1
|
Hossain E, Sarkar O, Li Y, Anand-Srivastava MB. Inhibition of overexpression of Giα proteins and nitroxidative stress contribute to sodium nitroprusside-induced attenuation of high blood pressure in SHR. Physiol Rep 2019; 6:e13658. [PMID: 29595917 PMCID: PMC5875540 DOI: 10.14814/phy2.13658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit enhanced expression of Giα proteins which was attributed to the decreased levels of nitric oxide (NO), because elevation of the intracellular levels of NO by NO donors; sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the enhanced expression of Giα proteins. Since the enhanced expression of Giα proteins is implicated in the pathogenesis of hypertension, the present study was undertaken to investigate if treatment of SHR with SNP could also attenuate the development of high blood pressure (BP) and explore the underlying molecular mechanisms. Intraperitoneal injection of SNP at a concentration of 0.5 mg/kg body weight twice a week for 2 weeks into SHR attenuated the high blood pressure by about 80 mmHg without affecting the BP in WKY rats. SNP treatment also attenuated the enhanced levels of superoxide anion (O2- ), hydrogen peroxide (H2 O2 ), peroxynitrite (ONOO- ), and NADPH oxidase activity in VSMC from SHR to control levels. In addition, the overexpression of different subunits of NADPH oxidase; Nox-1, Nox-2, Nox-4, P22phox , and P47phox , and Giα proteins in VSMC from SHR were also attenuated by SNP treatment. On the other hand, SNP treatment augmented the decreased levels of intracellular NO, eNOS, and cGMP in VSMC from SHR. These results suggest that SNP treatment attenuates the development of high BP in SHR through the elevation of intracellular levels of cGMP and inhibition of the enhanced levels of Giα proteins and nitroxidative stress.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
2
|
Sarkar O, Li Y, Anand-Srivastava MB. Nitric oxide attenuates overexpression of Giα proteins in vascular smooth muscle cells from SHR: Role of ROS and ROS-mediated signaling. PLoS One 2017; 12:e0179301. [PMID: 28692698 PMCID: PMC5503203 DOI: 10.1371/journal.pone.0179301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit decreased levels of nitric oxide (NO) that may be responsible for the overexpression of Giα proteins that has been shown as a contributing factor for the pathogenesis of hypertension in SHR. The present study was undertaken to investigate if increasing the intracellular levels of NO by NO donor S-Nitroso-N-acetyl-DL-penicillamine (SNAP) could attenuate the enhanced expression of Giα proteins in VSMC from SHR and explore the underlying mechanisms responsible for this response. The expression of Giα proteins and phosphorylation of ERK1/2, growth factor receptors and c-Src was determined by Western blotting using specific antibodies. Treatment of VSMC from SHR with SNAP for 24 hrs decreased the enhanced expression of Giα-2 and Giα-3 proteins and hyperproliferation that was not reversed by 1H (1, 2, 4) oxadiazole (4, 3-a) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, however, PD98059, a MEK inhibitor restored the SNAP-induced decreased expression of Giα proteins towards control levels. In addition, the increased production of superoxide anion, NAD(P)H oxidase activity, overexpression of AT1 receptor, Nox4, p22phox and p47phox proteins, enhanced levels of TBARS and protein carbonyl, increased phosphorylation of PDGF-R, EGF-R, c-Src and ERK1/2 in VSMC from SHR were all decreased to control levels by SNAP treatment. These results suggest that NO decreased the enhanced expression of Giα-2/3 proteins and hyperproliferation of VSMC from SHR by cGMP-independent mechanism and involves ROS and ROS-mediated transactivation of EGF-R/PDGF-R and MAP kinase signaling pathways.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- DNA/biosynthesis
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Flavonoids/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Nitric Oxide/pharmacology
- Nitric Oxide Donors/pharmacology
- Nitroprusside/pharmacology
- Oxadiazoles/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation/drug effects
- Protein Carbonylation/drug effects
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Signal Transduction/drug effects
- Superoxides/metabolism
- Thiobarbituric Acid Reactive Substances/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
3
|
Pędzińska-Betiuk A, Weresa J, Toczek M, Baranowska-Kuczko M, Kasacka I, Harasim-Symbor E, Malinowska B. Chronic inhibition of fatty acid amide hydrolase by URB597 produces differential effects on cardiac performance in normotensive and hypertensive rats. Br J Pharmacol 2017; 174:2114-2129. [PMID: 28437860 DOI: 10.1111/bph.13830] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Fatty acid amide hydrolase (FAAH) inhibitors are postulated to possess anti-hypertensive potential, because their acute injection decreases BP in spontaneously hypertensive rats (SHR), partly through normalization of cardiac contractile function. Here, we examined whether the potential hypotensive effect of chronic FAAH inhibition by URB597 in hypertensive rats correlated with changes in cardiac performance. EXPERIMENTAL APPROACH Experiments were performed using perfused hearts and left atria isolated from 8- to 10-week-old SHR, age-matched deoxycorticosterone acetate (DOCA)-salt rats and normotensive controls chronically treated with URB597 (1 mg·kg-1 ) or vehicle. KEY RESULTS URB597 decreased BP only in the DOCA-salt rats, along with a reduction of ventricular hypertrophy and diastolic stiffness, determined in hypertension. We also observed normalization of the negative inotropic atrial response to the cannabinoid receptor agonist CP55940. In the SHR model, URB597 normalized (atria) and enhanced (hearts) the positive ino- and chronotropic effects of the β-adrenoceptor agonist isoprenaline respectively. Ventricular CB1 and CB2 receptor expression was decreased only in the DOCA-salt model, whereas FAAH expression was reduced in both models. URB597 caused translocation of CB1 receptor immunoreactivity to the intercalated discs in the hearts of SHR. URB597 increased cardiac diastolic stiffness and modified the ino- and lusitropic effects of isoprenaline in normotensive rats. CONCLUSION AND IMPLICATIONS Hypotensive effect of chronic FAAH inhibition depend on the model of hypertension and partly correlate with improved cardiac performance. In normotensive rats, chronic FAAH inhibition produced several side-effects. Thus, the therapeutic potential of these agents should be interpreted cautiously.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Bialystok, Poland
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Bialystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Bialystok, Poland
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Bialystok, Poland
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Bialystok, Poland
| |
Collapse
|
4
|
Spranger MD, Kaur J, Sala-Mercado JA, Krishnan AC, Abu-Hamdah R, Alvarez A, Machado TM, Augustyniak RA, O'Leary DS. Exaggerated coronary vasoconstriction limits muscle metaboreflex-induced increases in ventricular performance in hypertension. Am J Physiol Heart Circ Physiol 2016; 312:H68-H79. [PMID: 27769997 DOI: 10.1152/ajpheart.00417.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Increases in myocardial oxygen consumption during exercise mainly occur via increases in coronary blood flow (CBF) as cardiac oxygen extraction is high even at rest. However, sympathetic coronary constrictor tone can limit increases in CBF. Increased sympathetic nerve activity (SNA) during exercise likely occurs via the action of and interaction among activation of skeletal muscle afferents, central command, and resetting of the arterial baroreflex. As SNA is heightened even at rest in subjects with hypertension (HTN), we tested whether HTN causes exaggerated coronary vasoconstriction in canines during mild treadmill exercise with muscle metaboreflex activation (MMA; elicited by reducing hindlimb blood flow by ~60%) thereby limiting increases in CBF and ventricular performance. Experiments were repeated after α1-adrenergic blockade (prazosin; 75 µg/kg) and in the same animals following induction of HTN (modified Goldblatt 2K1C model). HTN increased mean arterial pressure from 97.1 ± 2.6 to 132.1 ± 5.6 mmHg at rest and MMA-induced increases in CBF, left ventricular dP/dtmax, and cardiac output were markedly reduced to only 32 ± 13, 26 ± 11, and 28 ± 12% of the changes observed in control. In HTN, α1-adrenergic blockade restored the coronary vasodilation and increased in ventricular function to the levels observed when normotensive. We conclude that exaggerated MMA-induced increases in SNA functionally vasoconstrict the coronary vasculature impairing increases in CBF, which limits oxygen delivery and ventricular performance in HTN. NEW & NOTEWORTHY We found that metaboreflex-induced increases in coronary blood flow and ventricular contractility are attenuated in hypertension. α1-Adrenergic blockade restored these parameters toward normal levels. These findings indicate that the primary mechanism mediating impaired metaboreflex-induced increases in ventricular function in hypertension is accentuated coronary vasoconstriction.
Collapse
Affiliation(s)
- Marty D Spranger
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Jasdeep Kaur
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Javier A Sala-Mercado
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Abhinav C Krishnan
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Rania Abu-Hamdah
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Tiago M Machado
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert A Augustyniak
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
5
|
Spranger MD, Kaur J, Sala-Mercado JA, Machado TM, Krishnan AC, Alvarez A, O'Leary DS. Attenuated muscle metaboreflex-induced pressor response during postexercise muscle ischemia in renovascular hypertension. Am J Physiol Regul Integr Comp Physiol 2015; 308:R650-8. [PMID: 25632024 DOI: 10.1152/ajpregu.00464.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/27/2015] [Indexed: 11/22/2022]
Abstract
During dynamic exercise, muscle metaboreflex activation (MMA; induced via partial hindlimb ischemia) markedly increases mean arterial pressure (MAP), and MAP is sustained when the ischemia is maintained following the cessation of exercise (postexercise muscle ischemia, PEMI). We previously reported that the sustained pressor response during PEMI in normal individuals is driven by a sustained increase in cardiac output (CO) with no peripheral vasoconstriction. However, we have recently shown that the rise in CO with MMA is significantly blunted in hypertension (HTN). The mechanisms sustaining the pressor response during PEMI in HTN are unknown. In six chronically instrumented canines, hemodynamic responses were observed during rest, mild exercise (3.2 km/h), MMA, and PEMI in the same animals before and after the induction of HTN [Goldblatt two kidney, one clip (2K1C)]. In controls, MAP, CO and HR increased with MMA (+52 ± 6 mmHg, +2.1 ± 0.3 l/min, and +37 ± 7 beats per minute). After induction of HTN, MAP at rest increased from 97 ± 3 to 130 ± 4 mmHg, and the metaboreflex responses were markedly attenuated (+32 ± 5 mmHg, +0.6 ± 0.2 l/min, and +11 ± 3 bpm). During PEMI in HTN, HR and CO were not sustained, and MAP fell to normal recovery levels. We conclude that the attenuated metaboreflex-induced HR, CO, and MAP responses are not sustained during PEMI in HTN.
Collapse
Affiliation(s)
- Marty D Spranger
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Jasdeep Kaur
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Javier A Sala-Mercado
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Tiago M Machado
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Abhinav C Krishnan
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
6
|
Sala-Mercado JA, Spranger MD, Abu-Hamdah R, Kaur J, Coutsos M, Stayer D, Augustyniak RA, O'Leary DS. Attenuated muscle metaboreflex-induced increases in cardiac function in hypertension. Am J Physiol Heart Circ Physiol 2013; 305:H1548-54. [PMID: 24014673 DOI: 10.1152/ajpheart.00478.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sympathoactivation may be excessive during exercise in subjects with hypertension, leading to increased susceptibility to adverse cardiovascular events, including arrhythmias, infarction, stroke, and sudden cardiac death. The muscle metaboreflex is a powerful cardiovascular reflex capable of eliciting marked increases in sympathetic activity during exercise. We used conscious, chronically instrumented dogs trained to run on a motor-driven treadmill to investigate the effects of hypertension on the mechanisms of the muscle metaboreflex. Experiments were performed before and 30.9 ± 4.2 days after induction of hypertension, which was induced via partial, unilateral renal artery occlusion. After induction of hypertension, resting mean arterial pressure was significantly elevated from 98.2 ± 2.6 to 141.9 ± 7.4 mmHg. The hypertension was caused by elevated total peripheral resistance. Although cardiac output was not significantly different at rest or during exercise after induction of hypertension, the rise in cardiac output with muscle metaboreflex activation was significantly reduced in hypertension. Metaboreflex-induced increases in left ventricular function were also depressed. These attenuated cardiac responses caused a smaller metaboreflex-induced rise in mean arterial pressure. We conclude that the ability of the muscle metaboreflex to elicit increases in cardiac function is impaired in hypertension, which may contribute to exercise intolerance.
Collapse
Affiliation(s)
- Javier A Sala-Mercado
- Department of Physiology and The Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gusan S, Anand-Srivastava MB. cAMP attenuates the enhanced expression of Gi proteins and hyperproliferation of vascular smooth muscle cells from SHR: role of ROS and ROS-mediated signaling. Am J Physiol Cell Physiol 2013; 304:C1198-209. [PMID: 23576581 DOI: 10.1152/ajpcell.00269.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that angiotensin II (ANG II)-induced overexpression of inhibitory G proteins (Gi) was attenuated by dibutyryl-cAMP (db-cAMP) in A10 vascular smooth muscle cells (VSMC). Since enhanced levels of endogenous ANG II contributed to the overexpression of Gi protein and hyperproliferation of VSMC from spontaneously hypertensive rats (SHR), the present study was therefore undertaken to examine if cAMP could also attenuate the overexpression of Gi proteins and hyperproliferation of VSMC from SHR and to explore the underlying molecular mechanisms responsible for this response. The enhanced expression of Giα proteins in VSMC from SHR and Nω-nitro-L-arginine methyl ester hypertensive rats was decreased by db-cAMP. In addition, enhanced inhibition of adenylyl cyclase by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by low concentration of GTPγS in VSMC from SHR was also restored to Wistar-Kyoto (WKY) levels by db-cAMP. Furthermore, db-cAMP also attenuated the hyperproliferation and the increased production of superoxide anion, NAD(P)H oxidase activity, overexpression of Nox1/Nox2/Nox4 and p47phox proteins, increased phosphorylation of PDGF-receptor (R), EGF-R, c-Src, and ERK1/2 to control levels. In addition, the protein kinase A (PKA) inhibitor reversed the effects of db-cAMP on the expression of Nox4 and Giα proteins and hyperproliferation of VSMC from SHR to WKY levels, while stimulation of the exchange protein directly activated by cAMP did not have any effect on these parameters. These results suggest that cAMP via PKA pathway attenuates the overexpression of Gi proteins and hyperproliferation of VSMC from SHR through the inhibition of ROS and ROS-mediated transactivation of EGF-R/PDGF-R and MAPK signaling pathways.
Collapse
Affiliation(s)
- Svetlana Gusan
- Department of Physiology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
8
|
Gαi2- and Gαi3-specific regulation of voltage-dependent L-type calcium channels in cardiomyocytes. PLoS One 2011; 6:e24979. [PMID: 21966394 PMCID: PMC3180279 DOI: 10.1371/journal.pone.0024979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/23/2011] [Indexed: 11/19/2022] Open
Abstract
Background Two pertussis toxin sensitive Gi proteins, Gi2 and Gi3, are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous Gi isoforms are functionally distinct. To test for isoform-specific functions of Gi proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC). Methods Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gαi2 (Gαi2−/−) or Gαi3 (Gαi3−/−). mRNA levels of Gαi/o isoforms and L-VDCC subunits were quantified by real-time PCR. Gαi and Cavα1 protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings. Results In cardiac tissue from Gαi2−/− mice, Gαi3 mRNA and protein expression was upregulated to 187±21% and 567±59%, respectively. In Gαi3−/− mouse hearts, Gαi2 mRNA (127±5%) and protein (131±10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gαi2−/− mice was lowered (−7.9±0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (−10.7±0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gαi3−/− mice (−14.3±0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gαi2 (but not of Gαi3) and following treatment with pertussis toxin in Gαi3−/−. The pore forming Cavα1 protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Cavα1 and Cavβ2 subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gαi2. Conclusion Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gαi proteins. In particular, loss of Gαi2 is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway.
Collapse
|
9
|
Sandoval YHG, Li Y, Anand-Srivastava MB. Transactivation of epidermal growth factor receptor by enhanced levels of endogenous angiotensin II contributes to the overexpression of Giα proteins in vascular smooth muscle cells from SHR. Cell Signal 2011; 23:1716-26. [PMID: 21712088 DOI: 10.1016/j.cellsig.2011.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
We earlier showed that the increased expression of Gi proteins exhibited by vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) was attributed to the enhanced levels of endogenous endothelin. Since the levels of angiotensin II (Ang II) are also enhanced in VSMC from SHR, the present study was undertaken to examine the role of enhanced levels of endogenous Ang II in the overexpression of Giα proteins in VSMC from SHR and to further explore the underlying mechanisms responsible for this increase. The enhanced expression of Giα-2 and Giα-3 proteins in VSMC from SHR compared to WKY was attenuated by the captopril, losartan and AG1478, inhibitors of angiotensin converting enzyme, AT(1) receptor and epidermal growth factor receptor (EGFR) respectively as well as by the siRNAs of AT1, cSrc and EGFR. The enhanced inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of GTPγS (receptor-independent functions) and of inhibitory responses of hormones on adenylyl cyclase activity (receptor-dependent functions) in VSMC from SHR was also attenuated by losartan. Furthermore, the enhanced phosphorylation of EGFR in VSMC from SHR was also restored to control levels by captopril, losartan, PP2, a c-Src inhibitor and N-acetyl-L-cysteine (NAC), superoxide anion (O(2)(-)) scavenger, whereas enhanced ERK1/2 phosphorylation was attenuated by captopril and losartan. Furthermore, NAC also restored the enhanced phosphorylation of c-Src in SHR to control levels. These results suggest that the enhanced levels of endogenous Ang II in VSMC from SHR, transactivate EGFR, which through MAP kinase signaling, enhance the expression of Giα proteins and associated adenylyl cyclase signaling.
Collapse
|
10
|
Anand-Srivastava MB. Modulation of Gi Proteins in Hypertension: Role of Angiotensin II and Oxidative Stress. Curr Cardiol Rev 2010; 6:298-308. [PMID: 22043206 PMCID: PMC3083811 DOI: 10.2174/157340310793566046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 11/22/2022] Open
Abstract
Guanine nucleotide regulatory proteins (G-proteins) play a key role in the regulation of various signal transduction systems including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidyl inositol turnover (PI). These are implicated in the modulation of a variety of physiological functions such as platelet functions, cardiovascular functions, including arterial tone and reactivity. Several abnormalities in adenylyl cyclase activity, cAMP levels and G proteins have shown to be responsible for the altered cardiac performance and vascular functions observed in cardiovascular disease states. The enhanced or unaltered levels of inhibitory G-proteins (Giα-2 and Giα-3) and mRNA have been reported in different models of hypertension, whereas Gsα levels were shown to be unaltered. These changes in G-protein expression were associated with Gi functions. The enhanced levels of Giα proteins precede the development of blood pressure and suggest that overexpression of Gi proteins may be one of the contributing factors for the pathogenesis of hypertension. The augmented levels of vasoactive peptides, including angiotensin II (AngII), were shown to contribute to enhanced expression of Giα proteins and associated adenylyl cyclase signaling and thereby increased blood pressure. In addition, enhanced oxidative stress in hypertension due to Ang II may also be responsible for the enhanced expression of Giα proteins observed in hypertension. The mechanism by which oxidative stress enhances the expression of Gi proteins appears to be through the activation of mitogen activated protein (MAP) kinase activity.
Collapse
|
11
|
Tan T, Marín-García J, Damle S, Weiss HR. Hypoxia-inducible factor-1 improves inotropic responses of cardiac myocytes in ageing heart without affecting mitochondrial activity. Exp Physiol 2010; 95:712-22. [PMID: 20228121 DOI: 10.1113/expphysiol.2009.051649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ageing reduces the ability of cardiac myocytes to respond to inotropic agents. We hypothesized that hypoxia-inducible factor-1 (HIF-1) would improve the functional and Ca(2+) transient responses of ageing myocytes to the inotropic agents and this would act, in part, through altered mitochondrial activity. Young (3-4 months) and older Fischer 344 rats (18-20 months) were used. Hypoxia-inducible factor-1alpha was upregulated with ciclopirox olamine (CPX, 50 mg kg(1) on 2 days). Hypoxia-inducible factor-1 upregulation was detected by Western blot. Cardiomyocyte contraction and Ca(2+) transients were measured at baseline and after forskolin and ouabain. We also measured mitochondrial complex activities and production of reactive oxygen species (ROS). In the young group, forskolin (31%) and ouabain (31%) significantly increased percentage shortening. Similar changes were observed in the young + CPX group. Calcium transients also responded in a similar manner. However, in the older group, forskolin (12%) and ouabain (6%) did not significantly increase myocyte contractility or Ca(2+) transients. In the older + CPX group, the effects of forskolin (34%) and ouabain (29%) were restored. In the young + CPX group, there was increased ROS production and mitochondrial complex I and III activity compared with the young group. These differences were not observed in older groups. These data demonstrate an impaired functional and Ca(2+) effect of positive inotropic agents in older myocytes. Upregulation of HIF-1 restored this blunted response, but this was not related to changed mitochondrial activity induced by HIF-1. Thus, we found that HIF-1 improved inotropy in older myocytes without requiring mitochondrial activity changes.
Collapse
Affiliation(s)
- Tao Tan
- Department of Physiology and Biophysics, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
12
|
Blumer JB, Lord K, Saunders TL, Pacchioni A, Black C, Lazartigues E, Varner KJ, Gettys TW, Lanier SM. Activator of G protein signaling 3 null mice: I. Unexpected alterations in metabolic and cardiovascular function. Endocrinology 2008; 149:3842-9. [PMID: 18450958 PMCID: PMC2488243 DOI: 10.1210/en.2008-0050] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activator of G protein signaling (AGS)-3 plays functional roles in cell division, synaptic plasticity, addictive behavior, and neuronal development. As part of a broad effort to define the extent of functional diversity of AGS3-regulated-events in vivo, we generated AGS3 null mice. Surprisingly, AGS3 null adult mice exhibited unexpected alterations in cardiovascular and metabolic functions without any obvious changes in motor skills, basic behavioral traits, and brain morphology. AGS3 null mice exhibited a lean phenotype, reduced fat mass, and increased nocturnal energy expenditure. AGS3 null mice also exhibited altered blood pressure control mechanisms. These studies expand the functional repertoire for AGS3 and other G protein regulatory proteins providing unexpected mechanisms by which G protein systems may be targeted to influence obesity and cardiovascular function.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Saha S, Li Y, Anand-Srivastava MB. Reduced levels of cyclic AMP contribute to the enhanced oxidative stress in vascular smooth muscle cells from spontaneously hypertensive rats. Can J Physiol Pharmacol 2008; 86:190-8. [PMID: 18418428 DOI: 10.1139/y08-012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have earlier shown that aortic vascular smooth muscle cells (VSMC) from 12-week-old spontaneously hypertensive rats (SHR) exhibited enhanced production of superoxide anion (O(2)(-)) compared with Wistar-Kyoto (WKY) rats. This production was attenuated to control levels by losartan, an angiotensin II (Ang II) AT(1)-receptor antagonist, suggesting that the AT(1) receptor is implicated in enhanced oxidative stress in SHR. Since AT(1) receptor activation signals via adenylyl cyclase inhibition and decreases cAMP levels, it is possible that AT(1) receptor-mediated decreased levels of cAMP contribute to the enhanced production of O(2)(-) in SHR. The present study was undertaken to investigate this possibility. The basal adenylyl cyclase activity as well as isoproterenol and forskolin-mediated stimulation of adenylyl cyclase was significantly attenuated in VSMC from 12-week-old SHR compared with those from WKY rats, whereas Ang II-mediated inhibition of adenylyl cyclase was significantly enhanced by about 70%, resulting in decreased levels of cAMP in SHR. NADPH oxidase activity and the levels of O2- were significantly higher (about 120% and 200%, respectively) in VSMC from SHR than from WKY rats. In addition, the levels of p47(phox) and Nox4 proteins, subunits of NADPH oxidase, were significantly augmented about 35%-40% in VSMC from SHR compared with those from WKY rats. Treatment of VSMC from SHR with 8Br-cAMP, as well as with cAMP-elevating agents such as isoproterenol and forskolin, restored to control WKY levels the enhanced activity of NADPH oxidase and the enhanced levels of O(2)(-), p47(phox), and Nox4. Furthermore, in the VSMC A10 cell line, 8Br-cAMP also restored the Ang II-evoked enhanced production of O(2)(-), NADPH oxidase activity, and enhanced levels of p47(phox) and Nox4 proteins to control levels. These data suggest that decreased levels of cAMP in SHR may contribute to the enhanced oxidative stress in SHR and that increasing the levels of cAMP may have a protective effect in reducing oxidative stress and thereby improve vascular function.
Collapse
Affiliation(s)
- Soumya Saha
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montreal, QC H3C3J7, Canada
| | | | | |
Collapse
|
14
|
Bassil M, Anand-Srivastava MB. Cyclic GMP modulates the expression of Gi protein and adenylyl cyclase signaling in vascular smooth muscle cells. Cell Biochem Biophys 2008; 47:99-108. [PMID: 17406063 DOI: 10.1385/cbb:47:1:99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
We have recently shown that the nitric oxide (NO) donor, SNAP, decreased the expression of Gialpha proteins and associated functions in vascular smooth muscle cells. Because NO stimulates soluble guanylyl cyclase and increases the levels of guanosine 3\',5\'-cyclic monophosphate (cGMP), the present studies were undertaken to investigate whether cGMP can also modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMCs) and primary cultured cells from aorta of Sprague Dawley rats were used for these studies. The cells were treated with 8-bromoguanosine 3\',5\'-cyclic monophosphate (8BrcGMP) for 24 h and the expression of Gialpha proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [alpha-32P]ATP. Treatment of cells with 8-BrcGMP (0.5 mM) decreased the expression of Gialpha-2 and Gialpha-3 by about 30-45%, which was restored towards control levels by KT5823, an inhibitor of protein kinase G. On the other hand, the levels of Gsalpha protein were not altered by this treatment. The decreased expression of Gialpha proteins by 8Br-cGMP treatment was reflected in decreased Gi functions. For example, the inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity by low concentrations of GTPgammaS (receptor-independent Gi functions) was significantly decreased by 8Br-cGMP treatment. In addition, exposure of the cells to 8Br-cGMP also resulted in the attenuation of angiotensin (Ang) II- and C-ANP4-23 (a ring-deleted analog of atrial natriuretic peptide [ANP])-mediated inhibition of adenylyl cyclase activity (receptor-dependant functions of Gi). On the other hand, Gsalpha-mediated stimulations of adenylyl cyclase by GTPgammaS, isoproterenol and FSK were significantly augmented in 8Br-cGMP-treated cells. These results indicate that 8Br-cGMP decreased the expression of Gialpha proteins and associated functions in VSMCs. From these studies, it can be suggested that 8Br-cGMP-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which cGMP regulates vascular tone and thereby blood pressure.
Collapse
Affiliation(s)
- Marcel Bassil
- Department of Physiology, Faculty of Medicine, University of Montreal, Canada
| | | |
Collapse
|
15
|
Leosco D, Rengo G, Iaccarino G, Filippelli A, Lymperopoulos A, Zincarelli C, Fortunato F, Golino L, Marchese M, Esposito G, Rapacciuolo A, Rinaldi B, Ferrara N, Koch WJ, Rengo F. Exercise training and beta-blocker treatment ameliorate age-dependent impairment of beta-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am J Physiol Heart Circ Physiol 2007; 293:H1596-H1603. [PMID: 17557919 DOI: 10.1152/ajpheart.00308.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac beta-adrenergic receptor (beta-AR) signaling and left ventricular (LV) responses to beta-AR stimulation are impaired with aging. It is shown that exercise and beta-AR blockade have a favorable effect on cardiac and vascular beta-AR signaling in several cardiovascular diseases. In the present study, we examined the effects of these two different strategies on beta-AR dysregulation and LV inotropic reserve in the aging heart. Forty male Wistar-Kyoto aged rats were randomized to sedentary, exercise (12 wk treadmill training), metoprolol (250 mg.kg(-1).day(-1) for 4 wk), and exercise plus metoprolol treatment protocols. Ten male Wistar-Kyoto sedentary young rats were also used as a control group. Old trained, old metoprolol-treated, and old trained plus metoprolol-treated rats showed significantly improved LV maximal and minimal first derivative of the pressure rise responses to beta-AR stimulation (isoproterenol) compared with old untrained animals. We found a significant reduction in cardiac sarcolemmal membrane beta-AR density and adenylyl cyclase activity in old untrained animals compared with young controls. Exercise training and metoprolol, alone or combined, restored cardiac beta-AR density and G-protein-dependent adenylyl cyclase activation in old rats. Although cardiac membrane G-protein-receptor kinase 2 levels were not upregulated in untrained old compared with young control rats, both exercise and metoprolol treatment resulted in a dramatic reduction of G-protein-receptor kinase 2 protein levels, which is a further indication of beta-AR signaling amelioration in the aged heart induced by these treatment modalities. In conclusion, we demonstrate for the first time that exercise and beta-AR blockade can similarly ameliorate beta-AR signaling in the aged heart, leading to improved beta-AR responsiveness and corresponding LV inotropic reserve.
Collapse
Affiliation(s)
- Dario Leosco
- Department of Internal Medicine, Cardiovascular Sciences and Immunology, University Federico II, Via Pansini 5, Edificio 2, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ge C, Garcia R, Anand-Srivastava MB. Enhanced expression of Gialpha protein and adenylyl cyclase signaling in aortas from 1 kidney 1 clip hypertensive rats. Can J Physiol Pharmacol 2007; 84:739-46. [PMID: 16998537 DOI: 10.1139/y05-123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown the augmented levels of Gialpha-2 and Gialpha-3 proteins (isoforms of inhibitory guanine nucleotide regulatory protein (G-protein)), and not of Gsalpha, in the hearts and aortas of spontaneously and experimentally induced hypertensive rats. The increased expression of Gialpha and blood pressure was restored toward WKY levels by captopril treatment, suggesting a role for angiotensin (Ang) II in the enhanced expression of Gialpha protein and blood pressure. This study was undertaken to investigate whether 1 kidney 1 clip (1K-1C) hypertensive rats that exhibit enhanced levels of Ang II also express enhanced levels of Gialpha proteins. Aortas from 1K-1C hypertensive rats were used. The expression of G-proteins was determined at protein levels with immunoblotting techniques, using specific antibodies for different isoforms of G-proteins. The levels of Gialpha-2 and Gialpha-3 proteins were significantly higher in aortas from 1K-1C hypertensive rats than in control rats; Gsalpha levels were unchanged. The inhibitory effect of low concentrations of guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) on forskolin (FSK)-stimulated adenylyl cyclase (AC) activity was significantly enhanced in aortas from 1K-1C hypertensive rats; the inhibitory effect of C-ANP(4-23), which specifically interacts with the atrial natriuretic peptide (ANP)-C receptor, and Ang II on AC was attenuated. GTPgammaS, isoproterenol, glucagon, NaF, and FSK stimulated the AC activity in aortas from control and hypertensive rats to varying degrees; however, the stimulations were significantly lower in hypertensive rats than in control rats. These data suggest that aortas from 1K-1C hypertensive rats exhibit enhanced expression of Gialpha proteins and associated functions.
Collapse
Affiliation(s)
- Chang Ge
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | | | | |
Collapse
|
17
|
Kolwicz SC, Kubo H, MacDonnell SM, Houser SR, Libonati JR. Effects of forskolin on inotropic performance and phospholamban phosphorylation in exercise-trained hypertensive myocardium. J Appl Physiol (1985) 2006; 102:628-33. [PMID: 17082376 DOI: 10.1152/japplphysiol.00449.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Beta-adrenergic receptor (beta-AR) responsiveness is downregulated in left ventricular (LV) hypertrophy induced by chronic hypertension. While exercise training in hypertension enhances beta-AR responsiveness, the role of adenylyl cyclase remains unclear. The purpose of the present study was to test whether treadmill running in the spontaneously hypertensive rat (SHR) model improves LV responsiveness to forskolin (FOR) or the combination of FOR + isoproterenol (FOR+ISO). Female SHR (16-wk) were randomly placed into sedentary (SHR-SED; n = 7) or treadmill-trained (SHR-TRD; n = 8) groups. Wistar-Kyoto (WKY; n = 7) animals acted as normotensive controls. Langendorff, isovolumic LV performance was established at baseline and during incremental FOR infusion (1 and 5 micromol/l) and FOR+ISO (5 micromol/l + 1x10(-8) mol/l). Heart rate, systolic blood pressure, and heart-to-body weight ratio were lower in WKY relative to both SHR groups (P < 0.05). LV performance and heart rate significantly increased in all groups to a similar extent with incremental FOR infusion. However, in the presence of 5 micromol/l FOR, ISO increased LV developed pressure, positive change in LV pressure, and negative change in LV pressure to a greater extent in SHR-TRD relative to SHR-SED (P < 0.05). Phospholamban phosphorylation at the Thr17 was greater in SHR-TRD relative to SHR-SED and WKY (P < 0.05). Absolute LV developed pressure was moderately correlated with phospholamban phosphorylation at both the Ser16 (r = 0.64; P < 0.05) and Thr17 (r = 0.52; P < 0.05). Our data suggest that the adenylyl cyclase step in the beta-AR cascade is not downregulated in the early course of hypertension and that the enhanced beta-AR responsiveness with training is likely mediated at levels other than adenylyl cyclase. Our data also suggest that beta-AR inotropic responsiveness in the presence of direct adenylyl cyclase agonism is improved in trained compared with sedentary SHR hearts.
Collapse
|
18
|
Bassil M, Anand-Srivastava MB. Nitric oxide modulates Gi-protein expression and adenylyl cyclase signaling in vascular smooth muscle cells. Free Radic Biol Med 2006; 41:1162-73. [PMID: 16962941 DOI: 10.1016/j.freeradbiomed.2006.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 06/13/2006] [Accepted: 07/01/2006] [Indexed: 11/25/2022]
Abstract
We have previously shown that treatment of rats with the nitric oxide (NO) synthase inhibitor N6-nitro-L-arginine methyl ester for 4 weeks resulted in the augmentation of blood pressure and enhanced levels of Gialpha proteins. The present studies were undertaken to investigate if NO can modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMC) and primary cultured cells from aorta of Sprague-Dawley rats were used for these studies. The cells were treated with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) for 24 h and the expression of Gialpha proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [alpha-32P]ATP. Treatment of cells with SNAP (100 microM) or SNP (0.5 mM) decreased the expression of Gialpha-2 and Gialpha-3 by about 25-40% without affecting the levels of Gsalpha proteins. The decreased expression of Gialpha proteins was reflected in decreased Gi functions (receptor-independent and -dependent) as demonstrated by decreased or attenuated forskolin-stimulated adenylyl cyclase activity by GTPgammaS and inhibition of adenylyl cyclase activity by angiotensin II and C-ANP4-23, a ring-deleted analog of atrial natriuretic peptide (ANP) that specifically interacts with natriuretic peptide receptor-C (NPR-C) in SNAP-treated cells. The SNAP-induced decreased expression of Gialpha-2 and Gialpha-3 proteins was not blocked by 1H[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase, or KT5823, an inhibitor of protein kinase G, but was restored toward control levels by uric acid, a scavenger of peroxynitrite and Mn(111)tetralis (benzoic acid porphyrin) MnTBAP, a peroxynitrite scavenger and a superoxide dismutase mimetic agent that inhibits the production of peroxynitrite, suggesting that NO-mediated decreased expression of Gialpha protein was cGMP-independent and may be attributed to increased levels of peroxynitrite. In addition, Gsalpha-mediated stimulation of adenylyl cyclase by GTPgammaS, isoproterenol, and forskolin was significantly augmented in SNAP-treated cells. These results indicate that NO decreased the expression of Gialpha protein and associated functions in VSMC by cGMP-independent mechanisms. From these studies, it can be suggested that NO-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which NO regulates blood pressure.
Collapse
Affiliation(s)
- Marcel Bassil
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec, Canada H3C 3J7
| | | |
Collapse
|
19
|
Hashim S, Anand-Srivastava MB. Losartan-induced attenuation of blood pressure in L-NAME hypertensive rats is associated with reversal of the enhanced expression of Gi alpha proteins. J Hypertens 2004; 22:181-90. [PMID: 15106810 DOI: 10.1097/00004872-200401000-00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We have previously reported that hearts from N-[omega]-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats exhibited an enhanced expression of Gi proteins. Since, losartan, an AT1 receptor antagonist, has been shown to attenuate the L-NAME-induced increase in blood pressure, we undertook the present studies to evaluate whether losartan-induced decreased blood pressure in this model of hypertension is associated with attenuation of enhanced expression of Gi proteins and adenylyl cyclase signalling. METHODS L-NAME (70 mg/kg body weight) and losartan (10 mg/kg body weight), alone or in combination, were given orally to Sprague-Dawley rats for 4 weeks. The control rats received only plain tap water. The levels of inhibitory guanine nucleotide regulatory proteins (Gi alpha-2 and Gi alpha-3) and stimulatory (Gs alpha) proteins and Gi alpha mRNA in hearts were determined by immunoblotting and Northern blotting, respectively. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation from [32P]ATP. RESULTS Systolic blood pressure was enhanced in L-NAME-treated rats compared to control rats (164 +/- 5.2 versus 105 +/- 2 mmHg; n = 30), and was significantly attenuated by losartan treatment (164 +/- 5.2 mmHg versus 120 +/- 2.5 mmHg; n = 30). The expression of Gi alpha-2 and Gi alpha-3 proteins and their mRNA, which was enhanced in L-NAME-treated rats, was reversed by losartan treatment. However, losartan alone did not alter the levels of Gs alpha or Gi alpha proteins. In addition, the stimulatory effects of guanosine 5'-gamma-thiotriphosphate (GTPgammaS), isoproterenol, 5'-N-ethylcarboxamideadenosine (NECA), glucagon, forskolin (FSK) and sodium fluoride (NaF) on adenylyl cyclase, which were diminished in L-NAME-treated rats, were reversed by losartan treatment. Furthermore, the inhibition of forskolin-stimulated enzyme activity by low concentrations of GTPgammaS (receptor-independent Gi functions), which was significantly enhanced in L-NAME-treated rats, was attenuated by losartan treatment. In addition, losartan was able to reverse the attenuated receptor-mediated inhibitions of adenylyl cyclase by oxotremorine and angiotensin II towards control. CONCLUSIONS These results suggest the implication of AT1 receptors in enhanced expression of Gi alpha proteins and increased blood pressure in L-NAME-induced hypertension.
Collapse
Affiliation(s)
- Shehla Hashim
- Department of Physiology and Groupe de recherche sur le système nerveux autonome, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
20
|
Sethi R, Shao Q, Takeda N, Dhalla NS. Attenuation of changes in G(i)-proteins and adenylyl cyclase in heart failure by an ACE inhibitor, imidapril. J Cell Mol Med 2004; 7:277-86. [PMID: 14594552 PMCID: PMC6741641 DOI: 10.1111/j.1582-4934.2003.tb00228.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cardiac dysfunction in animals with congestive heart failure due to myocardial infarction (MI) is known to be associated with a wide variety of defects in receptor and post-receptor mechanisms. Since the heart function have been shown to be improved by treatment with different angiotensin converting enzyme (ACE) inhibitors, we examined the effects of imidapril, an ACE inhibitor, on changes in post-receptor mechanisms involving adenylyl cyclase (AC) and G proteins in the failing heart. Heart failure in rats was induced by occluding the coronary artery and 3 weeks later the animals were treated daily with 1 mg/kg (orally) imidapril for 5 weeks. The animals were assessed for their left ventricular function and crude membranes were isolated from the viable left ventricle and examined for AC activities as well as G-protein activities and expression. Animals with heart failure exhibited depressions in ventricular function and AC activities in the absence or presence of forskolin, NaF and Gpp(NH)p. The AC activity in the presence of pertussis toxin was increased whereas that in the presence of cholera toxin was decreased in the failing heart. Protein contents and mRNA levels for G(i)-proteins were increased whereas those for G(s)-proteins were unaltered in the infarcted heart. All these changes due to MI were prevented by imidapril treatment. The results indicate that the depressed cardiac function in the failing heart may partly be due to the direct effects of changes in AC and G(i) proteins.
Collapse
Affiliation(s)
- R Sethi
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre & Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
21
|
Anand-Srivastava MB, Di Fusco F. Redox modulation of Gi protein expression and adenylyl cyclase signaling: role of nitric oxide. Antioxid Redox Signal 2004; 6:385-92. [PMID: 15025940 DOI: 10.1089/152308604322899459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitric oxide (NO) has been shown to regulate a variety of physiological functions, including vascular tone. The inhibition of NO synthase by N(omega)-nitro-L-arginine methyl ester (L-NAME) has been reported to increase arterial blood pressure. The present studies were undertaken to investigate if the increased blood pressure by L-NAME is associated with enhanced expression of Gi proteins, implicated in the pathogenesis of hypertension. L-NAME was administered orally into Sprague-Dawley rats for a period of 4 weeks. Control rats were given plain tap water only. The systolic blood pressure was enhanced in L-NAME-treated rats as compared with control rats; however, the heart-to-body weight ratio was not different in the two groups. The levels of Gialpha-2 and Gialpha-3 proteins and their mRNA as determined by western and northern blotting, respectively, were significantly augmented in hearts from L-NAME-treated rats, whereas the levels of Gsalpha and Gbeta were unaltered. In addition, the effect of low concentrations of GTPgammaS on forskolin-stimulated adenylyl cyclase activity (receptor-independent functions of Gialpha) was significantly enhanced, whereas the receptor-dependent inhibitions of adenylyl cyclase were completely attenuated in L-NAME-treated rats. Whereas cholera toxin-mediated stimulation of adenylyl cyclase was unaltered in both group of rats, the stimulatory effects of some agonists on adenylyl cyclase activity were diminished in L-NAME-treated rats. These results suggest the implication of NO in the modulation of Gi protein expression and associated adenylyl cyclase signaling.
Collapse
Affiliation(s)
- Madhu B Anand-Srivastava
- Department of Physiology, and Groupe de recherche sur le système nerveux autonome (GRSNA), Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| | | |
Collapse
|
22
|
Sethi R, Wang X, Ferrari R, Dhalla NS. Improvement of cardiac function and β-adrenergic signal transduction by propionyl L-carnitine in congestive heart failure due to myocardial infarction. Coron Artery Dis 2004; 15:65-71. [PMID: 15201623 DOI: 10.1097/00019501-200402000-00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Earlier studies have revealed beneficial effects of metabolic therapy in animals with congestive heart failure (CHF) due to myocardial infarction. Because heart failure is also associated with attenuated response to catecholamines, we examined the effects of propionyl L-carnitine (PLC) (a carnitine derivative) therapy on the beta-adrenoceptor (beta-AR) signal transduction in the failing heart. METHODS Heart failure in rats was induced by occluding the coronary artery and 3 weeks later the animals were treated with or without 100 mg/kg (intraperitoneally, daily) PLC for 5 weeks. The animals were assessed for their left ventricular function and inotropic responses to isoproterenol. Crude membranes were isolated from the remote, nonischemic (viable) left ventricle and examined for changes in beta-AR and adenylyl cyclase (AC) activity. RESULTS Animals with heart failure exhibited depressions in ventricular function, positive inotropic response to isoproterenol, beta-AR receptor density and basal AC activity; these changes were also attenuated by PLC treatment. The stimulation of AC activities with isoproterenol, 5'-guanyl imidodiphosphate, forskolin and sodium fluoride was decreased in the failing hearts and these changes were also prevented by PLC treatment. CONCLUSION The results indicate that metabolic therapy with PLC not only attenuates the defects in heart function but also prevents changes in the beta-AR signal transduction in CHF due to myocardial infarction.
Collapse
Affiliation(s)
- Rajat Sethi
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre and Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
23
|
Mialet Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE, Schwartz A, Dorn GW, Liggett SB. β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med 2003; 9:1300-5. [PMID: 14502278 DOI: 10.1038/nm930] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Accepted: 08/20/2003] [Indexed: 01/08/2023]
Abstract
Catecholamines stimulate cardiac contractility through beta(1)-adrenergic receptors (beta(1)-ARs), which in humans are polymorphic at amino acid residue 389 (Arg/Gly). We used cardiac-targeted transgenesis in a mouse model to delineate mechanisms accounting for the association of Arg389 with human heart failure phenotypes. Hearts from young Arg389 mice had enhanced receptor function and contractility compared with Gly389 hearts. Older Arg389 mice displayed a phenotypic switch, with decreased beta-agonist signaling to adenylyl cyclase and decreased cardiac contractility compared with Gly 389 hearts. Arg389 hearts had abnormal expression of fetal and hypertrophy genes and calcium-cycling proteins, decreased adenylyl cyclase and G alpha(s) expression, and fibrosis with heart failure This phenotype was recapitulated in homozygous, end-stage, failing human hearts. In addition, hemodynamic responses to beta-receptor blockade were greater in Arg389 mice, and homozygosity for Arg389 was associated with improvement in ventricular function during carvedilol treatment in heart failure patients. Thus the human Arg389 variant predisposes to heart failure by instigating hyperactive signaling programs leading to depressed receptor coupling and ventricular dysfunction, and influences the therapeutic response to beta-receptor blockade.
Collapse
Affiliation(s)
- Jeanne Mialet Perez
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Leosco D, Iaccarino G, Cipolletta E, De Santis D, Pisani E, Trimarco V, Ferrara N, Abete P, Sorriento D, Rengo F, Trimarco B. Exercise restores beta-adrenergic vasorelaxation in aged rat carotid arteries. Am J Physiol Heart Circ Physiol 2003; 285:H369-74. [PMID: 12637361 DOI: 10.1152/ajpheart.00019.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aging is associated with alterations in beta-adrenergic receptor (beta-AR) signaling and reduction in cardiovascular responses to beta-AR stimulation. Because exercise can attenuate age-related impairment in myocardial beta-AR signaling and function, we tested whether training could also exert favorable effects on vascular beta-AR responses. We evaluated common carotid artery responsiveness in isolated vessel ring preparations from 8 aged male Wistar-Kyoto (WKY) rats trained for 6 wk in a 5 days/wk swimming protocol, 10 untrained age-matched rats, and 10 young WKY rats. Vessels were preconstricted with phenylephrine (10-6 M), and vasodilation was assessed in response to the beta-AR agonist isoproterenol (10-10-3 x 10-8 M), the alpha2-AR agonist UK-14304 (10-9-10-6 M), the muscarinic receptor agonist ACh (10-9-10-6 M), and nitroprusside (10-8-10-5 M). beta-AR density and cytoplasmic beta-AR kinase (beta-ARK) activity were tested on pooled carotid arteries. beta-ARK expression was assessed in two endothelial cell lines from bovine aorta and aorta isolated from a 12-wk WKY rat. beta-AR, alpha2-AR, and muscarinic responses, but not that to nitroprusside, were depressed in untrained aged vs. young animals. Exercise training restored beta-AR and muscarinic responses but did not affect vasodilation induced by UK-14304 and nitroprusside. Aged carotid arteries showed reduced beta-AR number and increased beta-ARK activity. Training counterbalanced these phenomena and restored beta-AR density and beta-ARK activity to levels observed in young rat carotids. Our data indicate that age impairs beta-AR vasorelaxation in rat carotid arteries through beta-AR downregulation and desensitization. Exercise restores this response and reverts age-related modification in beta-ARs and beta-ARK. Our data support an important role for beta-ARK in vascular beta-AR vasorelaxation.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Blotting, Western
- Body Weight/physiology
- Brimonidine Tartrate
- Carotid Arteries/growth & development
- Carotid Arteries/physiology
- Cells, Cultured
- Cytosol/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Isoproterenol/pharmacology
- Muscle Relaxation/physiology
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase Type III
- Nitroprusside/pharmacology
- Organ Size/physiology
- Physical Conditioning, Animal/physiology
- Quinoxalines/pharmacology
- Rats
- Rats, Inbred WKY
- Receptors, Adrenergic, beta/physiology
- Vasodilator Agents/pharmacology
- omega-N-Methylarginine/pharmacology
Collapse
Affiliation(s)
- Dario Leosco
- Department of Clinic Medicine, University of Naples "Federico II," Via Sergio Pansini 5, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rau T, Nose M, Remmers U, Weil J, Weissmüller A, Davia K, Harding S, Peppel K, Koch WJ, Eschenhagen T. Overexpression of wild-type Galpha(i)-2 suppresses beta-adrenergic signaling in cardiac myocytes. FASEB J 2003; 17:523-5. [PMID: 12631586 DOI: 10.1096/fj.02-0660fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of Galpha(i)-2 overexpression in desensitization of beta-adrenergic signaling in heart failure is controversial. An adenovirus-based approach was used to investigate whether overexpression of Galpha(i)-2 impairs beta-adrenergic stimulation of adenylyl cyclase (AC) activity and cAMP levels in neonatal rat cardiac myocytes (NRCM) and cell shortening of adult rat ventricular myocytes (ARVM). Infection of NRCM with Ad5Galpha(i)-2 increased Galpha(i)-2 by 50-600% in a virus dose-dependent manner. Overexpression was paralleled by suppression of GTP- and isoprenaline-stimulated AC by 10-72% (P<0.001) in a PTX-sensitive manner. Isoprenaline-stimulated shortening of Ad5Galpha(i)-2-infected ARVM was attenuated by 34% (P<0.01). Ad5Galpha(i)-2/GFP (Galpha(i)-2, green fluorescent protein; bicistronic) was constructed to monitor transfection homogeneity and target Galpha(i)-2 overexpression to levels found in heart failure. At Galpha(i)-2 levels of 93% above control, isoprenaline-stimulated AC activity and cAMP levels were reduced by 17% and 40% (P<0.02), respectively. Beta1- and beta2-adrenergic stimulation was reduced similarly. Our results suggest that (a) the Galpha(i)-2 system exhibits tonic inhibition of stimulated AC in cardiac myocytes, (b) Galpha(i)-2-mediated inhibition is concentration-dependent and occurs at Galpha(i)-2 levels seen in heart failure, and (c) Galpha(i)-2-mediated inhibition affects both beta1- and beta2-adrenergic stimulation of AC. The data argue for an important, independent role of the Galpha(i)-2 increase in heart failure.
Collapse
Affiliation(s)
- Thomas Rau
- Institute of Pharmacology and Toxicology, Friedrich Alexander University Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li Y, Anand-Srivastava MB. Inactivation of enhanced expression of G(i) proteins by pertussis toxin attenuates the development of high blood pressure in spontaneously hypertensive rats. Circ Res 2002; 91:247-54. [PMID: 12169651 DOI: 10.1161/01.res.0000029969.39875.4b] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that the enhanced expression of G(i) proteins in spontaneously hypertensive rats (SHR) that precedes the development of high blood pressure may be one of the contributing factors in the pathogenesis of hypertension. In the present study, we demonstrate that the inactivation of G(i) proteins by intraperitoneal injection of pertussis toxin (PT, 1.5 micro g/100 g body wt) into 2-week-old prehypertensive SHR prevented the development of hypertension up to 4 weeks and that, thereafter, it started to increase and reached the same level found in untreated SHR after 6 weeks. A second injection of PT after 4 weeks delayed the increase in blood pressure for another week. The PT-induced decrease in blood pressure in 6-week-old SHR was associated with a decreased level of G(i)alpha-2 and G(i)alpha-3 proteins in the heart, as determined by in vitro ADP ribosylation and immunoblotting. The decreased level of G(i) proteins was reflected in decreased G(i) functions. Furthermore, an augmentation of blood pressure to the same level in PT-treated SHR as found in untreated SHR was associated with enhanced expression and function of G(i). These results indicate that the inactivation of G(i) proteins by PT treatment in prehypertensive SHR attenuates the development of hypertension and suggest that the enhanced levels of G(i) proteins that result in the decreased levels of cAMP and associated impaired cellular functions may be contributing factors in the pathogenesis of hypertension in SHR.
Collapse
Affiliation(s)
- Yuan Li
- Department of Physiology and Groupe de Recherche sur le Système Nerveux Autonome, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
27
|
Bartel S, Hoch B, Vetter D, Krause EG. Expression of human angiotensinogen-renin in rat: effects on transcription and heart function. Hypertension 2002; 39:219-23. [PMID: 11847187 DOI: 10.1161/hy0202.103275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In double transgenic rats (dTGR) harboring the human angiotensinogen (hAOGEN) and human renin (hREN) genes, we studied cardiac transcript levels of hypertrophy-related, Ca(2+) regulatory, and beta-adrenoceptor-associated proteins. The contractile properties and the cellular signaling of isolated hearts exposed to (-)isoproterenol and/or angiotensin (Ang) I were evaluated. dTGR developed hypertension of 174.1+/- 7.6 versus 109.6 +/- 2.0 mm Hg (P<0.05) in Sprague-Dawley rats and heart hypertrophy. In hearts of dTGR, the transcript levels of ANP, beta-MHC, and alpha-MHC were altered (percentage versus Sprague-Dawley rats, 100%) by 304%, 178%, and 78%, respectively. Transcript levels of L-type Ca(2+) channel, Ca(2+) release channel, SERCA2a, phospholamban, G(i)- and G(s)-proteins were unchanged. Isolated hearts of dTGR indicated higher baseline contractility versus Sprague-Dawley rats. (-)Isoproterenol-modified contractility occurred in both groups; however, the extent (predrug value, 100%) was less in hearts of dTGR versus Sprague-Dawley rats (+dP/dt, 310 +/- 42% versus 534 +/- 63%; P<0.05). Interestingly, (-)isoproterenol shortened the relaxation time by equivalent to 25% in both groups. This finding was reflected by a protein kinase A-related phospholamban phosphorylation. Ang I depressed the heart contractility but did not interact with the protein kinase A pathway. In conclusion, we have found that expression of the hAOGEN-hREN complex in dTGR elicited specific effects on transcripts of ANP and myofibrillar proteins. Although the beta-adrenergically mediated relaxation was not impaired in the hypertrophied hearts, the extent of beta-adrenergic inotropic responsiveness was reduced.
Collapse
Affiliation(s)
- Sabine Bartel
- Franz-Volhard Clinic, Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
28
|
Bohlender J, Hildenbrand U, Wagner KD, Günther J, Hempel P, Schlegel WP, Luft FC, Krause EG, Bartel S. Myocardial adrenergic dysfunction in rats with transgenic, human renin-dependent hypertension. J Hypertens 2001; 19:1453-63. [PMID: 11518854 DOI: 10.1097/00004872-200108000-00014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We investigated cardiac function in rats transgenic for the human renin and angiotensinogen genes (TGR) to test the hypothesis that elevated local angiotensin II precipitates adrenergic dysfunction and abnormal contractile function. METHODS Hearts from TGR and Sprague-Dawley control rats, aged 6 weeks, were studied using the Langendorff model and papillary muscle preparations (n = 6-10 per group). Incremental isoproterenol (1 - 1000 nmol/l) and external Ca2+-concentrations (0.75-6.0 mmol/l) were tested. Cardiac protein and mRNA expression levels were determined by Western blot and RNAase protection assay. RESULTS TGR rats showed left ventricular hypertrophy (54%), higher blood pressures (76 mmHg), and elevated plasma renin activity (seven-fold) compared to controls (P < 0.01). The effect of isoproterenol on TGR rat systolic and diastolic left ventricular performance was decreased in both in-vitro models compared to controls (two- to threefold, P < 0.01). TGR rat papillary muscles showed impaired force generation with abnormal basal and Ca2+-dependent relaxation. Gialpha2 and Gialpha3 protein levels were increased (20-30%) and SERCA2a and adenylyl cyclase protein levels were decreased (23 and 37%, respectively) in TGR hearts compared to controls, while Gsalpha or beta1 and beta2-receptor levels were unchanged. Cardiac angiotensin converting enzyme and atrial natriuretic peptide mRNA levels were increased more than four-fold in TGR with no differences for the angiotensin type1 receptor, beta1-receptor, SERCA2a, phospholamban, adenylyl cyclase V and angiotensinogen genes. CONCLUSIONS TGR rat hearts develop severe adrenergic dysfunction with decreased adenylyl cyclase and abnormal intracellular Ca2+-homeostasis. Our findings emphasize angiotensin II as a major risk factor promoting early functional decline in cardiac hypertrophy. The data may have implications for patients with activating polymorphisms of the renin-angiotensin system and support the need for an early therapeutic intervention.
Collapse
Affiliation(s)
- J Bohlender
- Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This review discusses the rapidly progressing field of cardiomyocyte signal transduction and the regulation of the hypertrophic response. When stimulated by a wide array of neurohumoral factors or when faced with an increase in ventricular-wall tension, individual cardiomyocytes undergo hypertrophic growth as an adaptive response. However, sustained cardiac hypertrophy is a leading predictor of future heart failure. A growing number of intracellular signaling pathways have been characterized as important transducers of the hypertrophic response, including specific G protein isoforms, low-molecular-weight GTPases (Ras, RhoA, and Rac), mitogen-activated protein kinase cascades, protein kinase C, calcineurin, gp130-signal transducer and activator of transcription, insulin-like growth factor I receptor pathway, fibroblast growth factor and transforming growth factor beta receptor pathways, and many others. Each of these signaling pathways has been implicated as a hypertrophic transducer, which collectively suggests an emerging paradigm whereby multiple pathways operate in concert to orchestrate a hypertrophic response
Collapse
Affiliation(s)
- J D Molkentin
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA.
| | | |
Collapse
|
30
|
Jain M, Lim CC, Nagata K, Davis VM, Milstone DS, Liao R, Mortensen RM. Targeted inactivation of Galpha(i) does not alter cardiac function or beta-adrenergic sensitivity. Am J Physiol Heart Circ Physiol 2001; 280:H569-75. [PMID: 11158953 DOI: 10.1152/ajpheart.2001.280.2.h569] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibitory Galpha(i) protein increases in the myocardium during hypertrophy and has been associated with beta-adrenergic receptor (beta-AR) desensitization, contractile dysfunction, and progression of cardiac disease. The role of Galpha(i) proteins in mediating basal cardiac function and beta-AR response in nonpathological myocardium, however, is uncertain. Transgenic mice with targeted inactivation of Galpha(i2) or Galpha(i3) were examined for in vivo cardiac function with the use of conscious echocardiography and for ex vivo cardiac response to inotropic stimulation with the use of Langendorff blood-perfused isolated hearts and adult ventricular cardiomyocytes. Echocardiography revealed that percent fractional shortening and heart rate were similar among wild-type, Galpha(i2)-null, and Galpha(i3)-null mice. Comparable baseline diastolic and contractile performance was also observed in isolated hearts and isolated ventricular myocytes from wild-type mice and mice lacking Galpha(i) proteins. Isoproterenol infusion enhanced diastolic and contractile performance to a similar degree in wild-type, Galpha(i2)-null, and Galpha(i3)-null mice. These data demonstrate no observable role for inhibitory G proteins in mediating basal cardiac function or sensitivity to beta-AR stimulation in nonpathological myocardium.
Collapse
Affiliation(s)
- M Jain
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Nagata K, Communal C, Lim CC, Jain M, Suter TM, Eberli FR, Satoh N, Colucci WS, Apstein CS, Liao R. Altered beta-adrenergic signal transduction in nonfailing hypertrophied myocytes from Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol 2000; 279:H2502-8. [PMID: 11045988 DOI: 10.1152/ajpheart.2000.279.5.h2502] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Desensitization of the beta-adrenergic receptor (beta-AR) response is well documented in hypertrophied hearts. We investigated whether beta-AR desensitization is also present at the cellular level in hypertrophied myocardium, as well as the physiological role of inhibitory G (G(i)) proteins and the L-type Ca(2+) channel in mediating beta-AR desensitization. Left ventricular (LV) myocytes were isolated from hypertrophied hearts of hypertensive Dahl salt-sensitive (DS) rats and nonhypertrophied hearts of normotensive salt-resistant (DR) rats. Cells were paced at a rate of 300 beats/min at 37 degrees C, and myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) were simultaneously measured. In response to increasing concentrations of isoproterenol, DR myocytes displayed a dose-dependent augmentation of cell shortening and the [Ca(2+)](i) transient amplitude, whereas hypertrophied DS myocytes had a blunted response of both cell shortening and the [Ca(2+)](i) transient amplitude. Interestingly, inhibition of G(i) proteins did not restore beta-AR desensitization in DS myocytes. The responses to increases in extracellular Ca(2+) and an L-type Ca(2+) channel agonist were also similar in both DS and DR myocytes. Isoproterenol-stimulated adenylyl cyclase activity, however, was blunted in hypertrophied myocytes. We concluded that compensated ventricular hypertrophy results in a blunted contractile response to beta-AR stimulation, which is present at the cellular level and independent of alterations in inhibitory G proteins and the L-type Ca(2+) channel.
Collapse
MESH Headings
- Adenylate Cyclase Toxin
- Adenylyl Cyclases/drug effects
- Adenylyl Cyclases/metabolism
- Adrenergic beta-Agonists/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Guanylyl Imidodiphosphate/pharmacology
- Heart Function Tests
- Hypertrophy, Left Ventricular/metabolism
- In Vitro Techniques
- Isoproterenol/pharmacology
- Male
- Manganese/pharmacology
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocardium/pathology
- Rats
- Rats, Inbred Dahl
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction/drug effects
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- K Nagata
- First Department of Internal Medicine, Nagoya University School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang X, Dhalla NS. Modification of beta-adrenoceptor signal transduction pathway by genetic manipulation and heart failure. Mol Cell Biochem 2000; 214:131-55. [PMID: 11195784 DOI: 10.1023/a:1007131925048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The beta-adrenoceptor (beta-AR) mediated signal transduction pathway in cardiomyocytes is known to involve beta1- and beta2-ARs, stimulatory (Gs) and inhibitory (Gi) guanine nucleotide binding proteins, adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA). The activation of beta1- and beta2-ARs has been shown to increase heart function by increasing Ca2+ -movements across the sarcolemmal membrane and sarcoplasmic reticulum through the stimulation of Gs-proteins, activation of AC and PKA enzymes and phosphorylation of the target sites. The activation of PKA has also been reported to increase phosphorylation of some myofibrillar proteins (for promoting cardiac relaxation) and nuclear proteins (for cardiac hypertrophy). The activation of beta2-AR has also been shown to affect Gi-proteins, stimulate mitogen activated protein kinase and increase protein synthesis by enhancing gene expression. Beta1- and beta2-ARs as well as AC are considered to be regulated by PKA- and protein kinase C (PKC)-mediated phosphorylations directly; both PKA and PKC also regulate beta-AR indirectly through the involvement of beta-AR kinase (betaARK), beta-arrestins and Gbeta gamma-protein subunits. Genetic manipulation of different components and regulators of beta-AR signal transduction pathway by employing transgenic and knockout mouse models has provided insight into their functional and regulatory characteristics in cardiomyocytes. The genetic studies have also helped in understanding the pathophysiological role of PARK in heart dysfunction and therapeutic role of betaARK inhibitors in the treatment of heart failure. Varying degrees of defects in the beta-AR signal transduction system have been identified in different types of heart failure to explain the attenuated response of the failing heart to sympathetic stimulation or catecholamine infusion. A decrease in beta1-AR density, an increase in the level of G1-proteins and overexpression of betaARK are usually associated with heart failure; however, these attenuations have been shown to be dependent upon the type and stage of heart failure as well as region of the heart. Both local and circulating renin-angiotensin systems, sympathetic nervous system and endothelial cell function appears to regulate the status of beta-AR signal transduction pathway in the failing heart. Thus different components and regulators of the beta-AR signal transduction pathway appears to represent important targets for the development of therapeutic interventions for the treatment of heart failure.
Collapse
Affiliation(s)
- X Wang
- Institute of Cardiovascular Sciences, Department of Physiology, Faculty of Medicine University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
33
|
Di Fusco F, Hashim S, Anand-Srivastava MB. Volume overload cardiac hypertrophy exhibits decreased expression of g(s)alpha and not of g(i)alpha in heart. Am J Physiol Cell Physiol 2000; 279:C990-8. [PMID: 11003579 DOI: 10.1152/ajpcell.2000.279.4.c990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently reported enhanced levels of G(i)alpha proteins in genetic and other experimentally induced models of hypertension, whereas the levels of G(s)alpha were decreased in hypertensive rats expressing cardiac hypertrophy. The present studies were undertaken to investigate whether the decreased levels of G(s)alpha are associated with cardiac hypertrophy per se and used an aortocaval fistula (AV shunt; volume overload) rat model that exclusively expresses cardiac hypertrophy. Cardiac hypertrophy in Sprague-Dawley rats (200-250 g) was induced under anesthesia, and, after a period of 10 days, the hearts were used for adenylyl cyclase activity determination, protein quantification, and mRNA level determination. A temporal relationship between the expression of G(s)alpha proteins and cardiac hypertrophy was also examined on days 2, 3, 7, and 10 after induction of AV shunt in the rat. The heart-to-body-weight ratio (mg/g) was significantly increased in AV shunt rats after 3, 7, and 10 days of induction of AV shunt compared with sham-operated controls, whereas arterial blood pressure was not different between the two groups. Guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) stimulated adenylyl cyclase activity in a concentration-dependent manner in heart membranes from both groups; however, the degree of stimulation was significantly decreased in AV shunt rats. In addition, the stimulatory effects of isoproterenol were also diminished in AV shunt rats compared with control rats, whereas glucagon-stimulated adenylyl cyclase activity was not different in the two groups. The inhibitory effects of oxotremorine (receptor-dependent G(i) functions) and low concentrations of GTPgammaS on forskolin-stimulated adenylyl cyclase activity (receptor-independent G(i) functions) were not different in the two groups. In addition forskolin and NaF also stimulated adenylyl cyclase activity to a lesser degree in AV shunt rats compared with control rats. The levels of G(i)alpha-2 and G(i)alpha-3 proteins and mRNA, as determined by immunoblotting and Northern blotting, respectively, were not different in both groups; however, the levels of G(s)alpha(45) and G(s)alpha(47), and not of G(s)alpha(52), proteins were significantly decreased in AV shunt rats by days 7 and 10 compared with control rats, whereas no change was observed on days 2 and 3 after induction of AV shunt. These results suggest that the decreased expression of G(s)alpha proteins may not be the cause but the effect of hypertrophy and that the diminished responsiveness of adenylyl cyclase to GTPgammaS, isoproterenol, NaF, and forskolin in hearts from AV shunt rats may partly be due to the decreased expression of G(s)alpha. It can be concluded from these studies that the decreased expression of G(s)alpha may be associated with cardiac hypertrophy and not with arterial hypertension.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Aorta, Thoracic/physiology
- Aorta, Thoracic/surgery
- Arteriovenous Shunt, Surgical
- Blood Pressure
- Blotting, Northern
- Body Weight
- Cardiomegaly/metabolism
- Colforsin/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Glucagon/metabolism
- Glucagon/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Isoproterenol/pharmacology
- Male
- Myocardium/metabolism
- Organ Size
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Sodium Fluoride/pharmacology
Collapse
Affiliation(s)
- F Di Fusco
- Department of Physiology and Groupe de Recherche sur le Système Nerveux Autonome, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | | | |
Collapse
|
34
|
Di Fusco F, Anand-Srivastava MB. Enhanced expression of Gi proteins in non-hypertrophic hearts from rats with hypertension-induced by L-NAME treatment. J Hypertens 2000; 18:1081-90. [PMID: 10954000 DOI: 10.1097/00004872-200018080-00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of the present studies is to investigate if the enhanced expression of Gs alpha protein and their mRNA observed in various models of hypertensive rats is due to the expressed hypertrophy or hypertension. METHODS Hypertension, in Sprague-Dawley rats was induced by the oral administration of the arginine analog N(omega)-nitro-L-arginine methyl ester (L-NAME) in their drinking tap water for a period of 4 weeks. The control rats were given plain tap water only. The levels of inhibitory guanine nucleotide regulatory proteins (Gi alpha-2, Gi alpha-3), stimulatory guanine nucleotide proteins (Gs alpha) and G beta proteins were determined by immunoblotting, whereas the levels of Gi alpha-2, Gi alpha-3, Gs alpha and adenylyl cyclase type V enzyme mRNA were determined by Northern-blotting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation from [alpha32P]ATP. RESULTS The systolic blood pressure was enhanced in L-NAME-treated rats compared to control rats (190 +/- 9.2 mmHg versus 121 +/- 6.3 mmHg); however, heart-to-body-weight ratio was not different in two groups. The levels of Gi alpha-2 and Gi alpha-3 proteins and their mRNA were significantly augmented in hearts from L-NAME-treated rats, however, the levels of Gs alpha and G beta were unaltered. In addition, the effect of low concentrations of GTPgammaS on forskolin (FSK)-stimulated adenylyl cyclase activity (receptor-independent functions of Gi alpha) was significantly enhanced in L-NAME-treated rats. However, the inhibitions of adenylyl cyclase exerted by oxotremorine, C-ANP(4-23) and angiotensin II (AII) (receptor-dependent function of Gi alpha) were completely attenuated in L-NAME-treated rats. On the other hand, cholera toxin stimulated GTP or GTPgammaS-sensitive adenylyl cyclase activity (Gs alpha function) to similar extent in control and L-NAME-treated rats, suggesting that Gs alpha functions were not altered by L-NAME treatment. However, the stimulatory effects of isoproterenol, glucagon, NaF on adenylyl cyclase were diminished in L-NAME-treated rats. In addition, FSK-stimulated enzyme activity was also diminished in L-NAME-treated rats without any changes in the mRNA levels of type V enzyme. CONCLUSIONS These results suggest that L-NAME hypertensive rats that do not express cardiac hypertrophy exhibit enhanced expression of Gi alpha protein and associated adenylyl cyclase activity.
Collapse
Affiliation(s)
- F Di Fusco
- Department of Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada
| | | |
Collapse
|
35
|
Abstract
Because of safety issues, components of the beta-adrenergic signaling pathway cannot currently be viewed as attractive targets for human gene therapy. Rather, the balance of evidence supports strategies that will target gene products specifically and directly at diastolic regulation. Augmenting the activity of the SR Ca2+ ATPase by AAV-mediated delivery of the SERCA2a gene, directed by a cardiac-specific promoter with a tightly regulable on-off switch is perhaps the most attractive strategy. PLB and cTnI also are attractive targets but only if molecular techniques can be devised to modulate their activity specifically and conditionally. Such techniques may involve modifying the phosphorylation sites in vitro and replacing wild type proteins in the failing heart with the modified forms, again using regulated AAV vectors for gene delivery.
Collapse
Affiliation(s)
- K A Webster
- Department of Molecular and Cellular Pharmacology, University of Miami Medical Center, Florida, USA.
| | | |
Collapse
|
36
|
Liggett SB, Tepe NM, Lorenz JN, Canning AM, Jantz TD, Mitarai S, Yatani A, Dorn GW. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 2000; 101:1707-14. [PMID: 10758054 DOI: 10.1161/01.cir.101.14.1707] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transgenic cardiac beta(2)-adrenergic receptor (AR) overexpression has resulted in enhanced signaling and cardiac function in mice, whereas relatively low levels of transgenically expressed G(alphas) or beta(1)AR have resulted in phenotypes of ventricular failure. Potential relationships between the levels of betaAR overexpression and biochemical, molecular, and physiological consequences have not been reported. METHODS AND RESULTS We generated transgenic mice expressing beta(2)AR at 3690, 7120, 9670, and 23 300 fmol/mg in the heart, representing 60, 100, 150, and 350 times background betaAR expression. All lines showed enhanced basal adenylyl cyclase activation but a decrease in forskolin- and NaF-stimulated adenylyl cyclase activities. Mice of the highest-expressing line developed a rapidly progressive fibrotic dilated cardiomyopathy and died of heart failure at 25+/-1 weeks of age. The 60-fold line exhibited enhanced basal cardiac function without increased mortality when followed for 1 year, whereas 100-fold overexpressors developed a fibrotic cardiomyopathy and heart failure, with death occurring at 41+/-1 weeks of age. Adenylyl cyclase activation did not correlate with early or delayed decompensation. Propranolol administration reduced baseline +dP/dt(max) to nontransgenic levels in all beta(2)AR transgenics except the 350-fold overexpressors, indicating that spontaneous activation of beta(2)AR was present at this level of expression. CONCLUSIONS These data demonstrate that the heart tolerates enhanced contractile function via 60-fold beta(2)AR overexpression without detriment for a period of >/=1 year and that higher levels of expression result in either aggressive or delayed cardiomyopathy. The consequences for enhanced betaAR function in the heart appear to be highly dependent on which signaling elements are increased and to what extent.
Collapse
Affiliation(s)
- S B Liggett
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0590, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Brown L, Ooi SY, Lau K, Sernia C. Cardiac and vascular responses in deoxycorticosterone acetate-salt hypertensive rats. Clin Exp Pharmacol Physiol 2000; 27:263-9. [PMID: 10779123 DOI: 10.1046/j.1440-1681.2000.03234.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Hypertension leads to ventricular hypertrophy and, eventually, to heart failure. The present study has investigated the functional consequences of deoxycorticosterone acetate (DOCA)-salt hypertension in rats by defining the inotropic, chronotropic and vascular responses to noradrenaline (NA; beta1-adrenoceptor agonist), forskolin (adenylate cyclase activator) and theophylline (phosphodiesterase inhibitor). 2. Administration of DOCA (25 mg, s.c., every 4th day) and excess salt (1% NaCl in drinking water) to uninephrectomized rats increased left ventricular wet weight by 35 and 71% after 4 and 8 weeks, respectively. Addition of KCl (0.4%) or CaCl2 (1%) in the drinking water for 4 weeks attenuated blood pressure increases, but not ventricular weight increases (46 and 28%, respectively). 3. Positive inotropic responses in papillary muscles from uninephrectomized rats to NA (-log EC50 6.73+/-0.38; n = 7), forskolin (-log EC50 6.15+/-0.31; n = 7) and CaCl2 (-log EC50 2.40+/-0.02; n = 14) were unchanged in hypertrophied left ventricles of DOCA and DOCA-CaCl2 rats, although maximal responses to NA were decreased in DOCA-KCI rats (1.2+/-0.6 mN, n = 8; DOCA-salt 2.9+/-0.5 mN, n = 6); theophylline was less potent in DOCA-salt rats. Positive chronotropic responses to NA, forskolin and theophylline in right atria and negative inotropic responses to carbachol in papillary muscles were unchanged. 4. Maximal vasoconstrictor responses to NA in thoracic aortic rings were reduced in DOCA-KCI rats to 2.4+/-0.9 mN (n = 5), but were increased in DOCA-CaCl2 rats to 26.6+/-2.2 mN (n = 7; DOCA-salt 7.8+/-2.2 mN, n = 9). Vasorelaxant responses to forskolin and theophylline were unchanged. 5. These results show that cardiac responses are only minimally affected during the development of DOCA-salt hypertension-induced hypertrophy, despite the reported decreases in adenylate cyclase activity, in these rats. This is in contrast with the decreased responses reported in other rat models of cardiac hypertrophy and in the failing human heart. Thus, hypertrophy in hearts of DOCA-salt hypertensive rats does not produce similar changes to the failing human heart.
Collapse
Affiliation(s)
- L Brown
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
38
|
Zolk O, Kouchi I, Schnabel P, Böhm M. Heterotrimeric G proteins in heart disease. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Guanine nucleotide binding proteins (G proteins) are largely grouped into three classes: heterotrimeric G proteins, ras-like or small molecular weight GTP binding proteins, and others like Gh. In the heart G proteins transduce signals from a variety of membrane receptors to generate diverse effects on contractility, heart rate, and myocyte growth. This central position of G proteins forming a switchboard between extracellular signals and intracellular effectors makes them candidates possibly involved in the pathogenesis of cardiac hypertrophy, heart failure, and arrhythmia. This review focuses primarily on discoveries of heterotrimeric G protein alterations in heart diseases that help us to understand the pathogenesis and pathophysiology. We also discuss the underlying molecular mechanisms of heterotrimeric G protein signalling.Key words: G proteins, signal transduction, adrenergic system, heart failure, hypertrophy.
Collapse
|
39
|
Kost CK, Herzer WA, Li PJ, Jackson EK. Pertussis toxin-sensitive G-proteins and regulation of blood pressure in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 1999; 26:449-55. [PMID: 10386237 DOI: 10.1046/j.1440-1681.1999.03058.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Increased Gi-protein-mediated receptor-effector coupling in the vasculature of the spontaneously hypertensive rat (SHR) has been proposed as a contributing factor in the maintenance of elevated blood pressure. If increased Gi-protein-mediated activity plays an important role in hypertension in SHR, then inhibition of Gi-proteins by pertussis toxin would be expected to decrease blood pressure in this genetic hypertensive model. To address this hypothesis, studies were undertaken comparing the cardiovascular effects of pertussis toxin in SHR and normotensive Wistar-Kyoto (WKY) rats. 2. Spontaneously hypertensive and WKY rats were instrumented with radiotelemetry devices and blood pressure measurements were recorded in conscious rats. Following a single injection of pertussis toxin (10 micrograms/kg, i.v.), mean arterial blood pressure fell from 161 +/- 3 to 146 +/- 1 mmHg in the SHR and the effect was sustained for more than 2 weeks. In contrast, 10 micrograms/kg, i.v., pertussis toxin produced no significant effect on blood pressure in WKY rats (103 +/- 4 vs 101 +/- 5 mmHg). 3. In a separate study, SHR and WKY rats were administered 30 micrograms/kg, i.v., pertussis toxin or 150 microL/kg, i.v., saline and, 3-5 days later, rats were anaesthetized and instrumented to permit measurement of blood pressure and renal function. At this higher dose, pertussis toxin reduced blood pressure in both strains of rat, although the effect was markedly greater in SHR (approximately 40 mmHg decrease) compared with WKY rats (approximately 15 mmHg decrease). In SHR, pertussis toxin increased renal blood flow (from 5.7 +/- 0.3 to 7.5 +/- 0.8 mL/min per g kidney) and decreased renal vascular resistance (from 31 +/- 2 to 19 +/- 2 mmHg/mL per min per g kidney). In WKY rats, pertussis toxin had no significant effect on renal parameters. 4. Results from these studies indicate that a pertussis toxin-sensitive Gi-protein-mediated pathway contributes to the maintenance of hypertension and elevated renal vascular tone in the SHR.
Collapse
Affiliation(s)
- C K Kost
- Department of Medicine, University of Pittsburgh Medical Center, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
40
|
Ge C, Anand-Srivastava MB. Involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in AII-mediated enhanced expression of Gi proteins in vascular smooth muscle cells. Biochem Biophys Res Commun 1998; 251:570-5. [PMID: 9792814 DOI: 10.1006/bbrc.1998.9505] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that angiotensin II increased Gialpha-2 and Gialpha-3 expression at both protein and mRNA levels in vascular smooth muscle cell (VSMC). The present study was undertaken to investigate the mechanisms responsible for AII-induced enhanced expression of Gi proteins. The levels of Gi protein were determinated by immunoblotting techniques using specific antibodies against Gialpha-2 and Gialpha-3. AII treatment of VSMC increased the levels of Gialpha-2 and Gialpha-3 proteins and actinomycin D, an inhibitor of RNA synthesis attenuated the AII-evoked enhanced expression of Gialpha-2 and Gialpha-3 proteins. In addition, wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI-3-K), rapamycin, an inhibitor of p70(S6K) and PD 098059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase were able to inhibit AII-induced enhanced expression of Gialpha-2 and Gialpha-3 to various degrees. The attenuation of AII-evoked enhanced levels of Gialpha-2 and Gialpha-3 by PD 098059 was concentration dependent. At 50 microM, PD 098059 was able to completely attenuate the enhanced levels of Gialpha-2 and Gialpha-3 caused by AII treatment. These data suggest that the enhanced expression of Gi-proteins by AII treatment may be attributed to increased RNA synthesis of Gi-proteins, and MAPK kinase, PI-3-Kinase and p70(S6K) may be involved in AII-mediated increased expression of Gi-proteins in VSMC.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cells, Cultured
- Dactinomycin/pharmacology
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/biosynthesis
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- Gene Expression Regulation/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Biosynthesis
- RNA, Messenger/biosynthesis
- Rats
- Ribosomal Protein S6 Kinases/metabolism
- Sirolimus/pharmacology
- Transcription, Genetic
- Wortmannin
Collapse
Affiliation(s)
- C Ge
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Québec, Montréal, Canada
| | | |
Collapse
|
41
|
Sitzler G, Zolk O, Laufs U, Paul M, Böhm M. Vascular beta-adrenergic receptor adenylyl cyclase system from renin-transgenic hypertensive rats. Hypertension 1998; 31:1157-65. [PMID: 9576129 DOI: 10.1161/01.hyp.31.5.1157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In transgenic rats harboring the mouse Ren-2d gene [TG(mREN2)27], downregulation of the myocardial beta-adrenergic receptor adenylyl cyclase system has been demonstrated previously. Because a reduced vasodilatory reactivity may significantly contribute to hypertension in this model of an activated tissue renin-angiotensin system, the present study investigated alterations of the vascular beta-adrenergic receptor adenylyl cyclase system. In freshly harvested aortas from transgenic rats, the activity of adenylyl cyclase was reduced significantly (P<.05) in the presence of isoprenaline (10 micromol/L; -28+/-4.5%), guanosine 5'-triphosphate, 5'-guanylylimidodiphosphate [Gpp(NH)p] (100 micromol/L; -29+/-4.7%), and forskolin (100 micromol/L) with (-42+/-6%) and without (-40+/-4.3%) MnCl2. Densities of beta-adrenoceptors were similar in both strains. In situ hybridization demonstrated the expression of the transgene in aortic smooth muscle cells. These data indicate a reduced catalyst function as a major contributing factor involved in the maintenance of high blood pressure in TG(mREN2)27. However, in cultivated aortic smooth muscle cells, cAMP production after stimulation with isoprenaline, forskolin, and Gpp(NH)p in the presence or absence of MnCl2 was not different. Affinities and densities of beta-adrenoceptors and amounts of immunochemically detected inhibitory and stimulatory G-protein alpha-subunits were unchanged. Desensitization after incubation with 10 micromol/L isoprenaline for 72 hours was identical in smooth muscle cells from both strains. Cell cultivation and isoprenaline treatment had no effect on transgene expression. We concluded that in transgenic rats the downregulation of the aortic beta-adrenergic adenylyl cyclase system is due to humoral and hemodynamic factors present in vivo rather than to transgenicity itself.
Collapse
Affiliation(s)
- G Sitzler
- Klinik III für Innere Medizin der Universität zu Köln, Germany
| | | | | | | | | |
Collapse
|
42
|
Böhm M, Zolk O, Flesch M, Schiffer F, Schnabel P, Stasch JP, Knorr A. Effects of angiotensin II type 1 receptor blockade and angiotensin-converting enzyme inhibition on cardiac beta-adrenergic signal transduction. Hypertension 1998; 31:747-54. [PMID: 9495257 DOI: 10.1161/01.hyp.31.3.747] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of the renin-angiotensin system has been shown to improve symptoms and prognosis in heart failure. We compared the effects of inhibition of angiotensin-converting enzyme or blockade of angiotensin II type 1 (AT1) receptors in a model with renin-induced hypertension that is known to exhibit similar changes in sympathetic activation and beta-adrenergic desensitization, as observed in heart failure. Treatment with captopril (100 mg/kg of feed) or the AT1-antagonist Bay 10-6734 (100 mg/kg of feed) was performed in transgenic rats harboring the mouse renin 2d gene [TG(mREN2)27]. Neuropeptide Y and angiotensin II levels, adenylyl cyclase activity, beta-adrenergic receptors, G(salpha), and G(ialpha) were investigated. TG(mREN2)27 showed a depletion of myocardial neuropeptide Y stores and an increase in myocardial angiotensin II concentrations. Isoprenaline- and guanylylimidodiphosphate-stimulated adenylyl cyclase activities and beta-adrenergic receptor density were reduced, whereas the catalyst and G(salpha)-function were unchanged. G(ialpha) protein and mRNA concentrations were increased. All alterations were normalized by both treatments. Systolic left ventricular pressures, plasma atrial natriuretic peptide, and myocardial steady state atrial natriuretic peptide mRNA concentrations and heart weights were similarly reduced by both treatments. Sympathetic neuroeffector defects are similarly reversed by angiotensin-converting enzyme inhibition or AT1 antagonism. The data support the concept that pharmacological interventions in the myocardial renin-angiotensin system significantly reverse local sympathetic neuroeffector defects. This could be important for the beneficial effects of these agents.
Collapse
MESH Headings
- Adenylyl Cyclases/drug effects
- Adenylyl Cyclases/metabolism
- Angiotensin II/metabolism
- Angiotensin Receptor Antagonists
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Animals
- Animals, Genetically Modified
- Atrial Natriuretic Factor/metabolism
- Blood Pressure/drug effects
- GTP-Binding Proteins/metabolism
- Heart/drug effects
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Myocardium/metabolism
- Neuropeptide Y/metabolism
- Organ Size/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- M Böhm
- Klinik III für Innere Medizin, Universität zu Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Conyers RB, Werstiuk ES, Lee RMKW. Expression of functional β-adrenoceptors and polyploidy development in cultured vascular smooth muscle cells from spontaneously hypertensive rats. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Castellano M, Böhm M. The cardiac beta-adrenoceptor-mediated signaling pathway and its alterations in hypertensive heart disease. Hypertension 1997; 29:715-22. [PMID: 9052886 DOI: 10.1161/01.hyp.29.3.715] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hypertension-induced cardiac hypertrophy is a predictor of the development of cardiac failure. It is unknown which cellular markers contribute to the progression from compensated hypertrophy to failure. In heart failure, several signal transduction defects leading to adenylate cyclase desensitization have been demonstrated, such as beta-adrenoceptor downregulation, increase of inhibitory G protein expression, and uncoupling of beta-adrenergic receptors, presumably by an increase of receptor kinase activity. In hypertensive heart disease, most studies have been performed in rat models of hypertension. As in heart failure, heterologous adenylyl cyclase desensitization occurs. The mechanisms are often different between the heterogeneous models for acquired and genetic hypertension, but Gi protein alterations and beta-adrenoceptor downregulation have been observed frequently. The underlying mechanism for desensitization is most likely a sympathetic activation in established hypertension rather than genetic alterations of signal transduction proteins. The data available suggest that beta-adrenergic desensitization could represent a mechanism that contributes to the progression from hypertrophy to failure. The key question remains whether those hypertensive patients who develop heart failure are more prone to beta-adrenergic desensitization or whether early intervention to reduce sympathetic activity is more effective in preventing or delaying the transition from compensated hypertrophy to overt failure.
Collapse
Affiliation(s)
- M Castellano
- Scienze Mediche, Universita degli Studi di Brescia, Italy
| | | |
Collapse
|
45
|
Flesch M, Erdmann E, Böhm M. Changes in beta-adrenoceptors and G-proteins during the transition from cardiac hypertrophy to heart failure. J Card Fail 1996; 2:S35-43. [PMID: 8951559 DOI: 10.1016/s1071-9164(96)80057-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Flesch
- Klinik III für Innere Medizin, Universität zu Köln, Germany
| | | | | |
Collapse
|
46
|
Abstract
Heterotrimeric G proteins couple many types of cell surface receptors to intracellular effectors such as enzymes or ion channels. In the mammalian heart, G protein-mediated signalling pathways are involved in the regulation of contractile force, heart rate, conduction velocity, and relaxation. In the first part of this review we summarize some important structural and functional features of receptors, G proteins, and effectors with special focus on the heart. In the second part, we review the current knowledge about alterations of G protein-mediated signalling in heart disease such as myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- P Schnabel
- Klinik III für Innere Medizin, Universität zu Köln, Germany
| | | |
Collapse
|
47
|
Hardiman O, Sweeney DJ, Keenan AK. Adenylyl cyclase activity in clonally derived human myoblast cultures: evidence for myoblast heterogeneity. Neuromuscul Disord 1996; 6:283-91. [PMID: 8887958 DOI: 10.1016/0960-8966(96)00355-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vitro myogenesis recapitulates the programme of myogenesis in vivo. During the process of muscle differentiation, cAMP plays an important role in the control of gene expression and in the integration of metabolic functions. cAMP generation may be affected by drugs or hormones that interact with the membrane-bound enzyme adenylyl cyclase, including adrenergic agents and glucocorticoids. In this study, adenylyl cyclase activity was evaluated in membranes prepared from human clonally derived muscle cultures. In control cultures, there was considerable inter-clonal variation in basal, sodium-fluoride and forskolin-stimulated adenylyl cyclase activity. Cultures differed in their response to steroids: adenylyl cyclase activity was markedly enhanced in some clones, and was significantly inhibited in other clones. Pre-treatment of cultures with pertussis toxin indicated that the effects of steroids are mediated in part by modulation of G-protein activity. These findings indicate a substantial heterogeneity among myoblast clones with respect to the modulating effect of steroids on adenylyl cyclase activity. This observation may account for the conflicting reports of steroid effects on muscle in vitro, and may be of relevance to the understanding of possible transmembrane signalling alterations in muscle disease.
Collapse
Affiliation(s)
- O Hardiman
- Dept. Human Anatomy & Physiology, University college Dublin, Ireland
| | | | | |
Collapse
|
48
|
Kanagy NL, Webb RC. Increased responsiveness and decreased expression of G proteins in deoxycorticosterone hypertension. Hypertension 1996; 27:740-5. [PMID: 8613234 DOI: 10.1161/01.hyp.27.3.740] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Deoxycorticosterone-salt (DOCA-salt) hypertension is characterized by elevated vasoconstriction to agonists that stimulate G protein-mediated activation of phospholipase C. However, the mechanisms responsible for the augmented responsiveness are unknown. This study tested the hypothesis that this augmented vascular responsiveness is due to elevated content of G(alpha)q, the G protein alpha-subunit that activates phospholipase C. Thoracic aortae from DOCA-salt hypertensive rats (systolic blood pressure 183 +/- 7 mm Hg) and normotensive controls (systolic blood pressure 115 +/- 2 mm Hg) were homogenized and G protein content determined. Western analysis revealed that G(alpha)i content was decreased in DOCA compared with control rats (1364 +/- 196 versus 2343 +/- 188 densitometry units, P < or = .05) with no differences observed for G(alpha)q or G(alpha)s. In addition, contractile responses in denuded femoral artery strips revealed a significant decrease in EC50 values in DOCA arteries to all of the agonists examined: aluminum fluoride (DOCA = 1.42, control = 2.34 mmol/L), mastoparan (DOCA = 0.51, control = 35 micromol/L), phenylephrine (DOCA = 0.08, control = 0.53 micromol/L), and serotonin (DOCA = 0.014, control = 0.04 micromol/L, EC20 values). Finally, arteries from DOCA rats contracted with aluminum fluoride had increased sensitivity to G protein antagonists but not to a phospholipase C inhibitor. The enhanced contractile responsiveness in the DOCA arteries may be mediated in part through decreased G(alpha)i levels. However, it is not caused by increased concentrations of G(alpha)q in the cell membrane or by increased phospholipase C sensitivity, and the increased constrictor response to G protein stimulators of phospholipase C appears to depend primarily on increased G protein sensitivity.
Collapse
Affiliation(s)
- N L Kanagy
- Department of Physiology, University of New Mexico School of Medicine, Albuquerque, 87131-5321, USA
| | | |
Collapse
|
49
|
Böhm M, Flesch M, Schnabel P. Role of G-proteins in altered beta-adrenergic responsiveness in the failing and hypertrophied myocardium. Basic Res Cardiol 1996; 91 Suppl 2:47-51. [PMID: 8957544 DOI: 10.1007/bf00795362] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the heart and other tissues, beta-adrenergic desensitization occurs during treatment with catecholamines. In heart failure, a strong sympathetic activation has been observed and is the cause of beta-adrenergic desensitization in this condition. On the receptor level, there is a downregulation of beta 1-adrenergic receptors as well as an uncoupling of beta 2-adrenoceptors. The latter mechanism has been related to an increased activity and gene expression of beta-ARK2 in failing myocardium leading to phosphorylation and uncoupling of receptors. In addition, an increase of inhibitory G-protein alpha-subunits (Gi alpha) has been suggested to be causally linked to adenylyl cyclase desensitization in heart failure. In contrast, the catalytic subunit of adenylyl cyclase, stimulatory G-protein alpha-subunits and beta gamma-subunits have been observed to be unchanged. Recently, evidence has been raised that increases of Gi alpha also depress adenylyl cyclase in compensated cardiac hypertrophy in monogenic and polygenic as well as in secondary hypertension. These increases of Gi alpha can suppress adenylyl cyclase in the absence of beta-adrenergic receptor downregulation. Since cardiac hypertrophy in pressure overload is a strong predictor of cardiac failure these observations indicate that adenylyl cyclase desensitization by Gi alpha could be a pathophysiologically relevant mechanism to contribute to the progression from compensated cardiac hypertrophy to heart failure.
Collapse
Affiliation(s)
- M Böhm
- Klinik III für Innere Medizin Universität Köln, Germany
| | | | | |
Collapse
|
50
|
Böhm M, Castellano M, Agabiti-Rosei E, Flesch M, Paul M, Erdmann E. Dose-dependent dissociation of ACE-inhibitor effects on blood pressure, cardiac hypertrophy, and beta-adrenergic signal transduction. Circulation 1995; 92:3006-13. [PMID: 7586271 DOI: 10.1161/01.cir.92.10.3006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dose-dependent effects of ACE inhibitors on blood pressure, cardiac hypertrophy, and beta-adrenergic signal transduction were examined in an animal model with beta-adrenergic desensitization, which has been identified in failing hearts and in hypertensive cardiac hypertrophy. It is unknown whether beneficial ACE-inhibitor effects are due to an unloading of the failing heart or a reduction of neuroendocrine activation with beta-adrenergic resensitization. METHODS AND RESULTS Low-dose (LD, 1 mg/kg) and high-dose (HD, 25 mg/kg) fosinopril treatment was performed in spontaneously hypertensive rats (SHR) and control (WKY) rats. Myocardial norepinephrine concentrations, adenylyl cyclase activity, beta-adrenergic receptors (radioligand binding), Gs alpha (functional reconstitution), and Gi alpha (pertussis toxin labeling) were determined. Ventricular weights and blood pressures were measured. HD but not LD reduced blood pressure and left ventricular weights in SHR. Isoprenaline- and guanylylim-idodiphosphate-stimulated adenylyl cyclase activities as well as beta 1-adrenergic receptors were reduced in SHR. The catalyst and Gs alpha were unchanged, but Gi alpha and norepinephrine concentrations were increased. Both LD and HD treatments restored beta-adrenergic alteration. CONCLUSIONS LD treatment with ACE inhibitors restored beta-adrenergic signal transduction defects independently of regression of cardiac hypertrophy. This could contribute to the effects of ACE inhibitors in patients, who are often treated with nonhypotensive doses.
Collapse
Affiliation(s)
- M Böhm
- Klinik III für Innere Medizin, Universität zu Köln, Germany
| | | | | | | | | | | |
Collapse
|