1
|
Dehghankelishadi P, Maritz MF, Dmochowska N, Badiee P, Cheah E, Kempson I, Berbeco RI, Thierry B. Formulation of simvastatin within high density lipoprotein enables potent tumour radiosensitisation. J Control Release 2022; 346:98-109. [PMID: 35447296 DOI: 10.1016/j.jconrel.2022.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Preclinical, clinical and epidemiologic studies have established the potent anticancer and radiosensitisation effects of HMG-CoA reductase inhibitors (statins). However, the low bioavailability of oral statin formulations is a key barrier to achieving effective doses within tumour. To address this issue and ascertain the radiosensitisation potential of simvastatin, we developed a parenteral high density lipoprotein nanoparticle (HDL NP) formulation of this commonly used statin. A scalable method for the preparation of the simvastatin-HDL NPs was developed using a 3D printed microfluidic mixer. This enables the production of litre scale amounts of particles with minimal batch to batch variation. Simvastatin-HDL NPs enhanced the radiobiological response in 2D/3D head and neck squamous cell carcinoma (HNSCC) in vitro models. The simvastatin-HDL NPs radiosensitisation was comparable to that of 10 and 5 times higher doses of free drug in 2D and 3D cultures, respectively, which could be partially explained by more efficient cellular uptake of the statin in the nanoformulation as well as by the inherent biological activity of the HDL NPs on the cholesterol pathway. The radiosensitising potency of the simvastatin-HDL nanoformulation was validated in an immunocompetent MOC-1 HNSCC tumour bearing mouse model. This data supports the rationale of repurposing statins through reformulation within HDL NPs. Statins are safe and readily available molecules including as generic, and their use as radiosensitisers could lead to much needed effective and affordable approaches to improve treatment of solid tumours.
Collapse
Affiliation(s)
- Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Edward Cheah
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Ross I Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
2
|
Dehghankelishadi P, Maritz MF, Badiee P, Thierry B. High density lipoprotein nanoparticle as delivery system for radio-sensitising miRNA: An investigation in 2D/3D head and neck cancer models. Int J Pharm 2022; 617:121585. [PMID: 35176332 DOI: 10.1016/j.ijpharm.2022.121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Radiotherapy is one of the main treatment options for head and neck cancer patients. However, its clinical efficacy is hindered by both radiation induced side effects and radio-resistance. Radio-sensitising approaches with acceptable toxicity are being actively investigated. Among these, RNA therapeutics have great potentials as radio-sensitisers owing to their ability to target pathways specific to radio-resistance. However, their clinical translation is challenging due to delivery issues. Herein, we report the application of high-density lipoprotein nanoparticle (HDL NPs) as a biocompatible delivery system for a well-established radio-sensitising RNA, miR-34a. A simple/fast microfluidic based technique was used to prepare miR-34a-HDL NPs. Profiling of the radiation response in the UM-SCC-1 head and neck cancer cell line confirmed reduced metabolic activity and increased radiation induced apoptosis upon treatment with miR-34a-HDL NPs. The radio-sensitising properties of miR-34a-HDL NPs were further confirmed in a more biologically relevant co-culture spheroid model of head and neck cancer. Increased apoptotic activity and disrupted cell cycle were induced by miR-34a delivered by HDL NPs. The enhanced radio-biologic effects observed in both 2D and 3D models confirmed the utility of HDL NPs as an efficient delivery system for radio-sensitising RNA.
Collapse
Affiliation(s)
- Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW To review recent lecithin:cholesterol acyltransferas (LCAT)-based therapeutic approaches for atherosclerosis, acute coronary syndrome, and LCAT deficiency disorders. RECENT FINDINGS A wide variety of approaches to using LCAT as a novel therapeutic target have been proposed. Enzyme replacement therapy with recombinant human LCAT is the most clinically advanced therapy for atherosclerosis and familial LCAT deficiency (FLD), with Phase I and Phase 2A clinical trials recently completed. Liver-directed LCAT gene therapy and engineered cell therapies are also another promising approach. Peptide and small molecule activators have shown efficacy in early-stage preclinical studies. Finally, lifestyle modifications, such as fat-restricted diets, cessation of cigarette smoking, and a diet rich in antioxidants may potentially suppress lipoprotein abnormalities in FLD patients and help preserve LCAT activity and renal function but have not been adequately tested. SUMMARY Preclinical and early-stage clinical trials demonstrate the promise of novel LCAT therapies as HDL-raising agents that may be used to treat not only FLD but potentially also atherosclerosis and other disorders with low or dysfunctional HDL.
Collapse
Affiliation(s)
- Lita A Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda
| | - Sotirios K Karathanasis
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda
- NeoProgen, Baltimore, Maryland, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda
| |
Collapse
|
4
|
Fawaz MV, Kim SY, Li D, Ming R, Xia Z, Olsen K, Pogozheva ID, Tesmer JJG, Schwendeman A. Phospholipid Component Defines Pharmacokinetic and Pharmacodynamic Properties of Synthetic High-Density Lipoproteins. J Pharmacol Exp Ther 2020; 372:193-204. [PMID: 31776208 PMCID: PMC6978696 DOI: 10.1124/jpet.119.257568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters rather than understanding how both sHDL components, peptide and lipid, influence its pharmacokinetic and pharmacodynamic profiles. We designed two sets of sHDL having either identical phospholipid but variable peptide sequences with different plasma stability or identical peptide and phospholipids with variable fatty acid chain length and saturation. We found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid compositions showed significant differences in phospholipid PK, with distearoyl phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 hours relative to 1.0 hour for palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to an approx. 6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should not be overlooked in the design of future sHDL. SIGNIFICANCE STATEMENT: The phospholipid composition in sHDL plays a critical role in determining half-life and cholesterol mobilization in vivo.
Collapse
Affiliation(s)
- Maria V Fawaz
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Sang Yeop Kim
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Dan Li
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ran Ming
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ziyun Xia
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Karl Olsen
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Irina D Pogozheva
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John J G Tesmer
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Anna Schwendeman
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
5
|
Cao YN, Xu L, Han YC, Wang YN, Liu G, Qi R. Recombinant high-density lipoproteins and their use in cardiovascular diseases. Drug Discov Today 2016; 22:180-185. [PMID: 27591840 DOI: 10.1016/j.drudis.2016.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
The unique anti-atherosclerosis abilities and other cardioprotective properties make high-density lipoprotein (HDL) a promising solution in treating cardiovascular diseases. A number of studies showed that HDL-based therapy was well tolerated and has great potential in the future. Among all these new agents, the most studied ones including recombinant HDL, recombinant human apolipoproteins, apolipoprotein mimetic peptides and recombinant HDL used as contrast agents in cardiovascular imaging are discussed here. Recombinant HDL and apolipoproteins are promising in diagnosing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yi-Ni Cao
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Lu Xu
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Ying-Chun Han
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Yu-Nan Wang
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - George Liu
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China.
| |
Collapse
|
6
|
Pan L, Segrest JP. Computational studies of plasma lipoprotein lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2401-2420. [PMID: 26969087 DOI: 10.1016/j.bbamem.2016.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/27/2022]
Abstract
Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in atomistic detail. This review discusses the current status of computational methods including all-atom MD (AAMD), coarse-grain MD (CGMD), and MD-simulated annealing (MDSA) and their applications in lipoprotein structural dynamics and biological assemblies. Results from MD simulations are discussed and compared across studies in order to identify key findings, controversies, issues and future directions. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Lurong Pan
- Division of Gerontology, Geriatrics, & Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jere P Segrest
- Division of Gerontology, Geriatrics, & Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
7
|
White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J Lipid Res 2014; 55:2007-21. [PMID: 25157031 DOI: 10.1194/jlr.r051367] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reduced levels of HDL cholesterol (HDL-C) are a strong independent predictor of coronary artery disease (CAD) risk. The major anti-atherogenic function of HDL is to mediate reverse cholesterol transport. This response is highly dependent on apoA-I and apoE, protein components of HDL. Randomized clinical trials have assessed effects of several classes of drugs on plasma cholesterol levels in CAD patients. Agents including cholestyramine, fibrates, niacin, and statins significantly lower LDL cholesterol (LDL-C) and induce modest increases in HDL-C, but tolerance issues and undesirable side effects are common. Additionally, residual risk may be present in patients with persistently low HDL-C and other complications despite a reduction in LDL-C. These observations have fueled interest in the development of new pharmacotherapies that positively impact circulating lipoproteins. The goal of this review is to discuss the therapeutic potential of synthetic apolipoprotein mimetic peptides. These include apoA-I mimetic peptides that have undergone initial clinical assessment. We also discuss newer apoE mimetics that mediate the clearance of atherogenic lipids from the circulation and possess anti-inflammatory properties. One of these (AEM-28) has recently been given orphan drug status and is undergoing clinical trials.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Divisions of Cardiovascular Disease, Gerontology, Geriatric Medicine University of Alabama at Birmingham, Birmingham, AL
| | - David W Garber
- Palliative Care, University of Alabama at Birmingham, Birmingham, AL
| | - G M Anantharamaiah
- Palliative Care, University of Alabama at Birmingham, Birmingham, AL Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
8
|
Leman LJ, Maryanoff BE, Ghadiri MR. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis. J Med Chem 2013; 57:2169-96. [PMID: 24168751 DOI: 10.1021/jm4005847] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.
Collapse
Affiliation(s)
- Luke J Leman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
9
|
Meyers NL, Wang L, Gursky O, Small DM. Changes in helical content or net charge of apolipoprotein C-I alter its affinity for lipid/water interfaces. J Lipid Res 2013; 54:1927-38. [PMID: 23670531 DOI: 10.1194/jlr.m037531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amphipathic α-helices mediate binding of exchangeable apolipoproteins to lipoproteins. To probe the role of α-helical structure in protein-lipid interactions, we used oil-drop tensiometry to characterize the interfacial behavior of apolipoprotein C-I (apoC-I) variants at triolein/water (TO/W) and 1-palmitoyl-2-oleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. ApoC-I, the smallest apolipoprotein, has two amphipathic α-helices. Mutants had single Pro or Ala substitutions that resulted in large differences in helical content in solution and on phospholipids. The ability of apoC-I to bind TO/W and POPC/TO/W interfaces correlated strongly with α-helical propensity. On binding these interfaces, peptides with higher helical propensity increased surface pressure to a greater extent. Likewise, peptide exclusion pressure at POPC/TO/W interfaces increased with greater helical propensity. ApoC-I retention on TO/W and POPC/TO/W interfaces correlated strongly with phospholipid-bound helical content. On compression of these interfaces, peptides with higher helical content were ejected at higher pressures. Substitution of Arg for Pro in the N-terminal α-helix altered net charge and reduced apoC-I affinity for POPC/TO/W interfaces. Our results suggest that peptide-lipid interactions drive α-helix binding to and retention on lipoproteins. Point mutations in small apolipoproteins could significantly change α-helical propensity or charge, thereby disrupting protein-lipid interactions and preventing the proteins from regulating lipoprotein catabolism at high surface pressures.
Collapse
Affiliation(s)
- Nathan L Meyers
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
10
|
Di Bartolo BA, Vanags LZ, Tan JT, Bao S, Rye KA, Barter PJ, Bursill CA. The apolipoprotein A-I mimetic peptide, ETC-642, reduces chronic vascular inflammation in the rabbit. Lipids Health Dis 2011; 10:224. [PMID: 22128776 PMCID: PMC3276454 DOI: 10.1186/1476-511x-10-224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/30/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND High-density lipoproteins (HDL) and their main apolipoprotein, apoA-I, exhibit anti-inflammatory properties. The development of peptides that mimic HDL apolipoproteins offers a promising strategy to reduce inflammatory disease. This study aimed to compare the anti-inflammatory effects of ETC-642, an apoA-I mimetic peptide, with that of discoidal reconstituted HDL (rHDL), consisting of full-length apoA-I complexed with phosphatidylcholine, in rabbits with chronic vascular inflammation. RESULTS New Zealand White rabbits (n = 10/group) were placed on chow supplemented with 0.2% (w/w) cholesterol for 6-weeks. The animals received two infusions of saline, rHDL (8 mg/kg apoA-I) or ETC-642 (30 mg/kg peptide) on the third and fifth days of the final week. The infusions of rHDL and ETC-642 were able to significantly reduce cholesterol-induced expression of intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the thoracic aorta (p < 0.05). When isolated rabbit HDL was pre-incubated with human coronary artery endothelial cells (HCAECs), prior to stimulation with TNF-α, it was found that HDL from ETC-642 treated rabbits were more effective at inhibiting the TNF-α-induced increase in ICAM-1, VCAM-1 and p65 than HDL isolated from saline treated rabbits (p < 0.05). There were, however, no changes in HDL lipid composition between treatment groups. CONCLUSIONS Infusion of ETC-642 causes anti-inflammatory effects that are comparable to rHDL in an animal model of chronic vascular inflammation and highlights that apoA-I mimetic peptides present a viable strategy for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Belinda A Di Bartolo
- Lipid Research Group, Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
ApoA-I mimetic peptides promote pre-β HDL formation in vivo causing remodeling of HDL and triglyceride accumulation at higher dose. Bioorg Med Chem 2010; 18:8669-78. [PMID: 21115285 DOI: 10.1016/j.bmc.2010.09.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/20/2022]
Abstract
Reverse cholesterol transport promoted by HDL-apoA-I is an important mechanism of protection against atherosclerosis. We have previously identified apoA-I mimetic peptides by synthesizing analogs of the 22 amino acid apoA-I consensus sequence (apoA-I(cons)) containing non-natural aliphatic amino acids. Here we examined the effect of different aliphatic non-natural amino acids on the structure-activity relationship (SAR) of apoA-I mimetic peptides. These novel apoA-I mimetics, with long hydrocarbon chain (C(5-8)) amino acids incorporated in the amphipathic α helix of the apoA-I(cons), have the following properties: (i) they stimulate in vitro cholesterol efflux from macrophages via ABCA1; (ii) they associate with HDL and cause formation of pre-β HDL particles when incubated with human and mouse plasma; (iii) they associate with HDL and induce pre-β HDL formation in vivo, with a corresponding increase in ABCA1-dependent cholesterol efflux capacity ex vivo; (iv) at high dose they associate with VLDL and induce hypertriglyceridemia in mice. These results suggest our peptide design confers activities that are potentially anti-atherogenic. However a dosing regimen which maximizes their therapeutic properties while minimizing adverse effects needs to be established.
Collapse
|
12
|
Jones MK, Catte A, Li L, Segrest JP. Dynamics of activation of lecithin:cholesterol acyltransferase by apolipoprotein A-I. Biochemistry 2009; 48:11196-210. [PMID: 19860440 DOI: 10.1021/bi901242k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The product of transesterification of phospholipid acyl chains and unesterified cholesterol (UC) by the enzyme lecithin:cholesterol acyltransferase (LCAT) is cholesteryl ester (CE). Activation of LCAT by apolipoprotein (apo) A-I on nascent (discoidal) high-density lipoproteins (HDL) is essential for formation of mature (spheroidal) HDL during the antiatherogenic process of reverse cholesterol transport. Here we report all-atom and coarse-grained (CG) molecular dynamics (MD) simulations of HDL particles that have major implications for mechanisms of LCAT activation. Both the all-atom and CG simulations provide support for a model in which the helix 5/5 domains of apoA-I create an amphipathic "presentation tunnel" that exposes methyl ends of acyl chains at the bilayer center to solvent. Further, CG simulations show that UC also becomes inserted with high efficiency into the amphipathic presentation tunnel with its hydroxyl moiety (UC-OH) exposed to solvent; these results are consistent with trajectory analyses of the all-atom simulations showing that UC is being concentrated in the vicinity of the presentation tunnel. Finally, consistent with known product inhibition of CE-rich HDL by CE, CG simulations of CE-rich spheroidal HDL indicate partial blockage of the amphipathic presentation tunnel by CE. These results lead us to propose the following working hypothesis. After attachment of LCAT to discoidal HDL, the helix 5/5 domains in apoA-I form amphipathic presentation tunnels for migration of hydrophobic acyl chains and amphipathic UC from the bilayer to the phospholipase A2-like and esterification active sites of LCAT, respectively. This hypothesis is currently being tested by site-directed mutagenesis.
Collapse
Affiliation(s)
- Martin K Jones
- Department of Medicine and Atherosclerosis Research Unit, University ofAlabama, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
13
|
Ingenito R, Burton C, Langella A, Chen X, Zytko K, Pessi A, Wang J, Bianchi E. Novel potent apoA-I peptide mimetics that stimulate cholesterol efflux and pre-beta particle formation in vitro. Bioorg Med Chem Lett 2009; 20:236-9. [PMID: 19932961 DOI: 10.1016/j.bmcl.2009.10.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 01/19/2023]
Abstract
Reverse cholesterol transport (RCT) is believed to be the primary mechanism by which HDL and its major protein apoA-I protect against atherosclerosis. Starting from the inactive 22-amino acid peptide representing the consensus sequence of the class A amphipathic helical repeats of apoA-I, we designed novel peptides able to mobilize cholesterol from macrophages in vitro, and to stimulate the formation of 'nascent HDL' particles, with potency comparable to the entire apoA-I protein.
Collapse
Affiliation(s)
- Raffaele Ingenito
- IRBM P. Angeletti, Merck Research Laboratories Peptide Centre of Excellence, via Pontina km 30,600, 00040 Pomezia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Anantharamaiah GM, Mishra VK, Garber DW, Datta G, Handattu SP, Palgunachari MN, Chaddha M, Navab M, Reddy ST, Segrest JP, Fogelman AM. Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides. J Lipid Res 2007; 48:1915-23. [PMID: 17570869 DOI: 10.1194/jlr.r700010-jlr200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recently, attention has been focused on pharmacological treatments that increase HDL cholesterol to prevent coronary artery disease. Despite three decades of extensive research of human apolipoprotein A-I (apoA-I), the major protein component of HDL, the molecular basis for its antiatherogenic and anti-inflammatory functions remain elusive. Another protein component of HDL, apoA-II, has structural features similar to those of apoA-I but does not possess atheroprotective properties. To understand the molecular basis for the effectiveness of apoA-I, we used model synthetic peptides. We designed analogs of the class A amphipathic helical motif in apoA-I that is responsible for solubilizing phospholipids. None of these analogs has sequence homology to apoA-I, but all are similar in their lipid-associating structural motifs. Although all of these peptide analogs interact with phospholipids to form peptide:lipid complexes, the biological properties of these analogs are different. Physical-chemical and NMR studies of these peptides have enabled the delineation of structural requirements for atheroprotective and anti-inflammatory properties in these peptides. It has been shown that peptides that interact strongly with lipid acyl chains do not have antiatherogenic and anti-inflammatory properties. In contrast, peptides that associate close to the lipid head group (and hence do not interact strongly with the lipid acyl chain) are antiatherogenic and anti-inflammatory. Understanding the structure and function of apoA-I and HDL through studies of the amphipathic helix motif may lead to peptide-based therapies for inhibiting atherosclerosis and other related inflammatory lipid disorders.
Collapse
Affiliation(s)
- G M Anantharamaiah
- Department of Medicine, Biochemistry, and Molecular Genetics and Atherosclerosis Research Unit, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li L, Chen J, Mishra VK, Kurtz JA, Cao D, Klon AE, Harvey SC, Anantharamaiah GM, Segrest JP. Double belt structure of discoidal high density lipoproteins: molecular basis for size heterogeneity. J Mol Biol 2004; 343:1293-311. [PMID: 15491614 DOI: 10.1016/j.jmb.2004.09.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 08/24/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
We recently proposed an all-atom model for apolipoprotein (apo) A-I in discoidal high-density lipoprotein in which two monomers form stacked antiparallel helical rings rotationally aligned by interhelical salt-bridges. The model can be derived a priori from the geometry of a planar bilayer disc that constrains the hydrophobic face of a continuous amphipathic alpha helix in lipid-associated apoA-I to a plane inside of an alpha-helical torus. This constrains each apoA-I monomer to a novel conformation, that of a slightly unwound, curved, planar amphipathic alpha 11/3 helix (three turns per 11 residues). Using non-denaturing gradient gel electrophoresis, we show that dimyristoylphosphocholine discs containing two apoA-I form five distinct particles with maximal Stokes diameters of 98 A (R2-1), 106 A (R2-2), 110 A (R2-3), 114 A (R2-4) and 120 A (R2-5). Further, we show that the Stokes diameters of R2-1 and R2-2 are independent of the N-terminal 43 residues (the flexible domain) of apoA-I, while the flexible domain is necessary and sufficient for the formation of the three larger complexes. On the basis of these results, the conformation of apoA-I on the R2-2 disc can be modeled accurately as an amphipathic helical double belt extending the full length of the lipid-associating domain with N and C-terminal ends in direct contact. The smallest of the discs, R2-1, models as the R2-2 conformation with an antiparallel 15-18 residue pairwise segment of helixes hinged off the disc edge. The conformations of full-length apoA-I on the flexible domain-dependent discs (R2-3, R2-4 and R2-5) model as the R2-2 conformation extended on the disc edge by one, two or three of the 11-residue tandem amphipathic helical repeats (termed G1, G2 and G3), respectively, contained within the flexible domain. Although we consider these results to favor the double belt model, the topographically very similar hairpin-belt model cannot be ruled out entirely.
Collapse
Affiliation(s)
- Ling Li
- Department of Medicine, UAB Medical Center, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chroni A, Kan HY, Kypreos KE, Gorshkova IN, Shkodrani A, Zannis VI. Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice. Biochemistry 2004; 43:10442-57. [PMID: 15301543 DOI: 10.1021/bi049782p] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice expressing an apoA-I[E110A/E111A] mutant had comparable hepatic mRNA levels with WT controls but greatly increased plasma triglyceride and elevated plasma cholesterol levels. In addition, they had decreased apoE and apoCII levels and increased apoB48 levels in very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL). Fast protein liquid chromatography (FPLC) analysis of plasma showed that most of cholesterol and approximately 15% of the mutant apoA-I were distributed in the VLDL and IDL regions and all the triglycerides in the VLDL region. Hypertriglyceridemia was corrected by coinfection of mice with recombinant adenoviruses expressing the mutant apoA-I and human lipoprotein lipase. Physicochemical studies indicated that the apoA-I mutation decreased the alpha-helical content, the stability, and the unfolding cooperativity of both lipid-free and lipid-bound apoA-I. In vitro functional analyses showed that reconstituted HDL (rHDL) particles containing the mutant apoA-I had 53% of scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacity and 37% capacity to activate lecithin:cholesterol acyltransferase (LCAT) as compared to the WT control. The mutant lipid-free apoA-I had normal capacity to promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. The findings indicate that subtle structural alterations in apoA-I may alter the stability and functions of apoA-I and high-density lipoprotein (HDL) and may cause hypertriglyceridemia.
Collapse
Affiliation(s)
- Angeliki Chroni
- Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
17
|
Bergström J, Murphy CL, Weiss DT, Solomon A, Sletten K, Hellman U, Westermark P. Two different types of amyloid deposits--apolipoprotein A-IV and transthyretin--in a patient with systemic amyloidosis. J Transl Med 2004; 84:981-8. [PMID: 15146166 DOI: 10.1038/labinvest.3700124] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Certain forms of systemic amyloidosis have been associated with the pathologic deposition as fibrils of three different apolipoprotein-related proteins--apolipoprotein A-I, apolipoprotein A-II, and serum amyloid A. We have previously reported (Bergström et al, Biochem Biophys Res Commun 2001;285:903-908) that amyloid fibrils extracted from the heart of an elderly male with senile systemic amyloidosis contained, in addition to wild-type transthyretin-related molecules, an N-terminal fragment of yet a fourth apolipoprotein--apolipoprotein A-IV (apoA-IV). We now provide the results of our studies that have established the complete amino-acid sequence of this approximately 70-residue component and, additionally, have shown this protein to be the product of an unmutated apoA-IV gene. Notably, the apoA-IV and transthyretin fibrils were not codeposited but, rather, had anatomically distinct patterns of distribution within the heart and other organs, as evidenced immunohistochemically, by variation in the ultra structural morphology and by differences in the intensity of Congo red birefringence. These findings provide the first conclusive evidence that two separate forms of amyloid, each derived from a wild-type amyloidogenic precursor protein, were present in a patient with systemic amyloidosis.
Collapse
Affiliation(s)
- Joakim Bergström
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Datta G, Chaddha M, Hama S, Navab M, Fogelman AM, Garber DW, Mishra VK, Epand RM, Epand RF, Lund-Katz S, Phillips MC, Segrest JP, Anantharamaiah G. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31599-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Brouillette CG, Anantharamaiah GM, Engler JA, Borhani DW. Structural models of human apolipoprotein A-I: a critical analysis and review. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:4-46. [PMID: 11278170 DOI: 10.1016/s1388-1981(01)00081-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human apolipoprotein (apo) A-I has been the subject of intense investigation because of its well-documented anti-atherogenic properties. About 70% of the protein found in high density lipoprotein complexes is apo A-I, a molecule that contains a series of highly homologous amphipathic alpha-helices. A number of significant experimental observations have allowed increasing sophisticated structural models for both the lipid-bound and the lipid-free forms of the apo A-I molecule to be tested critically. It seems clear, for example, that interactions between amphipathic domains in apo A-I may be crucial to understanding the dynamic nature of the molecule and the pathways by which the lipid-free molecule binds to lipid, both in a discoidal and a spherical particle. The state of the art of these structural studies is discussed and placed in context with current models and concepts of the physiological role of apo A-I and high-density lipoprotein in atherosclerosis and lipid metabolism.
Collapse
Affiliation(s)
- C G Brouillette
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, AL 35294-0005, USA.
| | | | | | | |
Collapse
|
20
|
Okon M, Frank PG, Marcel YL, Cushley RJ. Secondary structure of human apolipoprotein A-I(1-186) in lipid-mimetic solution. FEBS Lett 2001; 487:390-6. [PMID: 11163364 DOI: 10.1016/s0014-5793(00)02375-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The solution structure of an apoA-I deletion mutant, apoA-I(1-186) was determined by the chemical shift index (CSI) method and the torsion angle likelihood obtained from shift and sequence similarity (TALOS) method, using heteronuclear multidimensional NMR spectra of [u-(13)C, u-(15)N, u-50% (2)H]apoA-I(1-186) in the presence of sodium dodecyl sulfate (SDS). The backbone resonances were assigned from a combination of triple-resonance data (HNCO, HNCA, HN(CO)CA, HN(CA)CO and HN(COCA)HA), and intraresidue and sequential NOEs (three-dimensional (3D) and four-dimensional (4D) 13C- and 15N-edited NOESY). Analysis of the NOEs, H(alpha), C(alpha) and C' chemical shifts shows that apoA-I(1-186) in lipid-mimetic solution is composed of alpha-helices (which include the residues 8-32, 45-64, 67-77, 83-87, 90-97, 100-140, 146-162, and 166-181), interrupted by short irregular segments. There is one relatively long, irregular and mostly flexible region (residues 33-44), that separates the N-terminal domain (residues 1-32) from the main body of protein. In addition, we report, for the first time, the structure of the N-terminal domain of apoA-I in a lipid-mimetic environment. Its structure (alpha-helix 8-32 and flexible linker 33-44) would suggest that this domain is structurally, and possibly functionally, separated from the other part of the molecule.
Collapse
Affiliation(s)
- M Okon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
21
|
|
22
|
McManus DC, Scott BR, Frank PG, Franklin V, Schultz JR, Marcel YL. Distinct central amphipathic alpha-helices in apolipoprotein A-I contribute to the in vivo maturation of high density lipoprotein by either activating lecithin-cholesterol acyltransferase or binding lipids. J Biol Chem 2000; 275:5043-51. [PMID: 10671546 DOI: 10.1074/jbc.275.7.5043] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant adenoviruses with cDNAs for human apolipoprotein A-I (wild type (wt) apoA-I) and three mutants, referred to as Delta4-5A-I, Delta5-6A-I, and Delta6-7A-I, that have deletions removing regions coding for amino acids 100-143, 122-165, and 144-186, respectively, were created to study structure/function relationships of apoA-I in vivo. All mutants were expressed at lower concentrations than wt apoA-I in plasma of fasting apoA-I-deficient mice. The Delta5-6A-I mutant was found primarily in the lipid-poor high density lipoprotein (HDL) pool and at lower concentrations than Delta4-5A-I and Delta6-7A-I that formed more buoyant HDL(2/3) particles. At an elevated adenovirus dose and earlier blood sampling from fed mice, both Delta5-6A-I and Delta6-7A-I increased HDL-free cholesterol and phospholipid but not cholesteryl ester. In contrast, wt apoA-I and Delta4-5A-I produced significant increases in HDL cholesteryl ester. Further analysis showed that Delta6-7A-I and native apoA-I could bind similar amounts of phospholipid and cholesterol that were reduced slightly for Delta5-6A-I and greatly for Delta4-5A-I. We conclude from these findings that amino acids (aa) 100-143, specifically helix 4 (aa 100-121), contributes to the maturation of HDL through a role in lipid binding and that the downstream sequence (aa 144-186) centered around helix 6 (aa 144-165) is responsible for the activation of lecithin-cholesterol acyltransferase.
Collapse
Affiliation(s)
- D C McManus
- Lipoprotein and Atherosclerosis Research Group and the Department of Pathology and Laboratory Medicine, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Rozek A, Sparrow JT, Weisgraber KH, Cushley RJ. Conformation of human apolipoprotein C-I in a lipid-mimetic environment determined by CD and NMR spectroscopy. Biochemistry 1999; 38:14475-84. [PMID: 10545169 DOI: 10.1021/bi982966h] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The high-resolution conformation of human apoC-I in complexes with sodium dodecyl sulfate (SDS) is presented. As estimated from CD data, apoC-I adopts 54% helical secondary structure when bound to SDS, which is similar to the helical content previously found with phospholipids. The NMR-derived conformation of apoC-I is composed of two amphipathic helices, residues 7-29 and 38-52, separated by a flexible linker. The N-terminal helix contains a mobile hinge involving residues 12-15. The hydrophobic side chains cluster on the nonpolar face of both helices, thus forming two discrete lipid-binding sites in the N-terminal helix and one in the C-terminal helix. As suggested by amide proton resonance line widths and deuterium exchange rates, the N-terminal helix is more flexible and may bind less tightly to the detergent than the C-terminal helix. The different mobility of both helices appears to be related to side-chain composition, rather than length of the amphipathic helix, and may play a role in the function of apoC-I as an activator of lecithin:cholesterol acyltransferase (LCAT). A model is suggested in which the C-terminal helix serves as a lipid anchor while the N-terminal helix may hinge off the lipid surface to make specific contacts with LCAT.
Collapse
Affiliation(s)
- A Rozek
- Department of Chemistry and Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia Canada
| | | | | | | |
Collapse
|
24
|
Hirano H, Yamada Y, Otani H, Kodama N, Mune M, Yukawa S. Evaluation of serum lipid abnormalities in chronic nephritis. KIDNEY INTERNATIONAL. SUPPLEMENT 1999; 71:S147-9. [PMID: 10412761 DOI: 10.1046/j.1523-1755.1999.07137.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In glomerular disease, disorders of lipid metabolism are suspected as factors exacerbating glomerular dysfunction. Although many reports have been published regarding metabolic disorders of lipids in renal disease, including nephrotic syndrome and chronic renal failure, there have been few published reports describing metabolic disorders of lipids in chronic nephritis. Therefore, in patients with IgA nephritis, we evaluated correlations between serum lipid levels and renal function and proteinuria. METHODS In 191 patients with IgA nephritis, we evaluated the correlations between serum lipid levels and renal function [creatinine clearance (CCr)] and proteinuria (UP). Serum lipids examined included total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoproteins, phospholipids (PL), lipoprotein(a) [Lp(a)], and malondialdehyde (MDA). RESULTS Significant correlations were observed between serum lipid levels and CCr, UP, and age. There were no abnormalities in the mean values of respective serum lipids examined. Although TC levels increased with age, HDL-C levels were not correlated with age. Hyperlipidemia was observed in 39.8% of subjects. Significant correlations were observed between levels of TC, TG, PL, LDL-C, apoB, apoC-II, and apoC-III and Ccr, UP, and age. Significant correlations were also observed between levels of MDA, apoB/apoA-I, apoE/apoC-III, and Ccr and age, as well as between apoE levels and UP and age. The levels of apoA-I and apoA-I/apoA-II ratio were significantly correlated with UP alone, whereas the apoC-II/apoC-III ratio was significantly correlated with Ccr alone. There were no significant correlations between levels of HDL-C, apoA-II, and Lp(a) and Ccr, UP, and age. CONCLUSIONS Age, proteinuria, and renal function were related with changes in serum lipid levels in IgA nephritis. There were correlations between proteinuria and levels of apoA, as well as between renal function and apoC levels.
Collapse
Affiliation(s)
- H Hirano
- Third Department of Internal Medicine, Wakayama Medical College, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Frank PG, N'Guyen D, Franklin V, Neville T, Desforges M, Rassart E, Sparks DL, Marcel YL. Importance of central alpha-helices of human apolipoprotein A-I in the maturation of high-density lipoproteins. Biochemistry 1998; 37:13902-9. [PMID: 9753480 DOI: 10.1021/bi981205b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have studied the role of amphipathic alpha-helices in the ability of apoA-I to promote cholesterol efflux from human skin fibroblasts and activate lecithin:cholesterol acyltransferase (LCAT). Three apoA-I mutants were designed, each by deletion of a pair of predicted adjacent central alpha-helices [Delta(100-143), Delta(122-165), Delta(144-186)], and expressed in Escherichia coli. This strategy was used to minimize disruption of the predicted secondary structure of the resulting protein. These three central deletion mutants have been previously shown to be expressed as stable folded proteins but to exhibit altered phospholipid-binding properties. When recombined with phospholipids to form homogeneous LpA-I containing equivalent amounts of POPC and tested for their ability to promote diffusional cholesterol efflux from normal [3H]cholesterol-labeled fibroblasts, each mutant and the wild-type recombinant protein (Rec.-apoA-I) promoted cholesterol efflux with very similar rates at all the concentrations tested. These experiments showed that all LpA-I could acquire cellular cholesterol with similar affinity and binding capacity. However, when the cell-incubated LpA-I were incubated with purified LCAT, two mutants, Delta(122-165) and Delta(144-186), appeared incapable of activating the enzyme. To directly determine their ability to activate LCAT, each mutant and the control were recombined with equivalent amounts of cholesterol and phospholipid and incubated with the purified enzyme. The results show that whereas deletion of residues 100-143 has little effect on LCAT activation, deletion of residues 122-165 or 144-186 results in an inability of the mutants to promote cholesterol esterification. In conclusion, our results show that no specific sequence in the central domain of apoA-I is required for efficient diffusional cholesterol efflux from normal fibroblasts; however, residues 144-186 appear critical for optimum LCAT activation and cholesteryl ester accumulation. Since deletion of residues 144-186 also perturbs phospholipid association and prevents the formation of large LpA-I particles [Frank, P. G., Bergeron, J., Emmanuel, F., Lavigne, J. P., Sparks, D. L., Denèfle, P., Rassart, E., and Marcel, Y. L. (1997) Biochemistry 36, 1798-1806], the data show that this pair of alpha-helices plays an important role in the maturation of HDL. Sequence analysis of these apoA-I helices further identifies specific residues that appear essential to this activity.
Collapse
Affiliation(s)
- P G Frank
- Lipoprotein & Atherosclerosis Group, University of Ottawa Heart Institute, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rogers DP, Roberts LM, Lebowitz J, Datta G, Anantharamaiah GM, Engler JA, Brouillette CG. The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions. Biochemistry 1998; 37:11714-25. [PMID: 9718294 DOI: 10.1021/bi973112k] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deletion mutants of human apolipoprotein A-I (apo hA-I) have been produced from a bacterial expression system to explore the function of the specific domains comprising residues 1-43, 1-65, 88-98, and 187-243, respectively, in the lipid-free conformation and in the lipid-binding mechanism of apo hA-I. Initial studies on apo Delta(1-43)A-I and apo Delta(187-243)A-I have already been reported. To aid purification of these mutants, a histidine-containing N-terminal extension was incorporated (+his); in cases where comparison with the (-his) construct was possible, little effect on the physical properties due to the (+his) extension was found. All mutants have folded structures in their lipid-free state, however these structures differ widely in their relative thermodynamic stability and extent of secondary structure. The mutant with the fewest residues deleted, apo Delta(88-98)A-I(+his), has the least secondary structure (only 34% helix) and is also the least stable (DeltaG = 2.9 kcal/mol). Determined from sedimentation velocity measurements on the lipid-free proteins, all but apo Delta(1-65)A-I(+his) exhibited a range of conformers in solution, which fluctuated around a highly elongated species (dimensions equal to approximately (14-16) x approximately 2.3 nm). Apo Delta(1-65)A-I(+his) exhibited a discrete species which was less asymmetric (dimensions equal to 9 x 2.9 nm). Apo Delta(88-98)A-I(+his) showed extreme heterogeneity with no predominating conformer. Spectroscopic studies (ANS binding and circular dichroism) indicate that there is little difference in the lipid-free structure of the carboxy-terminal deletion mutant, apo Delta(187-243)A-I(+/-his) compared to wild-type (wt) apo wtA-I(+/-his), but substantial differences are observed between wt and the amino-terminal deletion mutants, apo Delta(1-43)A-I, apo Delta(1-65)A-I(+his), and apo Delta(88-98)A-I(+his). In contrast, the lipid-binding properties are impaired for apo Delta(187-243)A-I(+/-his), as measured by dimyristoyl phosphatidylcholine (DMPC) liposome turbidity clearance kinetics and palmitoyloleoyl phosphatidylcholine (POPC) equilibrium binding. Apo Delta(1-43)A-I, apo Delta(1-65)A-I(+his), and apo Delta(88-98)A-I(+his) show lipid affinities statistically similar to apo wtA-I(+his), but significantly defective DMPC clearance kinetics. Interestingly, lecithin:cholesterol acyltransferase (LCAT) activation results correlate qualitatively with the lipid-binding affinity for all mutants but apo Delta(88-98)A-I(+his), suggesting that this mutant has an altered and possibly noncooperative lipid-bound structure as well as an altered lipid-free structure. These results suggest helix 1 (residues 44-65) and helix 10 (residues 220-240) are both required for native lipid-binding properties, while the presence of internal residues, at least helix 3 (residues 88-98), is essential for proper folding of both the lipid-free and lipid-bound conformations. Importantly, studies on apo Delta(88-98)A-I(+his) provide the first experimental evidence that a native-like structure is not necessary for native-like lipid affinity, but apparently is necessary for both DMPC solubilization and LCAT activation. These results provide support for a hypothetical, multistep structure-based mechanism for apo hA-I lipid binding.
Collapse
Affiliation(s)
- D P Rogers
- Department of Biochemistry and Molecular Genetics, Center for Macromolecular Crystallography, University of Alabama at Birmingham Medical Center 35294, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Sorci-Thomas MG, Curtiss L, Parks JS, Thomas MJ, Kearns MW, Landrum M. The hydrophobic face orientation of apolipoprotein A-I amphipathic helix domain 143-164 regulates lecithin:cholesterol acyltransferase activation. J Biol Chem 1998; 273:11776-82. [PMID: 9565601 DOI: 10.1074/jbc.273.19.11776] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) activates the plasma enzyme lecithin:cholesterol acyltransferase (LCAT), catalyzing the rapid conversion of lipoprotein cholesterol to cholesterol ester. Structural mutants of apoA-I have been used to study the details of apoA-I-LCAT-catalyzed cholesterol ester formation. Several studies have shown that the alpha-helical segments corresponding to amino acids 143-164 and 165-186 (repeats 6 and 7) are essential for LCAT activation. In the present studies, we examined how the orientation of the hydrophobic face, independent of an increase in overall hydrophobicity, affects LCAT activation. We designed, expressed, and characterized a mutant, reverse of 6 apoA-I (RO6 apoA-I), in which the primary amino acid sequence of repeat 6 (amino acids 143-164) was reversed from its normal orientation. This mutation rotates the hydrophobic face of repeat 6 approximately 80 degrees. Lipid-free RO6 apoA-I showed a marked stabilization when denatured by guanidine hydrochloride, but showed significant destabilization to guanidine hydrochloride denaturation in the lipid-bound state compared with wild-type apoA-I. Recombinant high density lipoprotein discs (rHDL) formed from RO6 apoA-I, sn-1-palmitoyl-sn-2-oleoyl phosphati-dylcholine, and cholesterol were approximately 12 A smaller than wild-type apoA-I rHDL. The reduced size suggests that one of the repeats did not effectively participate in phospholipid binding and organization. The sn-1-palmitoyl-sn-2-oleoyl phosphatidylcholine RO6 rHDL were a less effective substrate for LCAT. Mapping the entire lipid-free and lipid-bound RO6 apoA-I with a series of monoclonal antibodies revealed that both the lipid-free and lipid-bound RO6 apoA-I displayed altered or absent epitopes in domains within and adjacent to repeat 6. Together, these results suggest that the proper alignment and orientation of the hydrophobic face of repeat 6 is an important determinant for maintaining and stabilizing helix-bilayer and helix-helix interactions.
Collapse
Affiliation(s)
- M G Sorci-Thomas
- Department of Pathology and Comparative Medicine, Wake Forest University School of Medicine, Winston-Salen, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Lindholm EM, Bielicki JK, Curtiss LK, Rubin EM, Forte TM. Deletion of amino acids Glu146-->Arg160 in human apolipoprotein A-I (ApoA-ISeattle) alters lecithin:cholesterol acyltransferase activity and recruitment of cell phospholipid. Biochemistry 1998; 37:4863-8. [PMID: 9538003 DOI: 10.1021/bi972888i] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human apolipoprotein A-I (apoA-I) has an important role in the efflux of cholesterol from peripheral cells, the first step in reverse cholesterol transport. Deletion of amino acids Glu146-->Arg160 in apoA-I (apoA-ISeattle) removes a large section of a lipid binding helix and is associated in vivo with an atherogenic lipoprotein profile characterized by a deficiency in high-density lipoproteins (HDL). In the present study, we asked whether apoA-ISeattle had normal ability to recruit lipids from cells and to form nascent high-density lipoprotein (HDL) particles and whether the altered secondary structure affected lecithin:cholesterol acyltransferase (LCAT) activity. Wild-type apoA-I and apoA-ISeattle expressed in transfected Chinese hamster ovary cells formed nascent HDL particles with similar density distribution and protein-to-lipid ratio. Phospholipid subclass distribution of apoA-ISeattle nascent HDL demonstrated a significant increase in sphingomyelin and phosphatidylethanolamine compared to wild type. ApoA-ISeattle nascent HDL had a unique size distribution compared to wild-type nascent HDL; large (9-20 nm) particles predominated while there were virtually no small (7.5 nm) particles. LCAT reactivity was impaired by apoA-ISeattle nascent HDL where cholesterol esterification was only half that of wild-type complexes. The apoA-ISeattle conformation on nascent HDL was studied with a panel of monoclonal antibodies (Mabs) specific for apoA-I. Mabs that recognize the putative LCAT activation site, residues 95-122, had normal reactivity. As expected, the Mabs that recognized residues 141-164 were unreactive because of the 146-160 deletion; in addition, there was low reactivity with a Mab that recognizes residues 220-242. The data suggest that apoA-I residues 146-160 and/or 220-242 partake in normal LCAT activation and that cooperative interactions between helices may be important for maximal cholesterol esterification.
Collapse
Affiliation(s)
- E M Lindholm
- Department of Molecular and Nuclear Medicine, Life Sciences Division MS 1-220, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
29
|
Xiong Z. Simple one-step procedure for the separation of apolipoproteins A1 and A2 by high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 702:216-20. [PMID: 9449574 DOI: 10.1016/s0378-4347(97)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A simple assay method for apolipoproteins apo A1 and apo A2 by HPLC is introduced. The simple one-step method is based on fractionation of apo A1 and apo A2 from other serum proteins which are precipitated at 100 degrees C and removed by centrifugation. The apo A1 and apo A2 which remain in solution can be recovered and resolved by size-exclusion chromatography without ultracentrifugation and delipidation by an organic solvent. This makes sample preparation easier. The recoveries of apo A1 and apo A2 were 104.26% and 101.04%; the precision (C.V.%) of apo A1 and apo A2 was 0.88 and 1.63 respectively.
Collapse
Affiliation(s)
- Z Xiong
- Central Laboratory of Affiliated Hospital, Shandong Medical University, Jinan, China
| |
Collapse
|
30
|
Wang G, Sparrow JT, Cushley RJ. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. Biochemistry 1997; 36:13657-66. [PMID: 9354635 DOI: 10.1021/bi971151q] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The conformation of a synthetic peptide of 46 residues from apoA-I was investigated by fluorescence, CD, and 2D NMR spectroscopies in lipid-mimetic environments. ApoA-I(142-187) is mainly unstructured in water but helical in SDS or dodecylphosphocholine (DPC), although the peptide only associates with DPC at approximately the critical micellar concentration. Solution structures of apoA-I(142-187) were determined by distance geometry calculations based on 450 (in DPC-d38) or 397 (in SDS-d25) NOE-derived distance restraints, respectively. Backbone RMSDs for superimposing the two helical regions 146-162 and 168-182 are 0.98 +/- 0.22 (2.38 +/- 0.20) and 1.99 +/- 0.42 (2.02 +/- 0.21) A in DPC (SDS), respectively. No interhelical NOE was found, suggesting that helix-helix interactions between the two helical domains in apoA-I(142-187) are unlikely. Similar average, curved helix-hinge-helix structures were found in both SDS and DPC micelles with the hydrophobic residues occupying the concave face, indicating that hydrophobic interactions dominate. Intermolecular NOESY experiments, performed in the presence of 50% protonated SDS, confirm that the two amphipathic helices and Y166 in the hinge all interact with the micelle. The involvement of Y166 in lipid binding is supported by fluorescence spectroscopy as well. On the basis of all the data above, we propose a model for the peptide-lipid complexes wherein the curved amphipathic helix-hinge-helix structural motif straddles the micelle. The peptide-aided signal assignment achieved for apoA-I(122-187) (66mer) and apoA-I suggests that such a structural motif is retained in the longer peptide and most likely in the intact protein.
Collapse
Affiliation(s)
- G Wang
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | |
Collapse
|
31
|
Dhoest A, Zhao Z, De Geest B, Deridder E, Sillen A, Engelborghs Y, Collen D, Holvoet P. Role of the Arg123-Tyr166 paired helix of apolipoprotein A-I in lecithin:cholesterol acyltransferase activation. J Biol Chem 1997; 272:15967-72. [PMID: 9188498 DOI: 10.1074/jbc.272.25.15967] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Arg123-Tyr166 central and Ala190-Gln243 carboxyl-terminal pairs of helices of apoA-I were substituted with the pair of helices of apoA-II, resulting in the apoA-I(Delta(Arg123-Tyr166), nablaA-II(Ser12-Ala75)) and apoA-I(Delta(Ala190-Gln243), nablaA-II(Ser12-Gln77)) chimeras, respectively. The structures of these chimeras in aqueous solution and in reconstituted high density lipoproteins (rHDL) and the lecithin:cholesterol acyltransferase (LCAT) activation properties of the rHDL were studied. Recombinant human apoA-I and the chimeras were expressed in Escherichia coli and purified from the periplasmic space. Binding of the apolipoproteins with palmitoyloleoylphosphatidylcholine was associated with a similar shift of Trp fluorescence maxima from 337 to 332 nm, from 339 to 334 nm, and from 337 to 333 nm, respectively. All rHDL had a Stokes radius of 4.8 nm and contained 2 apolipoprotein molecules/particle. Circular dichroism measurements revealed eight alpha-helices per apoA-I and per chimera molecule. The catalytic efficiencies of LCAT activation were 1.5 +/- 0.33 (mean +/- S.D.; n = 3), 0.054 +/- 0.009 (p < 0.001 versus apoA-I), and 1.3 +/- 0.32 (p = not significant versus apoA-I) nmol of cholesteryl ester/h/microM, respectively. The lower LCAT activity of the central domain chimera was due to a 27-fold reduced Vmax with unaltered Km. Binding of radiolabeled LCAT to rHDL of apoA-I and apoA-I(Delta(Arg123-Tyr166), nablaA-II(Ser12-Ala75)) was very similar. In conclusion, although substitution of the Arg123-Tyr166 central or Ala190-Gln243 carboxyl-terminal pair of helices of apoA-I with the pair of helices of apoA-II yields chimeras with structure similar to that of native apoA-I, exchange of the central domain (but not the carboxyl-terminal domain) of apoA-I reduces the rate of LCAT activity that is independent of binding to rHDL.
Collapse
Affiliation(s)
- A Dhoest
- Center for Molecular and Vascular Biology, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Campos H, López-Miranda J, Rodríguez C, Albajar M, Schaefer EJ, Ordovás JM. Urbanization elicits a more atherogenic lipoprotein profile in carriers of the apolipoprotein A-IV-2 allele than in A-IV-1 homozygotes. Arterioscler Thromb Vasc Biol 1997; 17:1074-81. [PMID: 9194757 DOI: 10.1161/01.atv.17.6.1074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Coronary heart disease (CHD) is increasing in developing countries, particularly in urban areas. The impact of urbanization and apolipoprotein (apo) A-IV genetic polymorphism on plasma lipoproteins was studied in 222 men and 236 women from rural and urban Costa Rica. The apoA-IV allele frequencies were 0.937 for apoA-IV-1 and 0.062 for apoA-IV-2, Significant interactions between the apoA-IV polymorphism and area of residence (rural versus urban) were detected for HDL cholesterol (P = .003), apoA-I (P = .05), LDL particle size (P = .01), and LDL/HDL cholesterol ratio (P = .005). Urban compared with rural carriers of the apoA-IV-2 allele had significantly lower plasma HDL cholesterol (0.95 versus 1.17 mmol/L) and apoA-I (980 versus 1140 mg/L), a significantly higher LDL/HDL cholesterol ratio (3.35 versus 2.39), and significantly smaller LDL particles (258 versus 263 A). In contrast, no significant rural-urban differences for these parameters were found in apoA-IV-1 homozygotes. Regardless of their apoA-IV phenotype, urban residents consumed more saturated fat (P = .02) and smoked more cigarettes per day (P = .03) than rural residents. A significant interaction between saturated fat intake and apoA-IV phenotype was found for HDL cholesterol (P < .0003) and LDL/HDL cholesterol ratio (P < .003). Increased saturated fat intake (13.6% versus 8.6% of calories) was significantly associated with 6% higher HDL cholesterol and no change (0.7%) in LDL/HDL cholesterol ratio in apoA-IV-1 homozygotes and with 19% lower HDL cholesterol and 37% higher LDL/HDL cholesterol ratio among carriers of the apoA-IV-2 allele. Smokers (> or = 1 cigarette per day) had significantly lower HDL cholesterol (P < .005) and apoA-I (P < .01) concentrations than nonsmokers (< 1 cigarette per day), particularly among carriers of the apoA-IV-2 allele (-19% and -13%) compared with apoA-IV-1 (-4% for both). After taking these lifestyle characteristics into account, the areas of residence by phenotype interactions for plasma lipoprotein concentrations were no longer statistically significant. Lifestyles associated with an urban environment, such as increased smoking and saturated fat intake, elicit a more adverse plasma lipoprotein profile among Costa Rican carriers of the apoA-IV-2 allele than in apoA-IV-1 homozygotes. Therefore, under the conditions studied, persons with the apoA-IV-2 allele may be more susceptible to CHD.
Collapse
Affiliation(s)
- H Campos
- Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Mass, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Sorci-Thomas MG, Curtiss L, Parks JS, Thomas MJ, Kearns MW. Alteration in apolipoprotein A-I 22-mer repeat order results in a decrease in lecithin:cholesterol acyltransferase reactivity. J Biol Chem 1997; 272:7278-84. [PMID: 9054424 DOI: 10.1074/jbc.272.11.7278] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Apolipoprotein A-I contains eight 22-amino acid and two 11-amino acid tandem repeats that comprise 80% of the mature protein. These repeating units are believed to be the basic motif responsible for lipid binding and lecithin:cholesterol acyltransferase (LCAT) activation. Computer analysis indicates that despite a fairly high degree of compositional similarity among the tandem repeats, significant differences in hydrophobic and amphipathic character exist. Our previous studies demonstrated that deletion of repeat 6 (143-164) or repeat 7 (165-186) resulted in a 98-99% reduction of LCAT activation as compared with wild-type apoA-I. To determine the effects of substituting one of these repeats with a more hydrophobic repeat we constructed a mutant apoA-I protein in which residues 143-164 (repeat 6) were replaced with repeat 10 (residues 220-241). The cloned mutant protein, 10F6 apoA-I, was expressed and purified from an Sf-9 cell baculoviral system and then analyzed using a number of biophysical and biochemical techniques. Recombinant complexes prepared at a 100:5:1 molar ratio of L-alpha-dimyristoylphosphatidylcholine:cholesterol:wild-type or 10F6 apoA-I showed a doublet corresponding to Stokes diameters of 114 and 108 A on nondenaturing 4-30% polyacrylamide gel electrophoresis. L-alpha-Dimyristoylphosphatidylcholine 10F6 apoA-I complexes had a 5-6-fold lower apparent Vmax/apparent Km as compared with wild-type apoA-I containing particles. As expected, monoclonal antibody epitope mapping of the lipid-free and lipid-bound 10F6 apoA-I confirmed that a domain expressed between residues 143 and 165 normally found in wild-type apoA-I was absent. The region between residues 119 and 144 in 10F6 apoA-I showed a marked reduction in monoclonal antibody binding capacity. Therefore, we speculate that the 5-6-fold lower LCAT reactivity in 10F6 compared with wild-type apoA-I recombinant particles results from increased stabilization within the 121-165 amino acid domain due to more stable apoprotein helix phospholipid interactions as well as from conformational alterations among adjacent amphipathic helix repeats.
Collapse
Affiliation(s)
- M G Sorci-Thomas
- Department of Comparative Medicine, La Jolla, California 92034, USA.
| | | | | | | | | |
Collapse
|
34
|
Benetollo C, Lambert G, Talussot C, Vanloo E, Cauteren TV, Rouy D, Dubois H, Baert J, Kalopissis A, Denèfle P, Chambaz J, Brasseur R, Rosseneu M. Lipid-binding properties of synthetic peptide fragments of human apolipoprotein A-II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:657-64. [PMID: 9022694 DOI: 10.1111/j.1432-1033.1996.0657r.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human apolipoprotein A-II (apo A-II) consists of three potential amphipathic helices of 17 residues each, which contribute to the lipid-binding properties of this apolipoprotein. The conformation and lipid-binding properties of these peptides, either as single-helix or as two-helix peptides, were investigated by turbidity, fluorescence, electron-microscopy and circular-dichroism measurements, and are compared in this article. The lipid affinity of shorter C-terminal segments of apo A-II was compared with those of the single-helix or two-helix peptides, to define the minimal peptide length required for stable complex formation. The properties of the apo-A-II-(13-48)-peptide were further compared with those of the same segment after deletion of the Ser31 and Pro32 residues, because the deleted apo-A-II-(13-30)-(33-48)-peptide, is predicted to form a long uninterrupted helix. The single helices of apo A-II could not form stable complexes with phospholipids, and the helix-turn-helix segment spanning residues 13-48 was not active either. The apo-A-II-(37-77)-peptide and the apo-A-II-(40-73)-peptide could form complexes with lipids, which appear as discoidal particles by negative-staining electron microscopy. The shortest C-terminal domain of apo A-II able to associate with lipids to form stable complexes was the apo-A-II-(40-73)-peptide, which consisted of the C-terminal helix, a beta-turn and part of the preceding helix. The shorter apo-A-II-(49-77)-peptide, and the helical apo-A-II-(13-30)-(33-48)-peptide, could also associate with phospholipids. The complexes formed were, however, less stable, as they dissociated outside the transition temperature range of the phospholipid. These data suggest that the C-terminal pair of helices of apo A-II, which is the most hydrophobic pair, is responsible for the lipid-binding properties of the entire protein. The N-terminal pair of helices of apo A-II at residues 13-48 does not associate tightly with lipids. The degree of internal similarity and the cooperativity between the helical segments of apo A-II is thus less pronounced than in apo A-I or apo A-IV. The N-terminal and C-terminal domains of apo A-II appear to behave as two distinct entities with regard to lipid-protein association.
Collapse
Affiliation(s)
- C Benetollo
- CJF INSERM 9508, Institut des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chung BH, Palgunachari MN, Mishra VK, Chang CH, Segrest JP, Anantharamaiah GM. Probing structure and function of VLDL by synthetic amphipathic helical peptides. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42019-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
High level secretion of wild-type and mutant forms of human proapoA-I using baculovirus-mediated Sf-9 cell expression. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37608-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Buchko GW, Treleaven WD, Dunne SJ, Tracey AS, Cushley RJ. Structural studies of a peptide activator of human lecithin-cholesterol acyltransferase. J Biol Chem 1996; 271:3039-45. [PMID: 8621698 DOI: 10.1074/jbc.271.6.3039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The synthetic lipid-associating peptide, LAP-20 (VSSLLSSLKEYWSSLKESFS), activates lecithin-cholesterol acyltransferase (LCAT) despite its lack of sequence homology to apolipoprotein A-I, the primary in vivo activator of LCAT. Using SDS and dodecylphosphocholine (DPC) to model the lipoprotein environment, the structural features responsible for LAP-20's ability to activate LCAT were studied by optical and two-dimensional 1H NMR spectroscopy. A large blue shift in the intrinsic fluorescence of LAP-20 with the addition of detergent suggested that the peptide formed a complex with the micelles. Analysis of the CD data shows that LAP-20 lacks well defined structure in aqueous solution but adopts helical, ordered conformations upon the addition of SDS or DPC. The helical nature of the peptides in the presence of both lipids was confirmed by upfield H alpha NMR secondary shifts relative to random coil values. Average structures for both peptides in aqueous solutions containing SDS and DPC were generated using distance geometry methods from 329 (SDS) and 309 (DPC) nuclear Overhauser effect-based distance restraints. The backbone (N, Calpha, C=O) RMSD from the average structure of an ensemble of 17 out of 20 calculated structures was 0.41 +/- 0.15 Angstrom for LAP-20 in SDS and 0.41 +/- 0.12 A for an ensemble of 20 out of 20 calculated structures for LAP-20 in DPC. In the presence of SDS, the distance geometry and simulated annealing calculations show that LAP-20 adopts a well defined class A amphipathic helix with distinct hydrophobic and hydrophilic faces. A similar structure was obtained for LAP-20 in the presence of DPC, suggesting that both detergents may be used interchangeably to model the lipoprotein environment. Conformational features of the calculated structures for LAP-20 are discussed relative to models for apolipoprotein A-I activation of LCAT.
Collapse
Affiliation(s)
- G W Buchko
- Department of Chemistry and Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | | | |
Collapse
|
38
|
Moriyama K, Sasaki J, Matsunaga A, Takada Y, Kagimoto M, Arakawa K. Identification of two apolipoprotein variants, A-I Karatsu (Tyr 100-->His) and A-I Kurume (His 162-->Gln). Clin Genet 1996; 49:79-84. [PMID: 8740917 DOI: 10.1111/j.1399-0004.1996.tb04332.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We identified two apolipoprotein (apo) A-I variants, using isoelectric focusing gel electrophoresis: apo A-I Karatsu, which had a relative charge of +1 compared to normal apo A-I4, and apo A-I Kurume, which had a relative charge of -1. Direct sequence analysis of the PCR-amplified DNA from the proband of apo A-I Karatsu revealed a single substitution of tyrosine (TAC) for histidine (CAC) at position 100. Sequence analysis of apo A-I Kurume revealed a single substitution of histidine (CAT) for glutamine (CAG) at position 162. Probands of these two mutants and limited family study showed no accelerated atherosclerosis.
Collapse
Affiliation(s)
- K Moriyama
- Department of Internal Medicine, Fukuoka University, School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Palgunachari MN, Mishra VK, Lund-Katz S, Phillips MC, Adeyeye SO, Alluri S, Anantharamaiah GM, Segrest JP. Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly. Arterioscler Thromb Vasc Biol 1996; 16:328-38. [PMID: 8620350 DOI: 10.1161/01.atv.16.2.328] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human apolipoprotein A-I (apo A-I) possesses multiple tandem repeating 22-mer amphipathic alpha-helixes. Computer analysis and studies of model synthetic peptides and recombinant protein-lipid complexes of phospholipids have suggested that apo A-I interacts with HDL surface lipids through cooperation among its individual amphipathic helical domains. To delineate the overall lipid-associating properties of apo A-I, the first step is to understand the lipid-associating properties of individual amphipathic helical domains. To this end, we synthesized and studied each of the eight tandem repeating 22-mer domains of apo A-I: residues 44-65, 66-87, 99-120, 121-142, 143-164, 165-186, 187-208, and 220-241. Among the 22-mers, only the N- and C-terminal peptides (44-65 and 220-241) were effective in clarifying multilamellar vesicles (MLVs) of dimyristoylphosphatidylcholine (DMPC). These two peptides also exhibited the highest partition coefficient into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine liposomes, the highest exclusion pressure for penetration into an egg yolk phosphatidylcholine monolayer, and the greatest reduction in the enthalpy of the gel-to-liquid crystalline phase transition of DMPC MLVs. These results suggest that the strong, lipid-associating properties of apo A-I are localized to the N- and C-terminal amphipathic domains. Although each of the eight peptides studied has an amphipathic structure, models based on changes in residual effective amino acid hydrophobicity resulting from differing depths of helix penetration into the lipid are best able to explain the high lipid affinity possessed by the two terminal domains. Differential scanning calorimetry (DSC) studies showed that on a molar basis, apo A-I is about 10 times more effective than the most effective peptide analyzed in reducing the enthalpy of the gel-to-liquid crystalline phase transition of DMPC MLVs. Because previous proteolysis experiments coupled with the present DSC results suggest that the lipid-associating domains of apo A-I are distributed throughout the length of the 243 amino acid residues, we propose that the terminal amphipathic helical domains are involved in the initial binding of apo A-I to the lipid surface to form HDL particles, followed by cooperative binding of the middle six amphipathic helical domains, perhaps aided by salt-bridge formation between adjacent helixes arranged in an antiparallel orientation.
Collapse
Affiliation(s)
- M N Palgunachari
- Department of Medicine, Biochemistry and Molecular Genetics, UAB Medical Center 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Moriyama K, Sasaki J, Matsunaga A, Arakawa K. Identification of two apolipoprotein variants, A-I Kaho (Asp 51-->Val) and A-I Lys 107 deletion. J Atheroscler Thromb 1996; 3:12-16. [PMID: 9225234 DOI: 10.5551/jat1994.3.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have identified two apolipoprotein (apo) A-I variants using isoelectric focusing gel electrophoresis: apo A-I Kaho which has a relative charge of +1 compared to normal apo A-I4, and apo A-I Nanakuma2 which has a relative charge of -1. Sequence analysis of PCR-amplified DNA from the proband of apo A-I Kaho revealed a single substitution of aspartic acid (GAC) for valine (GTC) at residue 51. Sequence analysis of PCR-amplified DNA from the proband of apo A-I Nanakuma2 revealed a three-base (AAG or AGA) deletion between bases 186 and 193 from the 5' end of exon 4 that leads to deletion of Lys 106 or 107. This mutation may be the same as that of apo A-I Marburg or A-I Munster-2 reported by Rall et al. (Rall SC Jr, Weisgraber KH, Mahley RW, Ogawa Y, Fielding CJ, Utermann G, Haas J, Steinmetz A, Menzel HJ, and Assmann G, J Biol Chem, 259: 10063-10070, 1984). Because of its unique sequence between 185 and 193 from the 5' end of exon 4 of apo A-I gene, we could not define whether AAG or AGA is deleted by DNA sequencing.
Collapse
Affiliation(s)
- K Moriyama
- Department of Internal Medicine, Fukuoka University School of Medicine, Japan
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- W Patsch
- Department of Laboratory Medicine, Landes Krankenanstalten, Salzburg, Austria
| | | |
Collapse
|
42
|
Bergeron J, Frank PG, Scales D, Meng QH, Castro G, Marcel YL. Apolipoprotein A-I conformation in reconstituted discoidal lipoproteins varying in phospholipid and cholesterol content. J Biol Chem 1995; 270:27429-38. [PMID: 7499199 DOI: 10.1074/jbc.270.46.27429] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The effects of the size and cholesterol content on the conformation of apolipoprotein A-I (apoA-I) have been studied in reconstituted discoidal lipoproteins containing two apoA-I per particle (Lp2A-I). The immunoreactivity of a series of 13 epitopes distributed along the apoA-I sequence has been evaluated in Lp2A-I with a phospholipid/apoA-I molar ratio ranging from 31 to 156 and in Lp2A-I with constant phospholipids but varying in cholesterol content from 0 to 22 molecules. The results are compatible with a three domain structure in apoA-I in which the central domain is located between residues 99 and 143 and postulated to be a hinged domain that responds differentially to changes in phospholipid and cholesterol contents. Increasing the phospholipid content results in significant changes of epitope immunoreactivity throughout the N-terminal and central domains of apoA-I with fewer modifications in the C-terminal domain. In contrast, increasing Lp2A-I of two central epitopes, A11 (residues 99-132) and 5F6 (residues 118-148), and an extreme N-terminal epitope, 4H1 (residues 2-8). Interestingly, the effects of increasing cholesterol or phospholipids on these epitopes are opposite. This suggests a specific effect of cholesterol on the central domain tertiary structure between residues 99 and 143. Competition binding assays among pairs of antibodies binding to apoA-I on Lp2A-I are best explained by invoking inter- as well as intramolecular competitions. The specificity of the intermolecular competitions suggests an N to C termini arrangement of the two apoA-I molecules around the disc. Increasing the phospholipid content of Lp2A-I mainly increases the competitions between 3G10 and antibodies binding to most adjacent epitopes. Simultaneously as Lp2A-I enlarges, several of these antibodies also enhance the binding of 3G10. This has been interpreted as evidence of a structural rearrangement of apoA-I as a result of the size increase where the alpha-helix (residues 99-121) that contains the 3G10 epitope is increasingly interacting with lipids resulting in the enhanced expression of this epitope. The increasing interactions of apoA-I helices with lipids in the enlarging disc are compatible with previous reports of a greater apoA-I stability in the large discs. By contrast, cholesterol has limited but specific effects on antibody competitions and decreases the interaction of the N-terminal domain with the domain containing 3G10, either by direct cholesterol protein interaction or by modification of the lipid phase packing.
Collapse
Affiliation(s)
- J Bergeron
- Lipoprotein and Atherosclerosis Group, University of Ottawa Heart Institute, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Zhou G, Dolphin PJ. Human plasma lecithin:cholesterol acyltransferase. On the substrate efficiency of cholest-5-ene-3 beta-thiol as a fatty acyl acceptor. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1258:101-6. [PMID: 7548172 DOI: 10.1016/0005-2760(95)00105-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyses cholesteryl ester formation from lecithin and cholesterol present in the surface of plasma lipoproteins. Sterol fatty acid acceptors have previously been shown to require the presence of a trans conformation of the A/B ring and a 3 beta-OH group. Our laboratory has, however, demonstrated that two thiol sites within LCAT can become fatty acylated following lecithin cleavage although this does not appear to be essential for catalysis. In order to assess the ability of LCAT to donate a fatty acid derived from the sn-2 position of lecithin and present as an acyl enzyme intermediate (linked via an oxyester bond to Ser-181) to a sulfhydryl residue, we evaluated the ability of cholest-5-ene-3 beta-thiol to act as a substrate for cholesterol ester formation by LCAT. Thiocholesterol was a good terminal fatty acyl acceptor when incorporated into synthetic proteoliposomes containing lecithin/thiocholesterol/apo A-I in the molar ratios of 250:15:0.8. The Km for thiocholesterol was 203.6 microM with a Vmax of 5.3 nmol thiocholesteryl ester formed/h per microgram. The Km for cholesterol when substituted for thiocholesterol in the proteoliposomes was 29.5 microM with a Vmax of 8.8 nmol cholesteryl ester formed/h per microgram. Thiocholesterol and cholesterol were shown to occupy the same catalytic site in LCAT. Thus, thiocholesterol exhibits approx. 10% of the substrate efficiency of cholesterol when incubated with pure human LCAT. We conclude that LCAT can transacylate a fatty acyl moiety from the sn-2 position of lecithin to the 3 beta-SH group of thiocholesterol forming a cholesteryl thioester. Although the 3 beta-SH group is not as good a terminal acceptor as the 3 beta-OH group of cholesterol, LCAT is clearly capable of transacylating a fatty acid esterified via an oxyester linkage to one containing a thioester.
Collapse
Affiliation(s)
- G Zhou
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
44
|
Vanloo B, Demoor L, Boutillon C, Lins L, Brasseur R, Baert J, Fruchart JC, Tartar A, Rosseneu M. Association of synthetic peptide fragments of human apolipoprotein A-I with phospholipids. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41488-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Brouillette CG, Anantharamaiah GM. Structural models of human apolipoprotein A-I. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1256:103-29. [PMID: 7766689 DOI: 10.1016/0005-2760(95)00018-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Sparrow DA, Laplaud PM, Saboureau M, Zhou G, Dolphin PJ, Gotto AM, Sparrow JT. Plasma lipid transport in the hedgehog: partial characterization of structure and function of apolipoprotein A-I. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39882-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Fournier N, Myara I, Atger V, Moatti N. Reactivity of lecithin-cholesterol acyl transferase (LCAT) towards glycated high-density lipoproteins (HDL). Clin Chim Acta 1995; 234:47-61. [PMID: 7758222 DOI: 10.1016/0009-8981(94)05975-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hyperglycaemia in diabetic patients results in non-enzymatic glycation of plasma proteins, including lipoproteins such as high-density lipoproteins (HDL). We studied the effects of in vitro HDL glycation on the activity of lecithin-cholesterol acyl transferase (LCAT), a key enzyme in HDL plasma metabolism. LCAT was prepared from non-diabetic subjects and HDL by sequential density ultracentrifugation (in the density range of 1.063-1.21 g/ml) from both diabetic and non-diabetic patients. HDL from non-diabetic patients were glycated in vitro by incubating lipoproteins with 100 mmol/l glucose for various times at 37 degrees C with sodium cyanoborohydride as reducing agent. Glycation of HDL protein was quantified by measuring the percentage of derived amino acid residues using the TNBS assay. Kinetic parameters of LCAT were first determined using native HDL from non-diabetic patients and in vitro glycated HDL. With native HDL, Km and Vmax were 51.1 +/- 4.2 mumol/l (n = 8) and 12.9 +/- 2.4 nmol/ml/h (n = 8), respectively. Enzyme reactivity, calculated as the Vmax/Km ratio, was 0.25 +/- 0.04 h-1 (n = 8). In the case of moderate glycation (derived residues < 30%; n = 19) a significant increase in both Km (18.2 +/- 3.4%; mean +/- S.D.) and Vmax (9.3 +/- 2.4%) was observed. In contrast, with a high level of glycation (derived residues > 30%; n = 8), both parameters fell (Km, 25 +/- 6.3%; Vmax, 34.1 +/- 3.3%). In addition, whatever the level of glycation, enzyme reactivity was lower in the presence of in vitro glycated HDL. This decrease in LCAT reactivity was not due to a peroxidative process nor to an alteration of the protein and lipid composition of in vitro glycated HDL. It could, however, be explained by glycation of lysine residues in apolipoprotein A-I, which is the most potent activator of LCAT. In a second series of experiments, native diabetic HDL preparations were used as LCAT substrate. No alteration in Km values was observed, but there was a significant decrease in both Vmax (28%) and enzyme reactivity (32%). This difference in Km and Vmax alterations between native diabetic HDL and in vitro glycated HDL with low levels of glycation might be explained by the impact of physiological modifications, other than glycation, which could differently affect the chemicophysical properties of HDL in diabetic patients.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N Fournier
- Laboratoire de Biochimie Appliquée, Faculté des Sciences Pharmaceutiques et Biologiques (Paris XI), Châtenay-Malabry, France
| | | | | | | |
Collapse
|
48
|
Mishra VK, Palgunachari MN, Lund-Katz S, Phillips MC, Segrest JP, Anantharamaiah GM. Effect of the arrangement of tandem repeating units of class A amphipathic alpha-helixes on lipid interaction. J Biol Chem 1995; 270:1602-11. [PMID: 7829491 DOI: 10.1074/jbc.270.4.1602] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exchangeable apolipoproteins possess tandem repeating units of class A amphipathic helical segments and many of them are linked together by proline residues. To understand the optimal arrangement of the amphipathic helixes for lipid association, we have studied the interactions of three model class A amphipathic helical peptides with lipids. The three peptides are: 37pA, a dimer of 18A (DWLKAFYDKVAEKLKEAF) linked together by a Pro (18A-Pro-18A); 37aA, a dimer of 18A linked together by an Ala (18A-Ala-18A); and 36A, a dimer of 18A without any linker residue (18A-18A). Circular dichroism (CD) spectra showed that the peptides are predominantly alpha-helical in aqueous and lipid environments. Temperature dependent CD studies indicated that in buffer helix stability decreases in the order 36A > 37aA > 37pA; however, in the presence of dimyristoyl phosphatidylcholine (DMPC), the above order is reversed. The retention times of the peptides on a C18 reversed-phase high performance liquid chromatography column decreased in the order 36A > 37aA > 37pA, consistent with the lengths of the nonpolar faces of the alpha-helixes being in the same order; the retention time of the parent 18A was shorter than 37pA. While 37pA adsorbed to egg phosphatidylcholine monolayers most strongly, the degree and rate of association of 36A were significantly lower. Differential scanning calorimetry indicated that, while 37pA was most effective in reducing the enthalpy of the gel to liquid-crystalline phase transition of DMPC multilamellar vesicles, 36A was least effective; 36A was even less effective than 18A. Fluorescence quenching experiments with iodide and acrylamide indicated that, in the presence of DMPC, Trp residues in 36A are most exposed to the quenchers while in 37pA they are least exposed. In the presence of DMPC, shielding of Trp in 18A from the quenchers was more than that observed with Trp residues in 36A. The results of this study suggest that the arrangement of tandem repeating amphipathic helical units which results in the formation of a class A amphipathic helix with a nonpolar face longer than five or six turns reduces the ability of the helix to associate with phospholipid.
Collapse
Affiliation(s)
- V K Mishra
- Department of Medicine, University of Alabama, Birmingham 35294
| | | | | | | | | | | |
Collapse
|
49
|
Molecular characterization of native and recombinant apolipoprotein A-IMilano dimer. The introduction of an interchain disulfide bridge remarkably alters the physicochemical properties of apolipoprotein A-I. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31616-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Weinberg RB. Identification of functional domains in the plasma apolipoproteins by analysis of inter-species sequence variability. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39927-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|