1
|
Badran M, Gozal D. PAI-1: A Major Player in the Vascular Dysfunction in Obstructive Sleep Apnea? Int J Mol Sci 2022; 23:5516. [PMID: 35628326 PMCID: PMC9141273 DOI: 10.3390/ijms23105516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Obstructive sleep apnea is a chronic and prevalent condition that is associated with endothelial dysfunction, atherosclerosis, and imposes excess overall cardiovascular risk and mortality. Despite its high prevalence and the susceptibility of CVD patients to OSA-mediated stressors, OSA is still under-recognized and untreated in cardiovascular practice. Moreover, conventional OSA treatments have yielded either controversial or disappointing results in terms of protection against CVD, prompting the need for the identification of additional mechanisms and associated adjuvant therapies. Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator (tPA) and urinary-type plasminogen activator (uPA), is a key regulator of fibrinolysis and cell migration. Indeed, elevated PAI-1 expression is associated with major cardiovascular adverse events that have been attributed to its antifibrinolytic activity. However, extensive evidence indicates that PAI-1 can induce endothelial dysfunction and atherosclerosis through complex interactions within the vasculature in an antifibrinolytic-independent matter. Elevated PAI-1 levels have been reported in OSA patients. However, the impact of PAI-1 on OSA-induced CVD has not been addressed to date. Here, we provide a comprehensive review on the mechanisms by which OSA and its most detrimental perturbation, intermittent hypoxia (IH), can enhance the transcription of PAI-1. We also propose causal pathways by which PAI-1 can promote atherosclerosis in OSA, thereby identifying PAI-1 as a potential therapeutic target in OSA-induced CVD.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, 400 N Keene St, Suite 010, Columbia, MO 65201, USA;
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, 400 N Keene St, Suite 010, Columbia, MO 65201, USA;
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
2
|
Tian H, Zhang Z, Han X, Pan T, Tao G, Jiao P, Zhai L, Yang L, Wang X, Yao Y, Qin S, Yao S. D4F alleviates the C/EBP homologous protein-mediated apoptosis in glycated high-density lipoprotein-treated macrophages by facilitating autophagy. Exp Biol Med (Maywood) 2021; 246:2595-2609. [PMID: 34525858 DOI: 10.1177/15353702211045323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present study aimed to investigate the role of D4F, an apolipoprotein A-I mimetic peptide, in macrophage apoptosis induced by the glycated high-density lipoprotein (gly-HDL)-induced endoplasmic reticulum (ER) stress C/EBP homologous protein (CHOP) pathway, and unravel the regulatory role of autophagy in this process. Our results revealed that except for suppressing the accumulation of lipids within RAW264.7 macrophages caused by gly-HDL, D4F inhibited gly-HDL-induced decrease in the cell viability and increase in lactate dehydrogenase leakage and cell apoptosis, which were similar to 4-phenylbutyric acid (PBA, an ER stress inhibitor). Besides, similar to PBA, D4F inhibited gly-HDL-induced ER stress response activation evaluated through the decreased PERK and eIF2α phosphorylation, together with reduced ATF6 nuclear translocation as well as the downregulation of GRP78 and CHOP. Interestingly, D4F facilitated gly-HDL-triggered activation of autophagy, measured as elevated levels of beclin-1, LC3-II, and ATG5 expressions in macrophages. Furthermore, the inhibition effect of D4F on gly-HDL-induced ER stress-CHOP-induced apoptosis of macrophages was restrained after beclin-1 siRNA and 3-methyladenine (3-MA, an inhibitor of autophagy) treatments, while this effect was further reinforced after rapamycin (Rapa, an inducer of autophagy) treatment. Furthermore, administering D4F or Rapa to T2DM mice upregulated LC3-II and attenuated CHOP expression, cell apoptosis, and atherosclerotic lesions. However, the opposite results were obtained when 3-MA was administered to these mice. These results support that D4F effectively protects macrophages against gly-HDL-induced ER stress-CHOP-mediated apoptosis by promoting autophagy.
Collapse
Affiliation(s)
- Hua Tian
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaoqiang Zhang
- College of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Xiaoyan Han
- College of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Tianqi Pan
- College of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Geru Tao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Lei Zhai
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Libo Yang
- Department of Endocrinology, Central Hospital of Taian, Taian 271000, China
| | - Xiaoxu Wang
- College of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Yilin Yao
- College of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Shutong Yao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China.,College of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| |
Collapse
|
3
|
Endothelial Dysfunction in Diabetes Is Aggravated by Glycated Lipoproteins; Novel Molecular Therapies. Biomedicines 2020; 9:biomedicines9010018. [PMID: 33375461 PMCID: PMC7823542 DOI: 10.3390/biomedicines9010018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetes and its vascular complications affect an increasing number of people. This disease of epidemic proportion nowadays involves abnormalities of large and small blood vessels, all commencing with alterations of the endothelial cell (EC) functions. Cardiovascular diseases are a major cause of death and disability among diabetic patients. In diabetes, EC dysfunction (ECD) is induced by the pathological increase of glucose and by the appearance of advanced glycation end products (AGE) attached to the plasma proteins, including lipoproteins. AGE proteins interact with their specific receptors on EC plasma membrane promoting activation of signaling pathways, resulting in decreased nitric oxide bioavailability, increased intracellular oxidative and inflammatory stress, causing dysfunction and finally apoptosis of EC. Irreversibly glycated lipoproteins (AGE-Lp) were proven to have an important role in accelerating atherosclerosis in diabetes. The aim of the present review is to present up-to-date information connecting hyperglycemia, ECD and two classes of glycated Lp, glycated low-density lipoproteins and glycated high-density lipoproteins, which contribute to the aggravation of diabetes complications. We will highlight the role of dyslipidemia, oxidative and inflammatory stress and epigenetic risk factors, along with the specific mechanisms connecting them, as well as the new promising therapies to alleviate ECD in diabetes.
Collapse
|
4
|
|
5
|
Tian H, Li Y, Kang P, Wang Z, Yue F, Jiao P, Yang N, Qin S, Yao S. Endoplasmic reticulum stress-dependent autophagy inhibits glycated high-density lipoprotein-induced macrophage apoptosis by inhibiting CHOP pathway. J Cell Mol Med 2019; 23:2954-2969. [PMID: 30746902 PMCID: PMC6433656 DOI: 10.1111/jcmm.14203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022] Open
Abstract
This study was designed to explore the inductive effect of glycated high‐density lipoprotein (gly‐HDL) on endoplasmic reticulum (ER) stress‐C/EBP homologous protein (CHOP)‐mediated macrophage apoptosis and its relationship with autophagy. Our results showed that gly‐HDL caused macrophage apoptosis with concomitant activation of ER stress pathway, including nuclear translocation of activating transcription factor 6, phosphorylation of protein kinase‐like ER kinase (PERK) and eukaryotic translation initiation factor 2α, and CHOP up‐regulation, which were inhibited by 4‐phenylbutyric acid (PBA, an ER stress inhibitor) and the gene silencing of PERK and CHOP. Similar data were obtained from macrophages treated by HDL isolated from diabetic patients. Gly‐HDL induced macrophage autophagy as assessed by up‐regulation of beclin‐1, autophagy‐related gene 5 and microtubule‐associated protein one light chain 3‐II, which were depressed by PBA and PERK siRNA. Gly‐HDL‐induced apoptosis, PERK phosphorylation and CHOP up‐regulation were suppressed by rapamycin (an autophagy inducer), whereas aggravated by 3‐methyladenine (an autophagy inhibitor) and beclin‐1 siRNA. Administration of diabetic apoE−/− mice with rapamycin attenuated MOMA‐2 and CHOP up‐regulation and apoptosis in atherosclerotic lesions. These data indicate that gly‐HDL may induce macrophage apoptosis through activating ER stress‐CHOP pathway and ER stress mediates gly‐HDL‐induced autophagy, which in turn protects macrophages against apoptosis by alleviating CHOP pathway.
Collapse
Affiliation(s)
- Hua Tian
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Yanyan Li
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Panpan Kang
- Affiliated hospital of Chengde Medical University, Chengde Medical University, Chengde, China
| | - Zhichao Wang
- College of Nursing, Taishan Medical University, Taian, China
| | - Feng Yue
- Department of Endocrinology, Central Hospital of Taian, Taian, China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Nana Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Shutong Yao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China.,College of Basic Medical Sciences, Taishan Medical University, Taian, China
| |
Collapse
|
6
|
Dai Y, Shen Y, Li QR, Ding FH, Wang XQ, Liu HJ, Yan XX, Wang LJ, Yang K, Wang HB, Chen QJ, Shen WF, Zhang RY, Lu L. Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes. J Am Coll Cardiol 2017; 70:2006-2019. [PMID: 29025558 DOI: 10.1016/j.jacc.2017.08.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Nonenzymatic glycation of apolipoproteins plays a role in the pathogenesis of the vascular complications of diabetes. OBJECTIVES This study investigated whether apolipoprotein (apo) A-IV was glycated in patients with type 2 diabetes mellitus (T2DM) and whether apoA-IV glycation was related to coronary artery disease (CAD). The study also determined the biological effects of glycated apoA-IV. METHODS The authors consecutively enrolled 204 patients with T2DM without CAD (Group I), 515 patients with T2DM with CAD (Group II), and 176 healthy subjects (control group) in this study. ApoA-IV was precipitated from ultracentrifugally isolated high-density lipoprotein, and its glycation level was determined based on Western blotting densitometry (relative intensity of apoA-IV glycation). ApoA-IV NƐ-(carboxylmethyl) lysine (CML) modification sites were identified by mass spectrometry in 37 control subjects, 63 patients in Group I, and 138 patients in Group II. Saline or glycated apoA-IV (g-apoA-IV) generated by glyoxal culture was injected into apoE-/- mice to evaluate atherogenesis, and was also used for the cell experiments. RESULTS The relative intensity and the abundance of apoA-IV glycation were associated with the presence and severity of CAD in patients with T2DM (all p < 0.05). The experiments showed that g-apoA-IV induced proinflammatory reactions in vitro and promoted atherogenesis in apoE-/- mice through the nuclear receptor NR4A3. G-apoA-IV with mutations (K-A) at high-frequency glycation sites exhibited more weakened proinflammatory and atherogenic effects than did g-apoA-IV both in vitro and in vivo. CONCLUSIONS ApoA-IV glycation is associated with CAD severity in patients with T2DM, and g-apoA-IV induces atherogenesis through NR4A3 in apoE-/- mice.
Collapse
Affiliation(s)
- Yang Dai
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Run Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Hua Ding
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Qun Wang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Juan Liu
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Xiang Yan
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Jie Wang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke Yang
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai Bo Wang
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiu Jing Chen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Feng Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Rui Yan Zhang
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Mao JY, Sun JT, Yang K, Shen WF, Lu L, Zhang RY, Tong X, Liu Y. Serum amyloid A enrichment impairs the anti-inflammatory ability of HDL from diabetic nephropathy patients. J Diabetes Complications 2017; 31:1538-1543. [PMID: 28760652 DOI: 10.1016/j.jdiacomp.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/13/2023]
Abstract
AIMS Impaired anti-inflammatory ability of high-density lipoprotein (HDL) has been demonstrated in patients with type-2 diabetes mellitus (T2DM). However, whether HDL from patients with diabetic nephropathy (DN) suffers additional damage remains unknown. This study compared the anti-inflammatory capacities of HDL from healthy controls, T2DM patients with normal renal function, and T2DM patients with DN. MATERIALS AND METHODS HDL was isolated from healthy controls (n=33) and T2DM patients with normal renal function (n=21), chronic kidney disease (CKD) (n=27), and end-stage renal disease (ESRD) (n=27). Human peripheral blood mononuclear cells (PBMCs) from healthy volunteers were pretreated with HDL (100μg/mL) for 1h, then incubated with lipopolysaccharide (LPS) (50ng/mL) for 24h. The anti-inflammatory ability of HDL was measured as the secretion of TNF-α in LPS-activated monocytes. RESULTS The anti-inflammatory ability of HDL was gradually impaired as kidney function declined. Serum amyloid A (SAA) concentration in HDLDN significantly increased and was positively correlated with the impaired anti-inflammatory ability of HDL (Pearson r=0.315, P=0.006). Furthermore, HDL supplemented with SAA significantly increased TNF-α release from PBMCs compared with that from control HDL. CONCLUSIONS These findings identified an impaired anti-inflammatory capacity of HDL from DN patients, which might be attributable to SAA enrichment.
Collapse
MESH Headings
- Adult
- Aged
- Cells, Cultured
- China/epidemiology
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/complications
- Diabetic Angiopathies/epidemiology
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Nephropathies/immunology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/physiopathology
- Female
- Hospitals, University
- Humans
- Kidney/physiopathology
- Kidney Failure, Chronic/complications
- Kidney Failure, Chronic/immunology
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/pathology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Lipopolysaccharides/toxicity
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/isolation & purification
- Lipoproteins, HDL/metabolism
- Male
- Middle Aged
- Outpatient Clinics, Hospital
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/immunology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Risk Factors
- Serum Amyloid A Protein/analysis
- Serum Amyloid A Protein/metabolism
- Severity of Illness Index
- Vasculitis/complications
- Vasculitis/immunology
- Vasculitis/metabolism
- Vasculitis/pathology
Collapse
Affiliation(s)
- Jing Yan Mao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Teng Sun
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ke Yang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Feng Shen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Yan Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yan Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
8
|
Sun JT, Liu Y, Lu L, Liu HJ, Shen WF, Yang K, Zhang RY. Diabetes-Invoked High-Density Lipoprotein and Its Association With Coronary Artery Disease in Patients With Type 2 Diabetes Mellitus. Am J Cardiol 2016; 118:1674-1679. [PMID: 27666175 DOI: 10.1016/j.amjcard.2016.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022]
Abstract
Although high-density lipoprotein (HDL) can exhibit anti-inflammatory properties, these potent activities can become deficient and even transform into proinflammatory effects under various pathophysiological states. We investigated the effect of diabetic HDL on the inflammatory response in human monocytes and its relation to the existence of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (DM). HDL was isolated from DM patients with (n = 61) or without (n = 31) CAD (diameter stenosis ≥50%) and healthy controls (n = 40). Human peripheral blood mononuclear cells were incubated with HDL and the proinflammatory ability of HDL was determined by tumor necrosis factor-α (TNF-α) secretion in peripheral blood mononuclear cells. Secretion of TNF-α in human monocytes in response to diabetic HDL was significantly increased compared with that of the control HDL. Of note, HDL from DM patients with CAD stimulated the release of TNF-α in monocytes to a greater extent than that of HDL from those without CAD. Multiple linear regression analysis showed that the proinflammatory ability of HDL was independently associated with diabetes duration, hemoglobin A1c, serum levels of high-sensitivity C-reactive protein (hs-CRP) and reduced glomerular filtration rate (GFR). Furthermore, the proinflammatory ability of HDL was a significant predictor for the presence of CAD in patients with DM.
Collapse
|
9
|
Mohanan Nair M, Zhao R, Xie X, Shen GX. Impact of glycated LDL on endothelial nitric oxide synthase in vascular endothelial cells: involvement of transmembrane signaling and endoplasmic reticulum stress. J Diabetes Complications 2016; 30:391-7. [PMID: 26853630 DOI: 10.1016/j.jdiacomp.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Cardiovascular diseases are the major cause of mortality in diabetes patients. Increased levels of glycated low density lipoprotein (glyLDL) are detected in diabetic patients. Endothelial nitric oxide synthase (eNOS) generates nitric oxide, which is responsible to endothelium-dependent vasodilation. The impact of glyLDL on the expression and activity of eNOS in vascular endothelial cells (EC) remains unknown. The present study investigated the effect of glyLDL on the levels of protein, mRNA and activity of eNOS in cultured human umbilical vein EC. The results demonstrated that incubation of EC with physiological concentrations of glyLDL significantly reduced the abundances of eNOS protein in EC with the maximal inhibition at 100μg/ml for 24h. At the optimized condition, glyLDL decreased eNOS mRNA and reduced its activity in EC. Blocking antibody against the receptor for advanced glycation end products (RAGE) prevented glyLDL-induced downregulation of eNOS in EC. GlyLDL increased the translocation of H-Ras from cytoplasm to membrane in EC. Farnesyl-transferase inhibitor-276, an H-Ras antagonist, normalized glyLDL-induced downregulation of eNOS and prevented glyLDL-induced upregulation of H-Ras in EC membrane. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress antagonist, prevented glyLDL-induced eNOS downregulation in EC. The results suggest that diabetes-associated metabolic stress inhibits the production and activity of eNOA in cultured human vascular EC through the activation of RAGE/H-Ras mediated upstream signaling pathway. ER stress induced by glyLDL is possibly involved in eNOS downregulation.
Collapse
Affiliation(s)
- Manoj Mohanan Nair
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Ruozhi Zhao
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Xueping Xie
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Garry X Shen
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
10
|
Sun JT, Yang K, Lu L, Zhu ZB, Zhu JZ, Ni JW, Han H, Chen N, Zhang RY. Increased carbamylation level of HDL in end-stage renal disease: carbamylated-HDL attenuated endothelial cell function. Am J Physiol Renal Physiol 2016; 310:F511-7. [PMID: 26764205 DOI: 10.1152/ajprenal.00508.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
It is thought that carbamylated modification plays a crucial role in the development and progression of cardiovascular disease (CVD) in patients with end-stage renal disease (ESRD). However, information on the biological effects of carbamylated high-density lipoprotein (C-HDL) in ESRD is poor. The present study investigated the carbamylation level of HDL in ESRD and the effects of C-HDL on endothelial repair properties. HDL was isolated from healthy control subjects (n = 22) and patients with ESRD (n = 30). The carbamylation level of HDL was detected using ELISA. Isolated C-HDL for use in tissue culture experiments was carbamylated in vitro to a similar extent to that observed in ESRD. Human arterial endothelial cells were treated with C-HDL or native HDL to assess their migration, proliferation, and angiogenesis properties. HDL-associated paraoxonase 1 activity was also determined by spectrophotometry assay. Compared with healthy control subjects, the carbamylation level of HDL in ESRD patients was increased and positively correlated with blood urea concentration. In vitro, C-HDL significantly inhibited migration, angiogenesis, and proliferation in endothelial cells. Mechanistic studies revealed that HDL-associated paraoxonase 1 activity was decreased and negatively correlated with the carbamylation level of HDL in ESRD patients. In addition, C-HDL suppressed the expression of VEGF receptor 2 and scavenger receptor class B type I signaling pathways in endothelial cells. In conclusion, the present study identified a significantly increased carbamylation level of HDL in ESRD. Furthermore, C-HDL inhibited endothelial cell repair functions.
Collapse
Affiliation(s)
- Jia Teng Sun
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Cardiovascular Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Lin Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Bin Zhu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhou Zhu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wei Ni
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Han
- Institute of Cardiovascular Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Yan Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
| |
Collapse
|
11
|
Shen Y, Ding FH, Sun JT, Pu LJ, Zhang RY, Zhang Q, Chen QJ, Shen WF, Lu L. Association of elevated apoA-I glycation and reduced HDL-associated paraoxonase1, 3 activity, and their interaction with angiographic severity of coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2015; 14:52. [PMID: 25964115 PMCID: PMC4432963 DOI: 10.1186/s12933-015-0221-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/30/2015] [Indexed: 11/10/2022] Open
Abstract
Objective To investigate whether apolipoprotein A (apoA)-I glycation and paraoxonase (PON) activities are associated with the severity of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM). Methods Relative intensity of apoA-I glycation and activities of high-density lipoprotein (HDL)-associated PON1 and PON3 were determined in 205 consecutive T2DM patients with stable angina with (n = 144) or without (n = 61) significant CAD (luminal diameter stenosis ≥ 70 %). The severity of CAD was expressed by number of diseased coronary arteries, extent index, and cumulative coronary stenosis score (CCSS). Results The relative intensity of apoA-I glycation was higher but the activities of HDL-associated PON1 and PON3 were lower in diabetic patients with significant CAD than in those without. The relative intensity of apoA-I glycation increased but the activities of HDL-associated PON1 and PON3 decreased stepwise from 1 - to 3 - vessel disease patients (P for trend < 0.001). After adjusting for possible confounding variables, the relative intensity of apoA-I glycation correlated positively, while the activities of HDL-associated PON1 and PON3 negatively, with extent index and CCSS, respectively. At high level of apoA-I glycation (8.70 ~ 12.50 %), low tertile of HDL-associated PON1 (7.03 ~ 38.97U/mL) and PON3 activities (7.11 ~ 22.30U/mL) was associated with a 1.97− and 2.49− fold increase of extent index and 1.73− and 2.68− fold increase of CCSS compared with high tertile of HDL-associated PON1 (57.85 ~ 154.82U/mL) and PON3 activities (39.63 ~ 124.10U/mL), respectively (all P < 0.01). Conclusions Elevated apoA-I glycation and decreased activities of HDL-associated PON1 and PON3, and their interaction are associated with the presence and severity of CAD in patients with T2DM. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0221-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Feng Hua Ding
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Jia Teng Sun
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Li Jin Pu
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Rui Yan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Qi Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Qiu Jing Chen
- Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Wei Feng Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China. .,Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China. .,Institute of Cardiovascular Disease, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Pu LJ, Lu L, Zhang RY, Du R, Shen Y, Zhang Q, Yang ZK, Chen QJ, Shen WF. Glycation of apoprotein A-I is associated with coronary artery plaque progression in type 2 diabetic patients. Diabetes Care 2013; 36:1312-20. [PMID: 23230102 PMCID: PMC3631856 DOI: 10.2337/dc12-1411] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate whether glycation level of apoprotein (apo)A-I is associated with coronary artery disease (CAD) and plaque progression in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Among 375 consecutive type 2 diabetic patients undergoing quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS), 82 patients with nonsignificant stenosis (luminal diameter narrowing <30% [group I]) and 190 patients with significant CAD (luminal diameter stenosis ≥70% [group II]) were included for analysis of apoA-I glycation level and serum activity of lecithin: cholesterol acyltransferase (LCAT). The control group had 136 healthy subjects. At the 1-year follow-up, angiography and IVUS were repeated mainly in group II patients for plaque progression assessment. RESULTS Relative intensity of apoA-I glycation by densitometry was increased, and serum LCAT activity was decreased stepwise across groups control, I, and II. These two measurements were associated with the number of diseased coronary arteries and extent index in group II. During 1-year follow-up, QCA detected 45 patients with plaque progression in 159 subjects, and IVUS found 38 patients with plaque progression in 127 subjects. Baseline relative intensity of apoA-I glycation was significantly increased in patients with plaque progression compared with those without, with values associated with changes in QCA and IVUS measurements. Multivariable regression analysis revealed that baseline relative intensity of apoA-I glycation was an independent determinant of CAD and plaque progression in type 2 diabetic patients. CONCLUSIONS ApoA-I glycation level is associated with the severity of CAD and coronary artery plaque progression in type 2 diabetic patients.
Collapse
Affiliation(s)
- Li Jin Pu
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhao R, Xie X, Shen GX. Effects of glycated low-density lipoprotein on cell viability, proliferation, and growth factors of mouse embryo fibroblasts. Can J Physiol Pharmacol 2013; 91:64-70. [PMID: 23369077 DOI: 10.1139/cjpp-2012-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The predominant cause of death in diabetic patients is atherosclerotic coronary artery disease (CAD). Major gross cellular changes in the vascular wall of persons with CAD include endothelial injury and foam cell formation, as well as smooth muscle cell and fibroblast proliferation. This study examined the effects of glycated low density lipoprotein (glyLDL), a biochemical marker of diabetes, on cell viability, proliferation, and the expression of multiple growth factors in mouse embryo fibroblasts (MEF). The results demonstrated that exposure to ≥150 μg/mL of glyLDL for 24 h or 100 μg/mL of glyLDL for ≥48 h either significantly reduced cell viability or increased DNA fragmentation in MEF. GlyLDL treatment (25-100 μg/mL for up to 12 h) significantly increased the abundance of proliferating cell nuclear antigen (PCNA) and achieved a peak after 4 h exposure to glyLDL. Abundances of fibroblast growth factor-basic (FGF), transforming growth factor-β (TGF), and platelet-derived growth factor-A (PDGF) in MEF reached maximal levels after 2 h exposure to 50 μg/mL of glyLDL. The maximal increase of vascular endothelial growth factor (VEGF) was detected in MEF after 4 h of exposure to 50 μg/mL of glyLDL. Inhibitors for FGF (AZD4547), VEGF, or PDGF receptors (Axitinib), but not that for TGF receptor (LY364947), significantly decreased the abundance of (PCNA) in endothelial cells. The findings suggest that early exposure to a low dosage of glyLDL transiently increases the proliferation of MEF through the upregulation of FGF, VEGF, and (or) PDGF, and prolonged exposure to high concentrations of glyLDL reduced cell viability, which possibly accelerates atherogenesis under diabetic condition.
Collapse
Affiliation(s)
- Ruozhi Zhao
- Department of Internal Medicine, Health Sciences Centre, University of Manitoba, 820 Sherbrooke Street, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
14
|
Koga M, Arihiro S, Miyashita F, Yamamoto H, Yamada N, Nagatsuka K, Minematsu K, Toyoda K. Factors Associated with Early Recanalization Failure following Intravenous rt-PA Therapy for Ischemic Stroke. Cerebrovasc Dis 2013; 36:299-305. [DOI: 10.1159/000355054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
|
15
|
Impact of exercise and metabolic disorders on heat shock proteins and vascular inflammation. Autoimmune Dis 2012; 2012:836519. [PMID: 23304460 PMCID: PMC3533452 DOI: 10.1155/2012/836519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/20/2012] [Accepted: 11/06/2012] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (Hsp) play critical roles in the body's self-defense under a variety of stresses, including heat shock, oxidative stress, radiation, and wounds, through the regulation of folding and functions of relevant cellular proteins. Exercise increases the levels of Hsp through elevated temperature, hormones, calcium fluxes, reactive oxygen species (ROS), or mechanical deformation of tissues. Isotonic contractions and endurance- type activities tend to increase Hsp60 and Hsp70. Eccentric muscle contractions lead to phosphorylation and translocation of Hsp25/27. Exercise-induced transient increases of Hsp inhibit the generation of inflammatory mediators and vascular inflammation. Metabolic disorders (hyperglycemia and dyslipidemia) are associated with type 1 diabetes (an autoimmune disease), type 2 diabetes (the common type of diabetes usually associated with obesity), and atherosclerotic cardiovascular disease. Metabolic disorders activate HSF/Hsp pathway, which was associated with oxidative stress, increased generation of inflammatory mediators, vascular inflammation, and cell injury. Knock down of heat shock factor-1 (HSF1) reduced the activation of key inflammatory mediators in vascular cells. Accumulating lines of evidence suggest that the activation of HSF/Hsp induced by exercise or metabolic disorders may play a dual role in inflammation. The benefits of exercise on inflammation and metabolism depend on the type, intensity, and duration of physical activity.
Collapse
|
16
|
Younis NN, Durrington PN. HDL functionality in diabetes mellitus: potential importance of glycation. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Shen GX. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Can J Physiol Pharmacol 2011; 88:241-8. [PMID: 20393589 DOI: 10.1139/y10-018] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the predominant cause of death in patients with diabetes mellitus. Underlying mechanism for the susceptibility of diabetic patients to cardiovascular diseases remains unclear. Elevated oxidative stress was detected in diabetic patients and in animal models of diabetes. Hyperglycemia, oxidatively modified atherogenic lipoproteins, and advanced glycation end products are linked to oxidative stress in diabetes. Mitochondria are one of major sources of reactive oxygen species (ROS) in cells. Mitochondrial dysfunction increases electron leak and the generation of ROS from the mitochondrial respiratory chain (MRC). High levels of glucose and lipids impair the activities of MRC complex enzymes. NADPH oxidase (NOX) generates superoxide from NADPH in cells. Increased NOX activity was detected in diabetic patients. Hyperglycemia and hyperlipidemia increased the expression of NOX in vascular endothelial cells. Accumulated lines of evidence indicate that oxidative stress induced by excessive ROS production is linked to many processes associated with diabetic cardiovascular complications. Overproduction of ROS resulting from mitochondrial dysfunction or NOX activation is associated with uncoupling of endothelial nitric oxide synthase, which leads to reduced production of nitric oxide and endothelial-dependent vasodilation. Gene silence or inhibitor of NOX reduced oxidized or glycated LDL-induced expression of plasminogen activator inhibitor-1 in endothelial cells. Statins, hypoglycemic agents, and exercise may reduce oxidative stress in diabetic patients through the reduction of NOX activity or the improvement of mitochondrial function, which may prevent or postpone the development of cardiovascular complications.
Collapse
Affiliation(s)
- Garry X Shen
- Department of Internal Medicine, University of Manitoba, 835-715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada.
| |
Collapse
|
18
|
Sangle GV, Zhao R, Mizuno TM, Shen GX. Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Endocrinology 2010; 151:4455-66. [PMID: 20630999 DOI: 10.1210/en.2010-0323] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Atherothrombotic cardiovascular diseases are the predominant causes of mortality of diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor for fibrinolysis, and it is also implicated in inflammation and tissue remodeling. Increased levels of PAI-1 and glycated low-density lipoprotein (glyLDL) were detected in patients with diabetes. Previous studies in our laboratory demonstrated that heat shock factor-1 (HSF1) is involved in glyLDL-induced PAI-1 overproduction in vascular endothelial cells (EC). The present study investigated transmembrane signaling mechanisms involved in glyLDL-induced HSF1 and PAI-1 up-regulation in cultured human vascular EC and streptozotocin-induced diabetic mice. Receptor for advanced glycation end products (RAGE) antibody prevented glyLDL-induced increase in the abundance of PAI-1 in EC. GlyLDL significantly increased the translocation of V-Ha-Ras Harvey rat sarcoma viral oncogene homologue (H-Ras) from cytoplasm to membrane compared with LDL. Farnesyltransferase inhibitor-277 or small interference RNA against H-Ras inhibited glyLDL-induced increases in HSF1 and PAI-1 in EC. Treatment with diphenyleneiodonium, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor, blocked glyLDL-induced translocation of H-Ras, elevated abundances of HSF1 and PAI-1 in EC, and increased release of hydrogen peroxide from EC. Small interference RNA for p22(phox) prevented glyLDL-induced expression of NOX2, HSF1, and PAI-1 in EC. GlyLDL significantly increased V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) phosphorylation. Treatment with Raf-1 inhibitor blocked glyLDL-induced increase of PAI-1 mRNA in EC. The levels of RAGE, H-Ras, NOX4, HSF1, and PAI-1 were increased in hearts of streptozotocin-diabetic mice and positively correlated with plasma glucose. The results suggest that RAGE, NOX, and H-Ras/Raf-1 are implicated in the up-regulation of HSF1 or PAI-1 in vascular EC under diabetes-associated metabolic stress.
Collapse
Affiliation(s)
- Ganesh V Sangle
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | | | | | | |
Collapse
|
19
|
Sangle GV, Shen GX. Signaling mechanisms for oxidized LDL-induced oxidative stress and the upregulation of plasminogen activator inhibitor-1 in vascular cells. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zhao R, Ma X, Xie X, Shen GX. Involvement of NADPH oxidase in oxidized LDL-induced upregulation of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Am J Physiol Endocrinol Metab 2009; 297:E104-11. [PMID: 19401454 DOI: 10.1152/ajpendo.91023.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is implicated in thrombogenesis, inflammation, and extracellular matrix remodeling. Previous studies indicated that oxidized low-density lipoprotein (LDL) stimulated the generation of PAI-1 in vascular endothelial cells (EC). The present study demonstrated that LDL oxidized by copper, iron, or 3-morpholinosydnonimine increased the expression of NADPH oxidase (NOX) 2, PAI-1, and heat shock factor-1 (HSF1) in human umbilical vein EC or coronary artery EC compared with LDL or vehicle. Diphenyleneiodonium, a NOX inhibitor, prevented the increases of the expression of HSF1 and PAI-1 in EC induced by oxidized LDLs. Small-interference RNA (siRNA) for p22(phox), an essential subunit of NOX, prevented oxidized LDL-induced expression of NOX2, HSF1, and PAI-1 in EC. HSF1 siRNA inhibited oxidized LDL-induced expression of PAI-1 and HSF1, but not NOX2, in EC. The binding of HSF1 to PAI-1 promoter and the activity of PAI-1 promoter in EC were enhanced by oxidized LDL. Butylated hydroxytulene, a potent antioxidant, inhibited oxidized LDL-induced release of hydrogen peroxide (H(2)O(2)) and the expression of NOX2, HSF1, and PAI-1 in EC. Treatment with H(2)O(2) increased the abundance of NOX2, HSF1, and PAI-1 in EC. The results of the present study indicate that oxidized LDL-induced expression of NOX may lead to the elevated release of reactive oxygen species, the activation of HSF1, and the enhancement of the transcription of PAI-1 gene in cultured vascular EC.
Collapse
Affiliation(s)
- Ruozhi Zhao
- Diabetes Research Group, University of Manitoba, 835-715 McDermot Ave., Winnipeg, Manitoba R3E 3P4, Canada
| | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Protective roles of HDL, apoA-I and mimetic peptide on endothelial function: Through endothelial cells and endothelial progenitor cells. Int J Cardiol 2009; 133:286-92. [DOI: 10.1016/j.ijcard.2008.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/08/2008] [Indexed: 12/21/2022]
|
24
|
Sangle GV, Zhao R, Shen GX. Transmembrane signaling pathway mediates oxidized low-density lipoprotein-induced expression of plasminogen activator inhibitor-1 in vascular endothelial cells. Am J Physiol Endocrinol Metab 2008; 295:E1243-54. [PMID: 18796547 DOI: 10.1152/ajpendo.90415.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerotic cardiovascular disease is the number one cause of death for adults in Western society. Plasminogen activator inhibitor-1 (PAI-1), the major physiological inhibitor of plasminogen activators, has been implicated in both thrombogenesis and atherogenesis. Previous studies demonstrated that copper-oxidized low-density lipoprotein (C-oLDL) stimulated production of PAI-1 in vascular endothelial cells (EC). The present study examined the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) and Ras/Raf-1/ERK1/2 pathway in the upregulation of PAI-1 in cultured EC induced by oxidized LDLs. The results demonstrated that C-oLDL or FeSO(4)-oxidized LDL (F-oLDL) increased the expression of PAI-1 or LOX-1 in human umbilical vein EC (HUVEC) or coronary artery EC (HCAEC). Treatment with C-oLDL significantly increased the levels of H-Ras mRNA, protein, and the translocation of H-Ras to membrane fraction in EC. LOX-1 blocking antibody, Ras farnesylation inhibitor (FTI-277), or small interference RNA against H-Ras significantly reduced C-oLDL or LDL-induced expression of H-Ras and PAI-1 in EC. Incubation with C-oLDL or F-oLDL increased the phosphorylation of Raf-1 and ERK1/2 in EC compared with LDL or vehicle. Treatment with Raf-1 inhibitor blocked Raf-1 phosphorylation and the elevation of PAI-1 mRNA level in EC induced by C-oLDL or LDL. Treatment with PD-98059, an ERK1/2 inhibitor, blocked C-oLDL or LDL-induced ERK1/2 phosphorylation or PAI-1 expression in EC. The results suggest that LOX-1, H-Ras, and Raf-1/ERK1/2 are implicated in PAI-1 expression induced by oxidized LDLs or LDL in cultured EC.
Collapse
Affiliation(s)
- Ganesh V Sangle
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
25
|
Abstract
Coronary artery bypass graft surgery is associated with several frequent postoperative adverse events. Outcome prediction is valued by patients and practitioners, because it provides some measure of balancing risks and benefits and provides expensive or higher-risk therapies to individuals at highest risk. Surgeons and anesthesiologists traditionally have relied on demographic, preoperative, and intraoperative risk factors to predict outcomes after cardiac surgery. Yet, such predictions often have poor positive and negative predictive value for the individual patient. Perioperative genetics attempts to determine the impact of an individual's genetic variation on the risk of developing adverse postoperative outcomes. In this article, the authors discuss emerging evidence that a patient's genetic makeup predisposes him or her to adverse outcomes following cardiac surgery and provide examples from perioperative bleeding, myocardial injury/infarction, and atrial fibrillation.
Collapse
Affiliation(s)
- Tjorvi E Perry
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115
| |
Collapse
|
26
|
Abstract
The dramatic failure of clinical trials evaluating the cholesterol ester transfer protein inhibitor torcetrapib has led to considerable doubt about the value of raising high-density lipoprotein cholesterol (HDL-C) as a treatment for cardiovascular disease. These results have underscored the intricacy of HDL metabolism, with functional quality perhaps being a more important consideration than the circulating quantity of HDL. As a result, HDL-based therapeutics that maintain or enhance HDL functionality warrant closer investigation. In this article, we review the complexity of HDL metabolism, discuss clinical-trial data for HDL-raising agents, including possible reasons for the failure of torcetrapib, and consider the potential for future HDL-based therapies.
Collapse
|
27
|
Ruano J, López-Miranda J, de la Torre R, Delgado-Lista J, Fernández J, Caballero J, Covas MI, Jiménez Y, Pérez-Martínez P, Marín C, Fuentes F, Pérez-Jiménez F. Intake of phenol-rich virgin olive oil improves the postprandial prothrombotic profile in hypercholesterolemic patients. Am J Clin Nutr 2007; 86:341-6. [PMID: 17684203 DOI: 10.1093/ajcn/86.2.341] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oxidative stress associated with postprandial lipemia contributes to endothelial dysfunction, which shifts hemostasis to a more thrombogenic state. OBJECTIVE We investigated whether a high concentration of phenols in olive oil can partly reverse this phenomenon. DESIGN Twenty-one hypercholesterolemic volunteers received 2 breakfasts rich in olive oils with different phenolic contents (80 or 400 ppm) according to a randomized, sequential crossover design. Plasma concentrations of lipid fractions, factor VII antigen (FVIIag), activated factor VII (FVIIa), and plasminogen activator inhibitor-1 (PAI-1) activity were measured at baseline and postprandially. RESULTS Concentrations of FVIIa increased less (P = 0.018) and plasma PAI-1 activity decreased more (P = 0.021) 2 h after the high-phenol meal than after the low-phenol meal. FVIIa concentrations 120 min after intake of the olive oil with a high phenol content correlated positively with fasting plasma triacylglycerols (P = 0.001), area under the curve (AUC) of triacylglycerols (P = 0.001), and AUC of nonesterified fatty acids (P = 0.024) and negatively with hydroxytyrosol plasma concentrations at 60 min (P = 0.039) and fasting HDL-cholesterol concentrations (P = 0.005). PAI-1 positively correlated with homeostasis model assessment of insulin resistance (P = 0.005) and fasting triacylglycerols (P = 0.025) and inversely with adiponectin (P = 0.026). In a multivariate analysis, the AUCs of nonesterified fatty acids (R(2) = 0.467; beta: 0.787; SE: 0.02; P < 0.001) and adiponectin (R(2) = 0.232; beta: -1.594; SE: 0.629; P < 0.05) were the strongest predictors of plasma FVIIa and PAI-1, respectively. CONCLUSIONS A virgin olive oil with a high content of phenolic compounds changes the postprandial hemostatic profile to a less thrombogenic state.
Collapse
Affiliation(s)
- Juan Ruano
- Lipids and Atherosclerosis Research Unit, Reina Sofia University Hospital, University of Cordoba, Ciber Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhao R, Shen GX. Involvement of heat shock factor-1 in glycated LDL-induced upregulation of plasminogen activator inhibitor-1 in vascular endothelial cells. Diabetes 2007; 56:1436-44. [PMID: 17259369 DOI: 10.2337/db06-1199] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Coronary artery disease is the predominant cause of death in diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of plasminogen activators. Heat shock protein (Hsp) was upregulated in uncontrolled diabetic patients. Our previous studies demonstrated that glycated LDL stimulated the generation of PAI-1 from vascular endothelial cells. The present study examined the effect of glycated LDL on the expression of heat shock factor-1 (HSF1), a physiological transcription factor of Hsp, and the involvement of HSF-1 in glycated LDL-induced production of PAI-1 in cultured human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs). Treatment with glycated LDL increased the expression of HSF1 and Hsp-70 compared with LDL in subconfluent HCAECs or HUVECs, and that was associated with an increase of PAI-1 expression. The transfection of HSF1 gene enhanced the expression of PAI-1 in endothelial cells. Small interference RNA against HSF1 prevented glycated LDL-induced upregulation of PAI-1 in HCAECs or HUVECs. Glycated LDL increased the binding of a nuclear protein to the PAI-1 promoter. The nuclear protein-DNA complex was supershifted by HSF1 antibody. The presence of an antioxidant, butylated hydroxytulene, during the glycation of LDL prevented glycated LDL-induced increases of the expression of HSF1 or PAI-1 in endothelial cells. The results suggest that HSF-1 is involved in glycated LDL-induced upregulation of PAI-1 in subconfluent vascular endothelial cells through the binding of HSF1 to PAI-1 promoter. Glyco-oxidation may contribute to glycated LDL-induced expression of HSF1 and PAI-1 in endothelial cells.
Collapse
Affiliation(s)
- Ruozhi Zhao
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
29
|
Norata GD, Catapano AL. Molecular mechanisms responsible for the antiinflammatory and protective effect of HDL on the endothelium. Vasc Health Risk Manag 2007; 1:119-29. [PMID: 17315398 PMCID: PMC1993938 DOI: 10.2147/vhrm.1.2.119.64083] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In addition to their role in reverse cholesterol transport, high-density lipoproteins (HDL) exert several beneficial effects, including the prevention and correction of endothelial dysfunction. HDL promote endothelium proliferation and diminish endothelial apoptosis; they play a key role in vasorelaxation by increasing the release of nitric oxide and prostacyclin through the induction of the expression and the activity of endothelial nitric oxide synthase and the coupling of cyclooxygenase 2 and prostacyclin synthase. In addition, HDL affect coagulation, fibrynolisis, platelet adhesion, adhesion molecules, and protease expression, and they exert antioxidant activity. These effects are achieved at the gene expression level and are dependent on the activation of several intracellular signaling pathways, including PI3K/Akt, ERK1/2, PKC, and p38MAPK. The complexity of the signaling pathways modulated by HDL reflects the different effects of the components of this class of lipoproteins such as apolipoproteins or lipids on endothelial cell gene expression and the subsequent modulation of endothelial function observed. The in vivo relevance of these findings to endothelial recovery during physiological or pathological conditions remains to be addressed; nevertheless, the results of clinical studies with synthetic HDL, ApoA-I mimetics, and drugs that are becoming available that selectively affect HDL plasma levels and biological functions support the importance of the correction of endothelial function by HDL.
Collapse
|
30
|
Norata GD, Catapano AL. Molecular Mechanisms Responsible for the Anti-Inflammatory and Protective Effect of High-Density Lipoprotein on the Endothelium. High Blood Press Cardiovasc Prev 2007. [DOI: 10.2165/00151642-200714010-00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
31
|
Alberts P, Klingström G, Arrhenius‐Nyberg V, Larsson C, Sakariassen KS. A micro‐method for lipoprotein cholesterol profiles: Impact of CETP in KKA
y
mice. EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200500261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pe¯teris Alberts
- Pharmacology, Department of Biology, Biovitrum, Stockholm, Sweden
| | | | | | - Catarina Larsson
- Pharmacology, Department of Biology, Biovitrum, Stockholm, Sweden
| | - Kjell S. Sakariassen
- Pharmacology, Department of Biology, Biovitrum, Stockholm, Sweden
- Present address: KellSa s.a.s., Str. Campo e Zampe 12, I‐13900 Biella, BI, Italy
| |
Collapse
|
32
|
Abstract
Oxidative stress, through the production of reactive oxygen species (ROS), has been proposed as the root cause underlying the development of insulin resistance, beta-cell dysfunction, impaired glucose tolerance and type 2 diabetes mellitus (T2DM). It has also been implicated in the progression of long-term diabetes complications, including microvascular and macrovascular dysfunction. Excess nourishment and a sedentary lifestyle leads to glucose and fatty acid overload, resulting in production of ROS. Additionally, reaction of glucose with plasma proteins forms advanced glycation end products, triggering production of ROS. These ROS initiate a chain reaction leading to reduced nitric oxide availability, increased markers of inflammation and chemical modification of lipoproteins, all of which may increase the risk of atherogenesis. With the postulation that hyperglycaemia and fluctuations in blood glucose lead to generation of ROS, it follows that aggressive treatment of fasting and postprandial hyperglycaemia is important for prevention of micro and macrovascular complications in T2DM.
Collapse
Affiliation(s)
- E Wright
- Primary Care and Specialty Practices of Cape Fear Valley Health System, Cape Fear Valley Health System, Fayetteville, NC 28302, USA.
| | | | | |
Collapse
|
33
|
Ma GM, Halayko AJ, Stelmack GL, Zhu F, Zhao R, Hillier CT, Shen GX. Effects of oxidized and glycated low-density lipoproteins on transcription and secretion of plasminogen activator inhibitor-1 in vascular endothelial cells. Cardiovasc Pathol 2006; 15:3-10. [PMID: 16414450 DOI: 10.1016/j.carpath.2005.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/10/2005] [Accepted: 08/31/2005] [Indexed: 11/20/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of fibrinolysis. Elevated levels of PAI-1 were frequently detected in patients with coronary artery disease (CAD) or diabetes. Low-density lipoprotein (LDL) is a classical risk factor of CAD. Oxidation and glycation increase the atherogenecity of LDL. Previous studies demonstrated that oxidized LDL (oxLDL) or glycated LDL (gly-LDL) increased the release of PAI-1 from endothelial cells (ECs). The present study examined the effects of oxLDL and gly-LDL on the transcription, expression, secretion, and subcellular distribution of PAI-1 in cultured human ECs. Treatment with LDL significantly increased the promoter activity, mRNA level, and the release of PAI-1 from ECs by two- to threefold compared to controls. Oxidation or glycation significantly enhanced the effects of LDL on PAI-1 production in ECs compared to LDL (four- to fivefold vs. controls). No significant differences were detected between the effects of oxLDL and gly-LDL. Abundant PAI-1 antigens were detected in the perinuclear region of ECs and overlapped with giantin, a marker of Golgi apparatus. Treatment with brefeldin A disturbed the stack structure of Golgi apparatus and almost completely inhibited the release of PAI-1 from ECs induced by the lipoproteins and at basal conditions. The results suggest that oxidation and glycation enhanced the effects of LDL on the production of PAI-1 in ECs through increasing the transcription of PAI-1. Intact Golgi apparatus is required for PAI-1 generation from ECs induced by LDL or its modified forms.
Collapse
Affiliation(s)
- Guoping M Ma
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Dimova EY, Samoylenko A, Kietzmann T. Oxidative stress and hypoxia: implications for plasminogen activator inhibitor-1 expression. Antioxid Redox Signal 2004; 6:777-91. [PMID: 15242559 DOI: 10.1089/1523086041361596] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of urokinase-type and tissue-type plasminogen activators. It has gained special interest among clinicians because a number of pathological conditions, such as myocardial infarction, atherosclerosis, thrombosis, several types of cancer, and the metabolic syndrome, as well as type 2 diabetes mellitus, are associated with increased PAI-1 levels. Interestingly, a number of these diseases are also accompanied by oxidative stress and the enhanced production of reactive oxygen species or tissue hypoxia. This article tries to summarize some aspects leading to enhanced PAI-1 production under oxidative stress or hypoxia.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Institut für Biochemie und Molekulare Zellbiologie, Göttingen, Germany
| | | | | |
Collapse
|
35
|
Miyamoto S, Kawano H, Takazoe K, Soejima H, Sakamoto T, Hokamaki J, Yoshimura M, Nakamura H, Yodoi J, Ogawa H. Vitamin E improves fibrinolytic activity in patients with coronary spastic angina. Thromb Res 2004; 113:345-51. [PMID: 15226088 DOI: 10.1016/j.thromres.2004.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 03/03/2004] [Accepted: 03/16/2004] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The fibrinolytic system has a major role as a defense mechanism against thrombus formation. Net fibrinolytic activity in plasma reflects the balance between tissue-type plasminogen activator and plasminogen activator inhibitor (PAI). PAI is the main factor determining overall fibrinolytic activity. MATERIALS AND METHODS We examined the effects of oral administration of vitamin E, an antioxidant, on fibrinolytic activity and oxidative stress in patients with coronary spastic angina. Forty patients with coronary spastic angina were randomly assigned into two treatment groups, either vitamin E group (alpha-tocopherol acetate, 400 mg/day) or placebo group by means of computerized system. PAI activity and thioredoxin, a marker of oxidative stress, levels were measured before and at the end of 1 month treatment. RESULTS Before treatment, the levels of PAI activity and thioredoxin were increased in patients with coronary spastic angina as compared with control subjects (n=17) (PAI activity levels: 13.6+/-1.4 vs. 7.6+/-2.2 IU/ml, p<0.05, thioredoxin levels: 22.8+/-1.7 vs. 16.0+/-1.4 ng/ml, p<0.05). In patients with coronary spastic angina, administration of vitamin E decreased both PAI activity and thioredoxin levels (PAI activity levels: 14.7+/-1.7 to 7.5+/-1.6 IU/ml, p<0.01, thioredoxin levels: 23.3+/-2.4 to 15.1+/-2.5 ng/ml, p<0.01), whereas placebo had no effect on these variables. CONCLUSIONS Oral administration of vitamin E improved fibrinolytic activity and the improvement was associated with a decrease in oxidative stress. Administration of vitamin E is possible to be an effective adjunct therapy of coronary spasm in the absence of coronary atherosclerosis.
Collapse
Affiliation(s)
- Shinzo Miyamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dickinson PJ, Carrington AL, Frost GS, Boulton AJM. Neurovascular disease, antioxidants and glycation in diabetes. Diabetes Metab Res Rev 2002; 18:260-72. [PMID: 12203942 DOI: 10.1002/dmrr.305] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
People with diabetes are ten to fifteen times more likely to have a lower limb amputation (LLA) than non-diabetic individuals. Fifteen percent of people with diabetes will develop a foot ulcer during their lifetime, the rate of major amputation amongst diabetic individuals continues to rise, foot problems remain the commonest reason for diabetes-related hospitalisation and recurrence rates in patients with previous foot ulcers are 50% or more. Hyperglycaemia-induced oxidative stress has been shown to result in decreased nerve conduction velocity, and decreased endoneural blood flow-both precursors for neuropathy. Vitamin antioxidants have been shown to be effective therapy in experimental models in reducing free radical species and inhibiting the oxidative process in diabetes subjects. Little work has been published, however, regarding the dietary use of antioxidants from foods, and their specific effects on neurovascular disease and glycation within the diabetes population. Aetiological and prevention studies with dietary antioxidants from foods aimed at the complex nature of foot problems in diabetes are needed.
Collapse
Affiliation(s)
- P J Dickinson
- Department of Medicine, University of Manchester, and Manchester Diabetes Centre, UK.
| | | | | | | |
Collapse
|
37
|
Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002; 161:1-16. [PMID: 11882312 DOI: 10.1016/s0021-9150(01)00651-7] [Citation(s) in RCA: 399] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inverse correlation between serum levels of high density lipoprotein (HDL) cholesterol and the risk of coronary heart disease, the protection of susceptible animals from atherosclerosis by transgenic manipulation of HDL metabolism, and several potentially anti-atherogenic in vitro-properties have made HDL metabolism an interesting target for pharmacological intervention in atheroslcerosis. We have previously reviewed the concept of reverse cholesterol transport, which describes both the metabolism and the classic anti-atherogenic function of HDL (Arterioscler. Thromb. Vasc. Biol. 20 2001 13). We here summarize the current understanding of additional biological, potentially anti-atherogenic properties of HDL. HDL inhibits the chemotaxis of monocytes, the adhesion of leukocytes to the endothelium, endothelial dysfunction and apoptosis, LDL oxidation, complement activation, platelet activation and factor X activation but also stimulates the proliferation of endothelial cells and smooth muscle cells, the synthesis of prostacyclin and natriuretic peptide C in endothelial cells, and the activation of proteins C and S. These anti-inflammatory, anti-oxidative, anti-aggregatory, anti-coagulant, and pro-fibrinolytic activities are exerted by different components of HDL, namley apolipoproteins, enzymes, and even specific phospholipids. This complexity further emphasizes that changes in the functionality of HDL rather than changes of plasma HDL-cholesterol levels determine the anti-atherogenicity of therapeutic alterations of HDL metabolism.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Westfälische Wilhelms-Universität, Albert Schweitzer Str. 33, 48129 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Dent SB, Peterson CT, Brace LD, Swain JH, Reddy MB, Hanson KB, Robinson JG, Alekel DL. Soy protein intake by perimenopausal women does not affect circulating lipids and lipoproteins or coagulation and fibrinolytic factors. J Nutr 2001; 131:2280-7. [PMID: 11533267 DOI: 10.1093/jn/131.9.2280] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soy protein favorably alters serum lipids and lipoproteins in hypercholesterolemic individuals, thereby reducing cardiovascular disease risk. The primary purpose was to determine the effect of soy protein (40 g/d) on circulating lipids and lipoproteins or coagulation and fibrinolytic factors in normocholesterolemic and mildly hypercholesterolemic perimenopausal women. We also determined the contribution of coagulation and fibrinolytic and other factors (e.g., body size and composition; serum estrogens, ferritin, iron; dietary intake) to lipid profiles. Subjects were randomly assigned to treatment: isoflavone-rich soy (n = 24), isoflavone-poor soy (n = 24), or whey control (n = 21) protein. We measured circulating lipids and lipoproteins at baseline, wk 12 and wk 24, and coagulation/fibrinolytic factors at baseline and wk 24. Coagulation and fibrinolytic factors were not adversely affected by treatment. Treatment did not alter lipid profiles in mildly hypercholesterolemic (n = 30) or in all subjects combined. Time significantly (P < 0.001) affected serum total cholesterol, triacylglycerol, LDL cholesterol and HDL cholesterol concentrations. We could not attribute changes over time to various factors, but at baseline accounted for 57% of the variability in HDL cholesterol (P < or = 0.0001) and for 50% in the total to HDL cholesterol ratio (P < or = 0.0001). Dietary vitamin E and % energy from fat had positive effects, whereas plasma plasminogen activator inhibitor-1, fibrinogen, body weight and serum ferritin had negative effects on HDL and total to HDL cholesterol. Isoflavone-rich or isoflavone-poor soy protein had no effect on lipid profiles or coagulation and fibrinolytic factors, whereas the effect of time suggested that the hormonal milieu during the menopausal transition may have overridden any detectable treatment effect on lipids. The relationship between coagulation factors and serum lipids should be examined further as indices of cardiovascular disease risk in midlife women.
Collapse
Affiliation(s)
- S B Dent
- Department of Food Science and Human Nutrition, Human Metabolic Unit, Center for Designing Foods to Improve Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sawka AM, Singh RJ, Hiddinga HJ, McConnell JP, Eberhardt NL, Caplice NM, O'Brien T. Remnant lipoproteins induce endothelial plasminogen activator inhibitor-1. Biochem Biophys Res Commun 2001; 285:15-9. [PMID: 11437365 DOI: 10.1006/bbrc.2001.5117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Remnant lipoproteins (RLPs) accumulate in type III hyperlipoproteinemia, a condition associated with significant cardiovascular morbidity. The effect of RLPs on fibrinolysis is unknown. Our aim was to study the effect of RLPs on endothelial expression of plasminogen activator inhibitor-1 (PAI-1). After 24-h culture of human aortic endothelial cells with RLPs at concentrations of 0 (control), 0.038, or 0.076 mg triglyceride/mL, postculture PAI-1 antigen concentrations were: 870 +/- 80, 1963 +/- 183 (P = 0.005), and 3551 +/- 177 ng/mL (P < 0.001), respectively. Furthermore, after 24-h incubation of endothelial cells with RLPs (0 or 0.076 mg triglyceride/mL), PAI-1 activity increased from 0.667 +/- 0.144 to 1.268 +/- 0.198 U/mL, respectively (P = 0.008) and endothelial PAI-1 mRNA increased to 2.7 +/- 0.66 that of control (P = 0.048). In conclusion, RLPs from patients with type III hyperlipoproteinemia induce endothelial cell PAI-1 expression, which may contribute to a prothrombotic state.
Collapse
Affiliation(s)
- A M Sawka
- Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|