1
|
Bačáková L, Chlupáč J, Filová E, Musílková J, Tomšů J, Wu YC, Svobodová L, Pražák Š, Brož A. Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering? Physiol Res 2024; 73:S335-S363. [PMID: 38836460 PMCID: PMC11412351 DOI: 10.33549/physiolres.935294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Collapse
Affiliation(s)
- L Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Appiah CB, Gardner JJ, Farmer GE, Cunningham RL, Cunningham JT. Chronic intermittent hypoxia-induced hypertension: the impact of sex hormones. Am J Physiol Regul Integr Comp Physiol 2024; 326:R333-R345. [PMID: 38406843 PMCID: PMC11381015 DOI: 10.1152/ajpregu.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Obstructive sleep apnea, a common form of sleep-disordered breathing, is characterized by intermittent cessations of breathing that reduce blood oxygen levels and contribute to the development of hypertension. Hypertension is a major complication of obstructive sleep apnea that elevates the risk of end-organ damage. Premenopausal women have a lower prevalence of obstructive sleep apnea and cardiovascular disease than men and postmenopausal women, suggesting that sex hormones play a role in the pathophysiology of sleep apnea-related hypertension. The lack of protection in men and postmenopausal women implicates estrogen and progesterone as protective agents but testosterone as a permissive agent in sleep apnea-induced hypertension. A better understanding of how sex hormones contribute to the pathophysiology of sleep apnea-induced hypertension is important for future research and possible hormone-based interventions. The effect of sex on the pathophysiology of sleep apnea and associated intermittent hypoxia-induced hypertension is of important consideration in the screening, diagnosis, and treatment of the disease and its cardiovascular complications. This review summarizes our current understanding of the impact of sex hormones on blood pressure regulation in sleep apnea with a focus on sex differences.
Collapse
Affiliation(s)
- Cephas B Appiah
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - George E Farmer
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Olivera S, Graham D. Sex differences in preclinical models of hypertension. J Hum Hypertens 2023; 37:619-625. [PMID: 36335169 PMCID: PMC10403342 DOI: 10.1038/s41371-022-00770-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Hypertension remains the primary contributor in the development of cardiovascular disease which is rapidly increasing worldwide. High blood pressure affects men and women differently and understanding these sex differences is the ultimate unmet need for researchers in this field. Due to the inherent differences in hypertension prevalence, control and outcomes between men and women, novel research needs to be carried out to tackle these disparities and improve targeted treatment. Animal models of hypertension have provided valuable insights into the sexual dimorphism of blood pressure mechanisms. The availability of genetic and non-genetic hypertensive strains allows the opportunity to study diverse environmental and genetic factors that affect blood pressure, therefore presenting a valuable tool for researchers. Sex differences are present before birth and throughout life, which presents a challenge for the study of disease development in humans, but these complexities can be resolved with the use of in vivo models that display similarities to human disease. The aim of the present review is to provide an overview of the different available animal models of hypertension that present sexual dimorphisms and to discuss their relevance to humans.
Collapse
Affiliation(s)
- Sol Olivera
- School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
4
|
Helman TJ, Headrick JP, Vider J, Peart JN, Stapelberg NJC. Sex-specific behavioral, neurobiological, and cardiovascular responses to chronic social stress in mice. J Neurosci Res 2022; 100:2004-2027. [PMID: 36059192 DOI: 10.1002/jnr.25115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Psychosocial stress promotes and links mood and cardiovascular disorders in a sex-specific manner. However, findings in animal models are equivocal, in some cases opposing human dimorphisms. We examined central nervous system (CNS), behavioral, endocrine, cardiac, and hepatic outcomes in male or female C57Bl/6 mice subjected to chronic social stress (56 days of social isolation, with intermittent social confrontation encounters twice daily throughout the final 20 days). Females exhibited distinct physiological and behavioral changes, including relative weight loss, and increases in coronary resistance, hepatic inflammation, and thigmotaxic behavior in the open field. Males evidence reductions in coronary resistance and cardiac ischemic tolerance, with increased circulating and hippocampal monoamine levels and emerging anhedonia. Shared CNS gene responses include reduced hippocampal Maoa and increased Htr1b expression, while unique responses include repression of hypothalamic Ntrk1 and upregulation of cortical Nrf2 and Htr1b in females; and repression of hippocampal Drd1 and hypothalamic Gabra1 and Oprm in males. Declining cardiac stress resistance in males was associated with repression of cardiac leptin levels and metabolic, mitochondrial biogenesis, and anti-inflammatory gene expression. These integrated data reveal distinct biological responses to social stress in males and females, and collectively evidence greater biological disruption or allostatic load in females (consistent with propensities to stress-related mood and cardiovascular disorders in humans). Distinct stress biology, and molecular to organ responses, emphasize the importance of sex-specific mechanisms and potential approaches to stress-dependent disease.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - John P Headrick
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.,Gold Coast Hospital and Health Service, Southport, Queensland, Australia
| |
Collapse
|
5
|
Khan SI, Andrews KL, Jennings GL, Sampson AK, Chin-Dusting JPF. Y Chromosome, Hypertension and Cardiovascular Disease: Is Inflammation the Answer? Int J Mol Sci 2019; 20:ijms20122892. [PMID: 31200567 PMCID: PMC6627840 DOI: 10.3390/ijms20122892] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/17/2023] Open
Abstract
It is now becomingly increasingly evident that the functions of the mammalian Y chromosome are not circumscribed to the induction of male sex. While animal studies have shown variations in the Y are strongly accountable for blood pressure (BP), this is yet to be confirmed in humans. We have recently shown modulation of adaptive immunity to be a significant mechanism underpinning Y-chromosome-dependent differences in BP in consomic strains. This is paralleled by studies in man showing Y chromosome haplogroup is a significant predictor for coronary artery disease through influencing pathways of immunity. Furthermore, recent studies in mice and humans have shown that Y chromosome lineage determines susceptibility to autoimmune disease. Here we review the evidence in animals and humans that Y chromosome lineage influences hypertension and cardiovascular disease risk, with a novel focus on pathways of immunity as a significant pathway involved.
Collapse
Affiliation(s)
- Shanzana I Khan
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Karen L Andrews
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Garry L Jennings
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Amanda K Sampson
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Jaye P F Chin-Dusting
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
6
|
Li D, Paterson DJ. Pre-synaptic sympathetic calcium channels, cyclic nucleotide-coupled phosphodiesterases and cardiac excitability. Semin Cell Dev Biol 2019; 94:20-27. [PMID: 30658154 DOI: 10.1016/j.semcdb.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
In sympathetic neurons innervating the heart, action potentials activate voltage-gated Ca2+ channels and evoke Ca2+ entry into presynaptic terminals triggering neurotransmitter release. Binding of transmitters to specific receptors stimulates signal transduction pathways that cause changes in cardiac function. The mechanisms contributing to presynaptic Ca2+ dynamics involve regulation of endogenous Ca2+ buffers, in particular the endoplasmic reticulum, mitochondria and cyclic nucleotide targeted pathways. The purpose of this review is to summarize and highlight recent findings about Ca2+ homeostasis in cardiac sympathetic neurons and how modulation of second messengers can drive neurotransmission and affect myocyte excitability in cardiovascular disease. Moreover, we discuss the underlying mechanism of abnormal intracellular Ca2+ homeostasis and signaling in these neurons, and speculate on the role of phosphodiesterases as a therapeutic target to restore normal autonomic transmission in disease states of overactivity.
Collapse
Affiliation(s)
- Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
7
|
Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 2018; 14:185-201. [PMID: 29380817 DOI: 10.1038/nrneph.2017.189] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although intrinsic mechanisms that regulate arterial blood pressure (BP) are similar in men and women, marked variations exist at the molecular, cellular and tissue levels. These physiological disparities between the sexes likely contribute to differences in disease onset, susceptibility, prevalence and treatment responses. Key systems that are important in the development of hypertension and cardiovascular disease (CVD), including the sympathetic nervous system, the renin-angiotensin-aldosterone system and the immune system, are differentially activated in males and females. Biological age also contributes to sexual dimorphism, as premenopausal women experience a higher degree of cardioprotection than men of similar age. Furthermore, sex hormones such as oestrogen and testosterone as well as sex chromosome complement likely contribute to sex differences in BP and CVD. At the cellular level, differences in cell senescence pathways may contribute to increased longevity in women and may also limit organ damage caused by hypertension. In addition, many lifestyle and environmental factors - such as smoking, alcohol consumption and diet - may influence BP and CVD in a sex-specific manner. Evidence suggests that cardioprotection in women is lost under conditions of obesity and type 2 diabetes mellitus. Treatment strategies for hypertension and CVD that are tailored according to sex could lead to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia.,Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Doris PA. Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol Genomics 2017; 49:601-617. [PMID: 28916635 DOI: 10.1152/physiolgenomics.00065.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The application of gene mapping methods to uncover the genetic basis of hypertension in the inbred spontaneously hypertensive rat (SHR) began over 25 yr ago. This animal provides a useful model of genetic high blood pressure, and some of its features are described. In particular, it appears to be a polygenic model of disease, and polygenes participate in human hypertension genetic risk. The SHR hypertension alleles were fixed rapidly by selective breeding in just a few generations and so are presumably common genetic variants present in the outbred Wistar strain from which SHR was created. This review provides a background to the origins and genesis of this rat line. It considers its usefulness as a model organism for a common cardiovascular disease. The progress and obstacles facing mapping are considered in depth, as are the emergence and application of other genome-wide genetic discovery approaches that have been applied to investigate this model. Candidate genes, their identification, and the evidence to support their potential role in blood pressure elevation are considered. The review assesses the progress that has arisen from this work has been limited. Consideration is given to some of the factors that have impeded progress, and prospects for advancing understanding of the genetic basis of hypertension in this model are discussed.
Collapse
Affiliation(s)
- Peter A Doris
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
9
|
Kalla M, Herring N, Paterson DJ. Cardiac sympatho-vagal balance and ventricular arrhythmia. Auton Neurosci 2016; 199:29-37. [PMID: 27590099 PMCID: PMC5334443 DOI: 10.1016/j.autneu.2016.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
A hallmark of cardiovascular disease is cardiac autonomic dysregulation. The phenotype of impaired parasympathetic responsiveness and sympathetic hyperactivity in experimental animal models is also well documented in large scale human studies in the setting of heart failure and myocardial infarction, and is predictive of morbidity and mortality. Despite advances in emergency revascularisation strategies for myocardial infarction, device therapy for heart failure and secondary prevention pharmacotherapies, mortality from malignant ventricular arrhythmia remains high. Patients at highest risk or those with haemodynamically significant ventricular arrhythmia can be treated with catheter ablation and implantable cardioverter defibrillators, but the morbidity and reduction in quality of life due to the burden of ventricular arrhythmia and shock therapy persists. Therefore, future therapies must aim to target the underlying pathophysiology that contributes to the generation of ventricular arrhythmia. This review explores recent advances in mechanistic research in both limbs of the autonomic nervous system and potential avenues for translation into clinical therapy. In addition, we also discuss the relationship of these findings in the context of the reported efficacy of current neuromodulatory strategies in the management of ventricular arrhythmia. We review advances in mechanistic research in the cardiac autonomic nervous system. This is discussed in relation to neuromodulatory therapy for ventricular arrhythmia. Neuromodulation therapies can influence both neurotransmitters and co-transmitters. This may therefore improve on conventional medical treatment.
Collapse
Affiliation(s)
| | - Neil Herring
- Corresponding author at: Burdon Sanderson Cardiac Science Centre, Dept. of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, OX13PT, UK.Burdon Sanderson Cardiac Science CentreDept. of Physiology, Anatomy and GeneticsUniversity of OxfordParks RoadOX13PTUK
| | | |
Collapse
|
10
|
Li D, Paterson DJ. Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness. J Physiol 2016; 594:3993-4008. [PMID: 26915722 DOI: 10.1113/jp271827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are now recognized as important intracellular signalling molecules that modulate cardiac sympatho-vagal balance in the progression of heart disease. Recent studies have identified that a significant component of autonomic dysfunction associated with several cardiovascular pathologies resides at the end organ, and is coupled to impairment of cyclic nucleotide targeted pathways linked to abnormal intracellular calcium handling and cardiac neurotransmission. Emerging evidence also suggests that cyclic nucleotide coupled phosphodiesterases (PDEs) play a key role limiting the hydrolysis of cAMP and cGMP in disease, and as a consequence this influences the action of the nucleotide on its downstream biological target. In this review, we illustrate the action of nitric oxide-CAPON signalling and brain natriuretic peptide on cGMP and cAMP regulation of cardiac sympatho-vagal transmission in hypertension and ischaemic heart disease. Moreover, we address how PDE2A is now emerging as a major target that affects the efficacy of soluble/particulate guanylate cyclase coupling to cGMP in cardiac dysautonomia.
Collapse
Affiliation(s)
- Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
11
|
Tostes RC, Carneiro FS, Carvalho MHC, Reckelhoff JF. Reactive oxygen species: players in the cardiovascular effects of testosterone. Am J Physiol Regul Integr Comp Physiol 2015; 310:R1-14. [PMID: 26538238 DOI: 10.1152/ajpregu.00392.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed.
Collapse
Affiliation(s)
- Rita C Tostes
- University of São Paulo, Ribeirao Preto Medical School, Ribeirao Preto, São Paulo, Brazil;
| | - Fernando S Carneiro
- University of São Paulo, Ribeirao Preto Medical School, Ribeirao Preto, São Paulo, Brazil
| | | | - Jane F Reckelhoff
- University of Mississippi Medical Center, Women's Health Research Center, Jackson, Mississippi
| |
Collapse
|
12
|
Zhao Y, Vanhoutte PM, Leung SWS. α1 -Adrenoceptor activation of PKC-ε causes heterologous desensitization of thromboxane receptors in the aorta of spontaneously hypertensive rats. Br J Pharmacol 2015; 172:3687-701. [PMID: 25857252 DOI: 10.1111/bph.13157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In the aorta of adult spontaneously hypertensive (SHR), but not in that of normotensive Wistar-Kyoto (WKY), rats, previous exposure to phenylephrine inhibits subsequent contractions to PGE2 . The present experiments were designed to examine the mechanism(s) underlying this inhibition. EXPERIMENTAL APPROACH Isometric tension was measured in isolated rings of SHR and WKY aortae. Gene expression and protein presence were measured by quantitative real-time PCR and Western blotting respectively. KEY RESULTS In aorta of 18 weeks SHR, but not age-matched WKY, pre-exposure to phenylephrine inhibited subsequent contractions to PGE2 that were mediated by thromboxane prostanoid (TP) receptors. This inhibition was not observed in preparations of pre-hypertensive 5-week-old SHR, and was significantly larger in those of 36- than 18-week-old SHR. Pre-exposure to the PKC activator, phorbol 12,13-dibutyrate, also inhibited subsequent contractions to PGE2 in SHR aortae. The selective inhibitor of PKC-ε, ε-V1-2, abolished the desensitization caused by pre-exposure to phenylephrine. Two molecular PKC bands were detected and their relative intensities differed in 36-week-old WKY and SHR vascular smooth muscle. The mRNA expressions of PKC-α, PKC-ε, PK-N2 and PKC-ζ and of G protein-coupled kinase (GRK)-2, GRK4 and β-arrestin2 were higher in SHR than WKY aortae. CONCLUSIONS AND IMPLICATIONS These experiments suggest that in the SHR but not the WKY aorta, α1 -adrenoceptor activation desensitizes TP receptors through activation of PKC-ε. This heterologous desensitization is a consequence of the chronic exposure to high arterial pressure.
Collapse
Affiliation(s)
- Yingzi Zhao
- Department of Pharmacology & Pharmacy and Stake Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- Department of Pharmacology & Pharmacy and Stake Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- Department of Pharmacology & Pharmacy and Stake Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Abstract
Men have higher blood pressure than women through much of life regardless of race and ethnicity. This is a robust and highly conserved sex difference that it is also observed across species including dogs, rats, mice and chickens and it is found in induced, genetic and transgenic animal models of hypertension. Not only do the differences between the ovarian and testicular hormonal milieu contribute to this sexual dimorphism in blood pressure, the sex chromosomes also play a role in and of themselves. This review primarily focuses on epidemiological studies of blood pressure in men and women and experimental models of hypertension in both sexes. Gaps in current knowledge regarding what underlie male-female differences in blood pressure control are discussed. Elucidating the mechanisms underlying sex differences in hypertension may lead to the development of anti-hypertensives tailored to one's sex and ultimately to improved therapeutic strategies for treating this disease and preventing its devastating consequences.
Collapse
Affiliation(s)
- Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Disease and Aging Georgetown University, Washington, DC 20057
| | - Hong Ji
- Center for the Study of Sex Differences in Health, Disease and Aging Georgetown University, Washington, DC 20057
| |
Collapse
|
14
|
Dickey C, Toot J, Terwilliger M, Payne R, Turner M, Ely D. The SHR Y chromosome increases cardiovascular, endocrine, and behavioral responses to stress compared to the WKY Y chromosome. Physiol Behav 2012; 106:101-8. [PMID: 22285213 DOI: 10.1016/j.physbeh.2012.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The SHR Y chromosome has loci which are involved with behavioral, endocrine and brain phenotypes and respond to acute stress to a different degree than that of the WKY Y chromosome. The objectives were to determine if WKY males with an SHR Y chromosome (SHR/y) when compared to males with a WKY Y chromosome would have: 1. a greater increase in systolic and diastolic blood pressures (BP), heart rate (HR), and locomotor activity when placed in an open field environment and during an acute stress procedure; 2. enhanced stress hormone responses; 3. greater voluntary running; and 4. increased brain Sry expression. The SHR/y strain showed a significant rise in BP (32%) and HR (10%) during the open field test and exhibited higher BP (46% change) during air jet stress. SHR/y had higher locomotor activity and less immobility and had increased stress induced plasma norepinephrine and adrenocorticotrophic hormone and 3-4× more voluntary running compared to WKY. Differential Sry expression between WKY and SHR/y in amygdala and hippocampus was altered at rest and during acute stress more than that of WKY. Evidence suggests that this animal model allows novel functions of Y chromosome loci to be revealed. In conclusion, a transcription factor on the SHR Y chromosome, Sry, may be responsible for the cardiovascular, endocrine and behavioral phenotype differences between SHR/y and WKY males.
Collapse
Affiliation(s)
- Cherec Dickey
- Department of Biology, The University of Akron, Akron, OH 44325-3908, United States
| | | | | | | | | | | |
Collapse
|
15
|
Toot JD, Reho JJ, Ramirez RJ, Novak J, Ely DL. Alterations in vasomotor systems and mechanics of resistance-sized mesenteric arteries from SHR and WKY male rats following in vivo testosterone manipulation. Biol Sex Differ 2012; 3:1. [PMID: 22214247 PMCID: PMC3264497 DOI: 10.1186/2042-6410-3-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background Testosterone (T) and the sympathetic nervous system each contribute to the pathology of hypertension. Altered blood vessel reactivity is also associated with the pathology of high blood pressure. The purpose of this study was to examine the effects of T manipulation in the regulation of resistance-sized blood vessel reactivity. Methods Adult spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) male rats at 8 weeks of age were used. The rats were divided into groups consisting of gonadally intact controls (CONT), castrate with sham implant (CAST) and castrate with T implant (CAST + T) (n = 6 to 12 per group). Following a short-term period of T treatment (approximately 4 weeks), plasma norepinephrine (NE) and plasma T were assessed by performing high-performance liquid chromatography and RIA, respectively. Resistance-sized mesenteric artery reactivity was assessed on a pressurized arteriograph for myogenic reactivity (MYO), phenylephrine (PE) responsiveness and passive structural mechanics. Results SHR and WKY males exhibited similar physiological trends in T manipulation, with castration significantly lowering plasma T and NE and T replacement significantly increasing plasma T and NE. T manipulation in general resulted in significant alterations in MYO of second-order mesenteric arteries, with T replacement decreasing MYO in SHR (P < 0.05) compared to CONT, T replacement increasing MYO, and CAST decreasing MYO in WKY rats (P < 0.001) compared to CONT rats. Additionally, PE-induced constriction was significantly altered in both strains following T treatment, with the effective concentration of PE to constrict the vessel to 50% of the total diameter significantly increased in the CAST + T SHR compared to CONT (P < 0.05). Comparisons of passive structural mechanics between SHR and WKY treatment groups indicated in SHR a significantly increased wall-to-lumen ratio and decreased circumferential wall stress compared to WKY treatment groups. Conclusions These data suggest that T and NE are involved in a complex interaction with both myogenic reactivity and structural alterations of resistance-sized blood vessels and that these factors likely contribute to the development and maintenance of hypertension.
Collapse
Affiliation(s)
- Jonathan D Toot
- Department of Biology, 303 Carroll St,,The University of Akron, Akron, OH 44325-3908.
| | | | | | | | | |
Collapse
|
16
|
Turner ME, Ely D, Prokop J, Milsted A. Sry, more than testis determination? Am J Physiol Regul Integr Comp Physiol 2011; 301:R561-71. [PMID: 21677270 DOI: 10.1152/ajpregu.00645.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sry locus on the mammalian Y chromosome is the developmental switch responsible for testis determination. Inconsistent with this important function, the Sry locus is transcribed in adult males at times and in tissues not involved with testis determination. Sry is expressed in multiple tissues of the peripheral and central nervous system. Sry is derived from Sox3 and is similar to other SOXB family loci. The SOXB loci are responsible for nervous system development. Sry has been demonstrated to modulate the catecholamine pathway, so it should have functional consequences in the central and peripheral nervous system. The nervous system expression and potential function are consistent with Sry as a SOXB family member. In mammals, Sox3 is X-linked and undergoes dosage compensation in females. The expression of Sry in adult males allows for a type of sexual differentiation independent of circulating gonadal hormones. A quantitative difference in Sox3 plus Sry expression in males vs. females could drive changes in the transcriptome of these cells, differentiating male and female cells. Sry expression and its transcriptional effects should be considered when investigating sexual dimorphic phenotypes.
Collapse
Affiliation(s)
- Monte E Turner
- Department of Biology, The University of Akron, Akron, Ohio, USA.
| | | | | | | |
Collapse
|
17
|
Testosterone increases: sodium reabsorption, blood pressure, and renal pathology in female spontaneously hypertensive rats on a high sodium diet. Adv Pharmacol Sci 2011; 2011:817835. [PMID: 21603136 PMCID: PMC3096300 DOI: 10.1155/2011/817835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 11/27/2022] Open
Abstract
Estrogen (E) and testosterone (T) are important in the sexually dimorphic pattern of blood pressure (BP) development. The goal was to examine the effects of endogenous E and exogenous T in the development of hypertension in female spontaneously hypertensive rats (SHR) on a high sodium diet. Female SHR (N = 27, 5-week) were divided into four groups: (1) control (n = 8), (2) ovariectomized (OVX, n = 26), (3) testosterone implants with intact ovaries (T, n = 6), and (4) ovariectomized + testosterone implants (OVX+T, n = 7). T was given immediately after OVX and replaced every two weeks and they were fed a 3% NaCl diet. BP was measured weekly and plasma norepinephrine (NE) analyzed by HPLC. OVX+T females exhibited the greatest elevation in BP
(190 ± 4.0 mmHg) compared to controls at 15 weeks of age
(140 ± 3.4 mmHg, P < .001) and a pattern of hypertension development similar to that of male SHR. Females with T treatment showed evidence of glomerulosclerosis. In conclusion, T accelerated the development of hypertension similar to the BP pattern observed in males; the presence of ovaries attenuated the T induced increase in BP; T increased renal sodium reabsorption, and T increased glomerulosclerosis.
Collapse
|
18
|
Ely D, Boehme S, Dunphy G, Hart M, Chiarappa F, Miller B, Martins AS, Turner M, Milsted A. The Sry3 Y chromosome locus elevates blood pressure and renin-angiotensin system indexes. GENDER MEDICINE 2011; 8:126-38. [PMID: 21536231 PMCID: PMC3087190 DOI: 10.1016/j.genm.2010.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/09/2010] [Accepted: 11/14/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sex-determining region Y (Sry) is a transcription factor. Our research group has shown that there are multiple copies of Sry in Wistar-Kyoto (WKY) and spontaneous hypertensive (SHR) rats, and that they have novel functions separate from testes determination. OBJECTIVE We hypothesized that exogenously delivered Sry3 to the normotensive WKY male kidney would activate the renin-angiotensin system (RAS) and raise blood pressure (BP), based on previous in vitro studies. METHODS Sry3 or control vector was electroporated to the left kidney of male WKY rats and the following measurements were taken: BP by telemetry, renin-angiotensin measures by radioimmunoassay, plasma and tissue catecholamines by HPLC with electrochemical detection, sodium by flame photometry, and inulin by ELISA. RESULTS Sry3 increased BP 10 to 20 mm Hg compared with controls (P < 0.01) and produced a significant 40% decrease in urine sodium compared with controls (P < 0.05). Sry3 increased renal angiotensin II and plasma renin activity by >100% compared with controls (P < 0.01 and P < 0.05, respectively). CONCLUSION The findings presented here confirm and extend the argument for Sry3 as one of the genes responsible for the SHR hypertensive Y chromosome phenotype and are consistent with increased tissue RAS activity due to Sry3 and increased sodium reabsorption.
Collapse
Affiliation(s)
- Daniel Ely
- Department of Biology, University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ely D, Toot J, Salisbury R, Ramirez R. Androgens alter brain catecholamine content and blood pressure in the testicular feminized male rat. Clin Exp Hypertens 2011; 33:124-32. [PMID: 21271819 DOI: 10.3109/10641963.2010.531840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Androgens interact with catecholamines in the central nervous system (CNS) to regulate many physiological processes including blood pressure (BP). To test the hypothesis that testosterone (T) and 5a-dihydrotestosterone (DHT) modulate CNS catecholamines and BP through androgen receptor (AR)-dependent and independent mechanisms, we used the testicular feminized male (Tfm) rat. Females that carry the AR mutation (Tfm mutation) on the X chromosome were bred with spontaneously hypertensive rat (SHR) males. The normal AR male and Tfm offspring were divided into groups: control, castrated, castrated, and T or (DHT) replacement. In both AR normal and Tfm males, BP was reduced by castration, but T restored BP in both groups. In the amygdale, castration decreased dopamine (DA) in both strains and both T and DHT restored it. In the bed nucleus of the stria terminalis castration increased DA which was further increased by DHT and reduced to normal by T in both strains. In the frontal cortex, castration reduced DA content in both strains but only T restored it to normal in SHR but not in Tfm. Brain norepinephrine (NE) content showed a significant strain effect for the preoptic area (POA), but no treatment effect. Although castration did not change NE in the amygdala or POA in either strain, both T and DHT increased NE in the Tfm castrates. Blood pressure was influenced by T manipulation and correlated most significantly with DA content in the amygdala, frontal cortex, and stria terminalis. These data demonstrate an action of androgen on brain catecholamines and BP, which is independent of the classic androgen receptor.
Collapse
Affiliation(s)
- Daniel Ely
- Department of Biology/Integrative Biosciences Program, The University of Akron, Akron, Ohio 44325, USA.
| | | | | | | |
Collapse
|
20
|
Toot JD, Reho JJ, Novak J, Dunphy G, Ely DL, Ramirez RJ. Colony social stress differentially alters blood pressure and resistance-sized mesenteric artery reactivity in SHR/y and WKY male rats. Stress 2011; 14:33-41. [PMID: 20666653 DOI: 10.3109/10253890.2010.491876] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increased sympathetic nervous system (SNS) activity, testosterone, and spontaneously hypertensive rat Y chromosome (SHR Yc) play a role in a genetic model of hypertension. Male rats with the SHR Yc and Wistar-Kyoto (WKY) autosomes (denoted SHR/y) exhibit these characteristics when compared to rats with the WKY Yc and WKY autosomes (denoted WKY). We hypothesized that chronic social stress will increase blood pressure and SNS activity more in SHR/y males compared to WKY males, resulting in increased myogenic reactivity along with decreased vasoconstriction of small mesenteric arteries. SHR/y and WKY males were housed in strain- specific colonies (10 males with 10 females) or as controls (10 males). Systolic blood pressure (SBP) and blood samples were collected prior to termination. Second-order mesenteric arteries were studied using a pressure arteriograph in which myogenic reactivity and phenylephrine (PE) responsiveness were measured. SHR/y colony SBP, and circulating norepinephrine and testosterone concentrations were elevated compared to control and WKY colony males (p < 0.05). Mesenteric artery myogenic reactivity was increased in SHR/y colony males (p < 0.001). Mesenteric arteries from SHR/y colony males exhibited a significant decrease in PE-induced constriction. Colony social stress elevated both SNS activity and testosterone level which may be responsible for the increased mesenteric artery myogenic reactivity, and SBP as noted in SHR/y males.
Collapse
Affiliation(s)
- Jonathan D Toot
- Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ji H, Zheng W, Wu X, Liu J, Ecelbarger CM, Watkins R, Arnold AP, Sandberg K. Sex chromosome effects unmasked in angiotensin II-induced hypertension. Hypertension 2010; 55:1275-82. [PMID: 20231528 PMCID: PMC2905778 DOI: 10.1161/hypertensionaha.109.144949] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/18/2010] [Indexed: 11/16/2022]
Abstract
Sex differences in mean arterial pressure (MAP) are reported in many experimental models of hypertension and are ascribed to gonadal sex based on studies showing that gonadectomy and gonadal hormone replacement affect MAP. The interpretation of these studies, however, has been confounded by differences in the sex chromosome complement (XX versus XY). To investigate the sex chromosome complement independent of gonadal sex, we used the 4 core genotype mouse model in which gonadal sex is separated from the sex chromosome complement enabling comparisons among XX and XY females and XX and XY males. We found that, in the gonadectomized (GDX) 4 core genotype, MAP after 2 weeks of angiotensin II infusion (200 ng/kg per minute) was greater in XX than XY (MAP [in millimeters of mercury]: GDX-XX-female, 148+/-4.5; GDX-XY-female, 133+/-4.4; GDX-XX-male, 149+/-9.4; GDX-XY-male, 138+/-5.5; P<0.03, XX versus XY; n=8 to 9 per group). In contrast, no sex chromosome effects were found on heart rate, body weight, or plasma angiotensin II 2 weeks after angiotensin II infusion. This study suggests that, in addition to effects of gonadal hormones on blood pressure, X- or Y-linked genes, parental imprinting, or X mosaicism contributes to sex differences in hypertension. Furthermore, the finding that MAP was greater in XX mice compared with XY mice in the GDX state suggests that adverse sex chromosome effects encoded within the XX sex chromosome complement could contribute to hypertension in women with ovarian hormone deficiency, such as postmenopausal women and women with premature ovarian failure.
Collapse
Affiliation(s)
- Hong Ji
- Department of Medicine, Georgetown University, Washington, DC 20057
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057
| | - Wei Zheng
- Department of Medicine, Georgetown University, Washington, DC 20057
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057
| | - Xie Wu
- Department of Medicine, Georgetown University, Washington, DC 20057
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057
| | - Jun Liu
- Department of Medicine, Georgetown University, Washington, DC 20057
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057
| | - Carolyn M. Ecelbarger
- Department of Medicine, Georgetown University, Washington, DC 20057
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057
| | - Rebecca Watkins
- Department of Physiological Science and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California 90095
| | - Arthur P. Arnold
- Department of Physiological Science and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California 90095
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Washington, DC 20057
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057
| |
Collapse
|
22
|
Mercuro G, Deidda M, Piras A, Dessalvi CC, Maffei S, Rosano GMC. Gender determinants of cardiovascular risk factors and diseases. J Cardiovasc Med (Hagerstown) 2010; 11:207-20. [DOI: 10.2459/jcm.0b013e32833178ed] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Milsted A, Underwood AC, Dunmire J, DelPuerto HL, Martins AS, Ely DL, Turner ME. Regulation of multiple renin-angiotensin system genes by Sry. J Hypertens 2010; 28:59-64. [PMID: 19809364 PMCID: PMC2897148 DOI: 10.1097/hjh.0b013e328332b88d] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE We demonstrated that the Sry gene complex on the spontaneously hypertensive rat (SHR) Y chromosome is a candidate locus for hypertension that accounts for the SHR Y chromosome blood pressure effect. All rat strains examined to date share six Sry loci, and a seventh Sry locus (Sry3) appears to be unique to SHR male rats. Previously, we showed that Sry1 increased activity of the tyrosine hydroxylase promoter in transfected PC12 cells, and Sry1 delivered to adrenal gland of Wistar-Kyoto (WKY) rats increased blood pressure and sympathetic nervous system activity. The objective of this study was to determine whether renin-angiotensin system genes participate in Sry-mediated effects. METHOD Sry expression vectors were co-transfected into CHO cells with luciferase reporter constructs containing promoters of angiotensinogen (Agt -1430/+22), renin (Ren -1050/-1), angiotensin-converting enzyme (ACE) (ACE -1677/+21) and ACE2 (ACE2 -1091/+83). RESULTS Sry1, Sry2 and Sry3 differentially upregulated activity of the promoters of angiotensinogen, renin and ACE genes and downregulated ACE2 promoter activity. The largest effect was seen with Sry3, which increased activity of angiotensinogen promoter by 1.7-fold, renin promoter by 1.3-fold, ACE promoter by 2.6-fold and decreased activity of ACE2 promoter by 0.5-fold. The effect of Sry1 on promoter activity was significantly less than that of Sry3. Sry2 activated promoters at a significantly lower level than Sry1 did. The result of either an additive effect of Sry regulation of multiple genes in the renin-angiotensin system or alterations in expression of a single gene could favor increased levels of Ang II and decreased levels of Ang-(1-7). CONCLUSION These actions of Sry could result in increased blood pressure in males and contribute to sex differences in blood pressure.
Collapse
Affiliation(s)
- Amy Milsted
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kaushik M, Sontineni SP, Hunter C. Cardiovascular disease and androgens: a review. Int J Cardiol 2009; 142:8-14. [PMID: 19923015 DOI: 10.1016/j.ijcard.2009.10.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 10/18/2009] [Indexed: 11/18/2022]
Abstract
Globally, cardiovascular disease is the single largest cause of mortality. The differences in pattern of cardiovascular disease between the two genders have not been explained properly. The spotlight has largely been focused on estrogens but no conclusive evidence has proven its role in reducing the incidence of cardiovascular disease. Consequently, androgens have attracted significant interest in explaining the gender difference in cardiovascular disease. More studies in last two decades have increased our knowledge about the effects of androgens on cardiovascular disease progression. Evidence for age related fall in testosterone levels in males and increasing cardiovascular events with age had lead to the postulation of idea of 'andropause or male menopause'. Unfortunately, for the last few decades the androgens have been highlighted as agents of abuse among athletes all over the world. There have been multiple reports of their association with sudden cardiac death and adverse cardiovascular outcomes when abused. Contrastingly, there has been an increasing prescription use of testosterone supplementation in various conditions related to androgen deficiency state and for many other off-label indications. Human observational studies have mostly concluded that men with lower testosterone levels tend to have higher incidence of coronary artery disease. Emerging evidence supports that lower androgen levels predict poor cardiovascular risk profile. Role with supplementation of testosterone for cardiovascular disease is being studied in both primary and secondary prevention stages and its safety being evaluated. This is an appropriate time to review the role of androgens specifically from a cardiovascular standpoint.
Collapse
Affiliation(s)
- Manu Kaushik
- Department of Medicine, Creighton University Medical Center, Omaha, NE 68131, USA.
| | | | | |
Collapse
|
25
|
Delivery of sry1, but not sry2, to the kidney increases blood pressure and sns indices in normotensive wky rats. BMC PHYSIOLOGY 2009; 9:10. [PMID: 19500370 PMCID: PMC2699329 DOI: 10.1186/1472-6793-9-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/05/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Our laboratory has shown that a locus on the SHR Y chromosome increases blood pressure (BP) in the SHR rat and in WKY rats with the SHR Y chromosome (SHR/y rat). A candidate for this Y chromosome hypertension locus is Sry, a gene that encodes a transcription factor responsible for testes determination. The SHR Y chromosome has six divergent Sry loci. The following study examined if exogenous Sry1 or Sry2 delivered to the kidney would elevate renal tyrosine hydroxylase, renal catecholamines, plasma catecholamines and telemetered BP over a 28 day period. We delivered 50 mug of either the expression construct Sry1/pcDNA 3.1, Sry2/pcDNA 3.1, or control vector into the medulla of the left kidney of normotensive WKY rats by electroporation. Weekly air stress was performed to determine BP responsiveness. Separate groups of animals were tested for renal function and plasma hormone patterns and pharmacological intervention using alpha adrenergic receptor blockade. Pre-surgery baseline and weekly blood samples were taken from Sry1 electroporated and control vector males for plasma renin, aldosterone, and corticosterone. BP was measured by telemetry and tyrosine hydroxylase and catecholamines by HPLC with electrochemical detection. RESULTS In the animals receiving the Sry1 plasmid there were significant increases after 21 days in resting plasma norepinephrine (NE, 27%) and renal tyrosine hydroxylase content (41%, p < .05) compared to controls. BP was higher in animals electroporated with Sry1 (143 mmHg, p < .05) compared to controls (125 mmHg) between 2-4 weeks. Also the pressor response to air stress was significantly elevated in males electroporated with Sry1 (41 mmHg) compared to controls (28 mmHg, p < .001). Sry2 did not elevate BP or SNS indices and further tests were not done. The hormone profiles for plasma renin, aldosterone, and corticosterone between electroporated Sry1 and control vector males showed no significant differences over the 28 day period. Alpha adrenergic receptor blockade prevented the air stress pressor response in both strains. Urinary dopamine significantly increased after 7 days post Sry electroporation. CONCLUSION These results are consistent with a role for Sry1 in increasing BP by directly or indirectly activating renal sympathetic nervous system activity.
Collapse
|
26
|
Hiura Y, Fukushima Y, Kokubo Y, Okamura T, Goto Y, Nonogi H, Takahashi R, Iwai N. Effects of the Y chromosome on cardiovascular risk factors in Japanese men. Hypertens Res 2009; 31:1687-94. [PMID: 18971546 DOI: 10.1291/hypres.31.1687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Excess cardiovascular risk in men compared with women has been suggested to be partly explained by effects of the Y chromosome. However, inconsistent results have been reported on the Y chromosome's genetic influence on blood pressure and lipid levels. The purpose of the present study was to settle the question whether genetic variants of the Y chromosome influence cardiovascular risk factors using a large epidemiological cohort, the Suita study. Possible influences of the Y chromosome polymorphisms (Y chromosome Alu insertion polymorphism [YAP], M175 and SRY+465) on cardiovascular risk factors were assessed in 974 Japanese men. The frequency of the YAP(+) allele in our study sample was 0.31. The prevalence of hypertension tended to be higher in YAP(+) than in YAP(-) men, and this tendency was found to be stronger among men aged 65 years or older. Men with the YAP(+) genotype had higher levels of high density lipoprotein (HDL) cholesterol compared with those with the YAP(-) genotype, even after adjustment for age, body mass index, and daily ethanol and cigarette consumption (57.0+/-14.6 mg/dL vs. 54.2+/-14.2 mg/dL, nominal p=0.011, adjusted p=0.0062). However, these observed nominal associations disappeared after adjusting for multiple testing (Bonferroni). No association was detected between the YAP genotype and myocardial infarction. Similarly, none of the associations with M175 and SRY+465 attained significance when multiple testing was taken into account. In conclusion, Y chromosome polymorphisms (YAP, M175 and SRY+465) do not appear to be associated with cardiovascular risk factors in Japanese men. Studies using much larger sample sizes and/or additional independent samples will be required for definitive conclusions.
Collapse
Affiliation(s)
- Yumiko Hiura
- Department of Epidemiology, Research Institute, National Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Testosterone influences renal electrolyte excretion in SHR/y and WKY males. BMC PHYSIOLOGY 2008; 8:5. [PMID: 18366771 PMCID: PMC2329660 DOI: 10.1186/1472-6793-8-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 03/26/2008] [Indexed: 01/31/2023]
Abstract
BACKGROUND The Y-chromosome (Yc) and testosterone (T) increase blood pressure and may also influence renal electrolyte excretion. Therefore, the goal of this study was to determine if the Yc combined with T manipulation could influence renal Na and K excretion. METHODS To investigate the role of the Yc and T, consomic borderline hypertensive (SHR/y) and normotensive Wistar-Kyoto (WKY) rat strains were used (15 weeks) in three T treatment groups: castrate, castrate with T implant and gonadally intact males. Urine was collected (24 hrs at 15 weeks of age) for Na and K measurements by flame photometry. RT-PCR was used to demonstrate the presence of renal androgen receptor (AR) transcripts. Plasma T and aldosterone were measured by RIA. In another experiment the androgen receptor was blocked using flutamide in the diet. RESULTS Na and K excretion were decreased by T in SHR/y and WKY. AR transcripts were identified in SHR/y and WKY kidneys. Plasma aldosterone was decreased in the presence of T. Blockade of the AR resulted in a significant increase in Na excretion but not in K excretion in both SHR/y and WKY males. CONCLUSION T influences electrolyte excretion through an androgen receptor dependent mechanism. There was not a differential Yc involvement in electrolyte excretion between WKY and SHR/y males.
Collapse
|
28
|
Pilote L, Dasgupta K, Guru V, Humphries KH, McGrath J, Norris C, Rabi D, Tremblay J, Alamian A, Barnett T, Cox J, Ghali WA, Grace S, Hamet P, Ho T, Kirkland S, Lambert M, Libersan D, O'Loughlin J, Paradis G, Petrovich M, Tagalakis V. A comprehensive view of sex-specific issues related to cardiovascular disease. CMAJ 2007; 176:S1-44. [PMID: 17353516 PMCID: PMC1817670 DOI: 10.1503/cmaj.051455] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in women. In fact, CVD is responsible for a third of all deaths of women worldwide and half of all deaths of women over 50 years of age in developing countries. The prevalence of CVD risk factor precursors is increasing in children. Retrospective analyses suggest that there are some clinically relevant differences between women and men in terms of prevalence, presentation, management and outcomes of the disease, but little is known about why CVD affects women and men differently. For instance, women with diabetes have a significantly higher CVD mortality rate than men with diabetes. Similarly, women with atrial fibrillation are at greater risk of stroke than men with atrial fibrillation. Historically, women have been underrepresented in clinical trials. The lack of good trial evidence concerning sex-specific outcomes has led to assumptions about CVD treatment in women, which in turn may have resulted in inadequate diagnoses and suboptimal management, greatly affecting outcomes. This knowledge gap may also explain why cardiovascular health in women is not improving as fast as that of men. Over the last decades, mortality rates in men have steadily declined, while those in women remained stable. It is also becoming increasingly evident that gender differences in cultural, behavioural, psychosocial and socioeconomic status are responsible, to various degrees, for the observed differences between women and men. However, the interaction between sex-and gender-related factors and CVD outcomes in women remains largely unknown.
Collapse
Affiliation(s)
- Louise Pilote
- Division of Internal Medicine, The McGill University Health Centre Research Institute, McGill University, Montréal, Que.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ely D, Milsted A, Bertram J, Ciotti M, Dunphy G, Turner ME. Sry delivery to the adrenal medulla increases blood pressure and adrenal medullary tyrosine hydroxylase of normotensive WKY rats. BMC Cardiovasc Disord 2007; 7:6. [PMID: 17324261 PMCID: PMC1810322 DOI: 10.1186/1471-2261-7-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 02/26/2007] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Our laboratory has shown that a locus on the SHR Y chromosome increases blood pressure (BP) in the SHR rat and in WKY rats that had the SHR Y chromosome locus crossed into their genome (SHR/y rat). A potential candidate for this Y chromosome hypertension locus is Sry, a gene that encodes a transcription factor that is responsible for testes development and the Sry protein may affect other target genes. METHODS The following study examined if exogenous Sry would elevate adrenal Th, adrenal catecholamines, plasma catecholamines and blood pressure. We delivered 10 mug of either the expression construct, Sry1/pcDNA 3.1, or control vector into the adrenal medulla of WKY rats by electroporation. Blood pressure was measured by the tail cuff technique and Th and catecholamines by HPLC with electrochemical detection. RESULTS In the animals receiving Sry there were significant increases after 3 weeks in resting plasma NE (57%) and adrenal Th content (49%) compared to vector controls. BP was 30 mmHg higher in Sry injected animals (160 mmHg, p < .05) compared to vector controls (130 mmHg) after 2-3 weeks. Histological analysis showed that the electroporation procedure did not produce morphological damage. CONCLUSION These results provide continued support that Sry is a candidate gene for hypertension. Also, these results are consistent with a role for Sry in increasing BP by directly or indirectly activating sympathetic nervous system activity.
Collapse
Affiliation(s)
- Daniel Ely
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Amy Milsted
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Jason Bertram
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Mat Ciotti
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Gail Dunphy
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Monte E Turner
- Department of Biology, University of Akron, Akron, OH 44325 USA
| |
Collapse
|
30
|
Fujimoto S, Nomura M, Niki M, Motoba H, Ieishi K, Mori T, Ikefuji H, Ito S. Evaluation of stress reactions during upper gastrointestinal endoscopy in elderly patients: assessment of mental stress using chromogranin A. THE JOURNAL OF MEDICAL INVESTIGATION 2007; 54:140-5. [PMID: 17380025 DOI: 10.2152/jmi.54.140] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Salivary chromogranin A (CgA) was recently reported to be a useful marker of mental stress. In this study, mental stress during upper gastrointestinal endoscopy was evaluated by measuring salivary CgA levels in young and elderly subjects. METHODS The subjects were 9 healthy subjects aged less than 50 years (young group) and 15 subjects aged 70 years or older (elderly group). The heart rate, blood pressure, blood oxygen saturation level, and salivary CgA concentration were measured before and after upper gastrointestinal endoscopy and compared. RESULTS In the young group, the CgA level decreased significantly (p<0.05) during endoscopy compared with the level during rest before endoscopy. In the elderly group, it also decreased significantly (p<0.05) during endoscopy compared with the level during rest before endoscopy. However, CgA levels were significantly higher (p<0.05) in the elderly group than in the young group both before and during endoscopy. The decrease in CgA levels was significantly greater (p<0.05) in the young group than in the elderly group. CONCLUSIONS In this study, mental stress associated with endoscopy appears to be higher in elderly subjects than in younger subjects. Attention to complications due to increased stress is considered to be necessary in elderly patients during endoscopy.
Collapse
Affiliation(s)
- Sayuri Fujimoto
- Department of Digestive and Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Milsted A, Serova L, Sabban EL, Dunphy G, Turner ME, Ely DL. Regulation of tyrosine hydroxylase gene transcription by Sry. Neurosci Lett 2005; 369:203-7. [PMID: 15464265 DOI: 10.1016/j.neulet.2004.07.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/20/2004] [Indexed: 11/25/2022]
Abstract
Testes determining factor Sry is encoded by the Sry locus on the Y chromosome and may be involved in the regulation of blood pressure. Here we tested the hypothesis that Sry regulates transcription of tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines. Sry was found to be expressed in catecholaminergic regions, in male but not female rats. Co-transfection of PC12 cells with expression vector for Sry and the reporter construct [p5'TH(-773/+27)/Luc], containing 773 of the proximal nucleotides of the TH promoter directing luciferase reporter activity, led to elevation of reporter activity. The reporter activity of a shorter construct [p5'TH(-272/+27)/Luc] lacking putative Sry sites also responded to Sry. However, mutation of the AP1 site in the TH promoter greatly reduced induction by Sry, indicating that the regulation is primarily at this motif. The remaining, significantly increased expression with the mutated TH promoter construct may reflect Sry function at other sites in addition to the AP1 motif. These results reveal that Sry can regulate TH transcription and suggest that this may be one of the mechanisms of Sry mediated regulation of catecholamine biosynthesis in catecholaminergic neurons in males.
Collapse
Affiliation(s)
- Amy Milsted
- Department of Biology, University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Woodard GE, Zhao J, Rosado JA, Brown J. Patterning of renal cGMP production by the natriuretic peptide receptor type A and blood pressure in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2004; 119:45-51. [PMID: 15093696 DOI: 10.1016/j.regpep.2003.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/23/2003] [Accepted: 12/23/2003] [Indexed: 11/23/2022]
Abstract
Although important advances have been made over past decades in studying the mechanisms of hypertension, the nature of cellular signaling patterns involved and their relationship remain unclear. High cGMP production rates in isolated renal glomeruli have been presented as a characteristic of spontaneously hypertensive rat (SHR) even before the development of hypertension, which suggests that this event might be a cause of the increase in blood pressure. Using cross-breeding between SHR and WKY parental strains to obtain F1 and F2 hybrids, we have investigated the patterning of high blood pressure and cGMP production rates. We have found that, in the F2 population, the mean blood pressure and both basal and ANP(1-28)-stimulated cGMP production are similar to the parental SHR. In addition, we have found a positive correlation between blood pressure and high cGMP production rates in the F2 population. The higher cGMP production was not a consequence of hypertension, since in DOCA-salt hypertensive rats cGMP production was similar to that observed in normotensive WKY rats. These observations suggest that high cGMP production is a characteristic linked to hypertension. Finally, reciprocal crosses between the SHR and WKY parental strains showed that in the F1 population blood pressure but not cGMP production are associated with the Y chromosome.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
34
|
Sex chromosomes. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1569-2558(03)34001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Abstract
Globally, cardiovascular disease will continue causing most human deaths for the foreseeable future. The consistent gender gap in life span of approximately 5.6 yr in all advanced economies must derive from gender differences in age-specific cardiovascular death rates, which rise steeply in parallel for both genders but 5-10 yr earlier in men. The lack of inflection point at modal age of menopause, contrasting with unequivocally estrogen-dependent biological markers like breast cancer or bone density, makes estrogen protection of premenopausal women an unlikely explanation. Limited human data suggest that testosterone exposure does not shorten life span in either gender, and oral estrogen treatment increases risk of cardiovascular death in men as it does in women. Alternatively, androgen exposure in early life (perinatal androgen imprinting) may predispose males to earlier onset of atherosclerosis. Following the recent reevaluation of the estrogen-protection orthodoxy, empirical research has flourished into the role of androgens in the progression of cardiovascular disease, highlighting the need to better understand androgen receptor (AR) coregulators, nongenomic androgen effects, tissue-specific metabolic activation of androgens, and androgen sensitivity. Novel therapeutic targets may arise from understanding how androgens enhance early plaque formation and cause vasodilatation via nongenomic androgen effects on vascular smooth muscle, and how tissue-specific variations in androgen effects are modulated by AR coregulators as well as metabolic activation of testosterone to amplify (via 5alpha-reductase to form dihydrotestosterone acting on AR) or diversify (via aromatization to estradiol acting upon estrogen receptor alpha/beta) the biological effects of testosterone on the vasculature. Observational studies show that blood testosterone concentrations are consistently lower among men with cardiovascular disease, suggesting a possible preventive role for testosterone therapy, which requires critical evaluation by further prospective studies. Short-term interventional studies show that testosterone produces a modest but consistent improvement in cardiac ischemia over placebo, comparable to the effects of existing antianginal drugs. By contrast, testosterone therapy has no beneficial effects in peripheral arterial disease but has not been evaluated in cerebrovascular disease. Erectile dysfunction is most frequently caused by pelvic arterial insufficiency due to atherosclerosis, and its sentinel relationship to generalized atherosclerosis is insufficiently appreciated. The commonality of risk factor patterns and mechanisms (including endothelial dysfunction) suggests that the efficacy of antiatherogenic therapy is an important challenge with the potential to enhance men's motivation for prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Peter Y Liu
- ANZAC Research Institute, Concord Hospital and Department of Medicine, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
36
|
Abstract
Being male or female can make a vital difference to many important biological functions and can lead to disparities in health. The Y chromosome carries the sex-determining sex reversal Y (SRY) gene and recent studies show that it might also harbor genes that have important biological functions other than sex determination. One such example is the emerging evidence from animal models and humans that supports the presence of cardiovascular genes on the Y chromosome. A significant amount of work remains to identify these genes; however, we report here observations linking the Y chromosome to hypertension, which could explain the higher incidence of cardiovascular disease in males compared with females.
Collapse
Affiliation(s)
- Fadi J Charchar
- BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G11 6NT, Scotland, UK
| | | | | | | | | |
Collapse
|
37
|
Sharma U, Dunphy G, Ely D. Testosterone increased blood pressure and decreased renal tyrosine hydroxylase activity in SHR/y and Wistar-Kyoto rats. Clin Exp Hypertens 2002; 24:141-53. [PMID: 11883789 DOI: 10.1081/ceh-120003197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The present study evaluated the association between a testosterone-induced elevation in blood pressure (BP) and renal tyrosine hydroxylase activity in SHR/y and Wistar-Kyoto male rats. The SHR/y rat is a consomic strain having the Y chromosome of the Spontaneously Hypertensive Rat and autosomes and the X chromosome from normotensive Wistar-Kyoto (WKY). Rats were castrated at 4-6 weeks and divided into control and sham groups (n = 6/group) with testosterone and blank sham implants respectively. BP and blood were taken every 2 weeks for estimation of serum testosterone and catecholamines. The animals were terminated at 16-18 weeks and kidneys were removed for the estimation of tyrosine hydroxylase activity. The testosterone treated rats had higher BP, plasma testosterone levels, kidney weights, but lower renal tyrosine hydroxylase activity than the sham treated controls. Hence, chronic testosterone treatment inhibits renal tyrosine hydroxylase activity in WKY and SHR/y rats.
Collapse
Affiliation(s)
- U Sharma
- Department of Biology, University of Akron, OH 44325-3908, USA
| | | | | |
Collapse
|
38
|
Caplea A, Seachrist D, Daneshvar H, Dunphy G, Ely D. Noradrenergic content and turnover rate in kidney and heart shows gender and strain differences. J Appl Physiol (1985) 2002; 92:567-71. [PMID: 11796665 DOI: 10.1152/japplphysiol.00557.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to compare strain and gender differences in kidney and heart norepinephrine (NE) content and turnover rate in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR, SHR/a, and SHR/y). Our laboratory has shown that the Y chromosome has a significant effect on blood pressure in the SHR model of hypertension through the use of two new rat stains, SHR/a and SHR/y, to study the Y chromosome. SHR/a have a SHR autosomal genetic background with a WKY Y chromosome, whereas the SHR/y rats have a WKY autosomal genetic background with a SHR Y chromosome. Tissues were homogenized after alpha-methyl-DL-p-tyrosine injection and analyzed for NE. The male kidney NE content was significantly lower in the WKY compared with the SHR, SHR/y, and SHR/a. Kidney and heart NE content was significantly higher in females compared with males in all strains except the SHR/y. The WKY and SHR/y females had significantly lower kidney NE turnover rates, and the SHR and SHR/a females had significantly higher kidney NE turnover rates than strain-matched males. This study suggests both a strain and gender difference in sympathetic nervous system activity through noradrenergic neurotransmission.
Collapse
Affiliation(s)
- Ann Caplea
- Department of Biology, The University of Akron, Akron, Ohio 44325-3908, USA
| | | | | | | | | |
Collapse
|
39
|
Caplea A, Seachrist D, Dunphy G, Ely D. Sodium-induced rise in blood pressure is suppressed by androgen receptor blockade. Am J Physiol Heart Circ Physiol 2001; 280:H1793-801. [PMID: 11247793 DOI: 10.1152/ajpheart.2001.280.4.h1793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to test the hypothesis that 1) a high Na (HNa, 3%) diet would increase blood pressure (BP) in male Wistar-Kyoto (WKY) and spontaneously hypertensive Y chromosome (SHR/y) rat strains in a territorial colony; 2) sympathetic nervous system (SNS) blockade using clonidine would lower BP on a HNa diet; and 3) prepubertal androgen receptor blockade with flutamide would lower BP on a HNa diet. A 2 x 4 factorial design used rat strains (WKY, SHR/y) and treatment [0.3% normal Na (NNa), 3% HNa, HNa/clonidine, and HNa/flutamide]. BP increased in both strains on the HNa diet (P < 0.0001). There was no significant decrease in BP in either strain with clonidine treatment. Androgen receptor blockade with flutamide significantly decreased BP in both strains (P < 0.0001) and normalized BP in the SHR/y colony. Neither heart rate nor activity could explain these BP differences. In conclusion, a Na sensitivity was observed in both strains, which was reduced to normotensive values by androgen blockade but not by SNS blockade.
Collapse
Affiliation(s)
- A Caplea
- Department of Biology, The University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | |
Collapse
|
40
|
Seachrist D, Dunphy G, Daneshvar H, Caplea A, Milsted A, Ely D. Testosterone increases blood pressure and cardiovascular and renal pathology in spontaneously hypertensive rats. Blood Press 2001; 9:227-38. [PMID: 11055476 DOI: 10.1080/080370500439128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The objective of this paper was to test the hypothesis that testosterone (T) raises blood pressure (BP), which is associated with increased coronary adventitial collagen, whereas the hemodynamic force of BP increases the coronary media:lumen ratio. Five treatment groups of spontaneously hypertensive rat (SHR) were established (n = 8-10 per group): controls; hydralazine (HYZ); castration; castration + HYZ; and castration + HYZ + T + captopril. At 12 weeks of age, the castrate + HYZ group was divided so that the mean BP was the same in both groups (162 mmHg). Both groups continued to receive HYZ treatment; however one group received T implants. Also, at 12 weeks of age the castrate + HYZ + T + captopril group received T implants. BP in the HYZ group was reduced compared with controls (192 mmHg vs 218 mmHg, p < 0.01). Castration lowered BP to 170 mmHg (p < 0.01) compared with controls. However, T implants increased BP by 15 mmHg (p < 0.02) in the castrate + HYZ group and by 44 mmHg in the castrate + HYZ + captopril group (p < 0.01). Captopril in combination with HYZ significantly reduced BP compared with controls but T replacement increased BP and coronary collagen deposition in spite of HYZ and captopril treatment.
Collapse
Affiliation(s)
- D Seachrist
- Department of Biology, The University of Akron, Ohio 44325-3908, USA
| | | | | | | | | | | |
Collapse
|
41
|
Pitzalis MV, Iacoviello M, Massari F, Guida P, Romito R, Forleo C, Vulpis V, Rizzon P. Influence of gender and family history of hypertension on autonomic control of heart rate, diastolic function and brain natriuretic peptide. J Hypertens 2001; 19:143-148. [PMID: 11204295 DOI: 10.1097/00004872-200101000-00019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To verify in a unitary view whether autonomic control of heart rate and cardiac structure and function are modified early in offspring of hypertensive families. METHODS AND RESULTS We selected 87 age- and sex-matched young normotensive subjects with (n = 45) and without (n = 42) a family history of hypertension who underwent evaluations of arterial pressure, time-domain parameters of autonomic heart rate control (24-h ECG monitoring), spectral baroreflex sensitivity, left ventricular geometry and function (echo-Doppler) and plasma brain natriuretic peptide levels (BNP). The group with a family history of hypertension significantly differed from their counterparts for systolic pressure (119 +/- 11 versus 114 +/- 9 mmHg, P< 0.05), heart rate (RR interval, 766 +/- 64 versus 810 +/- 93 ms, P< 0.05), heart rate variability [the standard deviation of normal RR intervals (SDNN), 147 +/- 29 versus 171 +/- 33 ms, P < 0.051, diastolic function (isovolumetric relaxation time, 65 +/- 9 versus 60 +/- 8 ms, P< 0.05) and BNP (23 +/- 13 versus 37 +/- 10 pg/ml, P< 0.05). Baroreflex sensitivity values did not differ between the two groups. When gender was considered, all the above-mentioned measures, as well as baroreflex sensitivity, were significantly different between males with and without a family history of hypertension but not between females, except for BNP, which was lower in males and females with a history of hypertension (males, 24 +/- 11 versus 38 +/- 8 pg/ml, P< 0.01; females 21 +/- 14 versus 36 +/- 13 pg/ml, P < 0.05). CONCLUSIONS Male, but not female, hypertensive offspring have modified diastolic function and autonomic control of heart rate; BNP is the only parameter able to characterize hypertensive offspring independently from the influence of gender. This provides the hypothesis that the impaired production of this hormone could play a primary role in the pre-hypertensive state.
Collapse
Affiliation(s)
- M V Pitzalis
- Institute of Cardiology, University of Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Caplea A, Seachrist D, Dunphy G, Ely D. SHR Y chromosome enhances the nocturnal blood pressure in socially interacting rats. Am J Physiol Heart Circ Physiol 2000; 279:H58-66. [PMID: 10899041 DOI: 10.1152/ajpheart.2000.279.1.h58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to test the hypothesis that nocturnal mean arterial pressure (MAP), heart rate (HR), and activity would be increased in 1) colony over individually caged rats and 2) the spontaneously hypertensive rat (SHR) Y chromosome strain (SHR/y colony) compared with Wistar-Kyoto (WKY) rats. MAP, HR, and activity were monitored using radiotelemetry. The nocturnal MAP rise expressed as the percentage change in MAP from light to dark was increased (P < 0.05) in the SHR/y colony. The SHR Y chromosome increased MAP in both the colony and caged groups compared with WKY (P < 0.001). The SHR/y colony animals spent 23% of a 24-h period at a MAP >120 mmHg, whereas the WKY colony animals spent 2% of a 24-h period in this range. The MAP of the SHR/y colony on clonidine was reduced (P < 0.001) to WKY baseline values. Activity but not HR was increased (P < 0.01) in the WKY and SHR/y colonies compared with caged animals. In conclusion, colony housing and the SHR Y chromosome increased MAP compared with individually caged housing.
Collapse
Affiliation(s)
- A Caplea
- Department of Biology, The University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | |
Collapse
|
43
|
Snyder VL, Turner M, Li PK, El-Sharkawy A, Dunphy G, Ely DL. Tissue steroid sulfatase levels, testosterone and blood pressure. J Steroid Biochem Mol Biol 2000; 73:251-6. [PMID: 11070353 DOI: 10.1016/s0960-0760(00)00075-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study was to examine the response of tissue steroid sulfatase (STS) levels in hypertensive rat strains, when blood pressure (BP) was lowered by different techniques at an early age. A 4x3 factoral design was used, in which males (n=6-8) from four rat strains (WKY, SHR, SHR/a, SHR/y) at 4 weeks of age, were randomly assigned to one of three treatment groups: a hydralazine group, a castration group and a control group. BP was measured by the tail cuff technique and verified by tail catheter at the end of the experiment. BP was significantly reduced by both treatments in the hypertensive strains (SHR, SHR/a, SHR/y) compared to respective control groups. At 15-17 weeks of age, animals were euthanized and heart, kidney, adrenal glands and liver were assayed for STS levels. The major trend in tissue STS was that castration significantly lowered: adrenal, heart and liver STS in specific strains. In conclusion, castration and hydralazine significantly lowered the BP in the hypertensive rat strains, but only castration consistently lowered STS levels across strains implicating testosterone as a regulator of tissue STS.
Collapse
Affiliation(s)
- V L Snyder
- Department of Biology, The University of Akron, 185 S. Forge Street, Akron, OH 44325-3908, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wiley DH, Dunphy G, Daneshvar H, Salisbury R, Neeki M, Ely DL. Neonatal sympathectomy reduces adult blood pressure and cardiovascular pathology in Y chromosome consomic rats. Blood Press 2000; 8:300-7. [PMID: 10803491 DOI: 10.1080/080370599439526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The hypothesis was tested that the sympathetic nervous system (SNS) developmentally influences circulating testosterone (T), systolic blood pressure (SBP) and cardio-renal pathology in SHR/y animals. A sympathoplegic drug, guanethidine, and an antibody to nerve growth factor were administered to WKY and borderline hypertensive SHR/y male rats (n = 20/group) for the first 3 weeks of life; control groups (n = 20/group) received saline. SBP, serum T and luteinizing hormone (LH) were measured. SBP in the WKY and SHR/y sympathectomy (sympx) groups decreased 10mmHg (p < 0.001) and 50mmHg (p < 0.001), respectively, when compared to their control groups. Serum T levels in the sympx WKY group were lower (p < 0.01) than those in controls, and the rise of T typically observed in SHR/y from weeks 6-8 was delayed in the sympx SHR/y group, similar to the pattern in WKY. Serum LH levels were increased in the sympx WKY group, but not in the SHR/y group. Sympx caused a greater reduction in renal glomerular changes (p < 0.01), coronary artery collagen deposition (p < 0.01) and myocardial fibrosis (p < 0.01) in SHR/y than WKY rats. In conclusion, the SHR Y chromosome has a locus that enhances SNS activity, which can raise SBP and result in renal and cardiovascular tissue damage.
Collapse
Affiliation(s)
- D H Wiley
- Department of Biology, University of Akron, Ohio 44325-3908, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The Y chromosome from spontaneously hypertensive rats (SHR) has a locus that raises blood pressure 20-25 mmHg. Associated with the SHR Y chromosome effect is a 4-week earlier pubertal rise of testosterone and dependence upon the androgen receptor for the full blood pressure effect. Several indices of enhanced sympathetic nervous system (SNS) activity are also associated with the SHR Y chromosome. Blockade of SNS outflow reduced the blood pressure effect. Salt sensitivity was increased by the Y chromosome as was salt appetite which was SNS dependent. A strong correlation (r = 0. 57, P<0.001) was demonstrable between plasma testosterone and angiotensin II. Coronary collagen increased with blood pressure and the presence of the SHR Y chromosome. A promising candidate gene for the Y effect is the Sry locus (testis determining factor), a transcription factor which may also have other functions.
Collapse
Affiliation(s)
- D Ely
- Department of Biology, University of Akron, OH 44325-3908, USA.
| | | | | |
Collapse
|
46
|
Valigora SD, Lib PK, Dunphy G, Turner M, Ely DL. Steroid sulfatase inhibitor alters blood pressure and steroid profiles in hypertensive rats. J Steroid Biochem Mol Biol 2000; 73:113-22. [PMID: 10925210 DOI: 10.1016/s0960-0760(00)00062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Our hypothesis is that the steroid sulfatase gene (Sts) may indirectly contribute to the modulation of blood pressure (BP) in rats with genetic hypertension. The steroid sulfatase enzyme (STS) catalyzes the conversion of estrone sulfate, dehydroepiandrosterone sulfate, cholesterol sulfate and glucocorticoid sulfates to their active nonconjugated forms. This causes the elevation of biologically active steroids, such as glucocorticoids, mineralcorticoids as well as testosterone, which may lead to increased BP. The main objective was to examine the effects of a steroid sulfatase inhibitor on blood pressure and steroid levels in rats with hypertensive genetic backgrounds. Three treatment groups, 5-15 weeks of age were used: controls, estrone and STS inhibitor (estrone-3-O-sulfamate), (n=8 per group). BP was taken weekly by tail cuff, and serum testosterone (T), estrogens (E), and plasma corticosterone (C) levels were measured by radioimmunoassay. BP was significantly reduced by the STS inhibitor in the strains with genetically elevated BP. Also the inhibitor alone significantly reduced plasma corticosterone in all strains compared to estrone treatment with a concomitant as well as significant rise in estrogens and reduction in testosterone and body weight.
Collapse
Affiliation(s)
- S D Valigora
- Department of Biology, The University of Akron, OH 44325-3908, USA
| | | | | | | | | |
Collapse
|
47
|
Ely D, Herman M, Ely L, Barrett L, Milsted A. Sodium intake is increased by social stress and the Y chromosome and reduced by clonidine. Am J Physiol Regul Integr Comp Physiol 2000; 278:R407-12. [PMID: 10666142 DOI: 10.1152/ajpregu.2000.278.2.r407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objectives were to determine 1) if female rats have higher Na intake than males and if social stress increases Na intake, 2) if the sympathetic nervous system (SNS) mediates the stress effects and the gender effect, and 3) if the Y chromosome (Yc) from a hypertensive father increases Na intake. Four rat strains (n = 10/group) of both sexes were used: 1) Wistar Kyoto normotensive (WKY), 2) an F(16) backcross with a Yc from a hypertensive father (SHR/y), 3) spontaneously hypertensive rat (SHR), and 4) an F(16) backcross with a Yc from a normotensive father (SHR/a). Females showed greater baseline Na intake than males (hypertensive strains), intruder stress increased Na intake, and clonidine decreased Na intake, but not in WKY or SHR females. SHR/y males had higher baseline Na intake compared with WKY males. In conclusion, the higher Na intake in females during baseline and stress was partially mediated through the SNS in hypertensive strains and the SHR Yc was partially responsible for the increased Na intake in SHR/y and SHR males compared with WKY.
Collapse
Affiliation(s)
- D Ely
- Department of Biology, The University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | | | |
Collapse
|
48
|
Ramos A, Mellerin Y, Mormède P, Chaouloff F. A genetic and multifactorial analysis of anxiety-related behaviours in Lewis and SHR intercrosses. Behav Brain Res 1998; 96:195-205. [PMID: 9821556 DOI: 10.1016/s0166-4328(98)00023-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lewis (LEW) and spontaneously hypertensive rats (SHR) have been shown to differ in a series of fear-related behaviours measured in different anxiety/emotionality tests. In the present study, we have investigated some of the genetic mechanisms underlying these differences. To this end, male and female rats from the two inbred strains were crossed to produce two parental (LEW and SHR), two F1 (LEW or SHR mother), and two F2 (LEW or SHR grandmother) groups. All rats were tested in the elevated plus-maze and in the open field, besides being characterised for systolic blood pressure (BP). LEW rats approached the open arms of the plus-maze and the central area of the open field less than SHRs. The two strains also differed in their BP (SHR > LEW). LEW/SHR differences were found to be due to direct effects of the genes, rather than to indirect maternal and grand-maternal effects. Central locomotion in the open field was shown to be the most heritable of all the traits considered herein. A factor analysis on the segregating F2 population produced three independent factors. The first one was associated to measures of anxiety from the elevated plus-maze, and the second to measures of locomotion in novel environments. Factor scores revealed that the parental strains differ in relation to the first but not to the second factor. This study demonstrates the usefulness of coupling genetic and multifactorial methods to investigate behavioural traits and it confirms LEW and SHR strains as an interesting genetic tool for the study of anxiety.
Collapse
Affiliation(s)
- A Ramos
- Neurogénétique et Stress, INSERM U471, IRNA, Institut François Magendie, Bordeaux, France.
| | | | | | | |
Collapse
|
49
|
Abstract
Hypertension can be classified as either Mendelian hypertension or essential hypertension, on the basis of the mode of inheritance. The Mendelian forms of hypertension develop as a result of a single gene defect, and as such are inherited in a simple Mendelian manner. In contrast, essential hypertension occurs as a consequence of a complex interplay of a number of genetic alterations and environmental factors, and therefore does not follow a clear pattern of inheritance, but exhibits familial aggregation of cases. In this review, we discuss recent advances in understanding the pathogenesis of both types of hypertension. We review the causal gene defects identified in several monogenic forms of hypertension, and we discuss their possible relevance to the development of essential hypertension. We describe the current approaches to identifying the genetic determinants of human essential hypertension and rat genetic models of hypertension, and summarise the results obtained to date using these methods. Finally, we discuss the significance of environmental factors, such as stress and diet, in the pathogenesis of hypertension, and we describe their interactions with specific hypertension susceptibility genes.
Collapse
Affiliation(s)
- P Hamet
- Centre de Recherche du C.H.U.M., Pavillon Hôtel-Dieu, Université de Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
50
|
Borovsky V, Herman M, Dunphy G, Caplea A, Ely D. CO2 asphyxia increases plasma norepinephrine in rats via sympathetic nerves. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R19-22. [PMID: 9458893 DOI: 10.1152/ajpregu.1998.274.1.r19] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this study was to determine whether the plasma norepinephrine (NE) increase in rats exposed to CO2 asphyxia was due to adrenal gland release or sympathetic nerve ending (SNS) release. Plasma NE was measured by high-performance liquid chromatography in hypertensive and normotensive rats using the following protocol: control session, CO2 exposure, N2 exposure, reserpine + CO2, and adrenalectomy + CO2. Four strains of male and female rats were used: spontaneously hypertensive rats, Wistar-Kyoto rats, and two congenic strains with different Y chromosomes. The same rats were used throughout the experiment (n = 80). Blood pressure measured by aortic telemetry increased approximately 50-60 mmHg in response to CO2 in all strains. CO2 increased NE 6-10x in all strains and both genders. N2 produced a significant increase in NE (73% of CO2 response). Reserpine significantly decreased (67%) plasma NE after CO2. Adrenalectomy did not significantly reduce the NE response to CO2. In conclusion, the increase in plasma NE after CO2 was associated with SNS release and not adrenal medullary release, was mainly due to hypoxia, and was not a specific response to CO2.
Collapse
Affiliation(s)
- V Borovsky
- Department of Biology, University of Akron, Ohio 44325-3908, USA
| | | | | | | | | |
Collapse
|