SAP), unstable angina pectoris (UAP), and acute myocardial infarction (AMI) and also to investigate the correlation with the severity of coronary heart disease (CHD). Plasma levels of circulating ox-LDL-4E6, malondialdehyde (MDA), high-sensitivity C-reactive protein (hs-CRP), total cholesterol, high-density lipoprotein cholesterol, LDL cholesterol, apoprotein A, apoprotein B, and lipoprotein (a) (Lp(a)) were measured in 99 participants who underwent coronary angiography. The plasma ox-LDL level was significantly higher in patients with CHD than in controls (P = 0.000). However, it was lower in the UAP and AMI groups than in the SAP group (P = 0.000). The lipid peroxide level (MDA) showed a significant difference among all groups (P = 0.000). It increased significantly in patients with CHD. The Lp(a) and hs-CRP levels were significantly higher in patients with CHD (P = 0.000 and 0.000, respectively). No difference in Lp(a) was found among the SAP, UAP, and AMI groups (P = 0.296). In patients with CHD, the plasma ox-LDL correlated negatively with hs-CRP (P = 0.011), and serum MDA correlated positively with hs-CRP (P = 0.004). The plasma ox-LDL could be used as a strong risk factor for the early stage but not the advanced stage of CHD. Hs-CRP may bound and transfer ox-LDL to macrophages. © 2018 IUBMB Life, 71(1):277-282, 2019.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yongshun Ai
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Huiqiu Dong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Junsong Wang
- Department of Ultrasound, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Xu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
12
|
|
13
|
Yvan-Charvet L, Cariou B. Poststatin era in atherosclerosis management: lessons from epidemiologic and genetic studies. Curr Opin Lipidol 2018; 29:246-258. [PMID: 29553996 DOI: 10.1097/mol.0000000000000505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases (CVD) are the leading cause of death worldwide with over 17 million deaths every year and represent a major public health challenge. The last decade has seen the emergence of novel antiatherogenic therapies. RECENT FINDINGS Despite intensive lipid and blood pressure interventions, the burden of CVD is expected to markedly progress because of the global aging of the population and increasing exposure to detrimental lifestyle-related risk. Epidemiologic and genetic studies helped to better apprehend the biology of atherosclerosis and allowed pharmaceutical innovation and recent translational successes. This includes the development of novel lipid and glucose-lowering therapies and the leverage of anti-inflammatory therapies. SUMMARY Here, we discuss promises and expectations of emerging scientific and pharmaceutical innovations and translational successes to meet the global therapeutic demand.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice
| | - Bertrand Cariou
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| |
Collapse
|
14
|
Effect of therapeutic interventions on oxidized phospholipids on apolipoprotein B100 and lipoprotein(a). J Clin Lipidol 2016; 10:594-603. [DOI: 10.1016/j.jacl.2016.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/31/2015] [Accepted: 01/26/2016] [Indexed: 11/20/2022]
|
15
|
Relationship of oxidized phospholipids on apolipoprotein B-100 to cardiovascular outcomes in patients treated with intensive versus moderate atorvastatin therapy: the TNT trial. J Am Coll Cardiol 2015; 65:1286-1295. [PMID: 25835440 DOI: 10.1016/j.jacc.2015.01.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB) is a biomarker of increased risk for major adverse cardiovascular events (MACE) in community cohorts, but its role in patients with stable coronary heart disease (CHD) is unknown. OBJECTIVES This study sought to examine the relationship between these oxidative biomarkers and cardiovascular outcomes in patients with established CHD. METHODS In a random sample from the TNT (Treating to New Targets) trial, OxPL-apoB levels were measured in 1,503 patients at randomization (after an 8-week run-in period taking atorvastatin 10 mg) and 1 year after being randomized to atorvastatin 10 or 80 mg. We examined the association between baseline levels of OxPL-apoB and MACE, defined as death from CHD, nonfatal myocardial infarction, resuscitation after cardiac arrest, and fatal/nonfatal stroke, as well as the effect of statin therapy on OxPL-apoB levels and MACE. RESULTS Patients with events (n = 156) had higher randomization levels of OxPL-apoB than those without events (p = 0.025). For the overall cohort, randomization levels of OxPL-apoB predicted subsequent MACE (hazard ratio [HR]: 1.21; 95% confidence interval: 1.04 to 1.41; p = 0.018) per doubling and tertile 3 versus tertile 1 (hazard ratio: 1.69; 95% confidence interval [CI]: 1.14 to 2.49; p = 0.01) after multivariate adjustment for age, sex, body mass index, among others, and treatment assignment. In the atorvastatin 10-mg group, tertile 3 was associated with a higher risk of MACE compared to the first tertile (HR: 2.08; 95% CI: 1.20 to 3.61; p = 0.01) but this was not significant in the atorvastatin 80-mg group (HR: 1.40; 95% CI: 0.80 to 2.46; p = 0.24). CONCLUSIONS Elevated OxPL-apoB levels predict secondary MACE in patients with stable CHD, a risk that is mitigated by atorvastatin 80 mg. (A Study to Determine the Degree of Additional Reduction in CV Risk in Lowering LDL Below Minimum Target Levels [TNT]; NCT00327691).
Collapse
|
16
|
Khoo LHB, Thiam CH, Soh SY, Angeli V. Splenic extrafollicular reactions and BM plasma cells sustain IgM response associated with hypercholesterolemia. Eur J Immunol 2015; 45:1300-12. [DOI: 10.1002/eji.201344347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Lawrence Han Boon Khoo
- Department of Microbiology; Immunology Programme; National University of Singapore; Singapore
- Singapore Immunology Network; Agency for Science; Technology and Research; Biopolis Singapore
| | - Chung Hwee Thiam
- Department of Microbiology; Immunology Programme; National University of Singapore; Singapore
| | - Serena Ying Soh
- Department of Microbiology; Immunology Programme; National University of Singapore; Singapore
| | - Véronique Angeli
- Department of Microbiology; Immunology Programme; National University of Singapore; Singapore
| |
Collapse
|
17
|
Le NA. Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis. Int J Mol Sci 2014; 16:401-19. [PMID: 25548897 PMCID: PMC4307253 DOI: 10.3390/ijms16010401] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/16/2014] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is recognized as one of the primary processes underlying the initiation and progression of atherosclerotic vascular disease. Under physiological conditions, the balance between reactive oxygen species (ROS) generation and ROS scavenging is tightly controlled. As part of normal cellular metabolism, regulated oxidative stress is responsible for a variety of cellular responses. Excess generation of ROS that could not be compensated by antioxidant system has been suggested to be responsible for a number of pathological conditions. Due to their short biological half-lives, direct measurement of ROS is not available and surrogate measures are commonly used. Plasma lipoproteins, by virtue of their close interactions with endothelial cells in the vasculature and the susceptibility of their surface lipids to oxidative modification, are perfect biological sensors of oxidative stress in the arterial wall. In particular, with each consumed meal, triglyceride-rich lipoproteins, secreted by the intestine into the circulation, are responsible for the delivery of 20–40 grams of fat to the peripheral tissues. This flux of dietary lipids is accompanied by concomitant increases in glucose, insulin and other meal-associated metabolites. The contribution of postprandial lipemia to the pathogenesis of atherosclerosis has been previously suggested by several lines of investigation. We have extended this hypothesis by demonstrating the acute generation of oxidative epitopes on plasma lipoproteins as well as transient changes in the oxidative susceptibility of plasma lipoproteins.
Collapse
|
18
|
Trpkovic A, Resanovic I, Stanimirovic J, Radak D, Mousa SA, Cenic-Milosevic D, Jevremovic D, Isenovic ER. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci 2014; 52:70-85. [DOI: 10.3109/10408363.2014.992063] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: progress and future directions. J Cardiovasc Transl Res 2014; 7:719-36. [PMID: 25297940 DOI: 10.1007/s12265-014-9590-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/12/2014] [Indexed: 12/17/2022]
Abstract
Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to non-invasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using "natural" antibodies, lipopeptides, and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents, and guide optimal therapy of high-risk atherosclerotic lesions.
Collapse
|
20
|
Sims KH, Tytler EM, Tipton J, Hill KL, Burgess SW, Shaw WA. Avanti lipid tools: connecting lipids, technology, and cell biology. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1038-48. [PMID: 24954118 DOI: 10.1016/j.bbalip.2014.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/15/2022]
Abstract
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Kacee H Sims
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Ewan M Tytler
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - John Tipton
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Kasey L Hill
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Stephen W Burgess
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| | - Walter A Shaw
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, Al 35007, USA.
| |
Collapse
|
21
|
Nox4 NADPH oxidase contributes to smooth muscle cell phenotypes associated with unstable atherosclerotic plaques. Redox Biol 2014; 2:642-50. [PMID: 24936437 PMCID: PMC4052526 DOI: 10.1016/j.redox.2014.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/12/2014] [Accepted: 04/13/2014] [Indexed: 11/23/2022] Open
Abstract
Plaque instability associated with acute coronary syndromes results in part from apoptosis and senescence of cells within the atherosclerotic (AS) lesion. Increased cellular oxidative stress has been proposed to contribute to plaque progression and changes in composition, leading to plaque instability. Our objective was to examine the role of NADPH oxidase in smooth muscle cell (SMC) phenotypes associated with an unstable plaque. Aortae were isolated from pre-lesion (8 weeks of age) and post-lesion (35 weeks of age) hypercholesterolemic mice (ApoE(-/-)/LDLR(-/-), AS), and age-matched normal C57BL/6J mice. We observed an age-dependent increase in reactive oxygen species (ROS) in aorta from AS mice, with evidence for elevated ROS prior to lesion development. Whereas macrophage infiltration was restricted to the lesion, oxidized lipids extended beyond the plaque and into the vessel wall. Consistent with these findings, we observed dynamic changes in the expression of NADPH oxidases in AS vessels. Specifically, Nox1 expression was increased early and decreased with lesion progression, while induction of Nox4 was a late event. Nox2 and p22(phox) were elevated throughout lesion development. Similar to observations in aortae, SMCs isolated from the lesion of AS aortae had decreased Nox1 and increased Nox4 levels as compared to SMCs from normal mice. AS SMCs demonstrated increased generation of ROS, cell cycle arrest, evidence of senescence, and increased susceptibility to apoptosis. Overexpression of Nox4 in normal SMCs recapitulated the phenotypes of the AS SMCs. We conclude that increased expression of Nox4 in AS may drive SMC phenotypes that lead to the plaque instability and rupture responsible for myocardial infarction and stroke.
Collapse
|
22
|
Tam HK, Kelly AS, Metzig AM, Steinberger J, Johnson LA. Xanthine oxidase and cardiovascular risk in obese children. Child Obes 2014; 10:175-80. [PMID: 24568669 PMCID: PMC3992000 DOI: 10.1089/chi.2013.0098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Pathological mechanisms of how childhood obesity leads to increased risk of cardiovascular disease (CVD) are not fully characterized. Oxidative-stress-related enzymes, such as xanthine oxidase (XO), have been linked to obesity, endothelial dysfunction, and CVD in adults, but little is known about this pathway in children. The aim of this study was to determine whether differential XO activity is associated with endothelial dysfunction, CVD risk factors, or cytokine levels. METHODS Fasting plasma samples were obtained from obese (BMI ≥ 95th percentile; n = 20) and age- and gender-matched healthy weight (BMI > 5th and < 85th percentile; n = 22) children and adolescents (mean age, 12 ± 3 years) to quantify XO activity. In addition, fasting cholesterol, insulin, glucose, blood pressure, endothelial function, and cytokine levels were assessed. RESULTS We observed a 3.8-fold increase in plasma XO activity in obese, compared to healthy weight, children (118 ± 21 vs. 31 ± 9 nU/mg of protein; p < 0.001). Plasma XO activity was correlated with BMI z-score (r = 0.41), waist circumference (r = 0.41), high-density lipoprotein cholesterol (r = -0.32), oxidized low-density lipoprotein (r = 0.57), adiponectin (r = -0.53), and monocyte chemotactic protein-1 (r = -0.59). CONCLUSION XO activity is highly elevated in obese children and correlates with CVD risk factors, suggesting that XO may play a role in increasing cardiovascular risk early in life in the context of obesity.
Collapse
Affiliation(s)
- Harrison K. Tam
- Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, MN
| | - Aaron S. Kelly
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Andrea M. Metzig
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Julia Steinberger
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - L'Aurelle A. Johnson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, MN.,Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
23
|
Ravandi A, Leibundgut G, Hung MY, Patel M, Hutchins PM, Murphy RC, Prasad A, Mahmud E, Miller YI, Dennis EA, Witztum JL, Tsimikas S. Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J Am Coll Cardiol 2014; 63:1961-71. [PMID: 24613321 DOI: 10.1016/j.jacc.2014.01.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study sought to assess whether oxidized lipids are released downstream from obstructive plaques after percutaneous coronary and peripheral interventions using distal protection devices. BACKGROUND Oxidation of lipoproteins generates multiple bioactive oxidized lipids that affect atherothrombosis and endothelial function. Direct evidence of their role during therapeutic procedures, which may result in no-reflow phenomenon, myocardial infarction, and stroke, is lacking. METHODS The presence of specific oxidized lipids was assessed in embolized material captured by distal protection filter devices during uncomplicated saphenous vein graft, carotid, renal, and superficial femoral artery interventions. The presence of oxidized phospholipids (OxPL) and oxidized cholesteryl esters (OxCE) was evaluated in 24 filters using liquid chromatography, tandem mass spectrometry, enzyme-linked immunosorbent assays, and immunostaining. RESULTS Phosphatidylcholine-containing OxPL, including (1-palmitoyl-2-[9-oxo-nonanoyl] PC), representing a major phosphatidylcholine-OxPL molecule quantitated within plaque material, [1-palmitoyl-2-(5-oxo-valeroyl)-sn-glycero-3-phosphocholine], and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, were identified in the extracted lipid portion from all vascular beds. Several species of OxCE, such as keto, hydroperoxide, hydroxy, and epoxy cholesteryl ester derivatives from cholesteryl linoleate and cholesteryl arachidonate, were also present. The presence of OxPL was confirmed using enzyme-linked immunoassays and immunohistochemistry of captured material. CONCLUSIONS This study documents the direct release and capture of OxPL and OxCE during percutaneous interventions from multiple arterial beds in humans. Entrance of bioactive oxidized lipids into the microcirculation may mediate adverse clinical outcomes during therapeutic procedures.
Collapse
Affiliation(s)
- Amir Ravandi
- St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medicine, University of California-San Diego, La Jolla, California
| | - Gregor Leibundgut
- Department of Medicine, University of California-San Diego, La Jolla, California; University of Basel, Basel, Switzerland
| | - Ming-Yow Hung
- Department of Medicine, University of California-San Diego, La Jolla, California; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Mitul Patel
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Patrick M Hutchins
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Anand Prasad
- Department of Medicine, University of California-San Diego, La Jolla, California; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ehtisham Mahmud
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Yury I Miller
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Edward A Dennis
- Department of Pharmacology and Chemistry and Biochemistry, University of California, La Jolla, California
| | - Joseph L Witztum
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Sotirios Tsimikas
- Department of Medicine, University of California-San Diego, La Jolla, California.
| |
Collapse
|
24
|
Lipoproteínas modificadas como marcadores de riesgo cardiovascular en la diabetes mellitus. ACTA ACUST UNITED AC 2013; 60:518-28. [DOI: 10.1016/j.endonu.2012.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022]
|
25
|
Miller YI, Tsimikas S. Oxidation-specific epitopes as targets for biotheranostic applications in humans: biomarkers, molecular imaging and therapeutics. Curr Opin Lipidol 2013; 24:426-37. [PMID: 23995232 PMCID: PMC4085330 DOI: 10.1097/mol.0b013e328364e85a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW Emerging data demonstrate the potential of translational applications of antibodies directed against oxidation-specific epitopes (OSEs). 'Biotheranostics' as used in this context in cardiovascular disease (CVD) describes targeting of OSEs for biomarker, therapeutic and molecular imaging diagnostic applications. RECENT FINDINGS Atherogenesis can be viewed as a chronic, maladaptive inflammatory response to OSE and related antigens. Lipid oxidation collectively yields a large variety of OSE, such as oxidized phospholipids (OxPL) and malondialdehyde epitopes. OSEs are immunogenic, proinflammatory, proatherogenic and plaque destabilizing and represent danger-associated molecular patterns (DAMPs). DAMPs are recognized by the innate immune system via pattern recognition receptors, including scavenger receptors, IgM natural antibodies and complement factor H, which bind, neutralize and/or facilitate their clearance. Biomarker assays measuring OxPL present on apolipoprotein B-100 lipoproteins, and particularly on lipoprotein (a), predict the development of CVD events. In contrast, OxPL on plasminogen facilitate fibrinolysis and may reduce atherothrombosis. Oxidation-specific antibodies attached to magnetic nanoparticles image lipid-rich, oxidation-rich plaques. Infusion or overexpression of oxidation-specific antibodies reduces the progression of atherosclerosis by potentially neutralizing and clearing OSE and preventing foam cell formation, suggesting similar applications in humans. SUMMARY Using the accelerating knowledge base and improved understanding of the interplay of oxidation, inflammation and innate and adaptive immunity in atherogenesis, emerging clinical applications of oxidation-specific antibodies may identify, monitor and treat CVD in humans.
Collapse
Affiliation(s)
- Yury I Miller
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
26
|
Leibundgut G, Scipione C, Yin H, Schneider M, Boffa MB, Green S, Yang X, Dennis E, Witztum JL, Koschinsky ML, Tsimikas S. Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a). J Lipid Res 2013; 54:2815-30. [PMID: 23828779 DOI: 10.1194/jlr.m040733] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp(55/57)→Ala(55/57) substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp(57)→Ala(57) substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)'s pro-atherogenic potential.
Collapse
Affiliation(s)
- Gregor Leibundgut
- Departments of Medicine, University of California, San Diego, La Jolla, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ahmadi N, Nabavi V, Hajsadeghi F, Zeb I, Flores F, Ebrahimi R, Budoff M. Aged garlic extract with supplement is associated with increase in brown adipose, decrease in white adipose tissue and predict lack of progression in coronary atherosclerosis. Int J Cardiol 2013; 168:2310-4. [PMID: 23453866 DOI: 10.1016/j.ijcard.2013.01.182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/24/2012] [Accepted: 01/18/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Aged garlic extract with supplement (AGE-S) significantly reduces coronary artery calcium (CAC). We evaluated the effects of AGE-S on change in white (wEAT) and brown (bEAT) epicardial adipose tissue, homocysteine and CAC. METHODS Sixty subjects, randomized to a daily capsule of placebo vs. AGE-S inclusive of aged garlic-extract (250 mg) plus vitamin-B12 (100 μg), folic-acid (300 μg), vitamin-B6 (12.5mg) and L-arginine (100mg) underwent CAC, wEAT and bEAT measurements at baseline and 12 months. The postcuff deflation temperature-rebound index of vascular function was assessed using a reactive-hyperemia procedure. Vascular dysfunction was defined according to the tertiles of temperature-rebound at 1 year of follow-up. CAC progression was defined as an annual-increase in CAC>15%. RESULTS From baseline to 12 months, there was a strong correlation between increase in wEAT and CAC (r(2)=0.54, p=0.0001). At 1 year, the risks of CAC progression and increased wEAT and homocysteine were significantly lower in AGE-S to placebo (p<0.05). Similarly, bEAT and temperature-rebound were significantly higher in AGE-S as compared to placebo (p<0.05). Strong association between increase in temperature-rebound and bEAT/wEAT ratio (r(2)=0.80, p=0.001) was noted, which was more robust in AGE-S. Maximum beneficial effect of AGE-S was noted with increase in bEAT/wEAT ratio, temperature-rebound, and lack of progression of homocysteine and CAC. CONCLUSIONS AGE-S is associated with increase in bEAT/wEAT ratio, reduction of homocysteine and lack of progression of CAC. Increases in bEAT/wEAT ratio correlated strongly with increases in vascular function measured by temperature-rebound and predicted a lack of CAC progression and plaque stabilization in response to AGE-S.
Collapse
Affiliation(s)
- Naser Ahmadi
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA; Greater Los Angeles Veterans Administration Medical Center, UCLA-School of Medicine, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Navab M, Reddy ST, Van Lenten BJ, Buga GM, Hough G, Wagner AC, Fogelman AM. High-density lipoprotein and 4F peptide reduce systemic inflammation by modulating intestinal oxidized lipid metabolism: novel hypotheses and review of literature. Arterioscler Thromb Vasc Biol 2012; 32:2553-60. [PMID: 23077141 DOI: 10.1161/atvbaha.112.300282] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidized phospholipids are found in the vasculature of animal models of atherosclerosis, in human atherosclerotic lesions, and in other inflammatory diseases. Oxidized phospholipids cause vascular and nonvascular cells to initiate an inflammatory reaction. Metabolites of arachidonic acid, such as 12-hydroxyeicosatetraenoic acid, can mimic some of the inflammatory properties of oxidized phospholipids. In vitro and in vivo normal high-density lipoprotein (HDL), normal apolipoprotein A-I, and apolipoprotein A-I mimetic peptides, each likely acting in a different manner, prevent the inflammatory reaction characteristic of atherosclerosis, and this is associated with decreased levels of oxidized lipids in tissues and cells. HDL from animal models of atherosclerosis or from humans with atherosclerosis or from humans or animals with other chronic inflammatory diseases does not prevent the inflammatory reaction characteristic of atherosclerosis and may even enhance the inflammatory reaction. In mice and perhaps humans, ≈30% of the steady-state plasma HDL-cholesterol pool is derived from the small intestine. The metabolism of phospholipids by gut bacteria has been recently implicated in atherosclerosis in both mice and humans. Studies with apolipoprotein A-I mimetic peptides suggest that the small intestine is a major tissue regulating systemic inflammation in mouse models of atherosclerosis and may be important for determining the functionality of HDL.
Collapse
Affiliation(s)
- Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room A2-237 CHS, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Does oxidized LDL contribute to atherosclerotic plaque formation and microvascular complications in patients with type 1 diabetes? Clin Biochem 2012; 45:1620-3. [DOI: 10.1016/j.clinbiochem.2012.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/21/2022]
|
30
|
Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA. Role of phospholipid oxidation products in atherosclerosis. Circ Res 2012; 111:778-99. [PMID: 22935534 DOI: 10.1161/circresaha.111.256859] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing clinical evidence that phospholipid oxidation products (Ox-PL) play a role in atherosclerosis. This review focuses on the mechanisms by which Ox-PL interact with endothelial cells, monocyte/macrophages, platelets, smooth muscle cells, and HDL to promote atherogenesis. In the past few years major progress has been made in identifying these mechanisms. It has been recognized that Ox-PL promote phenotypic changes in these cell types that have long-term consequences for the vessel wall. Individual Ox-PL responsible for specific cellular effects have been identified. A model of the configuration of bioactive truncated Ox-PL within membranes has been developed that demonstrates that the oxidized fatty acid moiety protrudes into the aqueous phase, rendering it accessible for receptor recognition. Receptors and signaling pathways for individual Ox-PL species are now determined and receptor independent signaling pathways identified. The effects of Ox-PL are mediated both by gene regulation and transcription independent processes. It has now become apparent that Ox-PL affects multiple genes and pathways, some of which are proatherogenic and some are protective. However, at concentrations that are likely present in the vessel wall in atherosclerotic lesions, the effects promote atherogenesis. There have also been new insights on enzymes that metabolize Ox-PL and the significance of these enzymes for atherosclerosis. With the knowledge we now have of the regulation and effects of Ox-PL in different vascular cell types, it should be possible to design experiments to test the role of specific Ox-PL on the development of atherosclerosis.
Collapse
Affiliation(s)
- Sangderk Lee
- Department of Pathology, University of California-Los Angeles, MRL 4760, 675 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
31
|
van Dijk RA, Kolodgie F, Ravandi A, Leibundgut G, Hu PP, Prasad A, Mahmud E, Dennis E, Curtiss LK, Witztum JL, Wasserman BA, Otsuka F, Virmani R, Tsimikas S. Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J Lipid Res 2012; 53:2773-90. [PMID: 22969153 DOI: 10.1194/jlr.p030890] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationships between oxidation-specific epitopes (OSE) and lipoprotein (a) [Lp(a)] and progressive atherosclerosis and plaque rupture have not been determined. Coronary artery sections from sudden death victims and carotid endarterectomy specimens were immunostained for apoB-100, oxidized phospholipids (OxPL), apo(a), malondialdehyde-lysine (MDA), and MDA-related epitopes detected by antibody IK17 and macrophage markers. The presence of OxPL captured in carotid and saphenous vein graft distal protection devices was determined with LC-MS/MS. In coronary arteries, OSE and apo(a) were absent in normal coronary arteries and minimally present in early lesions. As lesions progressed, apoB and MDA epitopes did not increase, whereas macrophage, apo(a), OxPL, and IK17 epitopes increased proportionally, but they differed according to plaque type and plaque components. Apo(a) epitopes were present throughout early and late lesions, especially in macrophages and the necrotic core. IK17 and OxPL epitopes were strongest in late lesions in macrophage-rich areas, lipid pools, and the necrotic core, and they were most specifically associated with unstable and ruptured plaques. Specific OxPL were present in distal protection devices. Human atherosclerotic lesions manifest a differential expression of OSEs and apo(a) as they progress, rupture, and become clinically symptomatic. These findings provide a rationale for targeting OSE for biotheranostic applications in humans.
Collapse
|
32
|
Itabe H. Oxidized low-density lipoprotein as a biomarker of in vivo oxidative stress: from atherosclerosis to periodontitis. J Clin Biochem Nutr 2012; 51:1-8. [PMID: 22798705 PMCID: PMC3391857 DOI: 10.3164/jcbn.11-00020r1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/28/2011] [Indexed: 12/14/2022] Open
Abstract
Oxidized low-density lipoprotein is known as an important factor in the development of atherosclerosis. The introduction of a sensitive procedure for the determination of oxidized low-density lipoprotein in human circulating plasma using a monoclonal antibody recognizing oxidized phosphatidylcholines has opened new fields of research based on in vivo oxidized low-density lipoprotein. The plasma oxidized low-density lipoprotein levels are significantly elevated in patients with acute myocardial infarction, cerebral infarction or chronic renal failure accompanied by hemodialysis. It was found that the plasma oxidized low-density lipoprotein level increased prior to aortic atherosclerotic lesion enlargement in apolipoprotein E-knockout mice. Recent studies have pointed out that oxidized low-density lipoprotein is transferrable between vessel wall tissue and the circulation, so it is a reasonable hypothesis that plasma oxidized low-density lipoprotein levels reflect the oxidative status at local sites of atherogenesis. Oxidized low-density lipoprotein measurement has been applied to human gingival crevicular fluids, which can be collected easily and safely, and relatively high levels of oxidized low-density lipoprotein were shown to be present. These findings, together with recent clinical follow-up studies, suggest that oxidized low-density lipoprotein is a predictive biomarker of a variety of diseases related to oxidative stress. This review summarizes the current understanding of in vivo oxidized low-density lipoprotein and its potential significance as a biomarker of disease.
Collapse
Affiliation(s)
- Hiroyuki Itabe
- Department of Biological Chemistry, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
33
|
Taleb A, Witztum JL, Tsimikas S. Oxidized phospholipids on apoB-100-containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomark Med 2012; 5:673-94. [PMID: 22003918 DOI: 10.2217/bmm.11.60] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a well-known etiologic factor in the development of cardiovascular disease. Oxidation of lipoproteins, and in particular of low density lipoprotein, is a necessary if not obligatory mechanism for the generation of macrophage-derived foam cells, the first major initiating factor in the development of an atherosclerotic plaque. Oxidation of lipoproteins does not result in the generation of a single, defined molecular species, but of a variety of oxidation-specific epitopes, such as oxidized phospholipids and malondialdehyde-lysine epitopes. Unique monoclonal antibodies have been developed to bind these well-defined epitopes, and have been used in in vitro assays to detect them on circulating lipoproteins present in plasma. This article will summarize the accumulating clinical data of one oxidation-specific biomarker, oxidized phospholipids (OxPL) on apoB-100 lipoproteins. Elevated levels of OxPL/apoB predict the presence and progression of coronary, femoral and carotid artery disease, are increased following acute coronary syndromes and percutaneous coronary intervention, and predict the development of death, myocardial infarction, stroke and need for revascularization in unselected populations. OxPL/apoB levels are independent of traditional risk factors and the metabolic syndrome, and enhance the risk prediction of the Framingham Risk Score. The OxPLs measured in this assay reflect the biological activity of the most atherogenic lipoprotein(a) (Lp(a)) particles, reflected in patients with high plasma Lp(a) levels with small apo(a) isoforms. The predictive value of OxPL/apoB is amplified by Lp(a) and phospholipases such as lipoprotein-associated phospholipase A(2) and secretory phospholipase A(2), which are targets of therapy in clinical trials. This assay has now been validated in over 10,000 patients and efforts are underway to make it available to the research and clinical communities.
Collapse
Affiliation(s)
- Adam Taleb
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA 92093-0682, USA
| | | | | |
Collapse
|
34
|
Li Y, Luke MM, Shiffman D, Devlin JJ. Genetic variants in the apolipoprotein(a) gene and coronary heart disease. ACTA ACUST UNITED AC 2012; 4:565-73. [PMID: 22010162 DOI: 10.1161/circgenetics.111.959601] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Farkas-Epperson M, Le NA. Lipoproteins as biosensors of endothelial oxidative status. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.11.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Owens AP, Passam FH, Antoniak S, Marshall SM, McDaniel AL, Rudel L, Williams JC, Hubbard BK, Dutton JA, Wang J, Tobias PS, Curtiss LK, Daugherty A, Kirchhofer D, Luyendyk JP, Moriarty PM, Nagarajan S, Furie BC, Furie B, Johns DG, Temel RE, Mackman N. Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 2012; 122:558-68. [PMID: 22214850 DOI: 10.1172/jci58969] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 11/09/2011] [Indexed: 11/17/2022] Open
Abstract
Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor-deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex.
Collapse
Affiliation(s)
- A Phillip Owens
- Department of Medicine, Division of Hematology and Oncology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The role of oxidized phospholipids, lipoprotein (a) and biomarkers of oxidized lipoproteins in chronically occluded coronary arteries in sudden cardiac death and following successful percutaneous revascularization. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2012; 13:11-9. [DOI: 10.1016/j.carrev.2011.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 11/24/2022]
|
38
|
Vladykovskaya E, Ozhegov E, Hoetker JD, Xie Z, Ahmed Y, Suttles J, Srivastava S, Bhatnagar A, Barski OA. Reductive metabolism increases the proinflammatory activity of aldehyde phospholipids. J Lipid Res 2011; 52:2209-2225. [PMID: 21957201 DOI: 10.1194/jlr.m013854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The generation of oxidized phospholipids in lipoproteins has been linked to vascular inflammation in atherosclerotic lesions. Products of phospholipid oxidation increase endothelial activation; however, their effects on macrophages are poorly understood, and it is unclear whether these effects are regulated by the biochemical pathways that metabolize oxidized phospholipids. We found that incubation of 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) with THP-1-derived macrophages upregulated the expression of cytokine genes, including granulocyte/macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, monocyte chemotactic protein 1 (MCP-1), interleukin (IL)-1β, IL-6, and IL-8. In these cells, reagent POVPC was either hydrolyzed to lyso-phosphatidylcholine (lyso-PC) or reduced to 1-palmitoyl-2-(5-hydroxy-valeroyl)-sn-glycero-3-phosphocholine (PHVPC). Treatment with the phospholipase A(2) (PLA(2)) inhibitor, pefabloc, decreased POVPC hydrolysis and increased PHVPC accumulation. Pefabloc also increased the induction of cytokine genes in POVPC-treated cells. In contrast, PHVPC accumulation and cytokine production were decreased upon treatment with the aldose reductase (AR) inhibitor, tolrestat. In comparison with POVPC, lyso-PC led to 2- to 3-fold greater and PHVPC 10- to 100-fold greater induction of cytokine genes. POVPC-induced cytokine gene induction was prevented in bone-marrow derived macrophages from AR-null mice. These results indicate that although hydrolysis is the major pathway of metabolism, reduction further increases the proinflammatory responses to POVPC. Thus, vascular inflammation in atherosclerotic lesions is likely to be regulated by metabolism of phospholipid aldehydes in macrophages.
Collapse
Affiliation(s)
- Elena Vladykovskaya
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Evgeny Ozhegov
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - J David Hoetker
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Zhengzhi Xie
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Yonis Ahmed
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Jill Suttles
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Oleg A Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202.
| |
Collapse
|
39
|
The Dynamics of Oxidized LDL during Atherogenesis. J Lipids 2011; 2011:418313. [PMID: 21660303 PMCID: PMC3108093 DOI: 10.1155/2011/418313] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/09/2011] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates that oxidized low-density lipoprotein (OxLDL) is a useful marker for cardiovascular disease. The uptake of OxLDL by scavenger receptors leads to the accumulation of cholesterol within the foam cells of atherosclerotic lesions. OxLDL has many stimulatory effects on vascular cells, and the presence of OxLDL in circulating blood has been established. According to the classical hypothesis, OxLDL accumulates in the atherosclerotic lesions over a long duration, leading to advanced lesions. However, recent studies on time-course changes of OxLDL in vivo raised a possibility that OxLDL can be transferred between the lesions and the circulation. In this paper, the in vivo dynamics of OxLDL are discussed.
Collapse
|
40
|
Briley-Saebo KC, Cho YS, Shaw PX, Ryu SK, Mani V, Dickson S, Izadmehr E, Green S, Fayad ZA, Tsimikas S. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol 2011; 57:337-47. [PMID: 21106318 PMCID: PMC3095034 DOI: 10.1016/j.jacc.2010.09.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether iron oxide particles targeted to oxidation-specific epitopes image atherosclerotic lesions. BACKGROUND Oxidized low-density lipoprotein plays a major role in atherosclerotic plaque progression and destabilization. Prior studies indicate that gadolinium micelles labeled with oxidation-specific antibodies allow for in vivo detection of vulnerable plaques with magnetic resonance imaging (MRI). However, issues related to biotransformation/retention of gadolinium might limit clinical translation. Iron oxides are recognized as safe and effective contrast agents for MRI. Because the efficacy of passively targeted iron particles remains variable, it was hypothesized that iron particles targeted to oxidation-specific epitopes might increase the utility of this platform. METHODS Lipid-coated ultra-small superparamagnetic iron particles (LUSPIOs) (<20 nm) and superparamagnetic iron particles (<40 nm) were conjugated with antibodies targeted to either malondialdehyde-lysine or oxidized phospholipid epitopes. All formulations were characterized, and their in vivo efficacy evaluated in apolipoprotein E deficient mice 24 h after bolus administration of a 3.9-mg Fe/kg dose with MRI. In vivo imaging data were correlated with the presence of oxidation-specific epitopes with immunohistochemistry. RESULTS MRI of atherosclerotic lesions, as manifested by signal loss, was observed after administration of targeted LUSPIOs. Immunohistochemistry confirmed the presence of malondialdehyde-epitopes and iron particles. Limited signal attenuation was observed for untargeted LUSPIOs. Additionally, no significant arterial wall uptake was observed for targeted or untargeted lipid-coated superparamagnetic iron oxide particles, due to their limited ability to penetrate the vessel wall. CONCLUSIONS This study demonstrates that LUSPIOs targeted to oxidation-specific epitopes image atherosclerotic lesions and suggests a clinically translatable platform for the detection of atherosclerotic plaque.
Collapse
Affiliation(s)
- Karen C. Briley-Saebo
- Translational and Molecular Imaging Institute and Department of Radiology, Mount Sinai School of Medicine, New York, New York
| | - Young Seok Cho
- Seoul National University, Seoul, South Korea
- Vascular Medicine Program, University of California San Diego, La Jolla, California
| | - Peter X. Shaw
- Vascular Medicine Program, University of California San Diego, La Jolla, California
| | - Sung Kee Ryu
- Eulji University, Seoul, South Korea
- Vascular Medicine Program, University of California San Diego, La Jolla, California
| | - Venkatesh Mani
- Translational and Molecular Imaging Institute and Department of Radiology, Mount Sinai School of Medicine, New York, New York
| | - Stephen Dickson
- Translational and Molecular Imaging Institute and Department of Radiology, Mount Sinai School of Medicine, New York, New York
| | - Ehsan Izadmehr
- Translational and Molecular Imaging Institute and Department of Radiology, Mount Sinai School of Medicine, New York, New York
| | - Simone Green
- Vascular Medicine Program, University of California San Diego, La Jolla, California
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute and Department of Radiology, Mount Sinai School of Medicine, New York, New York
- Departments of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York, New York
| | - Sotirios Tsimikas
- Vascular Medicine Program, University of California San Diego, La Jolla, California
| |
Collapse
|
41
|
Gosmanova EO, Le NA. Cardiovascular Complications in CKD Patients: Role of Oxidative Stress. Cardiol Res Pract 2011; 2011:156326. [PMID: 21253517 PMCID: PMC3022166 DOI: 10.4061/2011/156326] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/08/2010] [Indexed: 11/20/2022] Open
Abstract
Starting with the early stages, patients with chronic kidney disease (CKD) experience higher burden of cardiovascular disease (CVD). Moreover, CVD complications are the major cause of mortality in CKD patients as compared with complications from chronic kidney failure. While traditional CVD risk factors, including diabetes, hypertension, hyperlipidemia, obesity, physical inactivity, may be more prevalent among CKD patients, these factors seem to underestimate the accelerated cardiovascular disease in the CKD population. Search for additional biomarkers that could explain the enhanced CVD risk in CKD patients has gained increasing importance. Although it is unlikely that any single nontraditional risk factor would fully account for the increased CVD risk in individuals with CKD, oxidative stress appears to play a central role in the development and progression of CVD and its complications. We will review the data that support the contribution of oxidative stress in the pathogenesis of CVD in patients with chronic kidney failure.
Collapse
Affiliation(s)
- Elvira O Gosmanova
- Nephrology Division, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | |
Collapse
|
42
|
Briley-Saebo KC, Cho YS, Tsimikas S. Imaging of Oxidation-Specific Epitopes in Atherosclerosis and Macrophage-Rich Vulnerable Plaques. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010; 4:4-16. [PMID: 21297859 PMCID: PMC3018294 DOI: 10.1007/s12410-010-9060-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidative stress, and in particular oxidation of lipoproteins, is a hallmark of atherosclerosis. Upon entry of lipoproteins into the vessel wall, a cascade of pro-atherogenic pathways is initiated whereby the reaction of reactive oxygen species with substrates amenable to oxidation, such as polyunsaturated fatty acids, generates a variety of oxidation-specific epitopes on lipoproteins, proteins in the vessel wall, and apoptotic macrophages. Several of these oxidation-specific epitopes have been well characterized and specific murine and fully human antibodies have been generated in our laboratory to detect them in the vessel wall. We have developed radionuclide, gadolinium and iron oxide based MRI techniques to noninvasively image oxidation-specific epitopes in atherosclerotic lesions. These approaches quantitate plaque burden and also allow detection of atherosclerosis regression and plaque stabilization. In particular, gadolinium micelles or lipid-coated ultrasmall superparamagnetic iron oxide particles containing oxidation-specific antibodies accumulate within macrophages in the artery wall, suggesting they may image the most unstable plaques. Translation of these approaches to humans may allow a sensitive technique to image and monitor high-risk atherosclerotic lesions and may guide optimal therapeutic interventions.
Collapse
|
43
|
Faghihnia N, Tsimikas S, Miller ER, Witztum JL, Krauss RM. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J Lipid Res 2010; 51:3324-30. [PMID: 20713651 DOI: 10.1194/jlr.m005769] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-fat diets have been shown to increase plasma concentrations of lipoprotein(a) [Lp(a)], a preferential lipoprotein carrier of oxidized phospholipids (OxPLs) in plasma, as well as small dense LDL particles. We sought to determine whether increases in plasma Lp(a) induced by a low-fat high-carbohydrate (LFHC) diet are related to changes in OxPL and LDL subclasses. We studied 63 healthy subjects after 4 weeks of consuming, in random order, a high-fat low-carbohydrate (HFLC) diet and a LFHC diet. Plasma concentrations of Lp(a) (P < 0.01), OxPL/apolipoprotein (apo)B (P < 0.005), and OxPL-apo(a) (P < 0.05) were significantly higher on the LFHC diet compared with the HFLC diet whereas LDL peak particle size was significantly smaller (P < 0.0001). Diet-induced changes in Lp(a) were strongly correlated with changes in OxPL/apoB (P < 0.0001). The increases in plasma Lp(a) levels after the LFHC diet were also correlated with decreases in medium LDL particles (P < 0.01) and increases in very small LDL particles (P < 0.05). These results demonstrate that induction of increased levels of Lp(a) by an LFHC diet is associated with increases in OxPLs and with changes in LDL subclass distribution that may reflect altered metabolism of Lp(a) particles.
Collapse
Affiliation(s)
- Nastaran Faghihnia
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Ahmadi N, Tsimikas S, Hajsadeghi F, Saeed A, Nabavi V, Bevinal MA, Kadakia J, Flores F, Ebrahimi R, Budoff MJ. Relation of oxidative biomarkers, vascular dysfunction, and progression of coronary artery calcium. Am J Cardiol 2010; 105:459-66. [PMID: 20152239 DOI: 10.1016/j.amjcard.2009.09.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022]
Abstract
The relation between oxidative stress and coronary artery calcium (CAC) progression is currently not well described. The present study evaluated the relation among the biomarkers of oxidative stress, vascular dysfunction, and CAC. Sixty asymptomatic subjects participated in a randomized trial evaluating the effect of aged garlic extract plus supplement versus placebo and underwent measurement of CAC. The postcuff deflation temperature-rebound index of vascular function was assessed using a reactive hyperemia procedure. The content of oxidized phospholipids (OxPL) on apolipoprotein B-100 (apoB) particles detected by antibody E06 (OxPL/apoB), lipoprotein(a), IgG and IgM autoantibodies to malondialdehyde-low-density lipoprotein and apoB-immune complexes were measured at baseline and after 12 months of treatment. CAC progression was defined as an annual increase in CAC >15%. Vascular dysfunction was defined according to the tertiles of temperature-rebound at 1 year of follow-up. From baseline to 12 months, a strong inverse correlation was noted between an increase in CAC scores and increases in temperature-rebound (r(2) = -0.90), OxPL/apoB (r(2) = -0.85), and lipoprotein(a) (r(2) = -0.81) levels (p <0.0001 for all). The improvement in temperature-rebound correlated positively with the increases in OxPL/apoB (r(2) = 0.81, p = 0.0008) and lipoprotein(a) (r(2) = 0.79, p = 0.0001) but inversely with autoantibodies to malondialdehyde-low-density lipoprotein and apoB-immune complexes. The greatest CAC progression was noted with the lowest tertiles of increases in temperature-rebound, OxPL/apoB and lipoprotein(a) and the highest tertiles of increases in IgG and IgM malondialdehyde-low-density lipoprotein. In conclusion, the present results have documented a strong relation among markers of oxidative stress, vascular dysfunction, and progression of coronary atherosclerosis. Increases in OxPL/apoB and lipoprotein(a) correlated strongly with increases in vascular function and predicted a lack of progression of CAC.
Collapse
Affiliation(s)
- Naser Ahmadi
- Los Angeles Biomedical Research Institute, Harbor UCLA Medical Center, Torrance, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Budoff MJ, Ahmadi N, Gul KM, Liu ST, Flores FR, Tiano J, Takasu J, Miller E, Tsimikas S. Aged garlic extract supplemented with B vitamins, folic acid and L-arginine retards the progression of subclinical atherosclerosis: a randomized clinical trial. Prev Med 2009; 49:101-7. [PMID: 19573556 DOI: 10.1016/j.ypmed.2009.06.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 06/14/2009] [Accepted: 06/18/2009] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Previous studies demonstrated that aged garlic extract reduces multiple cardiovascular risk factors. This study was designed to assess whether aged garlic extract therapy with supplements (AGE+S) favorably affects inflammatory and oxidation biomarkers, vascular function and progression of atherosclerosis as compared to placebo. METHODS In this placebo-controlled, double-blind, randomized trial (conducted 2005-2007), 65 intermediate risk patients (age 60+/-9 years, 79% male) were treated with a placebo capsule or a capsule containing aged garlic extract (250 mg) plus Vitamin B12 (100 microg), folic acid (300 microg), Vitamin B6 (12.5 mg) and l-arginine (100 mg) given daily for a 1 year. All patients underwent coronary artery calcium scanning (CAC), temperature rebound (TR) as an index of vascular reactivity using Digital Thermal Monitoring (DTM), and measurement of lipid profile, autoantibodies to malondialdehyde (MDA)-LDL, apoB-immune complexes, oxidized phospholipids (OxPL) on apolipoprotein B-100 (OxPL/apoB), lipoprotein (a) [Lp (a)], C-reactive protein (CRP), homocysteine were measured at baseline and 12 months. CAC progression was defined as an increase in CAC>15% per year and an increase in TR above baseline was considered a favorable response. RESULTS At 1 year, CAC progression was significantly lower and TR significantly higher in the AGE+S compared to the placebo group after adjustment of cardiovascular risk factors (p<0.05). Total cholesterol, LDL-C, homocysteine, IgG and IgM autoantibodies to MDA-LDL and apoB-immune complexes were decreased, whereas HDL, OxPL/apoB, and Lp (a) were significantly increased in AGE+S to placebo. CONCLUSION AGE+S is associated with a favorable improvement in oxidative biomarkers, vascular function, and reduced progression of atherosclerosis.
Collapse
Affiliation(s)
- Matthew J Budoff
- Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Relationship of Oxidized Phospholipids and Biomarkers of Oxidized Low-Density Lipoprotein With Cardiovascular Risk Factors, Inflammatory Biomarkers, and Effect of Statin Therapy in Patients With Acute Coronary Syndromes. J Am Coll Cardiol 2009; 53:2186-96. [DOI: 10.1016/j.jacc.2009.02.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/05/2009] [Accepted: 02/11/2009] [Indexed: 11/19/2022]
|
47
|
|
48
|
Kato R, Mori C, Kitazato K, Arata S, Obama T, Mori M, Takahashi K, Aiuchi T, Takano T, Itabe H. Transient Increase in Plasma Oxidized LDL During the Progression of Atherosclerosis in Apolipoprotein E Knockout Mice. Arterioscler Thromb Vasc Biol 2009; 29:33-9. [DOI: 10.1161/atvbaha.108.164723] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background—
Plasma level of oxidized low-density lipoprotein (OxLDL) is a risk marker for cardiovascular diseases. The behavior of plasma OxLDL before disease progression has not been studied previously.
Methods and Results—
In this study, we developed a sensitive ELISA procedure for detecting mouse circulating OxLDL using a monoclonal antibody that recognizes oxidized phosphatidylcholine and a rabbit antimouse apolipoprotein B-48 polyclonal antibody. Apolipoprotein E knockout mice were fed on a chow diet for 40 weeks. Oil red O–positive lesions developed gradually by 20 weeks, and the percentage area covered by the lesions increased dramatically after 28 weeks; it covers 33.4% of the surface area by 40 weeks. The OxLDL level, measured after LDL fraction was isolated from each mouse, at 10 weeks was 0.015 ng/μg LDL. It increased 3-fold at 20 weeks of age and then decreased to the basal level by 40 weeks of age, suggesting that OxLDL appears before the development of atherosclerotic lesions. The occurrence of lipid peroxidation products, acrolein and oxidized phosphatidylcholines, in aortic tissue were revealed by immunohistochemical staining as early as 10 weeks.
Conclusion—
These results suggest that OxLDL might be involved in the early stages of progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- Rina Kato
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Chihiro Mori
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Keiko Kitazato
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Satoru Arata
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Takashi Obama
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Masahiro Mori
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Katsuhiko Takahashi
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Toshihiro Aiuchi
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Tatsuya Takano
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| | - Hiroyuki Itabe
- From the Department of Biological Chemistry (R.K., C.M., K.K., T.O., K.T., T.A., H.I.), Center of Biotechnology (S.A.), Showa University School of Pharmaceutical Sciences, Japan; the Department of Molecular Pathology, Faculty of Pharmaceutical Sciences (M.M., T.T., H.I.), Teikyo University, Japan; and the Department of Neuronal Surgery (K.K.), Institute of Health Biosciences, and University of Tokushima Graduate School, Physiological Chemistry Research Laboratory (K.T.), Hoshi University, Japan
| |
Collapse
|
49
|
The role of phospholipid oxidation products in inflammatory and autoimmune diseases: evidence from animal models and in humans. Subcell Biochem 2008; 49:325-50. [PMID: 18751917 DOI: 10.1007/978-1-4020-8830-8_12] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the discovery of oxidized phospholipids (OxPL) and their implication as modulators of inflammation in cardiovascular disease, roles for these lipid oxidation products have been suggested in many other disease settings. Lipid oxidation products accumulate in inflamed and oxidatively damaged tissue, where they are derived from oxidative modification of lipoproteins, but also from membranes of cells undergoing apoptosis. Thus, increased oxidative stress as well as decreased clearance of apoptotic cells has been implied to contribute to accumulation of OxPL in chronically inflamed tissues.A central role for OxPL in disease states associated with dyslipedemia, including atherosclerosis, diabetes and its complications, metabolic syndrome, and renal insufficiency, as well as general prothrombotic states, has been proposed. In addition, in organs which are constantly exposed to oxidative stress, including lung, skin, and eyes, increased levels of OxPL are suggested to contribute to inflammatory conditions. Moreover, accumulation of OxPL causes general immunmodulation and may lead to autoimmune diseases. Evidence is accumulating that OxPL play a role in lupus erythematosus, antiphospholipid syndrome, and rheumatoid arthritis. Last but not least, a role for OxPL in neurological disorders including multiple sclerosis (MS), Alzheimer's and Parkinson's disease has been suggested.This chapter will summarize recent findings obtained in animal models and from studies in humans that indicate that formation of OxPL represents a general mechanism that may play a major role in chronic inflammatory and autoimmune diseases.
Collapse
|
50
|
Merki E, Graham MJ, Mullick AE, Miller ER, Crooke RM, Pitas RE, Witztum JL, Tsimikas S. Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation 2008; 118:743-53. [PMID: 18663084 DOI: 10.1161/circulationaha.108.786822] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] is a genetic cardiovascular risk factor that preferentially binds oxidized phospholipids (OxPL) in plasma. There is a lack of therapeutic agents that reduce plasma Lp(a) levels. METHODS AND RESULTS Transgenic mice overexpressing human apolipoprotein B-100 (h-apoB-100 [h-apoB mice]) or h-apoB-100 plus human apo(a) to generate genuine Lp(a) particles [Lp(a) mice] were treated with the antisense oligonucleotide mipomersen directed to h-apoB-100 mRNA or control antisense oligonucleotide for 11 weeks by intraperitoneal injection. Mice were then followed up for an additional 10 weeks off therapy. Lp(a) levels [apo(a) bound to apoB-100] and apo(a) levels ["free" apo(a) plus apo(a) bound to apoB-100] were measured by chemiluminescent enzyme-linked immunoassay and commercial assays, respectively. The content of OxPL on h-apoB-100 particles (OxPL/h-apoB) was measured by capturing h-apoB-100 in microtiter wells and detecting OxPL by antibody E06. As expected, mipomersen significantly reduced plasma h-apoB-100 levels in both groups of mice. In Lp(a) mice, mipomersen significantly reduced Lp(a) levels by approximately 75% compared with baseline (P<0.0001) but had no effect on apo(a) levels or hepatic apo(a) mRNA expression. OxPL/h-apoB levels were much higher at baseline in Lp(a) mice compared with h-ApoB mice (P<0.0001) but decreased in a time-dependent fashion with mipomersen. There was no effect of the control antisense oligonucleotide on lipoprotein levels or oxidative parameters. CONCLUSIONS Mipomersen significantly reduced Lp(a) and OxPL/apoB levels in Lp(a) mice. The present study demonstrates that h-apoB-100 is a limiting factor in Lp(a) particle synthesis in this Lp(a) transgenic model. If applicable to humans, mipomersen may represent a novel therapeutic approach to reducing Lp(a) levels and their associated OxPL.
Collapse
Affiliation(s)
- Esther Merki
- University of California San Diego, La Jolla, CA 92093-0682, USA
| | | | | | | | | | | | | | | |
Collapse
|