1
|
Jiang H, Su Y, Liu R, Xu X, Xu Q, Yang J, Lin Y. Hyperuricemia and the risk of stroke incidence and mortality: A systematic review and meta-analysis. Arch Rheumatol 2025; 40:128-143. [PMID: 40264487 PMCID: PMC12010261 DOI: 10.46497/archrheumatol.2025.10808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/05/2024] [Indexed: 04/24/2025] Open
Abstract
Objectives The relationship between hyperuricemia (HUA) and stroke remains controversial. In this systematic review, we discuss the association between HUA and stroke. Materials and methods The PubMed, Embase, Web of Science, and Cochrane Library were searched from their earliest records to March 13th, 2024, and additional papers were identified through a manual search. Prospective studies that provided a multivariate-adjusted estimate of the association between HUA and risk of stroke incidence and mortality, represented as relative risks (RRs) with 95% confidence intervals (CIs), were eligible. Results A total of 22 studies including 770,532 adults were eligible and included. Hyperuricemia was associated with a significantly increasing risk of both stroke incidence (pooled RR, 1.42; 95% CI, 1.31-1.53) and stroke mortality (pooled RR, 1.53; 95% CI, 1.18-1.99) in our meta-analyses. Relative risk of stroke incidence was as follows: females (pooled RR, 1.67; 95% CI, 1.44-1.92) and males (pooled RR, 1.13; 95% CI, 1.02-1.25). Relative risk of mortality was as follows: female (pooled RR, 1.41; 95% CI, 1.31-1.52) and males (pooled RR, 1.27; 95% CI, 1.20-1.34). For the risk of stroke mortality, the association between HUA and ischemic stroke (pooled RR, 1.39; 95% CI, 1.31-1.47) was more significant than that of hemorrhagic stroke (pooled RR, 1.13; 95% CI, 1.02-1.26). Conclusion Our study confirms an association between HUA and risk of stroke, which is more pronounced in females.
Collapse
Affiliation(s)
- Haiyan Jiang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan Province, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Yunyi Su
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Ruixue Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xinyi Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Qi Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Jie Yang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China
| | - Yapeng Lin
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan Province, China
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Huang F, Ren X, Yuan B, Yang W, Xu L, Zhang J, Zhang H, Geng M, Li X, Zhang F, Xu J, Zhu W, Ren S, Meng L, Lu S. Systemic Mutation of Ncf1 Ameliorates Obstruction-Induced Renal Fibrosis While Macrophage-Rescued NCF1 Further Alleviates Renal Fibrosis. Antioxid Redox Signal 2023. [PMID: 37392014 DOI: 10.1089/ars.2022.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Aims: NCF1, a subunit of the NADPH oxidase 2 (NOX2), first described the expression in neutrophils and macrophages and participated in the pathogenesis from various systems. However, there are controversial findings on the role of NCF1 in different kinds of kidney diseases. In this study, we aim to pinpoint the specific role of NCF1 in the progression of renal fibrosis induced by obstruction. Results: In this study, NCF1 expression was upregulated in kidney biopsies of chronic kidney disease patients. The expression level of all subunits of the NOX2 complex was also significantly increased in the unilateral ureteral obstruction (UUO) kidney. Then, we used wild-type mice and Ncf1 mutant mice (Ncf1m1j mice) to perform UUO-induced renal fibrosis. Results demonstrated that Ncf1m1j mice exhibited mild renal fibrosis but increased macrophages count and CD11b+Ly6Chi macrophage proportion. Next, we compared the renal fibrosis degree between Ncf1m1j mice and Ncf1 macrophage-rescued mice (Ncf1m1j.Ncf1Tg-CD68 mice). We found that rescuing NCF1 expression in macrophages further alleviated renal fibrosis and decreased macrophage infiltration in the UUO kidney. In addition, flow cytometry data showed fewer CD11b+Ly6Chi macrophages in the kidney of the Ncf1m1j.Ncf1Tg-CD68 group than the Ncf1m1j group. Innovation: We first used the Ncf1m1j mice and Ncf1m1j.Ncf1Tg-CD68 mice to detect the role of NCF1 in the pathological process of renal fibrosis induced by obstruction. Also, we found that NCF1 expressed in different cell types exerts opposing effects on obstructive nephropathy. Conclusion: Taken together, our findings support that systemic mutation of Ncf1 ameliorates renal fibrosis induced by obstruction, and rescuing NCF1 in macrophages further alleviates renal fibrosis.
Collapse
Affiliation(s)
- Fumeng Huang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Xiaomin Ren
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyu Yuan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenbo Yang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lexuan Xu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haonan Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Manman Geng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fujun Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Xu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shuting Ren
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Lauar MR, Colombari DSA, De Paula PM, Colombari E, Andrade CAF, De Luca LA, Menani JV. Chronic administration of catalase inhibitor attenuates hypertension in renovascular hypertensive rats. Life Sci 2023; 319:121538. [PMID: 36868399 DOI: 10.1016/j.lfs.2023.121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
AIMS Reactive oxygen species like hydrogen peroxide (H2O2) are produced endogenously and may participate in intra- and extracellular signaling, including modulation of angiotensin II responses. In the present study, we investigated the effects of chronic subcutaneous (sc) administration of the catalase inhibitor 3-amino-1,2,4-triazole (ATZ) on arterial pressure, autonomic modulation of arterial pressure, hypothalamic expression of AT1 receptors and neuroinflammatory markers and fluid balance in 2-kidney, 1clip (2K1C) renovascular hypertensive rats. MATERIALS AND METHODS Male Holtzman rats with a clip occluding partially the left renal artery and chronic sc injections of ATZ were used. KEY FINDINGS Subcutaneous injections of ATZ (600 mg/kg of body weight/day) for 9 days in 2K1C rats reduced arterial pressure (137 ± 8, vs. saline: 182 ± 8 mmHg). ATZ also reduced the sympathetic modulation and enhanced the parasympathetic modulation of pulse interval, reducing the sympatho-vagal balance. Additionally, ATZ reduced mRNA expression for interleukins 6 and IL-1β, tumor necrosis factor-α, AT1 receptor (0.77 ± 0.06, vs. saline: 1.47 ± 0.26 fold change), NOX 2 (0.85 ± 0.13, vs. saline: 1.75 ± 0.15 fold change) and the marker of microglial activation, CD 11 (0.47 ± 0.07, vs. saline, 1.34 ± 0.15 fold change) in the hypothalamus of 2K1C rats. Daily water and food intake and renal excretion were only slightly modified by ATZ. SIGNIFICANCE The results suggest that the increase of endogenous H2O2 availability with chronic treatment with ATZ had an anti-hypertensive effect in 2K1C hypertensive rats. This effect depends on decreased activity of sympathetic pressor mechanisms and mRNA expression of AT1 receptors and neuroinflammatory markers possibly due to reduced angiotensin II action.
Collapse
Affiliation(s)
- Mariana R Lauar
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Patrícia M De Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Carina A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Laurival A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
4
|
Assessment of the relationship between serum xanthine oxidase levels and type 2 diabetes: a cross-sectional study. Sci Rep 2022; 12:20816. [PMID: 36460780 PMCID: PMC9718765 DOI: 10.1038/s41598-022-25413-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Xanthine oxidase (XO) is an enzyme associated with purine metabolism. The relationship between XO levels and type 2 diabetes (T2D) is not clear yet or little is known so far. Therefore, we conducted a cross-sectional study to determine the association of XO levels with T2D in a Bangladeshi adult cohort. A total of 325 participants (234 males and 91 females) were enrolled in the study. The participants were divided into three groups; diabetic (n = 173), prediabetic (n = 35), and non-diabetic control (n = 117). Serum levels of XO were measured by enzyme-linked immunosorbent assay (ELISA) and other biochemical parameters including fasting blood glucose (FBG), serum uric acid (SUA), and lipid profile markers measured by colorimetric methods. Participants with T2D were confirmed according to the definition of the American Diabetic Association. The association between serum XO levels and T2D was determined by logistic regression models. The mean level of serum XO was significantly higher in females (6.0 ± 3.7 U/L) compared to male (4.0 ± 2.8 U/L) participants (p < 0.001). In contrast, males had a higher mean level of SUA (6.1 ± 1.9 mg/dL) than female (4.4 ± 1.9 mg/dL) participants (p < 0.001). The mean level of XO was significantly higher in the diabetic group (5.8 ± 3.6 U/L) compared to the prediabetic (3.7 ± 1.9 U/L) and control (2.9 ± 1.8 U/L) groups (p < 0.001). On the other hand, the mean SUA concentration was significantly lower in the diabetic group than in the other two groups (p < 0.001). A significant increasing trend was observed for FBG levels across the XO quartiles (p < 0.001). A decreasing trend was found for SUA levels in the XO quartiles (p < 0.001). Serum levels of XO and SUA showed a positive and negative correlation with FBG, respectively. In regression analysis, serum XO levels showed an independent association with T2D. In conclusion, this study reports a positive and independent association between XO levels and T2D in Bangladeshi adults. Monitoring serum levels of XO may be useful in reducing the risk of T2D. Further research is needed to determine the underlying mechanisms of the association between elevated XO levels and T2D.
Collapse
|
5
|
Renal Denervation Influences Angiotensin II Types 1 and 2 Receptors. Int J Nephrol 2022; 2022:8731357. [PMID: 36262553 PMCID: PMC9576444 DOI: 10.1155/2022/8731357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The sympathetic and renin-angiotensin systems (RAS) are two critical regulatory systems in the kidney which affect renal hemodynamics and function. These two systems interact with each other so that angiotensin II (Ang II) has the presynaptic effect on the norepinephrine secretion. Another aspect of this interaction is that the sympathetic nervous system affects the function and expression of local RAS receptors, mainly Ang II receptors. Therefore, in many pathological conditions associated with an increased renal sympathetic tone, these receptors' expression changes and renal denervation can normalize these changes and improve the diseases. It seems that the renal sympathectomy can alter Ang II receptors expression and the distribution of RAS receptors in the kidneys, which influence renal functions.
Collapse
|
6
|
Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors - Do anti-inflammatory mechanisms play a role? Mol Metab 2022; 64:101549. [PMID: 35863639 PMCID: PMC9352970 DOI: 10.1016/j.molmet.2022.101549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome and related metabolic disturbances represent a state of low-grade inflammation, which accelerates insulin resistance, type 2 diabetes (T2D) and cardiovascular disease (CVD) progression. Among antidiabetic medications, sodium glucose co-transporter (SGLT) 2 inhibitors are the only agents which showed remarkable reductions in heart failure (HF) hospitalizations and major cardiovascular endpoints (MACE) as well as renal endpoints regardless of diabetes status in large randomized clinical outcome trials (RCTs). Although the exact mechanisms underlying these benefits are yet to be established, growing evidence suggests that modulating inflammation by SGLT2 inhibitors may play a key role. SCOPE OF REVIEW In this manuscript, we summarize the current knowledge on anti-inflammatory effects of SGLT2 inhibitors as one of the mechanisms potentially mediating their cardiovascular (CV) benefits. We introduce the different metabolic and systemic actions mediated by these agents which could mitigate inflammation, and further present the signalling pathways potentially responsible for their proposed direct anti-inflammatory effects. We also discuss controversies surrounding some of these mechanisms. MAJOR CONCLUSIONS SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing stress conditions or via direct modulation of inflammatory signalling pathways. These effects were achieved, to a great extent, in a glucose-independent manner which established their clinical use in HF patients with and without diabetes.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Clinical Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Qian Zhou
- Department of Cardiology and Angiology I, Heart Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Martin J Hug
- Pharmacy, Medical Centre - University of Freiburg, 79106 Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
7
|
Lokkanahalli SS, Handargal NH, Papali MM, Subash N. Serum Uric Acid and Lipid Levels in Patients With Acute Ischemic Stroke: A Cross-Sectional Study. Cureus 2022; 14:e28114. [PMID: 36003346 PMCID: PMC9392846 DOI: 10.7759/cureus.28114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
|
8
|
Kinzenbaw DA, Langmack L, Faraci FM. Angiotensin II-induced endothelial dysfunction: Impact of sex, genetic background, and rho kinase. Physiol Rep 2022; 10:e15336. [PMID: 35681278 PMCID: PMC9184751 DOI: 10.14814/phy2.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023] Open
Abstract
The renin-angiotensin system (RAS) contributes to vascular disease with multiple cardiovascular risk factors including hypertension. As a major effector within the RAS, angiotensin II (Ang II) activates diverse signaling mechanisms that affect vascular biology. Despite the impact of such vascular pathophysiology, our understanding of the effects of Ang II in relation to the function of endothelial cells is incomplete. Because genetic background and biological sex can be determinants of vascular disease, we performed studies examining the direct effects of Ang II using carotid arteries from male and female mice on two genetic backgrounds, C57BL/6J and FVB/NJ. Although FVB/NJ mice are much less susceptible to atherosclerosis than C57BL/6J, the effects of Ang II on endothelial cells in FVB/NJ are poorly defined. Overnight incubation of isolated arteries with Ang II (10 nmol/L), impaired endothelial function in both strains and sexes by approximately one-half (p < 0.05). To examine the potential mechanistic contribution of Rho kinase (ROCK), we treated arteries with SLX-2119, an inhibitor with high selectivity for ROCK2. In both male and female mice of both strains, SLX-2119 largely restored endothelial function to normal, compared to vessels treated with vehicle. Thus, Ang II-induced endothelial dysfunction was observed in both FVB/NJ and C57BL/6J mice. This effect was sex-independent. In all groups, effects of Ang II were reversed by inhibition of ROCK2 with SLX-2119. These studies provide the first evidence that ROCK2 may be a key contributor to Ang II-induced endothelial dysfunction in both sexes and in mouse strains that differ in relation to other major aspects of vascular disease.
Collapse
Affiliation(s)
- Dale A. Kinzenbaw
- Departments of Internal MedicineFrancois M. Abboud Cardiovascular CenterThe University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Lucy Langmack
- Departments of Internal MedicineFrancois M. Abboud Cardiovascular CenterThe University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Frank M. Faraci
- Departments of Internal MedicineFrancois M. Abboud Cardiovascular CenterThe University of Iowa Carver College of MedicineIowa CityIowaUSA
- Departments of Neuroscience and PharmacologyThe University of Iowa Carver College of MedicineIowa CityIowaUSA
| |
Collapse
|
9
|
Isse FA, El-Sherbeni AA, El-Kadi AOS. The multifaceted role of cytochrome P450-Derived arachidonic acid metabolites in diabetes and diabetic cardiomyopathy. Drug Metab Rev 2022; 54:141-160. [PMID: 35306928 DOI: 10.1080/03602532.2022.2051045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding lipid metabolism is a critical key to understanding the pathogenesis of Diabetes Mellitus (DM). It is known that 60-90% of DM patients are obese or used to be obese. The incidence of obesity is rising owing to the modern sedentary lifestyle that leads to insulin resistance and increased levels of free fatty acids, predisposing tissues to utilize more lipids with less glucose uptake. However, the exact mechanism is not yet fully elucidated. Diabetic cardiomyopathy seems to be associated with these alterations in lipid metabolism. Arachidonic acid (AA) is an important fatty acid that is metabolized to several bioactive compounds by cyclooxygenases, lipoxygenases, and the more recently discovered, cytochrome P450 (P450) enzymes. P450 metabolizes AA to either epoxy-AA (EETs) or hydroxy-AA (HETEs). Studies showed that EETs could have cardioprotective effects and beneficial effects in reversing abnormalities in glucose and insulin homeostasis. Conversely, HETEs, most importantly 12-HETE and 20-HETE, were found to interfere with normal glucose and insulin homeostasis and thus, might be involved in diabetic cardiomyopathy. In this review, we highlight the role of P450-derived AA metabolites in the context of DM and diabetic cardiomyopathy and their potential use as a target for developing new treatments for DM and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fadumo Ahmed Isse
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O S El-Kadi
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
The Potential of Dietary Bioactive Compounds against SARS-CoV-2 and COVID-19-Induced Endothelial Dysfunction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051623. [PMID: 35268723 PMCID: PMC8912066 DOI: 10.3390/molecules27051623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Abstract
COVID-19 is an endothelial disease. All the major comorbidities that increase the risk for severe SARS-CoV-2 infection and severe COVID-19 including old age, obesity, diabetes, hypertension, respiratory disease, compromised immune system, coronary artery disease or heart failure are associated with dysfunctional endothelium. Genetics and environmental factors (epigenetics) are major risk factors for endothelial dysfunction. Individuals with metabolic syndrome are at increased risk for severe SARS-CoV-2 infection and poor COVID-19 outcomes and higher risk of mortality. Old age is a non-modifiable risk factor. All other risk factors are modifiable. This review also identifies dietary risk factors for endothelial dysfunction. Potential dietary preventions that address endothelial dysfunction and its sequelae may have an important role in preventing SARS-CoV-2 infection severity and are key factors for future research to address. This review presents some dietary bioactives with demonstrated efficacy against dysfunctional endothelial cells. This review also covers dietary bioactives with efficacy against SARS-CoV-2 infection. Dietary bioactive compounds that prevent endothelial dysfunction and its sequelae, especially in the gastrointestinal tract, will result in more effective prevention of SARS-CoV-2 variant infection severity and are key factors for future food research to address.
Collapse
|
11
|
Vieira-Rocha MS, Rodriguez-Rodriguez P, Ferreira-Duarte M, Faria M, Sousa JB, Morato M, Arribas SM, Diniz C. Fetal Undernutrition Modifies Vascular RAS Balance Enhancing Oxidative Damage and Contributing to Remodeling. Int J Mol Sci 2022; 23:1233. [PMID: 35163158 PMCID: PMC8835999 DOI: 10.3390/ijms23031233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fetal stress is known to increase susceptibility to cardiometabolic diseases and hypertension in adult age in a process known as fetal programming. This study investigated the relationship between vascular RAS, oxidative damage and remodeling in fetal programming. Six-month old Sprague-Dawley offspring from mothers that were fed ad libitum (CONTROL) or with 50% intake during the second half of gestation (maternal undernutrition, MUN) were used. qPCR or immunohistochemistry were used to obtain the expression of receptors and enzymes. Plasma levels of carbonyls were measured by spectrophotometry. In mesenteric arteries from MUN rats we detected an upregulation of ACE, ACE2, AT1 receptors and NADPH oxidase, and lower expression of AT2, Mas and MrgD receptors compared to CONTROL. Systolic and diastolic blood pressure and plasma levels of carbonyls were higher in MUN than in CONTROL. Vascular morphology evidenced an increased media/lumen ratio and adventitia/lumen ratio, and more connective tissue in MUN compared to CONTROL. In conclusion, fetal undernutrition indices RAS alterations and oxidative damage which may contribute to the remodeling of mesenteric arteries, and increase the risk of adverse cardiovascular events and hypertension.
Collapse
Affiliation(s)
- Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Pilar Rodriguez-Rodriguez
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Miguel Faria
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
- Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Joana Beatriz Sousa
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| |
Collapse
|
12
|
Hassan HM, Mahran YF, Ghanim AMH. Ganoderma lucidum ameliorates the diabetic nephropathy via down-regulatory effect on TGFβ-1 and TLR-4/NFκB signalling pathways. J Pharm Pharmacol 2021; 73:1250-1261. [PMID: 33847358 DOI: 10.1093/jpp/rgab058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most important complications of diabetes mellitus and it is considered as a principal cause for end-stage renal failure. Ganoderma lucidum (GL) has been studied for its reno-protective effect against different kidney injury models. The aim of our study is to investigate the mechanisms by which GL can improve kidney injury and consequent renal inflammation and fibrosis. METHODS GL either in a low dose (250 mg/kg, i.p.) or high dose (500 mg/kg, i.p.) was administered to DN rat model, and nephropathy indices were investigated. KEY FINDINGS GL treatment significantly down-regulated kidney injury molecule-1 (KIM-1) gene expression and inhibited TLR-4 (Toll-like receptor-4)/NFκB (nuclear factor kappa B) signalling pathway. As well, GL treatment significantly decreased the pro-inflammatory mediator; IL-1β (interleukin-1 beta) level and fibrosis-associated growth factors; FGF-23 (fibroblast growth factor-23) and TGFβ-1 (transforming growth factor beta-1) levels. In addition, GL remarkably inhibited (Bax) the pro-apoptotic protein and induced (Bcl-2) the anti-apoptotic protein expression in kidneys. Moreover, GL treatment significantly alleviates kidney injury indicated by correcting the deteriorated kidney function and improving oxidative stress status in DN rats. CONCLUSIONS GL significantly improved renal function indices through dose-dependent kidney function restoration, oxidative stress reduction, down-regulation of gene expression of KIM-1 and TLR4/NFκB signalling pathway blockage with subsequent alleviation of renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Egypt
| | - Yasmen F Mahran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amal M H Ghanim
- Department of Biochemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
13
|
Owumi SE, Oladimeji BN, Elebiyo TC, Arunsi UO. Combine effect of exposure to petrol, kerosene and diesel fumes: On hepatic oxidative stress and haematological function in rats. Toxicol Ind Health 2021; 37:336-352. [PMID: 33949275 DOI: 10.1177/07482337211012498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Petroleum product fumes (PPFs) containing toxic organic components are pervasive in the environment, emanating from anthropogenic activities, including petroleum exploration and utilization by end-user activities from petrol-gasoline stations. Petrol station attendants are exposed to PPF through inhalation and dermal contact with consequent toxicological implications. We investigated the effects of chronic exposure (60 and 90 days) to petrol (P), kerosene (K) and diesel (D) alone and combined exposure to petrol, kerosene and diesel (PKD) fumes on hepatotoxicity, haematological function and oxidative stress in rats. Following sacrifice, we evaluated hepatic damage biomarkers, blood glucose, oxidative stress and haematological function. Chronic exposure to PPF significantly increased organo-somatic indices, blood glucose, biomarkers of hepatic toxicity and oxidative stress in an exposure duration-dependent manner. There was a simultaneous decrease in the protective capacity of antioxidants. Furthermore, exposure to PPF increased pro-inflammatory biomarkers in rats (90 > 60 days). Regardless of exposure duration, plateletcrit, mean platelet volume, platelet distribution width and red cell distribution width in the coefficient of variation increased, whereas red blood cell count, haemoglobin, packed cell volume, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, white blood cell, lymphocyte, monocyte-basophil-eosinophil mixed counts and platelet count decreased after 60 and 90 days exposure. Microscopic examination of the liver demonstrated hepatic pathological changes paralleling the duration of exposure to PKD fumes. However, the injury observed was lesser to that of rats treated with the diethylnitrosamine - positive control. Our results expanded previous findings and further demonstrated the probable adverse effect on populations' health occasioned by persistent exposure to PPF. Individuals chronically exposed by occupation to PPF may be at greater risk of developing disorders promoted by continuous oxido-inflammatory perturbation and suboptimal haematological-immunologic function - thereby enabling a permissive environment for pathogenesis notwithstanding the limitation of quantifying PPF absolute values in our model system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bidemi N Oladimeji
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tobiloba C Elebiyo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
15
|
Beyond urate lowering: Analgesic and anti-inflammatory properties of allopurinol. Semin Arthritis Rheum 2020; 50:444-450. [DOI: 10.1016/j.semarthrit.2019.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
|
16
|
Schiffer TA, Lundberg JO, Weitzberg E, Carlström M. Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165811. [PMID: 32339643 DOI: 10.1016/j.bbadis.2020.165811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria play fundamental role in maintaining cellular metabolic homeostasis, and metabolic disorders including type 2 diabetes (T2D) have been associated with mitochondrial dysfunction. Pathophysiological mechanisms are coupled to increased production of reactive oxygen species and oxidative stress, together with reduced bioactivity/signaling of nitric oxide (NO). Novel strategies restoring these abnormalities may have therapeutic potential in order to prevent or even treat T2D and associated cardiovascular and renal co-morbidities. A diet rich in green leafy vegetables, which contains high concentrations of inorganic nitrate, has been shown to reduce the risk of T2D. To this regard research has shown that in addition to the classical NO synthase (NOS) dependent pathway, nitrate from our diet can work as an alternative precursor for NO and other bioactive nitrogen oxide species via serial reductions of nitrate (i.e. nitrate-nitrite-NO pathway). This non-conventional pathway may act as an efficient back-up system during various pathological conditions when the endogenous NOS system is compromised (e.g. acidemia, hypoxia, ischemia, aging, oxidative stress). A number of experimental studies have demonstrated protective effects of nitrate supplementation in models of obesity, metabolic syndrome and T2D. Recently, attention has been directed towards the effects of nitrate/nitrite on mitochondrial functions including beiging/browning of white adipose tissue, PGC-1α and SIRT3 dependent AMPK activation, GLUT4 translocation and mitochondrial fusion-dependent improvements in glucose homeostasis, as well as dampening of NADPH oxidase activity. In this review, we examine recent research related to the effects of bioactive nitrogen oxide species on mitochondrial function with emphasis on T2D.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Low Serum Uric Acid Levels Promote Hypertensive Intracerebral Hemorrhage by Disrupting the Smooth Muscle Cell-Elastin Contractile Unit and Upregulating the Erk1/2-MMP Axis. Transl Stroke Res 2020; 11:1077-1094. [PMID: 32323149 DOI: 10.1007/s12975-020-00791-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
Intracerebral hemorrhage (ICH) is a catastrophic stroke with high mortality, and the mechanism underlying ICH is largely unknown. Previous studies have shown that high serum uric acid (SUA) levels are an independent risk factor for hypertension, cardiovascular disease (CVD), and ischemic stroke. However, our metabolomics data showed that SUA levels were lower in recurrent intracerebral hemorrhage (R-ICH) patients than in ICH patients, indicating that lower SUA might contribute to ICH. In this study, we confirmed the association between low SUA levels and the risk for recurrence of ICH and for cardiac-cerebral vascular mortality in hypertensive patients. To determine the mechanism by which low SUA effects ICH pathogenesis, we developed the first low SUA mouse model and conducted transcriptome profiling of the cerebrovasculature of ICH mice. When combining these assessments with pathological morphology, we found that low SUA levels led to ICH in mice with angiotensin II (Ang II)-induced hypertension and aggravated the pathological progression of ICH. In vitro, our results showed that p-Erk1/2-MMP axis were involved in the low UA-induce degradation of elastin, and that physiological concentrations of UA and p-Erk1/2-specific inhibitor exerted a protective role. This is the first report describing to the disruption of the smooth muscle cell (SMC)-elastin contractile units in ICH. Most importantly, we revealed that the upregulation of the p-Erk1/2-MMP axis, which promotes the degradation of elastin, plays a vital role in mediating low SUA levels to exacerbate cerebrovascular rupture during the ICH process.
Collapse
|
18
|
The Effects of Salt and Glucose Intake on Angiotensin II and Aldosterone in Obese and Nonobese Patients with Essential Hypertension. Int J Hypertens 2020; 2020:6017105. [PMID: 32257423 PMCID: PMC7106922 DOI: 10.1155/2020/6017105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/01/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background The exact mechanisms for the development of essential hypertension are not known. Activation of the renin-angiotensin-aldosterone system (RAAS) in adipose tissue may represent an important link between obesity and hypertension. This study investigates the effects of oral intake of glucose with and without NaCl on angiotensin II (AngII) and aldosterone in obese and nonobese patients with essential hypertension. Methods Twenty newly diagnosed untreated essential hypertensive patients and 15 normotensive control subjects matched for age, gender, and BMI were studied. Participants fasted overnight (8–10 hrs), and then each subject took 75 gm glucose alone and with 3 gm NaCl, each dissolved in 250 ml. Subjects were monitored for 2 hours. Half hourly BP, plasma glucose (PG), serum Na+, K+, insulin, AngII, and aldosterone were measured. Subjects were classified into obese (BMI >30 Kg/m2) (11 patients and 8 control) and nonobese (BMI <30 Kg/m2) (9 patients and 7 control). Results After intake of glucose with NaCl serum, AngII was significantly higher in obese hypertensive patients compared with nonobese patients (P = 0.016). Intake of glucose with NaCl resulted in a significantly higher serum Na in obese hypertensive patients compared with nonobese patients Na (P = 0.009). Serum aldosterone was significantly higher in obese patients (P = 0.03, after glucose; P = 0.003, after glucose with NaCl) and in nonobese patients (P = 0.000 and P = 0.000, respectively) compared with their respective normotensive control subjects. In obese and nonobese patients, intake of glucose and glucose with NaCl showed no significant change in the levels of serum AngII and aldosterone which was associated a significant increase in serum Na in obese patients (P = 0.03) and a highly significant reduction in serum K in nonobese patients (P = 0.001). Conclusion Failure of suppression or inappropriate maintenance of secretion of AngII and aldosterone in both hypertensive groups by intake of glucose with NaCl may indicate a possible mechanism of essential hypertension.
Collapse
|
19
|
Yıldız M, Baki̇ A, Özer ÖF. Serum Renin Levels in Sudden Sensorineural Hearing Loss. Ann Otol Rhinol Laryngol 2020; 129:806-812. [DOI: 10.1177/0003489420915221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: The aim of this study was to investigate the serum renin levels of patients with idiopathic sudden sensorineural hearing loss (ISSNHL). Material and Methods: Twenty-four patients with ISSNHL and 24 asymptomatic healthy volunteers were included in the study. Subjects underwent pure-tone audiometry and serum renin levels were measured. Results: There were 14 women (mean age:42.35 ± 9.53) and 10 men (mean age:43.8 ± 6.87) in the patient group. There were 14 women (mean age:42.4 ± 4.7) and 10 men (mean age:41.4 ± 4.59) in the control group. ISSNHL was detected on the right side in 13 patients and on the left side in 11 patients. Serum renin levels of the patients and controls were 788.01 ± 327.8 and 282.37 ± 107.73 pg/mL, respectively. The serum renin levels were found to be significantly higher in the patient group compared to the control group ( P ≤ .001). There was a statistically significant strong positive correlation between serum renin level and the severity of hearing loss ( r = 0.77; P = .001). Conclusion: Serum renin levels of patients with ISSNHL were higher than controls. There was a statistically significant strong positive correlation between serum renin level and the severity of hearing loss.
Collapse
Affiliation(s)
- Muhammet Yıldız
- Antalya Training and Research Hospital, Otorhinolaryngology Department, Antalya, Turkey
| | - Ahmet Baki̇
- Uskudar State Hospital, Otorhinolaryngology Department, İstanbul, Turkey
| | - Ömer Faruk Özer
- Bezmialem Vakif University, Biochemistry Department, İstanbul, Turkey
| |
Collapse
|
20
|
Ibrahim MA, Eraqi MM, Alfaiz FA. Therapeutic role of taurine as antioxidant in reducing hypertension risks in rats. Heliyon 2020; 6:e03209. [PMID: 31989053 PMCID: PMC6970174 DOI: 10.1016/j.heliyon.2020.e03209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
AIM The current investigation focused on the therapeutic role of the administration of taurine on hypertensive rats to reduce or cure the hazard effects of hypertension problems. METHODOLOGY This research included 2 experiments; 1st was done to survey the variations that might occur in blood pressure (BP) of male rats because of the fed 8% NaCl diet for 4 weeks. 2nd experiment, it contains normal control rats', hypertensive rats were served as hypertension recovery group and hypertensive rats were took orally by the help of gastric tube 50 mg taurine/100 g b.wt/day for four weeks and served as taurine group. RESULTS 1st experimental, clarified a significant elevation in BP, body weight, serum cholesterol, triglycerides, LDL, activities of serum cardiac enzymes, endothelin-1, ADMA, MDA and TNF-α in hypertensive rats' group. On contrary, there is a significant reduction in serum level of TNO and antioxidant enzymes level in relation to the control group. A numerical variation but not statistically significant was happened in HDL in hypertensive rats' group as compared to their matching results in control rats' group. 2nd experimental taurine significantly reduced the BP as compared with hypertensive control. Furthermore, a significant improvement occurred in the mean value of most investigation parameters in hypertensive animal group which treated with taurine. CONCLUSION The previous data could be concluded that, there is an obvious amelioration effects of taurine on hypertensive rats by reducing the hazard effects of hypertension problems. The primary mechanisms were discussed according to existing published investigations.
Collapse
Affiliation(s)
- Marwan A. Ibrahim
- Department of Biology, College of Science, Majmaah University, Majmaah, 11952, Saudi Arabia
| | | | | |
Collapse
|
21
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
22
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
23
|
Hart CR, Layec G, Trinity JD, Kwon OS, Zhao J, Reese VR, Gifford JR, Richardson RS. Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity. Exp Physiol 2018; 103:838-850. [PMID: 29604234 DOI: 10.1113/ep086905] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the degree to which skeletal muscle mitochondria-derived reactive oxygen species (ROS) production is linked to impaired skeletal muscle function in patients with early-stage peripheral arterial disease (PAD) and what is the impact on mitochondrial respiratory capacity? What is the main finding and its importance? This is the first study to document increased mitochondria-derived reactive oxygen species production associated with elevated intramuscular oxidative stress, despite preserved mitochondrial respiratory function, in patients with PAD. Furthermore, systemic inflammation, mitochondria-derived ROS production and skeletal muscle oxidative stress were strongly correlated to disease severity, as indicated by ankle-brachial index, in patients with PAD. ABSTRACT Skeletal muscle mitochondrial dysfunction, which is not fully explained by disease-related arterial occlusion, has been implicated in the pathophysiology of peripheral arterial disease (PAD). Therefore, this study comprehensively assessed mitochondrial respiratory function in biopsies from the gastrocnemius of 10 patients with PAD (Fontaine Stage II) and 12 healthy controls (HC). Intramuscular and systemic inflammation, mitochondria-derived reactive oxygen species (ROS) production, and oxidative stress were also assessed to better understand the mechanisms responsible for the proposed PAD-induced mitochondrial dysfunction. Interestingly, mitochondrial respiratory capacity, assessed as complex I (CI) and complex II (CII)-driven State 3 respiration, measured separately and in combination (State 3 CI+II), revealed no difference between the patients with PAD and the HC. However, mitochondria-derived ROS production was significantly elevated in PAD (HC: 1.0 ± 0.9; PAD: 4.3 ± 1.0 AU (mg tissue)-1 ). Furthermore, patients with PAD exhibited significantly greater concentrations of the pro-inflammatory markers tumour necrosis factor α in plasma (HC: 0.9 ± 0.4; PAD: 2.0 ± 0.3 pg ml-1 ) and interleukin 6 in both plasma (HC: 2.3 ± 0.4; PAD: 4.3 ± 0.5 pg ml-1 ) and muscle (∼75% greater). Intramuscular oxidative stress, assessed by protein carbonyls and 4-hydroxynonenal, was significantly greater in PAD compared to HC. Ankle brachial index was significantly correlated with intramuscular inflammation, oxidative stress and mitochondria-derived ROS production. Thus, elevated intramuscular inflammation, oxidative stress and mitochondria-derived ROS production are likely to contribute to the pathophysiology of the skeletal muscle dysfunction associated with PAD, even in the presence of preserved mitochondrial respiratory function in this population.
Collapse
Affiliation(s)
- Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Oh Sung Kwon
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Van R Reese
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Li X, Meng X, Gao X, Pang X, Wang Y, Wu X, Deng X, Zhang Q, Sun C, Li Y. Elevated Serum Xanthine Oxidase Activity Is Associated With the Development of Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care 2018; 41:884-890. [PMID: 29437822 DOI: 10.2337/dc17-1434] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/11/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We aimed to evaluate whether xanthine oxidase (XO), a key enzyme in uric acid (UA) metabolism and a major source of reactive oxygen species, plays a causal and important role in the development of type 2 diabetes mellitus (T2DM) in a large prospective cohort study. RESEARCH DESIGN AND METHODS A total of 4,412 diabetes-free adults (2,071 women and 2,341 men) aged 30-65 years at baseline in 2008 were involved. Participants were followed for incident change of glucose metabolism during an average of 4.7 years. At baseline, serum XO and UA, serum lipids, and glucose homeostasis indexes including fasting blood glucose (FBG), 2-h blood glucose (PBG), glycosylated hemoglobin A1c (HbA1c), and fasting insulin were tested for analysis. RESULTS During an average follow-up period of 4.7 years, 249 women and 360 men developed new-onset T2DM. Serum XO activity was positively associated with UA concentration (all P values <0.001). When XO activity and UA concentration were considered in the same model of the sex-specific analysis, only XO activity was significantly associated with the incidence of T2DM, with the hazard ratios from the bottom to the top quartile of XO activity being 1.00, 1.67 (95% CI 1.00-2.79), 1.86 (1.11-3.13), and 2.36 (1.43-3.90) in women and 1.00, 1.01 (0.68-1.52), 1.41 (0.98-2.03), and 1.90 (1.30-2.78) in men. CONCLUSIONS Elevated serum XO activity, but not UA concentration, was associated with an increased risk of developing T2DM in women and men with mutual adjustment for XO and UA. Further studies are needed to examine the underlying mechanisms.
Collapse
Affiliation(s)
- Xue Li
- Department of Epidemiology and Biostatistics, College of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Xing Meng
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Xiangchun Gao
- Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanjiao Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Xinrui Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Qiao Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Khayat RN, Varadharaj S, Porter K, Sow A, Jarjoura D, Gavrilin MA, Zweier JL. Angiotensin Receptor Expression and Vascular Endothelial Dysfunction in Obstructive Sleep Apnea. Am J Hypertens 2018; 31:355-361. [PMID: 29036393 DOI: 10.1093/ajh/hpx174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is associated with vascular endothelial dysfunction (VED) in otherwise healthy patients. The role of renin-angiotensin system (RAS) in the OSA induced VED is not well understood. METHODS Recently diagnosed OSA patients with very low cardiovascular disease (CVD) risk (Framingham score <5%) were studied at diagnosis and after 12 weeks of verified continuous positive airway pressure (CPAP) therapy. Participants underwent biopsy of gluteal subcutaneous tissue at baseline and after CPAP. Microcirculatory endothelial expression of angiotensin receptors type-1 (AT-1) and type-2 (AT-2) was measured in the subcutaneous tissue using quantitative confocal microscopy techniques. The ex-vivo effect of AT-1 receptor blockade (ARB) on endothelial superoxide production was also measured before and after CPAP treatment. RESULTS In OSA patients (n = 11), microcirculatory endothelial AT1 expression decreased from 873 (200) (fluorescence units) at baseline to 393 (59) units after 12 weeks of CPAP (P = 0.02). AT2 expression did not decrease significantly in these patients (479 (75) to 329 (58) post CPAP (P = 0.08)). The ex-vivo addition of the losartan to the microcirculatory endothelium resulted in decreased superoxide expression in the vascular walls from 14.2 (2.2) units to 4.2 (0.8) P < 0.001; while it had no effect on post-CPAP patient tissue (P = 0.64). CONCLUSIONS In OSA patients with no to minimal CVD risk, VED is associated with upregulation of AT-1 expression that is reversible with CPAP. Endothelial oxidative stress was reversible with ARB. RAS activation may play an important role in the development of early CVD risk in OSA patients.
Collapse
Affiliation(s)
- Rami N Khayat
- Department of Internal Medicine, The Sleep Heart Program, The Ohio State University, USA
- Division of Pulmonary Critical Care and Sleep, The Ohio State University, USA
| | - Saradhadevi Varadharaj
- Department of Internal Medicine, The Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, USA
| | - Kyle Porter
- The Center for Biostatistics, The Ohio State University, USA
| | - Angela Sow
- Department of Internal Medicine, The Sleep Heart Program, The Ohio State University, USA
- Department of Internal Medicine, The Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, USA
| | - David Jarjoura
- Department of Internal Medicine, The Sleep Heart Program, The Ohio State University, USA
| | - Mikhail A Gavrilin
- Division of Pulmonary Critical Care and Sleep, The Ohio State University, USA
| | - Jay L Zweier
- Department of Internal Medicine, The Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, USA
| |
Collapse
|
26
|
Nunes DV, Costa CA, De Bem GF, Cordeiro VS, Santos IB, Carvalho LC, Jordão AK, Cunha AC, Ferreira VF, Moura RS, Resende AC, Ognibene DT. Tempol, a superoxide dismutase-mimetic drug, prevents chronic ischemic renal injury in two-kidney, one-clip hypertensive rats. Clin Exp Hypertens 2018; 40:721-729. [PMID: 29359965 DOI: 10.1080/10641963.2018.1425423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tempol, a superoxide dismutase-mimetic drug, has been shown to attenuate radical-induced damage, exerting beneficial effects in the animal models of oxidative stress and hypertension. This study evaluated the effect of Tempol on renal structural and functional alterations in two-Kidney, one-Clip hypertensive rats. In this study, young male Wistar rats had the left kidney clipped (2K1C), and sham-operated animals (Sham) were used as controls. Animals received Tempol (1mmol/L in drinking water) or vehicle for 5 weeks. Systolic blood pressure was evaluated once a week. At the end of the experimental protocol, the animals were placed in metabolic cages to collect urine (24h) and then anesthetized with thiopental (70mg/kg i.p.) to collect blood by puncturing the descending aorta for biochemical analysis, and the clipped kidney for morphological and immunohistochemical analyses. The vasodilator effect of Tempol was evaluated in mesenteric arterial bed (MAB) isolated from adult Wistar rats. The chronic treatment with Tempol prevented the development of hypertension and the increased plasma levels of urea, creatinine, and 8-isoprostane in 2K1C animals. Tempol also improved both glomeruli number and kidney volume to normal levels in the 2K1C+Tempol group. In addition, the treatment prevented the increased collagen deposition and immunostaining for renin, caspase-3, and 8-isoprostane in the stenotic kidney of 2K1C animals. Moreover, Tempol induced a dose-dependent vasodilator response in MAB from Wistar rats. These results suggest that Tempol protects the stenotic kidney against chronic ischemic renal injury and prevents renal dysfunction in the 2K1C model, probably through its antioxidant, vasodilator and antihypertensive actions.
Collapse
Affiliation(s)
- Douglas Vq Nunes
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| | - Cristiane A Costa
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| | - Graziele F De Bem
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| | - Viviane Sc Cordeiro
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| | - Izabelle B Santos
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| | - Lenize Crm Carvalho
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| | - Alessandro K Jordão
- b University Unit of Pharmacy, State University of the West Zone , Rio de Janeiro , RJ , Brazil
| | - Anna C Cunha
- c Department of Organic Chemistry , Fluminense Federal University , Niterói , RJ , Brazil
| | - Vitor F Ferreira
- c Department of Organic Chemistry , Fluminense Federal University , Niterói , RJ , Brazil
| | - Roberto S Moura
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| | - Angela C Resende
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| | - Dayane T Ognibene
- a Department of Pharmacology , Institute of Biology, Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
27
|
Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8459402. [PMID: 29118897 PMCID: PMC5651112 DOI: 10.1155/2017/8459402] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases, superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide, nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues within different signaling cascades. Thioredoxin family proteins are key regulators of the redox state of proteins. They regulate the formation and removal of oxidative modifications by specific thiol reduction and oxidation. All of these redox enzymes affect inflammatory processes and the innate and adaptive immune response. Interestingly, this regulation involves different mechanisms in different biological compartments and specialized cell types. The localization and activity of distinct proteins including, for instance, the transcription factor NFκB and the immune mediator HMGB1 are redox-regulated. The transmembrane protein ADAM17 releases proinflammatory mediators, such as TNFα, and is itself regulated by a thiol switch. Moreover, extracellular redox enzymes were shown to modulate the activity and migration behavior of various types of immune cells by acting as cytokines and/or chemokines. Within this review article, we will address the concept of redox signaling and the functions of both redox enzymes and redox active molecules in innate and adaptive immune responses.
Collapse
|
28
|
De Silva TM, Hu C, Kinzenbaw DA, Modrick ML, Sigmund CD, Faraci FM. Genetic Interference With Endothelial PPAR-γ (Peroxisome Proliferator-Activated Receptor-γ) Augments Effects of Angiotensin II While Impairing Responses to Angiotensin 1-7. Hypertension 2017; 70:559-565. [PMID: 28674038 DOI: 10.1161/hypertensionaha.117.09358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
Abstract
Pharmacological activation of PPAR-γ (peroxisome proliferator-activated receptor-γ) protects the vasculature. Much less is known on the cell-specific impact of PPAR-γ when driven by endogenous ligands. Recently, we found that endothelial PPAR-γ protects against angiotensin II-induced endothelial dysfunction. Here, we explored that concept further examining whether effects were sex dependent along with underlying mechanisms. We studied mice expressing a human dominant-negative mutation in PPAR-γ driven by the endothelial-specific vascular cadherin promoter (E-V290M), using nontransgenic littermates as controls. Acetylcholine (an endothelium-dependent agonist) produced similar relaxation of carotid arteries from nontransgenic and E-V290M mice. Incubation of isolated arteries with angiotensin II (1 nmol/L) overnight had no effect in nontransgenic, but reduced responses to acetylcholine by about 50% in male and female E-V290M mice (P<0.05). Endothelial function in E-V290M mice was restored to normal by inhibitors of superoxide (tempol), NADPH oxidase (VAS-2870), Rho kinase (Y-27632), ROCK2 (SLX-2119), NF-κB (nuclear factor-kappa B essential modulator-binding domain peptide), or interleukin-6 (neutralizing antibody). In addition, we hypothesized that PPAR-γ may influence the angiotensin 1-7 arm of the renin-angiotensin system. In the basilar artery, dilation to angiotensin 1-7 was selectively reduced in E-V290M mice by >50% (P<0.05), an effect reversed by Y-27632. Thus, effects of angiotensin II are augmented by interference with endothelial PPAR-γ through sex-independent mechanisms, involving oxidant-inflammatory signaling and ROCK2 (Rho kinase). The study also provides the first evidence that endothelial PPAR-γ interacts with angiotensin 1-7 responses. These critical roles for endothelial PPAR-γ have implications for pathophysiology and therapeutic approaches for vascular disease.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Chunyan Hu
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Dale A Kinzenbaw
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Mary L Modrick
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Curt D Sigmund
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.).
| |
Collapse
|
29
|
Zhou MS, Adam A, Raij L. Review: Interaction among angiotensin II, nitric oxide and oxidative stress. J Renin Angiotensin Aldosterone Syst 2016; 2:S59-S63. [DOI: 10.1177/14703203010020011001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ming-Sheng Zhou
- Nephrology and Hypertension Section, Department of Veterans
Affairs Medical Center, and University of Minnesota, Minneapolis, Minnesota,
USA
| | - Ahmed Adam
- Nephrology and Hypertension Section, Department of Veterans
Affairs Medical Center, and University of Minnesota, Minneapolis, Minnesota,
USA
| | - Leopoldo Raij
- Nephrology and Hypertension Section, Department of Veterans
Affairs Medical Center, and University of Minnesota, Minneapolis, Minnesota,
USA,
| |
Collapse
|
30
|
Mengal V, Silva PH, Tiradentes RV, Santuzzi CH, de Almeida SA, Sena GC, Bissoli NS, Abreu GR, Gouvea SA. Aliskiren and l-arginine treatments restore depressed baroreflex sensitivity and decrease oxidative stress in renovascular hypertension rats. Hypertens Res 2016; 39:769-776. [PMID: 27383506 DOI: 10.1038/hr.2016.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Renovascular hypertension is characterized by increased angiotensin II and oxidative stress, and by endothelial dysfunction. The purpose of this study was to test whether the administration of aliskiren (ALSK) and l-arginine (l-ARG) would restore impaired baroreflex sensitivity and reduce oxidative stress in a rat renovascular hypertension model. Hypertension was induced by clipping the left renal artery, and the following five groups were created: SHAM; two-kidney, 1-clip (2K1C); 2K1C plus ALSK (ALSK); 2K1C plus l-ARG (l-ARG); and 2K1C plus ALSK+l-ARG (ALSK+l-ARG). After 21 days of treatment, only the ALSK+l-ARG group was effective in normalizing the arterial pressure (108.8±2.8 mm Hg). The l-ARG and ALSK+l-ARG groups did not show hypertrophy of the left ventricle. All the treatments restored the depressed baroreflex sensitivity to values found in the SHAM group. Acute administration of TEMPOL restored the depressed baroreflex sensitivity in the 2K1C group to values that resembled those presented by the other groups. All treatments were effective for an increase in the antioxidant pathway and reduction in the oxidative pathway. In conclusion, the treatment with ALSK or l-ARG reduced oxidative stress and restored reduced baroreflex sensitivity in renovascular hypertension. In addition, the treatments were able to normalize blood pressure and reverse left ventricular hypertrophy when used in combination.
Collapse
Affiliation(s)
- Vinicius Mengal
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Paulo Hm Silva
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Renata V Tiradentes
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Cintia H Santuzzi
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Simone A de Almeida
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Gabriela C Sena
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Nazare S Bissoli
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Glaucia R Abreu
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Sonia A Gouvea
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.,Nucleus of Biotechnology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
31
|
Abstract
Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.
Collapse
Affiliation(s)
- Sarah Kreuz
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Wolfgang Fischle
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
32
|
Etani R, Kataoka T, Kanzaki N, Sakoda A, Tanaka H, Ishimori Y, Mitsunobu F, Yamaoka K. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice. JOURNAL OF RADIATION RESEARCH 2016; 57:250-7. [PMID: 27021217 PMCID: PMC4915545 DOI: 10.1093/jrr/rrw014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 05/13/2023]
Abstract
Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m(3) for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it.
Collapse
Affiliation(s)
- Reo Etani
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Norie Kanzaki
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Hiroshi Tanaka
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Yuu Ishimori
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Fumihiro Mitsunobu
- Misasa Medical Center, Okayama University Hospital, 827 Yamada, Misasa-cho, Tohaku-gun, Totori 682-0192, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
33
|
Severina IS, Fedchenko VI, Veselovsky AV, Medvedev AE. [The history of renalase from amine oxidase to a a-NAD(P)H-oxidase/anomerase]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 61:667-79. [PMID: 26716738 DOI: 10.18097/pbmc20156106667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Renalase is a recently discovered secretory protein, which plays a certain (still poorly understood) role in regulation of blood pressure. The review summarizes own and literature data accumulated since the first publication on relanase (2005). Initial reports on FAD-dependent amine oxidase activity of this protein were not confirmed in independent experiments performed in different laboratories. In addition, proposed amine oxidase activity of circulating extracellular renalase requires the presence of FAD, which has not been detected either in blood or urinary renalase. Moreover, renalase excreted into urine lacks its N-terminal peptide, which is ultimately needed for accommodation of the FAD cofactor. Results of the Aliverti's group on NAD(P)H binding by renalase and weak diaphorase activity of this protein stimulated further studies of renalase as NAD(P)H oxidase catalyzing reaction of catecholamine co-oxidation. However, physiological importance of such extracellular catecholamine-metabolizing activity (demonstrated in one laboratory and not detected in another laboratory) remains unclear due to existence of much more active enzymatic systems (e.g. neutrophil NAD(P)H oxidase, xanthine oxidase/xanthine) in circulation, which can perform such co-oxidation reactions. Recently a-NAD(P)H oxidase/anomerase activity of renalase, which also pomotes oxidative conversion of b-NADH isomers inhibiting activity of NAD-dependent dehydrogenases, has been described. However, its possible contribution to the antihypertensive effect of renalase remains unclear. Thus, the antihypertensive effect of renalase still remains a phenomenon with unclear biochemical mechanim(s) and functions of intracellular and extracellular (circulating) renalases obviously differ.
Collapse
Affiliation(s)
- I S Severina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
34
|
Hui J, Qu YY, Tang N, Liu YM, Zhong H, Wang LM, Feng Q, Li Z, He F. Association of cytomegalovirus infection with hypertension risk: a meta-analysis. Wien Klin Wochenschr 2016; 128:586-91. [PMID: 26980213 PMCID: PMC5010589 DOI: 10.1007/s00508-016-0977-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/15/2016] [Indexed: 01/01/2023]
Abstract
Background Information regarding association between cytomegalovirus (CMV) infection and essential hypertension (EH) risk is not consistent across studies. Therefore, we conducted a meta-analysis to investigate the association in detail. Methods We comprehensively searched the published literature from the PubMed and Embase databases for any study analyzing the association between CMV and EH risk. A random-effects model was used to calculate the pooled odds ratio (OR) with 95 % confidence interval (CI). Results Three studies involving 9657 patients were included in the meta-analysis, and the results showed a significantly increased risk of EH in patients with CMV infection. Overall, 79.3 % of the hypertension patients were CMV-positive, which was significantly higher than the percentage for controls (OR = 1.39, 95 % CI = 0.95–2.05, P = 0.017). There was significant heterogeneity among the studies included (I2 = 70.5 %). The funnel plot and Egger’s test also indicated no publication bias. Conclusions The results showed a significant association between CMV and EH, which indicates that CMV infection is a possible cause of EH.
Collapse
Affiliation(s)
- Jing Hui
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yuan-Yuan Qu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, China
| | - Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yong-Min Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - La-Mei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi, China
| | - Qian Feng
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Zhen Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China.
| |
Collapse
|
35
|
Huang CJ, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO. Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation. SPORTS MEDICINE-OPEN 2015; 1:32. [PMID: 26435910 PMCID: PMC4580715 DOI: 10.1186/s40798-015-0031-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/03/2023]
Abstract
Obesity-related oxidative stress, the imbalance between pro-oxidants and antioxidants (e.g., nitric oxide), has been linked to metabolic and cardiovascular disease, including endothelial dysfunction and atherosclerosis. Reactive oxygen species (ROS) are essential for physiological functions including gene expression, cellular growth, infection defense, and modulating endothelial function. However, elevated ROS and/or diminished antioxidant capacity leading to oxidative stress can lead to dysfunction. Physical activity also results in an acute state of oxidative stress. However, it is likely that chronic physical activity provides a stimulus for favorable oxidative adaptations and enhanced physiological performance and physical health, although distinct responses between aerobic and anaerobic activities warrant further investigation. Studies support the benefits of dietary modification as well as exercise interventions in alleviating oxidative stress susceptibility. Since obese individuals tend to demonstrate elevated markers of oxidative stress, the implications for this population are significant. Therefore, in this review our aim is to discuss (i) the role of oxidative stress and inflammation as associated with obesity-related diseases, (ii) the potential concerns and benefits of exercise-mediated oxidative stress, and (iii) the advantageous role of dietary modification, including acute or chronic caloric restriction and vitamin D supplementation.
Collapse
Affiliation(s)
- Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA
| | | | - Aaron L Slusher
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA ; Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA USA
| | - Heather E Webb
- Department of Kinesiology, Texas A&M University-Corpus Christi, Corpus Christi, TX USA
| | - J Thomas Mock
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
36
|
Santillo M, Colantuoni A, Mondola P, Guida B, Damiano S. NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis. Front Physiol 2015. [PMID: 26217233 PMCID: PMC4493385 DOI: 10.3389/fphys.2015.00194] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Blood pressure homeostasis is maintained by several mechanisms regulating cardiac output, vascular resistances, and blood volume. At cellular levels, reactive oxygen species (ROS) signaling is involved in multiple molecular mechanisms controlling blood pressure. Among ROS producing systems, NADPH oxidases (NOXs), expressed in different cells of the cardiovascular system, are the most important enzymes clearly linked to the development of hypertension. NOXs exert a central role in cardiac mechanosensing, endothelium-dependent relaxation, and Angiotensin-II (Ang-II) redox signaling regulating vascular tone. The central role of NOXs in redox-dependent cardiovascular cell functions renders these enzymes a promising pharmacological target for the treatment of cardiovascular diseases, including hypertension. The aim of the present review is to focus on the physiological role of the cardiovascular NOX-generating ROS in the molecular and cellular mechanisms affecting blood pressure.
Collapse
Affiliation(s)
- Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Antonio Colantuoni
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| |
Collapse
|
37
|
Fujii N, Meade RD, Paull G, McGinn R, Foudil-bey I, Akbari P, Kenny GP. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress? J Appl Physiol (1985) 2015; 118:1145-53. [PMID: 25767030 DOI: 10.1152/japplphysiol.00025.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/05/2015] [Indexed: 11/22/2022] Open
Abstract
It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P < 0.05). However, during both exercise bouts, there were no differences in CVC or sweating between the treatment sites (all P > 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P < 0.05). We show angiotensin II impairs cutaneous perfusion independent of oxidative stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabrielle Paull
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Imane Foudil-bey
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pegah Akbari
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Williams R, Lemaire P, Lewis P, McDonald FB, Lucking E, Hogan S, Sheehan D, Healy V, O'Halloran KD. Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress. Front Physiol 2015; 6:15. [PMID: 25688214 PMCID: PMC4311627 DOI: 10.3389/fphys.2015.00015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/10/2015] [Indexed: 12/29/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expression of NOX subunits, total myosin and 4-hydroxynonenal (4-HNE) protein adducts in sternohyoid muscle was determined by western blotting and densitometry. Sternohyoid protein free thiol and carbonyl group contents were determined by 1D electrophoresis using specific fluorophore probes. Aconitase and glutathione reductase activities were measured as indices of oxidative stress. HIF-1α content and key oxidative and glycolytic enzyme activities were determined. Contractile properties of sternohyoid muscle were determined ex vivo in the absence and presence of apocynin (putative NOX inhibitor). We observed an increase in NOX 2 and p47 phox expression in CIH-exposed sternohyoid muscle with decreased aconitase and glutathione reductase activities. There was no evidence, however, of increased lipid peroxidation or protein oxidation in CIH-exposed muscle. CIH exposure did not affect sternohyoid HIF-1α content or aldolase, lactate dehydrogenase, or glyceraldehyde-3-phosphate dehydrogenase activities. Citrate synthase activity was also unaffected by CIH exposure. Apocynin significantly increased sternohyoid force and power. We conclude that CIH exposure upregulates NOX expression in rat sternohyoid muscle with concomitant modest oxidative stress but it does not result in a HIF-1α-dependent increase in glycolytic enzyme activity. Constitutive NOX activity decreases sternohyoid force and power. Our results implicate NOX-dependent reactive oxygen species in CIH-induced upper airway muscle dysfunction which likely relates to redox modulation of key regulatory proteins in excitation-contraction coupling.
Collapse
Affiliation(s)
- Robert Williams
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| | - Paul Lemaire
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| | - Philip Lewis
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| | - Fiona B McDonald
- School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Eric Lucking
- School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Sean Hogan
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| | - David Sheehan
- School of Biochemistry and Cell Biology, University College Cork Cork, Ireland
| | - Vincent Healy
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| |
Collapse
|
39
|
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of "kindling radicals," which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. RECENT ADVANCES There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. CRITICAL ISSUES NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. FUTURE DIRECTIONS Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice.
Collapse
Affiliation(s)
- Anna Konior
- 1 Department of Internal Medicine, Jagiellonian University School of Medicine , Cracow, Poland
| | | | | | | |
Collapse
|
40
|
Enhancing vascular relaxing effects of nitric oxide-donor ruthenium complexes. Future Med Chem 2014; 6:825-38. [DOI: 10.4155/fmc.14.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ruthenium-derived complexes have emerged as new nitric oxide (NO) donors that may help circumvent the NO deficiency that impairs vasodilation. NO in vessels can be produced by the endothelial cells and/or released by NO donors. NO interacts with soluble guanylyl-cyclase to produce cGMP to activate the kinase-G pathway. As a result, conductance arteries, veins and resistance arteries dilate, whereas the cytosolic Ca2+ levels in the smooth muscle cells decrease. NO also reacts with oxygen or the superoxide anion, to generate reactive oxygen species that modulate NO-induced vasodilation. In this article, we focus on NO production by NO synthase and discuss the vascular changes taking place during hypertension originating from endothelial dysfunction. We will describe how the NO released from ruthenium-derived complexes enhances the vascular effects arising from failed NO generation or lack of NO bioavailability. In addition, how ruthenium-derived NO donors induce the hypotensive effect by vasodilation is also discussed.
Collapse
|
41
|
Golub AS, Pittman RN. Bang-bang model for regulation of local blood flow. Microcirculation 2014; 20:455-83. [PMID: 23441827 DOI: 10.1111/micc.12051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 11/27/2022]
Abstract
The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2 (-) ) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the "bang-bang" or "on/off" regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2 (-) into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis, and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
42
|
Nitric oxide and superoxide anion balance in rats exposed to chronic and long term intermittent hypoxia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:610474. [PMID: 24719876 PMCID: PMC3955675 DOI: 10.1155/2014/610474] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022]
Abstract
Work at high altitude in shifts exposes humans to a new form of chronic intermittent hypoxia, with still unknown health consequences. We have established a rat model resembling this situation, which develops a milder form of right ventricular hypertrophy and pulmonary artery remodelling compared to continuous chronic exposure. We aimed to compare the alterations in pulmonary artery nitric oxide (NO) availability induced by these forms of hypoxia and the mechanisms implicated. Rats were exposed for 46 days to normoxia or hypobaric hypoxia, either continuous (CH) or intermittent (2 day shifts, CIH2x2), and assessed: NO and superoxide anion availability (fluorescent indicators and confocal microscopy); expression of phosphorylated endothelial NO synthase (eNOS), NADPH-oxidase (p22phox), and 3-nitrotyrosine (western blotting); and NADPH-oxidase location (immunohistochemistry). Compared to normoxia, (1) NO availability was reduced and superoxide anion was increased in both hypoxic groups, with a larger effect in CH, (2) eNOS expression was only reduced in CH, (3) NADPH-oxidase was similarly increased in both hypoxic groups, and (4) 3-nitrotyrosine was increased to a larger extent in CH. In conclusion, intermittent hypoxia reduces NO availability through superoxide anion destruction, without reducing its synthesis, while continuous hypoxia affects both, producing larger nitrosative damage which could be related to the more severe cardiovascular alterations.
Collapse
|
43
|
Taheraghdam AA, Sharifipour E, Pashapour A, Namdar S, Hatami A, Houshmandzad S, Sadeghihokmabadi E, Tazik M, Rikhtegar R, Mahmoodpoor A. Allopurinol as a preventive contrivance after acute ischemic stroke in patients with a high level of serum uric acid: a randomized, controlled trial. Med Princ Pract 2014; 23:134-9. [PMID: 24296871 PMCID: PMC5586842 DOI: 10.1159/000355621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 09/16/2013] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To assess the clinical relevance (functional outcome) of a 3-month allopurinol regimen in patients with high serum uric acid (SUA) levels and acute ischemic stroke without considering the changes in SUA levels. MATERIALS AND METHODS In a randomized, double-blind, controlled study, 70 patients (45 females, 25 males) with acute ischemic stroke who had elevated levels of SUA were included. They were divided in two 35-patient groups to investigate the effect of 3 months of an allopurinol (200 mg/day) regimen versus placebo on their functional outcome, which was evaluated using a modified Rankin scale. RESULTS The overall mean age was 68.9 ± 11.33 years (range 27-89). The final favorable functional status (mRS = 0-2) was 23 (65.7%) and 14 (40.0%) in the treated and placebo groups, respectively, which was strongly associated with allopurinol consumption (OR = 4.646, p = 0.014) and age ≤70 years (OR = 0.139, p = 0.005) in patients with ischemic stroke after adjusting for confounders. There was no significant difference in death between allopurinol-treated cases (3; 8.6%) and placebo-treated ones (6; 17.2%; p = 0.278). CONCLUSION Allopurinol treatment was well tolerated and improved the 3-month functional status of patients with acute ischemic stroke who had high levels of SUA without considering the decreasing effect of allopurinol on SUA.
Collapse
Affiliation(s)
- Ali Akbar Taheraghdam
- Department of Neurology, Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Sharifipour
- Department of Neurology, Neurosciences Research Center (NSRC), Student Research Committee, Tabriz University of Medical Sciences, Imam Reza Hospital, Tabriz, Iran
- *Ehsan Sharifipour, Neurosciences Research Center (NSRC), Student Research Committee, Tabriz University of Medical Sciences, Imam Reza University Hospital, Gholghasht Street, Tabriz 5166614756 (Iran), E-Mail
| | - Ali Pashapour
- Department of Neurology, Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Hatami
- Department of Neurology, Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Houshmandzad
- Department of Neurology, Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Reza Rikhtegar
- Department of Neurology, Neurosciences Research Center (NSRC), Student Research Committee, Tabriz University of Medical Sciences, Imam Reza Hospital, Tabriz, Iran
| | | |
Collapse
|
44
|
Storhaug HM, Norvik JV, Toft I, Eriksen BO, Løchen ML, Zykova S, Solbu M, White S, Chadban S, Jenssen T. Uric acid is a risk factor for ischemic stroke and all-cause mortality in the general population: a gender specific analysis from The Tromsø Study. BMC Cardiovasc Disord 2013; 13:115. [PMID: 24330812 PMCID: PMC4029378 DOI: 10.1186/1471-2261-13-115] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/05/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of serum uric acid as an independent predictor of cardiovascular disease and death is uncertain in the general population. Adjustments for additional cardiovascular risk factors have not been consistent. We examined the association of serum uric acid with all-cause mortality, ischemic stroke and myocardial infarction in a prospective population based study, with several traditional and non-traditional risk factors for cardiovascular disease included in the model. METHODS A population-based prospective cohort study was performed among 2696 men and 3004 women. Endpoints were all-cause mortality after 15 years, and fatal or non-fatal myocardial infarction (MI) and ischemic stroke after 12 years. RESULTS 1433 deaths, 659 MIs and 430 ischemic strokes occurred during follow-up. Fully adjusted Cox regression analyses showed that per 1 SD (87 μmol/L) increase in serum uric acid level, the risk of all-cause mortality increased in both genders (hazard ratios, HR men; 1.11, 95% CI 1.02-1.20, women; 1.16, 1.05-1.29). HRs and 95% CI for stroke were 1.31, 1.14-1.50 in men, 1.13, 0.94-1.36 in women, and 1.22 (1.09, 1.35) in the overall population. No independent associations were observed with MI. CONCLUSION Serum uric acid was associated with all-cause mortality in men and women, even after adjustment for blood pressure, estimated GFR, urinary albumin/creatinine ratio, drug intake and traditional cardiovascular risk factors. After the same adjustments, serum uric acid was associated with 31% increased risk of stroke in men.
Collapse
Affiliation(s)
| | | | - Ingrid Toft
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Trea F, Ouali K, Baba-Ahmed F, Kadi Y. La Glisodin®, un extrait de melon, atténue l’apoptose des cardiomyocytes via la suppression du stress oxydant cardiaque au cours du diabète chronique expérimental. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s10298-013-0818-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwała M, Bujak-Gizycka B, Filip G, Grudzien G, Kapelak B, Żmudka K, Mrowiecki T, Sadowski J, Korbut R, Guzik TJ. Mechanisms of oxidative stress in human aortic aneurysms--association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol 2013; 168:2389-96. [PMID: 23506637 PMCID: PMC3819986 DOI: 10.1016/j.ijcard.2013.01.278] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/06/2013] [Accepted: 01/23/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED Aortic abdominal aneurysms (AAA) are important causes of cardiovascular morbidity and mortality. Oxidative stress may link multiple mechanisms of AAA including vascular inflammation and increased metalloproteinase activity. However, the mechanisms of vascular free radical production remain unknown. Accordingly, we aimed to determine sources and molecular regulation of vascular superoxide (O2(-)) production in human AAA. METHODS AND RESULTS AAA segments and matched non-dilated aortic samples were obtained from 40 subjects undergoing AAA repair. MDA levels (determined by HPLC/MS) were greater in plasma of AAA subjects (n=16) than in risk factor matched controls (n=16). Similarly, superoxide production, measured by lucigenin chemiluminescence and dihydroethidium fluorescence, was increased in aneurysmatic segments compared to non-dilated aortic specimens. NADPH oxidases and iNOS are the primary sources of O2(-) in AAA. Xanthine oxidase, mitochondrial oxidases and cyclooxygenase inhibition had minor or no effect. Protein kinase C inhibition had no effect on superoxide production in AAA. NADPH oxidase subunit mRNA levels for p22phox, nox2 and nox5 were significantly increased in AAAs while nox4 mRNA expression was lower. Superoxide production was higher in subjects with increased AAA repair risk Vanzetto score and was significantly associated with smoking, hypercholesterolemia and presence of CAD in AAA cohort. Basal superoxide production and NADPH oxidase activity were correlated to aneurysm size. CONCLUSIONS Increased expression and activity of NADPH oxidases are important mechanisms underlying oxidative stress in human aortic abdominal aneurysm. Uncoupled iNOS may link oxidative stress to inflammation in AAA. Oxidative stress is related to aneurysm size and major clinical risk factors in AAA patients.
Collapse
Affiliation(s)
- Bartłomiej Guzik
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Agnieszka Sagan
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - Dominik Ludew
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | | | - Maciej Chwała
- Department of Vascular Surgery, J. Grande Hospital, Cracow, Poland
| | - Beata Bujak-Gizycka
- Department of Pharmacology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Grzegorz Filip
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Grzegorz Grudzien
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Boguslaw Kapelak
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Krzysztof Żmudka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Tomasz Mrowiecki
- Department of Vascular Surgery, J. Grande Hospital, Cracow, Poland
| | - Jerzy Sadowski
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Tomasz J. Guzik
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| |
Collapse
|
47
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E. Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 2013; 9:401-28. [PMID: 23983473 PMCID: PMC3750863 DOI: 10.2147/vhrm.s33053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Sergio Raposeiras-Roubín
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
| | - José R González-Juanatey
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - Ezequiel Álvarez
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| |
Collapse
|
48
|
|
49
|
Yang HY, Kao PF, Chen TH, Tomlinson B, Ko WC, Chan P. Effects of the Angiotensin II Type 1 Receptor Antagonist Valsartan on the Expression of Superoxide Dismutase in Hypertensive Patients. J Clin Pharmacol 2013; 47:397-403. [PMID: 17322151 DOI: 10.1177/0091270006296762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of oxidative stress in the pathogenesis of vascular diseases such as hypertension has been well recognized. Angiotensin (Ang) II is regarded as a pro-oxidant because it can stimulate the production of reactive oxygen species. The purpose of this study was to evaluate whether treatment with the Ang II type 1 (AT(1)) receptor antagonist valsartan has an antioxidant effect in patients with mild to moderate hypertension. A randomized, double-blind, placebo-controlled study was conducted in 48 stage I and II hypertensive subjects. Patients were followed every 4 weeks for 12 weeks after randomization to valsartan titrated to 80 to 160 mg once or twice daily or matching placebo. The erythrocyte superoxide dismutase (SOD) activity and expression of SOD-mRNA in polymorphonuclear leukocytes were measured before and after treatment. Valsartan showed concentration-dependent inhibition of reactive oxygen species generation in polymorphonuclear leukocytes from hypertensive patients. The erythrocyte superoxide dismutase activity before treatment was more than 2 times higher in hypertensive subjects compared to normal controls. Superoxide dismutase activity decreased significantly after 12 weeks of treatment with valsartan but did not change with placebo. The amount of SOD-mRNA in the polymorphonuclear leukocytes decreased progressively over 3 months in the hypertensive subjects receiving valsartan treatment but did not change in the placebo group. The production of reactive oxygen species is increased in hypertension, and superoxide dismutase activity is increased, presumably as a compensatory mechanism. Treatment with valsartan but not placebo resulted in a progressive down-regulation of SOD-mRNA expression and a reduction in superoxide dismutase activity, suggesting antioxidant activity and a reduction of reactive oxygen species generation. These findings imply that AT(1) receptor antagonists may provide benefits to hypertensive patients beyond blood pressure reduction.
Collapse
Affiliation(s)
- Hung-Yu Yang
- Division of Cardiology, Taipei Medical University-Wan Fang Hospital, No. 111 Hsing-Lung Road, Sec. 3, Wen-Shan District, Taipei City 116, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Mackenzie R, Salt I, Miller W, Logan A, Ibrahim H, Degasperi A, Dymott J, Hamilton C, Murphy M, Delles C, Dominiczak A. Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Clin Sci (Lond) 2013; 124:403-11. [PMID: 23057846 PMCID: PMC3903000 DOI: 10.1042/cs20120239] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to determine whether the endothelial dysfunction associated with CAD (coronary artery disease) and T2D (Type 2 diabetes mellitus) is concomitant with elevated mtROS (mitochondrial reactive oxygen species) production in the endothelium and establish if this, in turn, regulates the activity of endothelial AMPK (AMP-activated protein kinase). We investigated endothelial function, mtROS production and AMPK activation in saphenous veins from patients with advanced CAD. Endothelium-dependent vasodilation was impaired in patients with CAD and T2D relative to those with CAD alone. Levels of mitochondrial H(2)O(2) and activity of AMPK were significantly elevated in primary HSVECs (human saphenous vein endothelial cells) from patients with CAD and T2D compared with those from patients with CAD alone. Incubation with the mitochondria-targeted antioxidant, MitoQ(10) significantly reduced AMPK activity in HSVECs from patients with CAD and T2D but not in cells from patients with CAD alone. Elevated mtROS production in the endothelium of patients with CAD and T2D increases AMPK activation, supporting a role for the kinase in defence against oxidative stress. Further investigation is required to determine whether pharmacological activators of AMPK will prove beneficial in the attenuation of endothelial dysfunction in patients with CAD and T2D.
Collapse
Key Words
- amp-activated protein kinase (ampk)
- coronary artery disease (cad)
- diabetes
- endothelium
- mitochondrion
- oxidative stress
- aicar, 5-amino-4-imidazolecarboxamide riboside
- ampk, amp-activated protein kinase
- bmi, body mass index
- cabg, coronary artery bypass graft
- cad, coronary artery disease
- camkk, ca2+/calmodulin-dependent kinase kinase
- cvd, cardiovascular disease
- 2dg, 2-deoxy-d-glucose
- dtpp, decyl triphenylphosphonium bromide
- enos, endothelial nitric oxide synthase
- gapdh, encoding glyceraldehyde-3-phosphate dehydrogenase
- hba1c, glycated haemoglobin
- hdl, high-density lipoprotein
- hsvec, human saphenous vein endothelial cell
- huvec, human umbilical vein endothelial cell
- ldl, low-density lipoprotein
- ros, reactive oxygen species
- mtros, mitochondrial ros
- prkaa1, encoding the ampk-α1 catalytic subunit
- sod, superoxide dismutase
- t2d, type 2 diabetes
- vwf, von willebrand factor
Collapse
Affiliation(s)
- Ruth M. Mackenzie
- *Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Ian P. Salt
- *Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - William H. Miller
- *Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | | | - Hagar A. Ibrahim
- *Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Andrea Degasperi
- ‡School of Computing Science, University of Glasgow, Glasgow, U.K
| | - Jane A. Dymott
- *Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Carlene A. Hamilton
- *Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | | | - Christian Delles
- *Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Anna F. Dominiczak
- *Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|