1
|
Xiao W, Shrimali N, Vigder N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched-chain α-ketoacids aerobically activate HIF1α signalling in vascular cells. Nat Metab 2024; 6:2138-2156. [PMID: 39472756 PMCID: PMC11786732 DOI: 10.1038/s42255-024-01150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of biological processes in hypoxia. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in normal (primary) cells, remain elusive. Here we show that HIF1α signalling is activated in several human primary vascular cells in normoxia and in vascular smooth muscle cells of normal human lungs. Mechanistically, aerobic HIF1α activation is mediated by paracrine secretion of three branched-chain α-ketoacids (BCKAs), which suppress PHD2 activity via direct inhibition and via LDHA-mediated generation of L-2-hydroxyglutarate. BCKA-mediated HIF1α signalling activation stimulated glycolytic activity and governed a phenotypic switch of pulmonary artery smooth muscle cells, which correlated with BCKA metabolic dysregulation and pathophenotypic changes in pulmonary arterial hypertension patients and male rat models. We thus identify BCKAs as previously unrecognized signalling metabolites that aerobically activate HIF1α and that the BCKA-HIF1α pathway modulates vascular smooth muscle cell function, an effect that may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing, China
| | - Nishith Shrimali
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niv Vigder
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Huamei He
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samantha J Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bradley M Wertheim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Arons
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Karamanova N, Morrow KT, Maerivoet A, Madine J, Li M, Migrino RQ. Medin Induces Pro-Inflammatory Activation of Human Brain Vascular Smooth Muscle Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613366. [PMID: 39345549 PMCID: PMC11429804 DOI: 10.1101/2024.09.16.613366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Medin is one of the most common amyloidogenic proteins and accumulates in the vasculature with aging. Vascular medin accumulation is associated with Alzheimer's disease, vascular dementia and aortic aneurysms. Medin impairs smooth muscle-dependent vasodilation in isolated human brain cerebral arteries. The role of medin in vascular smooth muscle (VSMC) activation is unknown. We aim to evaluate the effects of medin on human brain VSMC activation. Methods VSMCs were exposed to physiologic doses of medin (0.5, 1 and 5 µM) without or with small molecule nuclear factor-κB (NFκB) inhibitor RO106-9920 (10 µM) for 20 hours. Polymerase chain reaction, Western blot/enzyme-linked immunosorbent assay were used to quantify gene and protein expressions/secretions, respectively, of pro-inflammatory factors (interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1) and structural and enzyme proteins associated with VSMC phenotypic transformation (smooth muscle actin alpha 2 (ACTA2), myosin heavy chain 11 (MYH11) and NADPH oxidase 4 (NOX4)). Results Medin exposure increased VSMC gene expression and protein secretion of IL-6, IL-8 and MCP-1 (protein secretion 46.0±12.8x, 20.2±4.1x and 8.7±3.1x, respectively, medin 5 µM versus vehicle, all p<0.05). There was no change in gene or protein expressions of ACTA2, MYH11 and NOX4. Co-treatment with RO106-9920 reduced medin-induced increases in IL-6 and IL-8 and a trend towards reduced MCP-1 secretion. Conclusions Medin induced pro-inflammatory activation of human brain VSMCs that is mediated, at least in part, by NFκB. Acute medin treatment did not alter structural proteins involved in VSMC phenotypic transformation. The findings support medin as a potential novel mediator of and therapeutic target for vascular aging pathology.
Collapse
|
3
|
Xiao W, Shrimali N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched chain α-ketoacids aerobically activate HIF1α signaling in vascular cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.595538. [PMID: 38853866 PMCID: PMC11160772 DOI: 10.1101/2024.05.29.595538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of numerous biological processes under low oxygen tensions. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in primary cells remain elusive. Here, we show that HIF1α signaling is activated in several human primary vascular cells under ambient oxygen tensions, and in vascular smooth muscle cells (VSMCs) of normal human lung tissue, which contributed to a relative resistance to further enhancement of glycolytic activity in hypoxia. Mechanistically, aerobic HIFα activation is mediated by paracrine secretion of three branched chain α-ketoacids (BCKAs), which suppress prolyl hydroxylase domain-containing protein 2 (PHD2) activity via direct inhibition and via lactate dehydrogenase A (LDHA)-mediated generation of L-2-hydroxyglutarate (L2HG). Metabolic dysfunction induced by BCKAs was observed in the lungs of rats with pulmonary arterial hypertension (PAH) and in pulmonary artery smooth muscle cells (PASMCs) from idiopathic PAH patients. BCKA supplementation stimulated glycolytic activity and promoted a phenotypic switch to the synthetic phenotype in PASMCs of normal and PAH subjects. In summary, we identify BCKAs as novel signaling metabolites that activate HIF1α signaling in normoxia and that the BCKA-HIF1α pathway modulates VSMC function and may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Nishith Shrimali
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William M. Oldham
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Huamei He
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Samantha J. Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley M. Wertheim
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elena Arons
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jane A. Leopold
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Klessinger D, Mamazhakypov A, Glaeser S, Emig R, Peyronnet R, Meier L, Proelss K, Marenne K, Smolka C, Grundmann S, Pankratz F, Esser PR, Moser M, Zhou Q, Esser JS. Divergent and Compensatory Effects of BMP2 and BMP4 on the VSMC Phenotype and BMP4's Role in Thoracic Aortic Aneurysm Development. Cells 2024; 13:735. [PMID: 38727271 PMCID: PMC11083443 DOI: 10.3390/cells13090735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) play a key role in aortic aneurysm formation. Bone morphogenetic proteins (BMPs) have been implicated as important regulators of VSMC phenotype, and dysregulation of the BMP pathway has been shown to be associated with vascular diseases. The aim of this study was to investigate for the first time the effects of BMP-4 on the VSMC phenotype and to understand its role in the development of thoracic aortic aneurysms (TAAs). Using the angiotensin II (AngII) osmotic pump model in mice, aortas from mice with VSMC-specific BMP-4 deficiency showed changes similar to AngII-infused aortas, characterised by a loss of contractile markers, increased fibrosis, and activation of matrix metalloproteinase 9. When BMP-4 deficiency was combined with AngII infusion, there was a significantly higher rate of apoptosis and aortic dilatation. In vitro, VSMCs with mRNA silencing of BMP-4 displayed a dedifferentiated phenotype with activated canonical BMP signalling. In contrast, BMP-2-deficient VSMCs exhibited the opposite phenotype. The compensatory regulation between BMP-2 and BMP-4, with BMP-4 promoting the contractile phenotype, appeared to be independent of the canonical signalling pathway. Taken together, these results demonstrate the impact of VSMC-specific BMP-4 deficiency on TAA development.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Angiotensin II/pharmacology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Apoptosis/drug effects
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 4/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Daniel Klessinger
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany;
| | - Sophie Glaeser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (R.E.); (R.P.)
- CIBSS Centre for Integrative Biological Signalling Studies, Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Remi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (R.E.); (R.P.)
| | - Lena Meier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Kora Proelss
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Katia Marenne
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Christian Smolka
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Sebastian Grundmann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Franziska Pankratz
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Philipp R. Esser
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany;
| | - Martin Moser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Qian Zhou
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Jennifer S. Esser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| |
Collapse
|
5
|
Chen Y, Wu Y, Feng W, Luo X, Xiao B, Ding X, Gu Y, Lu Y, Yu Y. Vav2 promotes ductus arteriosus anatomic closure via the remodeling of smooth muscle cells by Rac1 activation. J Mol Med (Berl) 2023; 101:1567-1585. [PMID: 37804474 DOI: 10.1007/s00109-023-02377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
The ductus arteriosus (DA), bridging the aorta and pulmonary artery, immediately starts closing after birth. Remodeling of DA leads to anatomic obstruction to prevent repatency. Several histological changes, especially extracellular matrices (ECMs) deposition and smooth muscle cells (SMCs) migration bring to anatomic closure. The genetic etiology and mechanism of DA closure remain elusive. We have previously reported a novel copy number variant containing Vav2 in patent ductus arteriosus (PDA) patients, but its specific role in DA closure remains unknown. The present study revealed that the expression of Vav2 was reduced in human patent DA, and it was less enrichment in the adjacent aorta. Matrigel experiments demonstrated that Vav2 could promote SMC migration from PDA patient explants. Smooth muscle cells with Vav2 overexpression also presented an increased capacity in migration and downregulated contractile-related proteins. Meanwhile, SMCs with Vav2 overexpression exhibited higher expression of collagen III and lessened protein abundance of lysyl oxidase, and both changes are beneficial to DA remodeling. Overexpression of Vav2 resulted in increased activity of Rac1, Cdc42, and RhoA in SMCs. Further investigation noteworthily found that the above alterations caused by Vav2 overexpression were particularly reversed by Rac1 inhibitor. A heterozygous, rare Vav2 variant was identified in PDA patients. Compared with the wild type, this variant attenuated Vav2 protein expression and weakened the activation of downstream Rac1, further impairing its functions in SMCs. In conclusion, Vav2 functions as an activator for Rac1 in SMCs to promote SMCs migration, dedifferentiation, and ECMs production. Deleterious variant potentially induces Vav2 loss of function, further providing possible molecular mechanisms about Vav2 in PDA pathogenesis. These findings enriched the current genetic etiology of PDA, which may provide a novel target for prenatal diagnosis and treatment. KEY MESSAGES: Although we have proposed the potential association between Vav2 and PDA incidence through whole exome sequencing, the molecular mechanisms underlying Vav2 in PDA have never been reported. This work, for the first time, demonstrated that Vav2 was exclusively expressed in closed DAs. Moreover, we found that Vav2 participated in the process of anatomic closure by mediating SMCs migration, dedifferentiation, and ECMs deposition through Rac1 activation. Our findings first identified a deleterious Vav2 c.701C>T variant that affected its function in SMCs by impairing Rac1 activation, which may lead to PDA defect. Vav2 may become an early diagnosis and an effective intervention target for PDA clinical therapy.
Collapse
Affiliation(s)
- Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yizhuo Wu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Weiqi Feng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xueyang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Bing Xiao
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiaowei Ding
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yongjia Gu
- Department of Stomatology, Shidong Hospital of Yangpu District, Shanghai, 200438, China.
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Assoian RK, Xu T, Roberts E. Arterial mechanics, extracellular matrix, and smooth muscle differentiation in carotid arteries deficient for Rac1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567271. [PMID: 38014108 PMCID: PMC10680774 DOI: 10.1101/2023.11.15.567271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Stiffening of the extracellular matrix (ECM) occurs after vascular injury and contributes to the injury-associated proliferation of vascular smooth muscle cells (SMCs). ECM stiffness also activates Rac-GTP, and SMC Rac1 deletion strongly reduces the proliferative response to injury in vivo . However, ECM stiffening and Rac can affect SMC differentiation, which, in itself, can influence ECM stiffness and proliferation. Here, we used pressure myography and immunofluorescence analysis of mouse carotid arteries to ask if the reported effect of Rac1 deletion on in vivo SMC proliferation might be secondary to a Rac effect on basal arterial stiffness or SMC differentiation. The results show that Rac1 deletion does not affect the abundance of arterial collagen-I, -III, or -V, the integrity of arterial elastin, or the arterial responses to pressure, including the axial and circumferential stretch-strain relationships that are assessments of arterial stiffness. Medial abundance of alpha-smooth muscle actin and smooth muscle-myosin heavy chain, markers of the SMC differentiated phenotype, were not statistically different in carotid arteries containing or deficient in Rac1. Nor did Rac1 deficiency have a statistically significant effect on carotid artery contraction to KCl. Overall, these data argue that the inhibitory effect of Rac1 deletion on in vivo SMC proliferation reflects a primary effect of Rac1 signaling to the cell cycle rather than a secondary effect associated with altered SMC differentiation or arterial stiffness.
Collapse
|
7
|
Liu H, Dong X, Jia K, Yuan B, Ren Z, Pan X, Wu J, Li J, Zhou J, Wang RX, Qu L, Sun J, Pan LL. Protein arginine methyltransferase 5-mediated arginine methylation stabilizes Kruppel-like factor 4 to accelerate neointimal formation. Cardiovasc Res 2023; 119:2142-2156. [PMID: 37201513 DOI: 10.1093/cvr/cvad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/28/2023] [Accepted: 03/01/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS Accumulating evidence supports the indispensable role of protein arginine methyltransferase 5 (PRMT5) in the pathological progression of several human cancers. As an important enzyme-regulating protein methylation, how PRMT5 participates in vascular remodelling remains unknown. The aim of this study was to investigate the role and underlying mechanism of PRMT5 in neointimal formation and to evaluate its potential as an effective therapeutic target for the condition. METHODS AND RESULTS Aberrant PRMT5 overexpression was positively correlated with clinical carotid arterial stenosis. Vascular smooth muscle cell (SMC)-specific PRMT5 knockout inhibited intimal hyperplasia with an enhanced expression of contractile markers in mice. Conversely, PRMT5 overexpression inhibited SMC contractile markers and promoted intimal hyperplasia. Furthermore, we showed that PRMT5 promoted SMC phenotypic switching by stabilizing Kruppel-like factor 4 (KLF4). Mechanistically, PRMT5-mediated KLF4 methylation inhibited ubiquitin-dependent proteolysis of KLF4, leading to a disruption of myocardin (MYOCD)-serum response factor (SRF) interaction and MYOCD-SRF-mediated the transcription of SMC contractile markers. CONCLUSION Our data demonstrated that PRMT5 critically mediated vascular remodelling by promoting KLF4-mediated SMC phenotypic conversion and consequently the progression of intimal hyperplasia. Therefore, PRMT5 may represent a potential therapeutic target for intimal hyperplasia-associated vascular diseases.
Collapse
Affiliation(s)
- He Liu
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Kunpeng Jia
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Baohui Yuan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jianjin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jiahong Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, P. R. China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| |
Collapse
|
8
|
Mao J, Ma L. Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:750-757. [PMID: 36915980 PMCID: PMC10262008 DOI: 10.3724/zdxbyxb-2022-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022]
Abstract
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) is a key factor in pulmonary vascular remodeling. Inhibiting or reversing phenotypic transformation can inhibit pulmonary vascular remodeling and control the progression of hypoxic pulmonary hypertension. Recent studies have shown that hypoxia causes intracellular peroxide metabolism to induce oxidative stress, induces multi-pathway signal transduction, including those related to autophagy, endoplasmic reticulum stress and mitochondrial dysfunction, and also induces non-coding RNA regulation of cell marker protein expression, resulting in PASMCs phenotypic transformation. This article reviews recent research progress on mechanisms of hypoxia-induced phenotypic transformation of PASMCs, which may be helpful for finding targets to inhibit phenotypic transformation and to improve pulmonary vascular remodeling diseases such as hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Jiaqi Mao
- 1. Medical Institute of Qinghai University, Xining 810001, China
- 2. Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Lan Ma
- 2. Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
9
|
Bale BF, Doneen AL, Leimgruber PP, Vigerust DJ. The critical issue linking lipids and inflammation: Clinical utility of stopping oxidative stress. Front Cardiovasc Med 2022; 9:1042729. [PMID: 36439997 PMCID: PMC9682196 DOI: 10.3389/fcvm.2022.1042729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
The formation of an atheroma begins when lipoproteins become trapped in the intima. Entrapped lipoproteins become oxidized and activate the innate immune system. This immunity represents the primary association between lipids and inflammation. When the trapping continues, the link between lipids and inflammation becomes chronic and detrimental, resulting in atherosclerosis. When entrapment ceases, the association between lipids and inflammation is temporary and healthy, and the atherogenic process halts. Therefore, the link between lipids and inflammation depends upon lipoprotein retention in the intima. The entrapment is due to electrostatic forces uniting apolipoprotein B to polysaccharide chains on intimal proteoglycans. The genetic transformation of contractile smooth muscle cells in the media into migratory secretory smooth muscle cells produces the intimal proteoglycans. The protein, platelet-derived growth factor produced by activated platelets, is the primary stimulus for this genetic change. Oxidative stress is the main stimulus to activate platelets. Therefore, minimizing oxidative stress would significantly reduce the retention of lipoproteins. Less entrapment decreases the association between lipids and inflammation. More importantly, it would halt atherogenesis. This review will analyze oxidative stress as the critical link between lipids, inflammation, and the pathogenesis of atherosclerosis. Through this perspective, we will discuss stopping oxidative stress to disrupt a harmful association between lipids and inflammation. Numerous therapeutic options will be discussed to mitigate oxidative stress. This paper will add a new meaning to the Morse code distress signal SOS-stopping oxidative stress.
Collapse
Affiliation(s)
- Bradley Field Bale
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
| | - Amy Lynn Doneen
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
| | - Pierre P. Leimgruber
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
- Department of Medical Education and Clinical Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - David John Vigerust
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
10
|
Roberts E, Xu T, Assoian RK. Cell contractility and focal adhesion kinase control circumferential arterial stiffness. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:28-39. [PMID: 36222505 PMCID: PMC9782408 DOI: 10.1530/vb-22-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Arterial stiffening is a hallmark of aging and cardiovascular disease. While it is well established that vascular smooth muscle cells (SMCs) contribute to arterial stiffness by synthesizing and remodeling the arterial extracellular matrix, the direct contributions of SMC contractility and mechanosensors to arterial stiffness, and particularly the arterial response to pressure, remain less well understood despite being a long-standing question of biomedical importance. Here, we have examined this issue by combining the use of pressure myography of intact carotid arteries, pharmacologic inhibition of contractility, and genetic deletion of SMC focal adhesion kinase (FAK). Biaxial inflation-extension tests performed at physiological pressures showed that acute inhibition of cell contractility with blebbistatin or EGTA altered vessel geometry and preferentially reduced circumferential, as opposed to axial, arterial stiffness in wild-type mice. Similarly, genetic deletion of SMC FAK, which attenuated arterial contraction to KCl, reduced vessel wall thickness and circumferential arterial stiffness in response to pressure while having minimal effect on axial mechanics. Moreover, these effects of FAK deletion were lost by treating arteries with blebbistatin or by inhibiting myosin light-chain kinase. The expression of arterial fibrillar collagens, the integrity of arterial elastin, or markers of SMC differentiation were not affected by the deletion of SMC FAK. Our results connect cell contractility and SMC FAK to the regulation of arterial wall thickness and directionally specific arterial stiffening.
Collapse
Affiliation(s)
- Emilia Roberts
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tina Xu
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Biomechanical stretch-induced CLOCK upregulation in venous smooth muscle cells promotes phenotypic and functional transformation. Vascul Pharmacol 2022; 146:107097. [PMID: 35963524 DOI: 10.1016/j.vph.2022.107097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND A chronic change in hemodynamic forces might activate the pathophysiological process of maladaptive venous remodeling. Biomechanical stretching stimulates venous smooth muscle cells (SMCs) in the media, and biomechanical loads exceeding physiological levels affect the intrinsic circadian rhythm and cellular phenotype. This study aimed to investigate the changes in the expression patterns of circadian clock genes under biomechanical stretching and their role in the regulation of the SMC phenotype. METHODS Circadian genes were detected in venous specimens and venous SMCs from patients with varicose veins (VVs) and patients with autologous vein grafts (normal veins). Molecular mechanism studies of SMC phenotypic switching under biomechanical stretching were performed in human umbilical venous SMCs (HUVSMCs). RESULTS CLOCK upregulation was observed in VVs. The circadian rhythm was disrupted in venous SMCs derived from VVs. In addition, CLOCK expression and cell proliferation and migration were increased in HUVSMCs exposed to biomechanical stretch. CLOCK overexpression activated NF-κB signaling and phenotypic transformation in HUVSMCs, whereas CLOCK depletion had inhibitory effects on these pathways. Further experiments revealed that the CLOCK protein regulates phenotypic and functional transformation via the RHOA/ROCK1 pathway. CONCLUSIONS Our results demonstrate that CLOCK is a crucial regulator of the SMC phenotype under mechanical stretch. The CLOCK/RHOA/ROCK1 pathway is important in phenotypic adaptation, and targeting RHOA/ROCK1 could potentially reverse stretch-induced phenotypic switching.
Collapse
|
12
|
Martinez AN, Tortelote GG, Pascale CL, McCormack IG, Nordham KD, Suder NJ, Couldwell MW, Dumont AS. Single-Cell Transcriptome Analysis of the Circle of Willis in a Mouse Cerebral Aneurysm Model. Stroke 2022; 53:2647-2657. [PMID: 35770669 DOI: 10.1161/strokeaha.122.038776] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The circle of Willis (CoW) is the most common location for aneurysms to form in humans. Although the major cell types of the intracranial vasculature are well known, the heterogeneity and relative contributions of the different cells in healthy and aneurysmal vessels have not been well characterized. Here, we present the first comprehensive analysis of the lineage heterogeneity and altered transcriptomic profiles of vascular cells from healthy and aneurysmal mouse CoW using single-cell RNA sequencing. METHODS Cerebral aneurysms (CAs) were induced in adult male mice using an elastase model. Single-cell RNA sequencing was then performed on CoW samples obtained from animals that either had aneurysms form or rupture 14 days post-induction. Sham-operated animals served as controls. RESULTS Unbiased clustering analysis of the transcriptional profiles from >3900 CoW cells identified 19 clusters representing ten cell lineages: vascular smooth muscle cells, endothelial cells fibroblasts, pericytes and immune cells (macrophages, T and B lymphocytes, dendritic cells, mast cells, and neutrophils). The 5 vascular smooth muscle cell subpopulations had distinct transcriptional profiles and were classified as proliferative, stress-induced senescent, quiescent, inflammatory-like, or hyperproliferative. The transcriptional signature of the metabolic pathways of ATP generation was found to be downregulated in 2 major vascular smooth muscle cell clusters when CA was induced. Aneurysm induction led to significant expansion of the total macrophage population, and this expansion was further increased with rupture. Both inflammatory and resolution-phase macrophages were identified, and a massive spike of neutrophils was seen with CA rupture. Additionally, the neutrophil-to-lymphocyte ratio (NLR), which originated from CA induction mirrored what happens in humans. CONCLUSIONS Our data identify CA disease-relevant transcriptional signatures of vascular cells in the CoW and is searchable via a web-based R/shiny interface.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Giovane G Tortelote
- Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA. (G.G.T.)
| | - Crissey L Pascale
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Isabella G McCormack
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Kristen D Nordham
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Natalie J Suder
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Mitchell W Couldwell
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA. (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.)
| |
Collapse
|
13
|
Chen J, Rodriguez M, Miao J, Liao J, Jain PP, Zhao M, Zhao T, Babicheva A, Wang Z, Parmisano S, Powers R, Matti M, Paquin C, Soroureddin Z, Shyy JYJ, Thistlethwaite PA, Makino A, Wang J, Yuan JXJ. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2022; 322:L737-L760. [PMID: 35318857 PMCID: PMC9076422 DOI: 10.1152/ajplung.00447.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/10/2023] Open
Abstract
Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jinrui Miao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Manjia Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ziyi Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ryan Powers
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Moreen Matti
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Cole Paquin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Zahra Soroureddin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Zeng ZL, Yuan Q, Zu X, Liu J. Insights Into the Role of Mitochondria in Vascular Calcification. Front Cardiovasc Med 2022; 9:879752. [PMID: 35571215 PMCID: PMC9099050 DOI: 10.3389/fcvm.2022.879752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a growing burden in aging societies worldwide, and with a significant increase in all-cause mortality and atherosclerotic plaque rupture, it is frequently found in patients with aging, diabetes, atherosclerosis, or chronic kidney disease. However, the mechanism of VC is still not yet fully understood, and there are still no effective therapies for VC. Regarding energy metabolism factories, mitochondria play a crucial role in maintaining vascular physiology. Discoveries in past decades signifying the role of mitochondrial homeostasis in normal physiology and pathological conditions led to tremendous advances in the field of VC. Therapies targeting basic mitochondrial processes, such as energy metabolism, damage in mitochondrial DNA, or free-radical generation, hold great promise. The remarkably unexplored field of the mitochondrial process has the potential to shed light on several VC-related diseases. This review focuses on current knowledge of mitochondrial dysfunction, dynamics anomalies, oxidative stress, and how it may relate to VC onset and progression and discusses the main challenges and prerequisites for their therapeutic applications.
Collapse
Affiliation(s)
- ZL Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuyu Zu
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Jianghua Liu
| |
Collapse
|
15
|
Wang M, Lin S, Mequanint K. Electrospun Biodegradable α-Amino Acid-Substituted Poly(organophosphazene) Fiber Mats for Stem Cell Differentiation towards Vascular Smooth Muscle Cells. Polymers (Basel) 2022; 14:polym14081555. [PMID: 35458303 PMCID: PMC9025042 DOI: 10.3390/polym14081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells, derived from human-induced pluripotent stem cells (iPSC), are valuable for generating smooth muscle cells (SMCs) for vascular tissue engineering applications. In this study, we synthesized biodegradable α-amino acid-substituted poly(organophosphazene) polymers and electrospun nano-fibrous scaffolds (~200 nm diameter) to evaluate their suitability as a matrix for differentiation of iPSC-derived mesenchymal stem cells (iMSC) into mature contractile SMCs. Both the polymer synthesis approach and the electrospinning parameters were optimized. Three types of cells, namely iMSC, bone marrow derived mesenchymal stem cells (BM-MSC), and primary human coronary artery SMC, attached and spread on the materials. Although L-ascorbic acid (AA) and transforming growth factor-beta 1 (TGF-β1) were able to differentiate iMSC along the smooth muscle lineage, we showed that the electrospun fibrous mats provided material cues for the enhanced differentiation of iMSCs. Differentiation of iMSC to SMC was characterized by increased transcriptional levels of early to late-stage smooth muscle marker proteins on electrospun fibrous mats. Our findings provide a feasible strategy for engineering functional vascular tissues.
Collapse
|
16
|
Chen XY, Yang LP, Zheng YL, Li YX, Zhong DL, Jin RJ, Li J. Electroacupuncture Attenuated Phenotype Transformation of Vascular Smooth Muscle Cells via PI3K/Akt and MAPK Signaling Pathways in Spontaneous Hypertensive Rats. Chin J Integr Med 2022; 28:357-365. [PMID: 34839455 DOI: 10.1007/s11655-021-2883-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate whether the antihypertensive mechanism of electroacupuncture (EA) is associated with attenuating phenotype transformation of vascular smooth muscle cells (VSMCs) via phosphoinositide3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways. METHODS Eight Wistar-ktoyo (WKY) rats were set as normal blood pressure group (normal group). A total of 32 spontaneous hypertensive rats (SHRs) were randomly divided into 4 groups using random number tables: a model group, an EA group, an EA+PI3K antagonist group (EA+P group), and an EA+p38 MAPK agonist+extracellular signal-regulated kinase (ERK) agonist group (EA+M group) (n=8/group). SHRs in EA group, EA+P group and EA+M group received EA treatment 5 sessions per week for continuous 4 weeks, while rats in the normal and model groups were bundled in same condition. The systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) of each rat was measured at 0 week and the 4th week. After 4-week intervention, thoracic aorta was collected for hematoxylin-eosin (HE) staining, immunohistochemistry [the contractile markers α-smooth muscle actin (α-SMA) and calponin and the synthetic marker osteopontin (OPN)] and Western blot [α-SMA, calponin, OPN, PI3K, phosphorylated-Akt (p-Akt), Akt, p-p42/44 ERK, total p42/44 ERK, p-p38 MAPK and total p38 MAPK]. RESULTS EA significantly reduced SBP, DBP and MAP (P<0.01). HE staining showed that the wall thickness of thoracic aorta in EA group was significantly decreased (P<0.01). From results of immunohistochemistry and Western blot, EA increased the expression of α-SMA and calponin, and decreased the expression of OPN (P<0.01). In addition, the expression of PI3K and p-Akt increased (P<0.01), while the expression of p-p42/44 ERK and p-p38 MAPK decreased in EA group (P<0.01). However, these effects were reversed by PI3K antagonist, p38 MAPK agonist and ERK agonist. CONCLUSIONS EA was an effective treatment for BP management. The antihypertensive effect of EA may be related with inhibition of phenotypic transformation of VSMCs, in which the activation of PI3K/Akt and the repression of MAPK pathway were involved.
Collapse
Affiliation(s)
- Xin-Yu Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Food Science and Nutrition School, University of Leeds, Leeds, LS2 9JT, UK
| | - Lu-Ping Yang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ya-Ling Zheng
- Department of Rehabilitation, the Second People's Hospital of Chengdu, Chengdu, 610072, China
| | - Yu-Xi Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dong-Ling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Rong-Jiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Juan Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
17
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
18
|
von Kleeck R, Castagnino P, Assoian RK. Progerin mislocalizes myocardin-related transcription factor in Hutchinson-Guilford Progeria syndrome. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:1-10. [PMID: 35441125 PMCID: PMC9012937 DOI: 10.1530/vb-21-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/15/2022] [Indexed: 01/24/2023]
Abstract
Hutchinson-Guilford Progeria syndrome (HGPS) is a rare genetic disease of premature aging and early death due to cardiovascular disease. The arteries of HGPS children and mice are pathologically stiff, and HGPS mice also display reduced arterial contractility. We recently showed that reduced contractility is an early event in HGPS and linked to an aberrantly low expression of smooth muscle myosin heavy chain (smMHC). Here, we have explored the basis for reduced smMHC abundance and asked whether it is a direct effect of progerin expression or a longer-term adaptive response. Myh11, the gene encoding for smMHC, is regulated by myocardin-related transcription factors (MRTFs), and we show that HGPS aortas have a reduced MRTF signature. Additionally, smooth muscle cells (SMCs) isolated from HGPS mice display reduced MRTF nuclear localization. Acute progerin expression in WT SMCs phenocopied both the decrease in MRTF nuclear localization and expression of Myh11 seen in HGPS. Interestingly, RNA-mediated depletion of MRTF-A in WT SMCs reproduced the preferential inhibitory effect of progerin on Myh11 mRNA relative to Acta2 mRNA. Our results show that progerin expression acutely disrupts MRTF localization to the nucleus and suggest that the consequent decrease in nuclear coactivator activity can help to explain the reduction in smMHC abundance and SMC contractility seen in HGPS.
Collapse
Affiliation(s)
- Ryan von Kleeck
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paola Castagnino
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Chen L, Hassani Nia F, Stauber T. Ion Channels and Transporters in Muscle Cell Differentiation. Int J Mol Sci 2021; 22:13615. [PMID: 34948411 PMCID: PMC8703453 DOI: 10.3390/ijms222413615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.
Collapse
Affiliation(s)
- Lingye Chen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| |
Collapse
|
20
|
Devillard CD, Marquette CA. Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel. Front Bioeng Biotechnol 2021; 9:721843. [PMID: 34671597 PMCID: PMC8522984 DOI: 10.3389/fbioe.2021.721843] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Since the emergence of regenerative medicine and tissue engineering more than half a century ago, one obstacle has persisted: the in vitro creation of large-scale vascular tissue (>1 cm3) to meet the clinical needs of viable tissue grafts but also for biological research applications. Considerable advancements in biofabrication have been made since Weinberg and Bell, in 1986, created the first blood vessel from collagen, endothelial cells, smooth muscle cells and fibroblasts. The synergistic combination of advances in fabrication methods, availability of cell source, biomaterials formulation and vascular tissue development, promises new strategies for the creation of autologous blood vessels, recapitulating biological functions, structural functions, but also the mechanical functions of a native blood vessel. In this review, the main technological advancements in bio-fabrication are discussed with a particular highlights on 3D bioprinting technologies. The choice of the main biomaterials and cell sources, the use of dynamic maturation systems such as bioreactors and the associated clinical trials will be detailed. The remaining challenges in this complex engineering field will finally be discussed.
Collapse
Affiliation(s)
- Chloé D Devillard
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
21
|
Inducible Prmt1 ablation in adult vascular smooth muscle leads to contractile dysfunction and aortic dissection. Exp Mol Med 2021; 53:1569-1579. [PMID: 34635781 PMCID: PMC8568946 DOI: 10.1038/s12276-021-00684-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/27/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) have remarkable plasticity in response to diverse environmental cues. Although these cells are versatile, chronic stress can trigger VSMC dysfunction, which ultimately leads to vascular diseases such as aortic aneurysm and atherosclerosis. Protein arginine methyltransferase 1 (Prmt1) is a major enzyme catalyzing asymmetric arginine dimethylation of proteins that are sources of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase. Although a potential role of Prmt1 in vascular pathogenesis has been proposed, its role in vascular function has yet to be clarified. Here, we investigated the role and underlying mechanism of Prmt1 in vascular smooth muscle contractility and function. The expression of PRMT1 and contractile-related genes was significantly decreased in the aortas of elderly humans and patients with aortic aneurysms. Mice with VSMC-specific Prmt1 ablation (smKO) exhibited partial lethality, low blood pressure and aortic dilation. The Prmt1-ablated aortas showed aortic dissection with elastic fiber degeneration and cell death. Ex vivo and in vitro analyses indicated that Prmt1 ablation significantly decreased the contractility of the aorta and traction forces of VSMCs. Prmt1 ablation downregulated the expression of contractile genes such as myocardin while upregulating the expression of synthetic genes, thus causing the contractile to synthetic phenotypic switch of VSMCs. In addition, mechanistic studies demonstrated that Prmt1 directly regulates myocardin gene activation by modulating epigenetic histone modifications in the myocardin promoter region. Thus, our study demonstrates that VSMC Prmt1 is essential for vascular homeostasis and that its ablation causes aortic dilation/dissection through impaired myocardin expression.
Collapse
|
22
|
Mao C, Ma Z, Jia Y, Li W, Xie N, Zhao G, Ma B, Yu F, Sun J, Zhou Y, Cui Q, Fu Y, Kong W. Nidogen-2 Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells and Prevents Neointima Formation via Bridging Jagged1-Notch3 Signaling. Circulation 2021; 144:1244-1261. [PMID: 34315224 DOI: 10.1161/circulationaha.120.053361] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro, and compared with wild-type (WT) mice, nidogen-2-/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2-/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo. Nidogen-2 is required for Jagged1-Notch3 signaling.
Collapse
Affiliation(s)
- Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weihao Li
- Department of Vascular Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Guizhen Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Baihui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
23
|
Chen X, Yang S, Yang J, Liu Q, Li M, Wu J, Wang H, Wang S. The Potential Role of hsa_circ_0005505 in the Rupture of Human Intracranial Aneurysm. Front Mol Biosci 2021; 8:670691. [PMID: 34336924 PMCID: PMC8316638 DOI: 10.3389/fmolb.2021.670691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Objective: Recently, abundant number of studies have revealed many functions of circular RNAs in multiple diseases, however, the role of circular RNA in the rupture of human intracranial aneurysm is still unknown. This study aims to explore the potential functions of circular RNA in the rupture of human intracranial aneurysms. Methods: The differentially expressed circular RNAs between un-ruptured intracranial aneurysms (n = 5) and ruptured intracranial aneurysms (n = 5) were analyzed with the Arraystar human circRNAs microarray. Quantitative real-time PCR (qPCR) was used to verify the results of the circRNA microarray. The role of circular RNA in intracranial aneurysm rupture was assessed in vitro. MTT assay, CCK-8 assay, Caspase3/7 assay, assay of cell apoptosis and Celigo wound healing was conducted to evaluate the relationship between circular RNA and the rupture of human intracranial aneurysms. Results: A total of 13,175 circRNA genes were detected. Among them 63 circRNAs upregulated and 54 circRNAs downregulated significantly in ruptured intracranial aneurysms compared with un-ruptured intracranial aneurysms (p < 0.05 Fold Change > 1.5). Five upregulated circRNAs were selected for further study (hsa_circ_0001947, hsa_circ_0043001, hsa_circ_0064557, hsa_circ_0058514, hsa_circ_0005505). The results of qPCR showed only hsa_circ_0005505 significantly upregulated (p < 0.05). The expression of hsa_circ_0005505 was higher in ruptured intracranial aneurysm tissues. And our in vitro data showed that hsa_circRNA_005505 promotes the proliferation, migration and suppresses the apoptosis of vascular smooth muscle cell. Conclusion: This study revealed an important role of hsa_circ_0005505 in the proliferation, migration and apoptosis of vascular smooth muscle cell, and indicated that hsa_circ_0005505 may associate with the pathological process of intracranial aneurysms.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Shuzhe Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Junhua Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
24
|
Liu X, Rowan SC, Liang J, Yao C, Huang G, Deng N, Xie T, Wu D, Wang Y, Burman A, Parimon T, Borok Z, Chen P, Parks WC, Hogaboam CM, Weigt SS, Belperio J, Stripp BR, Noble PW, Jiang D. Categorization of lung mesenchymal cells in development and fibrosis. iScience 2021; 24:102551. [PMID: 34151224 PMCID: PMC8188567 DOI: 10.1016/j.isci.2021.102551] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/30/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary mesenchymal cells are critical players in both the mouse and human during lung development and disease states. They are increasingly recognized as highly heterogeneous, but there is no consensus on subpopulations or discriminative markers for each subtype. We completed scRNA-seq analysis of mesenchymal cells from the embryonic, postnatal, adult and aged fibrotic lungs of mice and humans. We consistently identified and delineated the transcriptome of lipofibroblasts, myofibroblasts, smooth muscle cells, pericytes, mesothelial cells, and a novel population characterized by Ebf1 expression. Subtype selective transcription factors and putative divergence of the clusters during development were described. Comparative analysis revealed orthologous subpopulations with conserved transcriptomic signatures in murine and human lung mesenchymal cells. All mesenchymal subpopulations contributed to matrix gene expression in fibrosis. This analysis would enhance our understanding of mesenchymal cell heterogeneity in lung development, homeostasis and fibrotic disease conditions.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simon C. Rowan
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- UCD School of Medicine, Conway Institute, University College Dublin, Belfield, Ireland
| | - Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guanling Huang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Deng
- Genomics Core, Cedars-Sinai Medical Center, CA 90048, USA
| | - Ting Xie
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, CA 90048, USA
| | - Ankita Burman
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tanyalak Parimon
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zea Borok
- Division of Pulmonary and Critical Care Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Chen
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - William C. Parks
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cory M. Hogaboam
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - S. Samuel Weigt
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John Belperio
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Barry R. Stripp
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
25
|
Dierick F, Solinc J, Bignard J, Soubrier F, Nadaud S. Progenitor/Stem Cells in Vascular Remodeling during Pulmonary Arterial Hypertension. Cells 2021; 10:cells10061338. [PMID: 34071347 PMCID: PMC8226806 DOI: 10.3390/cells10061338] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by an important occlusive vascular remodeling with the production of new endothelial cells, smooth muscle cells, myofibroblasts, and fibroblasts. Identifying the cellular processes leading to vascular proliferation and dysfunction is a major goal in order to decipher the mechanisms leading to PAH development. In addition to in situ proliferation of vascular cells, studies from the past 20 years have unveiled the role of circulating and resident vascular in pulmonary vascular remodeling. This review aims at summarizing the current knowledge on the different progenitor and stem cells that have been shown to participate in pulmonary vascular lesions and on the pathways regulating their recruitment during PAH. Finally, this review also addresses the therapeutic potential of circulating endothelial progenitor cells and mesenchymal stem cells.
Collapse
Affiliation(s)
- France Dierick
- Lady Davis Institute for Medical Research, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Julien Solinc
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Juliette Bignard
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Florent Soubrier
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Sophie Nadaud
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
- Correspondence:
| |
Collapse
|
26
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
27
|
Vazquez-Padron RI, Martinez L, Duque JC, Salman LH, Tabbara M. The anatomical sources of neointimal cells in the arteriovenous fistula. J Vasc Access 2021; 24:99-106. [PMID: 33960241 PMCID: PMC8958841 DOI: 10.1177/11297298211011875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neointimal cells are an elusive population with ambiguous origins, functions, and states of differentiation. Expansion of the venous intima in arteriovenous fistula (AVF) is one of the most prominent remodeling processes in the wall after access creation. However, most of the current knowledge about neointimal cells in AVFs comes from extrapolations from the arterial neointima in non-AVF systems. Understanding the origin of neointimal cells in fistulas may have important implications for the design and effective delivery of therapies aimed to decrease intimal hyperplasia (IH). In addition, a broader knowledge of cellular dynamics during postoperative remodeling of the AVF may help clarify other transformation processes in the wall that combined with IH determine the successful remodeling or failure of the access. In this review, we discuss the possible anatomical sources of neointimal cells in AVFs and their relative contribution to intimal expansion.
Collapse
Affiliation(s)
- Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan C Duque
- Katz Family Division of Nephrology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, NY, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
28
|
Talwar S, Kant A, Xu T, Shenoy VB, Assoian RK. Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Rep 2021; 35:109019. [PMID: 33882318 PMCID: PMC8142933 DOI: 10.1016/j.celrep.2021.109019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/07/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Reversible differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in vascular biology and disease. Changes in VSMC differentiation correlate with stiffness of the arterial extracellular matrix (ECM), but causal relationships remain unclear. We show that VSMC plasticity is mechanosensitive and that both the de-differentiated and differentiated fates are promoted by the same ECM stiffness. Differential equations developed to model this behavior predicted that a null VSMC state generates the dual fates in response to ECM stiffness. Direct measurements of cellular forces, proliferation, and contractile gene expression validated these predictions and showed that fate outcome is mediated by Rac-Rho homeostasis. Rac, through distinct effects on YAP and TAZ, is required for both fates. Rho drives the contractile state alone, so its level of activity, relative to Rac, drives phenotypic choice. Our results show how the cellular response to a single ECM stiffness generates bi-stability and VSMC plasticity. Reversible differentiation/de-differentiation of smooth muscle cells plays a critical role in vascular biology and disease. Talwar et al. show that these differentiated and de-differentiated phenotypes emerge from a null state that is regulated by ECM stiffness and bidirectional effects of Rac on YAP and TAZ transcriptional coregulators.
Collapse
Affiliation(s)
- Shefali Talwar
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aayush Kant
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tina Xu
- Departments of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard K Assoian
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Murtada SI, Kawamura Y, Weiss D, Humphrey JD. Differential biomechanical responses of elastic and muscular arteries to angiotensin II-induced hypertension. J Biomech 2021; 119:110297. [PMID: 33647550 DOI: 10.1016/j.jbiomech.2021.110297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries are distinguished by their distinct microstructures, biomechanical properties, and smooth muscle cell contractile functions. They also exhibit differential remodeling in aging and hypertension. Although regional differences in biomechanical properties have been compared, few studies have quantified biaxial differences in response to hypertension. Here, we contrast passive and active changes in large elastic and medium- and small-sized muscular arteries in adult mice in response to chronic infusion of angiotensin over 14 days. We found a significant increase in wall thickness, both medial and adventitial, in the descending thoracic aorta that associated with trends of an increased collagen:elastin ratio. There was adventitial thickening in the small-sized mesenteric artery, but also significant changes in elastic lamellar structure and contractility. An increased contractile response to phenylephrine coupled with a reduced vasodilatory response to acetylcholine in the mesenteric artery suggested an increased contractile state in response to hypertension. Overall reductions in the calculated gradients in pulse wave velocity and elastin energy storage capability from elastic-to-muscular arteries suggested a possible transfer of excessive pulsatile energy into the small-sized muscular arteries resulting in significant functional consequences in response to hypertension.
Collapse
Affiliation(s)
- S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Y Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Bkaily G, Abou Abdallah N, Simon Y, Jazzar A, Jacques D. Vascular smooth muscle remodeling in health and disease. Can J Physiol Pharmacol 2021; 99:171-178. [PMID: 32853532 DOI: 10.1139/cjpp-2020-0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In blood vessels, vascular smooth muscle cells (VSMCs) generally exist in two major phenotypes: contractile and non-contractile (synthetic). The contractile phenotype is predominant and includes quiescent or differentiated VSMCs, which function as the regulators of blood vessel diameter and blood flow. According to some literature in the field, contractile VSMCs do not switch to the non-contractile phenotype due to the activation of specific transcription factors that are considered as guardians of the contractile phenotype. However, a vast amount of the literature uses the terms remodeling and phenotype switching of contractile VSMCs interchangeably based mainly on studies dealing with atherosclerosis. The use of the terms remodeling and switching to describe changes in phenotype based on morphological criteria can be confusing. The term remodeling was first used to describe morphological changes in the heart and was soon used to describe phenotype changes of contractile VSMCs based on morphological criteria. The latter were introduced in early studies, and new molecular criteria were later added, including changes in gene expression, which could be irreversible. In this review, we will discuss the different views concerning remodeling and possible switching of contractile VSMCs to a non-contractile phenotype. We conclude that only remodeling of contractile VSMCs may take place upon vascular injury and disease.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Nadia Abou Abdallah
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Yanick Simon
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Ashley Jazzar
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| |
Collapse
|
31
|
Neurovascular disease, diagnosis, and therapy: Brain aneurysms. HANDBOOK OF CLINICAL NEUROLOGY 2020; 176:121-134. [PMID: 33272392 DOI: 10.1016/b978-0-444-64034-5.00001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Unruptured intracranial aneurysms (UIAs) have a prevalence of 3% in the adult population worldwide. The majority of UIAs are incidental findings, but some UIAs cause cranial nerve palsies, brainstem compression, ischemic events, or epileptic seizures. The most frequent clinical presentation of intracranial aneurysms is, however, rupture and thereby subarachnoid hemorrhage (SAH). To avoid SAH with its fatal consequences, patients with UIAs require counseling by dedicated and interdisciplinary neurovascular specialists. For the purpose of assessment and decision-making for the management of patients with UIAs, numerous aspects have to be considered: radiological characteristics, clinical symptoms, estimated rupture risk of an individual aneurysm as well as patient- and aneurysm-related risks of preventive repair. Generally, two management options exist: observation with follow-up imaging or preventive repair. This chapter discusses current data on pathogenesis, clinical presentation, diagnostics, risk factors for rupture and preventive repair, and guidance tools for the management of patients with UIAs according to current evidence.
Collapse
|
32
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
33
|
|
34
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
35
|
St. Paul A, Corbett CB, Okune R, Autieri MV. Angiotensin II, Hypercholesterolemia, and Vascular Smooth Muscle Cells: A Perfect Trio for Vascular Pathology. Int J Mol Sci 2020; 21:E4525. [PMID: 32630530 PMCID: PMC7350267 DOI: 10.3390/ijms21124525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the Western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle. Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular diseases, and therefore represent a significant medical and socioeconomic burden on our society. It may not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them. These intersecting points are manifested in clinical studies in which lipid lowering therapies reduce blood pressure, and anti-hypertensive medications reduce atherosclerotic plaque. At the molecular level, the vascular smooth muscle cell (VSMC) is the target, integrator, and effector cell of both atherogenic and the major effector protein of the hypertensive signal Angiotensin II (Ang II). Together, these signals can potentiate each other and prime the artery and exacerbate hypertension and atherosclerosis. Therefore, VSMCs are the fulcrum in progression of these diseases and, therefore, understanding the effects of atherogenic stimuli and Ang II on the VSMC is key to understanding and treating atherosclerosis and hypertension. In this review, we will examine studies in which hypertension and atherosclerosis intersect on the VSMC, and illustrate common pathways between these two diseases and vascular aging.
Collapse
Affiliation(s)
| | | | | | - Michael V. Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; (A.S.P.); (C.B.C.); (R.O.)
| |
Collapse
|
36
|
Thakore P, Pritchard HAT, Griffin CS, Yamasaki E, Drumm BT, Lane C, Sanders KM, Feng Earley Y, Earley S. TRPML1 channels initiate Ca 2+ sparks in vascular smooth muscle cells. Sci Signal 2020; 13:13/637/eaba1015. [PMID: 32576680 DOI: 10.1126/scisignal.aba1015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel localized to the membranes of endosomes and lysosomes and is not present or functional on the plasma membrane. Ca2+ released from endosomes and lysosomes into the cytosol through TRPML1 channels is vital for trafficking, acidification, and other basic functions of these organelles. Here, we investigated the function of TRPML1 channels in fully differentiated contractile vascular smooth muscle cells (SMCs). In live-cell confocal imaging studies, we found that most endosomes and lysosomes in freshly isolated SMCs from cerebral arteries were essentially immobile. Using nanoscale super-resolution microscopy, we found that TRPML1 channels present in late endosomes and lysosomes formed stable complexes with type 2 ryanodine receptors (RyR2) on the sarcoplasmic reticulum (SR). Spontaneous Ca2+ signals resulting from the release of SR Ca2+ through RyR2s ("Ca2+ sparks") and corresponding Ca2+-activated K+ channel activity are critically important for balancing vasoconstriction. We found that these signals were essentially absent in SMCs from TRPML1-knockout (Mcoln1-/- ) mice. Using ex vivo pressure myography, we found that loss of this critical signaling cascade exaggerated the vasoconstrictor responses of cerebral and mesenteric resistance arteries. In vivo radiotelemetry studies showed that Mcoln1-/- mice were spontaneously hypertensive. We conclude that TRPML1 is crucial for the initiation of Ca2+ sparks in SMCs and the regulation of vascular contractility and blood pressure.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Harry A T Pritchard
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Caoimhin S Griffin
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Conor Lane
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
37
|
Li S, Shi Y, Liu P, Song Y, Liu Y, Ying L, Quan K, Yu G, Fan Z, Zhu W. Metformin inhibits intracranial aneurysm formation and progression by regulating vascular smooth muscle cell phenotype switching via the AMPK/ACC pathway. J Neuroinflammation 2020; 17:191. [PMID: 32546267 PMCID: PMC7298751 DOI: 10.1186/s12974-020-01868-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/07/2020] [Indexed: 01/07/2023] Open
Abstract
Background The regulation of vascular smooth muscle cell (VSMC) phenotype plays an important role in intracranial aneurysm (IA) formation and progression. However, the underlying mechanism remains unclear. Metformin is a 5′ AMP-activated protein kinase (AMPK) agonist that has a protective effect on vasculature. The present study investigated whether metformin modulates VSMC phenotype switching via the AMPK/acetyl-CoA carboxylase (ACC) pathway during IA pathogenesis. Methods Adult male Sprague-Dawley rats (n = 80) were used to establish an elastase-induced IA model. The effects of metformin on AMPK activation and VSMC phenotype modulation were examined. We also established a platelet-derived growth factor (PDGF)-BB-induced VSMC model and analyzed changes in phenotype including proliferation, migration, and apoptosis as well as AMPK/ACC axis activation under different doses of metformin, AMPK antagonist, ACC antagonist, and their combinations. Results Metformin decreased the incidence and rupture rate of IA in the rat model and induced a switch in VSMC phenotype from contractile to synthetic through activation of the AMPK/ACC pathway, as evidenced by upregulation of VSMC-specific genes and decreased levels of pro-inflammatory cytokines. AMPK/ACC axis activation inhibited the proliferation, migration, and apoptosis of VSMCs, in which phenotypic switching was induced by PDGF-BB. Conclusions Metformin protects against IA formation and rupture by inhibiting VSMC phenotype switching and proliferation, migration, and apoptosis. Thus, metformin has therapeutic potential for the prevention of IA.
Collapse
Affiliation(s)
- Sichen Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road Middle, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China
| | - Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road Middle, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road Middle, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China
| | - Yaying Song
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Rd, Shanghai, 200025, People's Republic of China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road Middle, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China
| | - Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Kai Quan
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road Middle, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China
| | - Guo Yu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road Middle, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China
| | - Zhiyuan Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road Middle, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road Middle, Shanghai, 200040, People's Republic of China. .,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
38
|
Xia X, Zhou C, He X, Liu C, Wang G, Sun X. The relationship between estrogen-induced phenotypic transformation and proliferation of vascular smooth muscle and hypertensive intracerebral hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:762. [PMID: 32647687 PMCID: PMC7333134 DOI: 10.21037/atm-20-4567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background To explore the effect of estrogen on human cerebral vascular smooth muscle cells (VSMCs) and to clarify the molecular mechanism of estrogen inhibition of VSMC proliferation, which could provide an important reference basis for the clinical treatment of hypertensive intracerebral hemorrhage. Method Firstly, the effects of different concentrations of estradiol and estrogen receptor (ESR) blocker (tamoxifen) on the proliferation of human VSMCs and the expression of estrogen-related receptor gene (ESR: ESR1, ESR2, GPER), myocardin (MYOCD), serum reaction factor (SRF), and apoptosis gene caspase-3 were measured to discover the effect and mechanism of tamoxifen on the proliferation and apoptosis of VSMCs. Secondly, the effects of estradiol on human VSMCs treated with angiotensin II (Ang II) were observed by measuring the expression of vascular smooth muscle markers, α-smooth muscle actin (α-SMA), SM22α, FLN, MCP-1, and TLR4. Results Estradiol inhibited the proliferation of VSMCs by upregulating the expression of ESR1, ESR2, and GPER and downregulating the expression of caspase-3, MYOCD, and SRF, thereby inhibiting the apoptosis of vascular smooth muscle. At the same time, tamoxifen had opposite effects. Angiotensin II decreased the expression of α-SMA and SM22α and promoted the expression of FLN, MCP-1, and TLR4 protein, while estrogen had the opposite effects. Conclusions Estrogen suppresses apoptosis by inhibiting the proliferation of human VSMCs and preventing it from changing from contractile to synthetic. Estrogen can further prevents vascular damage and regulate peripheral inflammatory reaction, thereby producing a protective effect on cardiovascular and cerebrovascular.
Collapse
Affiliation(s)
- Xiaohui Xia
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Changlong Zhou
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Xuenong He
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Chang Liu
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Guanyu Wang
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing, Medical University, Chongqing 400010, China
| |
Collapse
|
39
|
Abstract
Cardiac fibrosis is a pathological condition that occurs after injury and during aging. Currently, there are limited means to effectively reduce or reverse fibrosis. Key to identifying methods for curbing excess deposition of extracellular matrix is a better understanding of the cardiac fibroblast, the cell responsible for collagen production. In recent years, the diversity and functions of these enigmatic cells have been gradually revealed. In this review, I outline current approaches for identifying and classifying cardiac fibroblasts. An emphasis is placed on new insights into the heterogeneity of these cells as determined by lineage tracing and single-cell sequencing in development, adult, and disease states. These recent advances in our understanding of the fibroblast provide a platform for future development of novel therapeutics to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA;
| |
Collapse
|
40
|
Pedroza AJ, Koyano T, Trojan J, Rubin A, Palmon I, Jaatinen K, Burdon G, Chang P, Tashima Y, Cui JZ, Berry G, Iosef C, Fischbein MP. Divergent effects of canonical and non-canonical TGF-β signalling on mixed contractile-synthetic smooth muscle cell phenotype in human Marfan syndrome aortic root aneurysms. J Cell Mol Med 2019; 24:2369-2383. [PMID: 31886938 PMCID: PMC7011150 DOI: 10.1111/jcmm.14921] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 01/27/2023] Open
Abstract
Aortic root aneurysm formation is a cardinal feature of Marfan syndrome (MFS) and likely TGF‐β driven via Smad (canonical) and ERK (non‐canonical) signalling. The current study assesses human MFS vascular smooth muscle cell (SMC) phenotype, focusing on individual contributions by Smad and ERK, with Notch3 signalling identified as a novel compensatory mechanism against TGF‐β‐driven pathology. Although significant ERK activation and mixed contractile gene expression patterns were observed by traditional analysis, this did not directly correlate with the anatomic site of the aneurysm. Smooth muscle cell phenotypic changes were TGF‐β‐dependent and opposed by ERK in vitro, implicating the canonical Smad pathway. Bulk SMC RNA sequencing after ERK inhibition showed that ERK modulates cell proliferation, apoptosis, inflammation, and Notch signalling via Notch3 in MFS. Reversing Notch3 overexpression with siRNA demonstrated that Notch3 promotes several protective remodelling pathways, including increased SMC proliferation, decreased apoptosis and reduced matrix metalloproteinase activity, in vitro. In conclusion, in human MFS aortic SMCs: (a) ERK activation is enhanced but not specific to the site of aneurysm formation; (b) ERK opposes TGF‐β‐dependent negative effects on SMC phenotype; (c) multiple distinct SMC subtypes contribute to a ‘mixed’ contractile‐synthetic phenotype in MFS aortic aneurysm; and (d) ERK drives Notch3 overexpression, a potential pathway for tissue remodelling in response to aneurysm formation.
Collapse
Affiliation(s)
- Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Jeffrey Trojan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Adam Rubin
- Stanford University School of Medicine, Stanford, California
| | - Itai Palmon
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Kevin Jaatinen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Grayson Burdon
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Paul Chang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Yasushi Tashima
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Jason Z Cui
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Gerry Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Cristiana Iosef
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
41
|
Méndez-Barbero N, Gutierrez-Muñoz C, Madrigal-Matute J, Mínguez P, Egido J, Michel JB, Martín-Ventura JL, Esteban V, Blanco-Colio LM. A major role of TWEAK/Fn14 axis as a therapeutic target for post-angioplasty restenosis. EBioMedicine 2019; 46:274-289. [PMID: 31395500 PMCID: PMC6712059 DOI: 10.1016/j.ebiom.2019.07.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/04/2022] Open
Abstract
Background Tumor necrosis factor-like weak inducer of apoptosis (Tnfsf12; TWEAK) and its receptor Fibroblast growth factor-inducible 14 (Tnfrsf12a; Fn14) participate in the inflammatory response associated with vascular remodeling. However, the functional effect of TWEAK on vascular smooth muscle cells (VSMCs) is not completely elucidated. Methods Next generation sequencing-based methods were performed to identify genes and pathways regulated by TWEAK in VSMCs. Flow-citometry, wound-healing scratch experiments and transwell migration assays were used to analyze VSMCs proliferation and migration. Mouse wire injury model was done to evaluate the role of TWEAK/Fn14 during neointimal hyperplasia. Findings TWEAK up-regulated 1611 and down-regulated 1091 genes in VSMCs. Using a gene-set enrichment method, we found a functional module involved in cell proliferation defined as the minimal network connecting top TWEAK up-regulated genes. In vitro experiments in wild-type or Tnfrsf12a deficient VSMCs demonstrated that TWEAK increased cell proliferation, VSMCs motility and migration. Mechanistically, TWEAK increased cyclins (cyclinD1), cyclin-dependent kinases (CDK4, CDK6) and decreased cyclin-dependent kinase inhibitors (p15lNK4B) mRNA and protein expression. Downregulation of p15INK4B induced by TWEAK was mediated by mitogen-activated protein kinase ERK and Akt activation. Tnfrsf12a or Tnfsf12 genetic depletion and pharmacological intervention with TWEAK blocking antibody reduced neointimal formation, decreasing cell proliferation, cyclin D1 and CDK4/6 expression, and increasing p15INK4B expression compared with wild type or IgG-treated mice in wire-injured femoral arteries. Finally, immunohistochemistry in human coronary arteries with stenosis or in-stent restenosis revealed high levels of Fn14, TWEAK and PCNA in VSMCs enriched areas of the neointima as compared with healthy coronary arteries. Interpretation Our data define a major role of TWEAK/Fn14 in the control of VSMCs proliferation and migration during neointimal hyperplasia after wire injury in mice, and identify TWEAK/Fn14 as a potential target for treating in-stent restenosis. Fund ISCiii-FEDER, CIBERCV and CIBERDEM.
Collapse
Affiliation(s)
| | | | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Pablo Mínguez
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Egido
- Renal and Diabetes Research Lab, CIBERDEM, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Jean-Baptiste Michel
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Paris, France
| | | | - Vanesa Esteban
- Department of Immunology and ARADyAL, IIS-Fundación Jiménez Díaz, Madrid, Spain.
| | | |
Collapse
|
42
|
Stenmark KR, Frid MG, Graham BB, Tuder RM. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 2019; 114:551-564. [PMID: 29385432 DOI: 10.1093/cvr/cvy004] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is the end result of interaction between pulmonary vascular tone and a complex series of cellular and molecular events termed 'vascular remodelling'. The remodelling process, which can involve the entirety of pulmonary arterial vasculature, almost universally involves medial thickening, driven by increased numbers and hypertrophy of its principal cellular constituent, smooth muscle cells (SMCs). It is noted, however that SMCs comprise heterogeneous populations of cells, which can exhibit markedly different proliferative, inflammatory, and extracellular matrix production changes during remodelling. We further consider that these functional changes in SMCs of different phenotype and their role in PH are dynamic and may undergo significant changes over time (which we will refer to as cellular plasticity); no single property can account for the complexity of the contribution of SMC to pulmonary vascular remodelling. Thus, the approaches used to pharmacologically manipulate PH by targeting the SMC phenotype(s) must take into account processes that underlie dominant phenotypes that drive the disease. We present evidence for time- and location-specific changes in SMC proliferation in various animal models of PH; we highlight the transient nature (rather than continuous) of SMC proliferation, emphasizing that the heterogenic SMC populations that reside in different locations along the pulmonary vascular tree exhibit distinct responses to the stresses associated with the development of PH. We also consider that cells that have often been termed 'SMCs' may arise from many origins, including endothelial cells, fibroblasts and resident or circulating progenitors, and thus may contribute via distinct signalling pathways to the remodelling process. Ultimately, PH is characterized by long-lived, apoptosis-resistant SMC. In line with this key pathogenic characteristic, we address the acquisition of a pro-inflammatory phenotype by SMC that is essential to the development of PH. We present evidence that metabolic alterations akin to those observed in cancer cells (cytoplasmic and mitochondrial) directly contribute to the phenotype of the SM and SM-like cells involved in PH. Finally, we raise the possibility that SMCs transition from a proliferative to a senescent, pro-inflammatory and metabolically active phenotype over time.
Collapse
Affiliation(s)
- Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Brian B Graham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Rubin M Tuder
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Lau S, Klingenberg M, Mrugalla A, Helms F, Sedding D, Haverich A, Wilhelmi M, Böer U. Biochemical Myogenic Differentiation of Adipogenic Stem Cells Is Donor Dependent and Requires Sound Characterization. Tissue Eng Part A 2019; 25:936-948. [PMID: 30648499 DOI: 10.1089/ten.tea.2018.0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT We here showed that even under optimized conditions for biochemical differentiation of adipose-derived stem cells (with respect to a pronounced marker protein expression for a reasonable period of time) it was not possible to obtain functional smooth muscle cells from all donors. Moreover, an underestimated role may play the effect of the scaffold material on smooth muscle cell functionality. Both aspects are crucial for the successful tissue engineering of the vascular medial layer combining autologous cells with a suitable scaffold material and thus should be thoroughly addressed in each individualized therapeutic approach.
Collapse
Affiliation(s)
- Skadi Lau
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anna Mrugalla
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Florian Helms
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Daniel Sedding
- 3Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Yang J, Li S, Wang Q, Yang D. Transmembrane protein 66 attenuates neointimal hyperplasia after carotid artery injury by SOCE inactivation. Mol Med Rep 2019; 20:1436-1442. [PMID: 31173198 DOI: 10.3892/mmr.2019.10328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/10/2019] [Indexed: 11/06/2022] Open
Abstract
Neointimal hyperplasia could be one of the most important complications after balloon angioplasty. Since calcium signaling has several physiologic effects on the regulation of the proliferation and migration of vascular smooth muscle cells (VSMCs), it was hypothesized that transmembrane protein 66 (TMEM66), a store operated calcium entry (SOCE)‑associated regulatory factor, possesses vascular protection against balloon injury. The rat balloon‑induced carotid artery injury model was performed. Histological analysis was used to check neointimal hyperplasia. TMEM66 expression was measured by PCR and immunoblotting. The results revealed that TMEM66 was expressed in the medial and neointimal layers of the injured artery, and the expression of TMEM66 was markedly decreased. TMEM66 overexpression attenuated neointimal hyperplasia via VSMC proliferation/migration inhibition, and restored expression of VSMC phenotypic markers. Moreover, TMEM66 overexpression reduced the increased expression of Stim1 and Orai1 and PDGF‑BB treatment‑enhanced [Ca2+]i. In conclusion, TMEM66 protects against balloon injury‑induced neointimal hyperplasia, and may be a pharmacological target for the treatment of restenosis.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Shuang Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
45
|
Zhang Z, Zhao G, Liu L, He J, Darwazeh R, Liu H, Chen H, Zhou C, Guo Z, Sun X. Bexarotene Exerts Protective Effects Through Modulation of the Cerebral Vascular Smooth Muscle Cell Phenotypic Transformation by Regulating PPARγ/FLAP/LTB 4 After Subarachnoid Hemorrhage in Rats. Cell Transplant 2019; 28:1161-1172. [PMID: 31010302 PMCID: PMC6767892 DOI: 10.1177/0963689719842161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play an important role after a subarachnoid hemorrhage (SAH). The changes in VSMCs following bexarotene treatment after SAH are unknown. In the present study, neurological impairment, decreased cerebral cortical blood flow and transformation of cerebral VSMCs from a contractile to a synthetic phenotype were observed after SAH. Bexarotene reduced neurological impairment, improved cerebral cortical blood flow, inhibited VSMC phenotypic transformation and suppressed the expression of 5-lipoxygenase-activating protein (FLAP) and leukotriene B4 (LTB4), which was partly reversed by GW9662, an inhibitor of peroxisome proliferator-activated receptor gamma (PPARγ). Mechanistically, sh-PPARγ-mediated phenotypic transformation of VSMCs was partially suppressed by MK886, an antagonist of FLAP. Therefore, we conclude that bexarotene reduced neurological impairment, improved cerebral cortical blood flow and inhibited the VSMC phenotypic transformation after SAH, which was achieved by activating PPARγ-mediated inhibition of FLAP/LTB4 in VSMCs.
Collapse
Affiliation(s)
- Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junchi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rami Darwazeh
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Iwasaki K, Komaki M, Akazawa K, Nagata M, Yokoyama N, Watabe T, Morita I. Spontaneous differentiation of periodontal ligament stem cells into myofibroblast during ex vivo expansion. J Cell Physiol 2019; 234:20377-20391. [PMID: 30963561 DOI: 10.1002/jcp.28639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Periodontitis is characterized by the chronic inflammation and destruction of tooth-supporting tissues. Periodontal ligament stem cell (PDLSC) is the mesenchymal stem cell (MSC) population isolated from periodontal ligament, which is the key tissue for regeneration of periodontal tissues. Although transplantation of PDLSCs is proposed as novel regenerative therapy, limited information is available, regarding the characteristic change of PDLSCs during ex vivo expansion. In this study, we encountered morphological change of PDLSCs during standard cell culture and aimed to investigate the change of PDLSCs in stem cell characteristics and to search for the culture condition to maintain stem cell properties. Characteristics of PDLSCs were examined using in vitro osteoblast and adipocyte differentiation. Myofibroblast differentiation was confirmed using immunohistochemistry and collagen gel contraction assay. Replicative senescence was examined by β-gal staining. PDLSCs changed their morphology from spindle to flat and wide during ex vivo expansion. After the morphological change, PDLSCs showed several features of myofibroblast including extensive stress fiber formation, contraction activity, and myofibroblast marker expression. Upon the morphological change, osteoblastic and adipocyte differentiation capacity were reduced and expression of stem cell-related genes were decreased. β-Gal staining was not always correlated with the morphological change of PDLSCs. Moreover, exogenous addition of bFGF and PDGF-BB served to maintain spindle shape and osteoblastic differentiation potential of PDLSCs. This study demonstrates that spontaneous differentiation of PDLSCs during ex vivo expansion and may provide the important information of cell culture condition of PDLSCs for clinical use.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Osaka, Japan.,Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motohiro Komaki
- Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Yokohama Clinic, Kanagawa Dental University, Yokohama, Kanagawa, Japan
| | - Keiko Akazawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mizuki Nagata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naoki Yokoyama
- Biomaterial Laboratory, Research and Development Center, Dai Nippon Printing Co., Ltd., Kashiwa, Chiba, Japan
| | - Tetsuro Watabe
- Biochemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | |
Collapse
|
47
|
Gong Z, Han Y, Wu L, Xia T, Ren H, Yang D, Gu D, Wang H, Hu C, He D, Zhou L, Zeng C. Translocator protein 18 kDa ligand alleviates neointimal hyperplasia in the diabetic rat artery injury model via activating PKG. Life Sci 2019; 221:72-82. [PMID: 30738868 DOI: 10.1016/j.lfs.2019.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/01/2023]
Abstract
AIMS The proliferation of VSMCs is the pathologic basis for intimal hyperplasia after angioplasty in diabetic patients. Translocator protein (TSPO), located in the outer mitochondrial membrane, has been found to regulate redox intermediate components in cell dysfunction. We hypothesized that TSPO may regulate VSMC proliferation and migration, and be involved in the intimal hyperplasia after angioplasty in diabetes. MATERIALS AND METHODS Cell proliferation was measured by cell counting and MTT assays. Cell migration was measured by Transwell® and scratch-wound assays. TSPO expression in arteries of rats and high glucose-treated A10 cells were detected by immunoblotting and immunofluorescence staining. Neointimal formation of carotid artery was induced by balloon injury in type 2 diabetic rat. KEY FINDINGS TSPO expression was increased in the arterial samples from diabetic rats and A10 cells treated with high glucose. Down-regulation of TSPO expression by siRNA decreased the high-glucose-induced VSMC proliferation and migration in A10 cells. This phenomenon could be simulated by using TSPO ligands, PK 11195 and Ro5-4864. cGMP/PKG signals were involved in the TSPO ligand action, since in the presence of cGMP or PKG inhibitor ODQ or KT5823 respectively, the effect of PK 11195 on VSMC proliferation was blocked. Furthermore, PK 11195 significantly inhibited neointimal formation by the inhibition of VSMC proliferation. SIGNIFICANCE This study suggests that TSPO inhibition suppresses the proliferation and migration of VSMCs induced by hyperglycemia, consequently, preventing atherosclerosis and restenosis after angioplasty in diabetic conditions. TSPO may be a potential therapeutic target to reduce arterial remodeling induced by angioplasty in diabetes.
Collapse
Affiliation(s)
- Zhengfan Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Lianpan Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Daqian Gu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - He Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China; Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, PR China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China.
| |
Collapse
|
48
|
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019; 99:513-554. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Tanya V Kalin
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| |
Collapse
|
49
|
Abstract
Teeth are exposed to hundreds of oral bacteria and also challenged by the mastication forces; because teeth are situated in oral cavity, the entrance of the digestive tract, and penetrates through the oral epithelium. The periodontal ligament is a noncalcified tissue that possesses abundant blood vessels, which exist between tooth root and alveolar bone. The ligament is thought to play an important role in absorbing the impact of mastication, in the maintenance of periodontal homeostasis, and in periodontal wound healing. We succeeded in isolating mesenchymal stem cells (MSCs), so-called periodontal stem cells (PDLSCs), with self-renewability and multipotency from the periodontal ligament. We also demonstrated that PDLSCs share some cell surface markers with pericytes and that PDLSCs distribute themselves to stay with the endothelial cell networks and that PDLSCs maintain the endothelial cell networks when added to endothelial cell network formation systems. Pericytes are located in the proximity of microvascular endothelial cells and thought to stabilize and supply nutrients to blood vessels. Recently, it was also reported that pericytes possess multipotency and can be the source of tissue stem cells and/or progenitor cells. This review explores the distinctive features of the periodontal ligament tissue and PDLSCs as well as the puzzling similarities between PDLSCs and pericytes.
Collapse
|
50
|
Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res 2018; 7:F1000 Faculty Rev-1969. [PMID: 30613386 PMCID: PMC6305222 DOI: 10.12688/f1000research.15994.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the uterus of most women. Although the observation of clonality has been confirmed many times, interest in the idea that atherosclerosis might be a form of neoplasia waned because of the clinical success of treatments for hyperlipemia and because animal models have made great progress in understanding how lipid accumulates in the plaque and may lead to plaque rupture. Four advances have made it important to reconsider Benditt's observations. First, we now know that clonality is a property of normal tissue development. Second, this is even true in the vessel wall, where we now know that formation of clonal patches in that wall is part of the development of smooth muscle cells that make up the tunica media of arteries. Third, we know that the intima, the "soil" for development of the human atherosclerotic lesion, develops before the fatty lesions appear. Fourth, while the cells comprising this intima have been called "smooth muscle cells", we do not have a clear definition of cell type nor do we know if the initial accumulation is clonal. As a result, Benditt's hypothesis needs to be revisited in terms of changes in how we define smooth muscle cells and the quite distinct developmental origins of the cells that comprise the muscular coats of all arterial walls. Finally, since clonality of the lesions is real, the obvious questions are do these human tumors precede the development of atherosclerosis, how do the clones develop, what cell type gives rise to the clones, and in what ways do the clones provide the soil for development and natural history of atherosclerosis?
Collapse
Affiliation(s)
| | - Renu Virmani
- CV Path Institute, Gaithersberg, Maryland, 20878, USA
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital Research Institute, Seattle, WA, 98112, USA
| |
Collapse
|