1
|
Shin YJ, Safina D, Zheng Y, Levenberg S. Microvascularization in 3D Human Engineered Tissue and Organoids. Annu Rev Biomed Eng 2025; 27:473-498. [PMID: 40310885 DOI: 10.1146/annurev-bioeng-103023-115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The microvasculature, a complex network of small blood vessels, connects systemic circulation with local tissues, facilitating the nutrient and oxygen exchange that is critical for homeostasis and organ function. Engineering these structures is paramount for advancing tissue regeneration, disease modeling, and drug testing. However, replicating the intricate architecture of native vascular systems-characterized by diverse vessel diameters, cellular constituents, and dynamic perfusion capabilities-presents significant challenges. This complexity is compounded by the need to precisely integrate biomechanical, biochemical, and cellular cues. Recent breakthroughs in microfabrication, organoids, bioprinting, organ-on-a-chip platforms, and in vivo vascularization techniques have propelled the field toward faithfully replicating vascular complexity. These innovations not only enhance our understanding of vascular biology but also enable the generation of functional, perfusable tissue constructs. Here, we explore state-of-the-art technologies and strategies in microvascular engineering, emphasizing key advancements and addressing the remaining challenges to developing fully functional vascularized tissues.
Collapse
Affiliation(s)
- Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, Washington, USA;
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Dina Safina
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel;
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA;
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel;
| |
Collapse
|
2
|
Asayag K, Peled E, Crispel Y, Yanovich C, Cohen H, Keren-Politansky A, Nadir Y. Effect of bone marrow blood versus peripheral blood on the hemostatic balance of osteoblasts and endothelial cells. Sci Rep 2025; 15:13713. [PMID: 40258877 PMCID: PMC12012218 DOI: 10.1038/s41598-025-94942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Bone and bone-marrow (BM) have the same blood supply and thus may be considered as one organ. We previously demonstrated that the microcirculation hemostatic balance that includes heparanase, tissue factor (TF), TF pathway inhibitor (TFPI) and TFPI-2 are organ dependent. The present study aim was to investigate the effect of BM microcirculation blood on osteoblasts and human umbilical vein endothelial cells (HUVECs) compared with peripheral-blood (PB). Fourteen patients were recruited. BM blood was drawn from the pelvis and PB from the arm of each patient. Mesenchymal stem cells (MSCs) from the bone pellet were differentiated to osteoblasts. Cells were evaluated by ELISA, chromogenic assays and immunostaining. We found that levels of heparanase, TF, TFPI, and TFPI-2 were reduced in osteoblasts compared with MSCs (p < 0.05). Level of heparanase was lower in BM plasma compared with PB (p < 0.05). BM plasma attenuated heparanase procoagulant activity and level and increased proliferation in osteoblasts and HUVECs compared to PB plasma or the control. BM plasma increased HUVECs tube-formation compared with PB and control. Peptide 16AC, derived from heparanase that interacts with TF, enhanced, while peptide 6, that inhibits the interaction of heparanase-TF-complex, decreased heparanase level, procoagulant activity, and proliferation in osteoblast and HUVECs. In conclusion, osteoblasts acquire an attenuated hemostatic characteristic during differentiation. The microcirculation blood of the bone supports low hemostatic parameters in osteoblasts and enhances proliferation of cells and angiogenesis. The present data support the growing notion that the local microcirculation within a tissue or organ uniquely affects local hemostasis and angiogenesis.
Collapse
Affiliation(s)
- Keren Asayag
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Eli Peled
- Orthopedic Division, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yonatan Crispel
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Chen Yanovich
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Haim Cohen
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Anat Keren-Politansky
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
3
|
Grego A, Fernandes C, Fonseca I, Dias-Neto M, Costa R, Leite-Moreira A, Oliveira SM, Trindade F, Nogueira-Ferreira R. Endothelial dysfunction in cardiovascular diseases: mechanisms and in vitro models. Mol Cell Biochem 2025:10.1007/s11010-025-05289-w. [PMID: 40259179 DOI: 10.1007/s11010-025-05289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Endothelial cells (ECs) are arranged side-by-side to create a semi-permeable monolayer, forming the inner lining of every blood vessel (micro and macrocirculation). Serving as the first barrier for circulating molecules and cells, ECs represent the main regulators of vascular homeostasis being able to respond to environmental changes, either physical or chemical signals, by producing several factors that regulate vascular tone and cellular adhesion. Healthy endothelium has anticoagulant properties that prevent the adhesion of leukocytes and platelets to the vessel walls, contributing to resistance to thrombus formation, and regulating inflammation, and vascular smooth muscle cell proliferation. Many risk factors of cardiovascular diseases (CVDs) promote the endothelial expression of chemokines, cytokines, and adhesion molecules. The resultant endothelial activation can lead to endothelial cell dysfunction (ECD). In vitro models of ECD allow the study of cellular and molecular mechanisms of disease and provide a research platform for screening potential therapeutic agents. Even though alternative models are available, such as animal models or ex vivo models, in vitro models offer higher experimental flexibility and reproducibility, making them a valuable tool for the understanding of pathophysiological mechanisms of several diseases, such as CVDs. Therefore, this review aims to synthesize the currently available in vitro models regarding ECD, emphasizing CVDs. This work will focus on 2D cell culture models (endothelial cell lines and primary ECs), 3D cell culture systems (scaffold-free and scaffold-based), and 3D cell culture models (such as organ-on-a-chip). We will dissect the role of external stimuli-chemical and mechanical-in triggering ECD.
Collapse
Affiliation(s)
- Ana Grego
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cristiana Fernandes
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ivo Fonseca
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marina Dias-Neto
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Raquel Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Cardiothoracic Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Marisa Oliveira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Fábio Trindade
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rita Nogueira-Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
4
|
Jiang H, Zhou Y, Zhang W, Li H, Ma W, Ji X, Zhou C. Molecular mechanisms of endothelial-mesenchymal transition and its pathophysiological feature in cerebrovascular disease. Cell Biosci 2025; 15:49. [PMID: 40253404 PMCID: PMC12008988 DOI: 10.1186/s13578-025-01393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
The phenomenon of endothelial-mesenchymal transition (EndMT), a distinct subtype of epithelial-mesenchymal transition (EMT), has garnered significant attention from scholars. EndMT refers to the process whereby endothelial cells (ECs) transform into mesenchymal cells in response to various stimuli, resulting in the loss of their original characteristics. This process has diverse implications in both physiological and pathological states. Under physiological conditions, EndMT plays a crucial role in the development of the cardiovascular system. Conversely, under pathological conditions, EndMT has been identified as a pivotal factor in the development of cardiovascular diseases. Nonetheless, a comprehensive overview of EndMT in cerebrovascular disease is currently lacking. Here, we discuss the heterogeneity of EndMT occurrence and the regulatory factors involved in its development and analyze the feasibility of EndMT as a therapeutic target, aiming to provide a solid theoretical foundation and evidence to address diseases caused by pathological EndMT.
Collapse
Affiliation(s)
- Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Weiyue Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Masset C, Drillaud N, Ternisien C, Degauque N, Gerard N, Bruneau S, Branchereau J, Blancho G, Mesnard B, Brouard S, Giral M, Cantarovich D, Dantal J. The concept of immunothrombosis in pancreas transplantation. Am J Transplant 2025; 25:650-668. [PMID: 39709128 DOI: 10.1016/j.ajt.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/23/2024]
Abstract
Early failure of a pancreatic allograft due to complete thrombosis has an incidence of approximately 10% and is the main cause of comorbidity in pancreas transplantation. Although several risk factors have been identified, the exact mechanisms leading to this serious complication are still unclear. In this review, we define the roles of the individual components involved during sterile immunothrombosis-namely endothelial cells, platelets, and innate immune cells. Further, we review the published evidence linking the main risk factors for pancreatic thrombosis to cellular activation and vascular modifications. We also explore the unique features of the pancreas itself: the vessel endothelium, specific vascularization, and relationship to other organs-notably the spleen and adipose tissue. Finally, we summarize the therapeutic possibilities for the prevention of pancreatic thrombosis depending on the different mechanisms such as anticoagulation, anti-inflammatory molecules, endothelium protectors, antagonism of damage-associated molecular patterns, and use of machine perfusion.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Nicolas Drillaud
- Laboratory of Hemostasis, Nantes University Hospital, Nantes, France
| | | | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Nathalie Gerard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sarah Bruneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Julien Branchereau
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Gilles Blancho
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Benoit Mesnard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Magali Giral
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Diego Cantarovich
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
6
|
van den Brink DP, Kleinveld DJ, Polet CA, Veltman H, Roelofs JJ, Weber NC, Juffermans NP. Plasma attenuates endothelial injury compared to crystalloids in a ventilated rat pneumosepsis model. PLoS One 2025; 20:e0319272. [PMID: 39999161 PMCID: PMC11856581 DOI: 10.1371/journal.pone.0319272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The dysregulated immune response during sepsis involves endothelial injury, which may be augmented by infusion of clear fluids such as crystalloids. Plasma has been suggested as an alternative resuscitation fluid but it is unclear whether previously observed benefits were due to the type of fluid, or due to less volume required to restore tissue perfusion. We hypothesized that resuscitation with plasma reduces endothelial injury, inflammation, and organ injury compared to similar and higher volumes of crystalloids in a rat pneumosepsis model. METHODS Rats were intratracheally inoculated with Streptococcus Pneumoniae to induce pneumosepsis. Twenty-four hours after inoculation, animals were randomized to 4 groups: healthy controls (non-resuscitated, n = 6), 10 ml/kg/hr (standard-volume, n = 11) crystalloid resuscitation, 3.33 ml/kg/hr (low-volume, n = 11) crystalloid resuscitation or 3.33 ml/kg/hr plasma resuscitation (n = 11). Plasma markers of inflammation and endothelial injury were measured. Organs were harvested for histology and wet-to-dry weight ratio determination. RESULTS Inoculated animals developed pneumosepsis, with lower mean arterial pressures (p < 0.001) and higher lactate levels (p < 0.001) compared to healthy controls. Animals resuscitated with plasma showed a trend towards lower syndecan-1 levels compared to the standard-volume crystalloid group (82 vs 99 ng/mL, p = 0.06) and had lower levels of VCAM-1 (424 vs 592 ng/mL, p < 0.01) compared to the standard volume crystalloid group, but not when compared to the low-volume crystalloid group. Other markers of endothelial injury or inflammation were not significantly different between groups. No significant differences were observed in histologic injury scores and wet-to-dry ratios. CONCLUSION Plasma resuscitation modestly reduces endothelial injury compared to crystalloid resuscitation. This effect might be attributed to decreased resuscitation volumes rather than the type of fluid.
Collapse
Affiliation(s)
- Daan P. van den Brink
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Derek J.B. Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology, Erasmus MC, Erasmus University of Rotterdam, Rotterdam, Netherlands
| | - Chantal A. Polet
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hendrik Veltman
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J.T.H. Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nina C. Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Intensive Care Medicine, Erasmus MC, Erasmus University of Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
7
|
Denzer L, Muranyi W, Herold R, Stump-Guthier C, Ishikawa H, Sticht C, Schroten H, Schwerk C, Weichert S. Transcriptome and Functional Comparison of Primary and Immortalized Endothelial Cells of the Human Choroid Plexus at the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2025; 26:1779. [PMID: 40004242 PMCID: PMC11856769 DOI: 10.3390/ijms26041779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The human choroid plexus (CP) is the location of the blood-cerebrospinal fluid (CSF) barrier (BCSFB). Whereas the epithelial cells of the CP mainly contribute to the formation of the BCSFB, the vessels of the CP are built by fenestrated endothelial cells. Still, the CP endothelium can contribute to barrier function. By ectopic expression of human telomerase reverse transcriptase (hTERT) in primary human CP endothelial cells (HCPEnCs), we recently generated and characterized immortalized HCPEnCs (iHCPEnCs). Here, we compared primary cells of the sixth passage (HCPEnCs p6) with a lower (p20) and a higher passage (p50) of iHCPEnCs by transcriptome analysis. A high concordance of HCPEnCs and both passages of iHCPEnCs was observed, as only small proportions of the transcripts examined were significantly altered. Differentially expressed genes (DEGs) were identified and assigned to potentially affected biological processes by gene set enrichment analysis (GSEA). Various components of the endothelial barrier-relevant Wnt signaling were detected in HCPEnCs and iHCPEnCs. Functional analysis of HCPEnCs and iHCPEnCs showed equal marginal activation of Wnt signaling, supporting the downregulation of β-catenin (CTNNB) signaling in CP endothelial cells, and a contribution to the barrier function by the CP endothelium was retained until passage 100 (p100) of iHCPEnCs. Overall, our data support the suitability of iHCPEnCs as an in vitro model of the CP endothelium over extended passages.
Collapse
Affiliation(s)
- Lea Denzer
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Walter Muranyi
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| | - Carsten Sticht
- Core Facility Next Generation Sequencing, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Weichert
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Talkington GM, Kolluru P, Gressett TE, Ismael S, Meenakshi U, Acquarone M, Solch-Ottaiano RJ, White A, Ouvrier B, Paré K, Parker N, Watters A, Siddeeque N, Sullivan B, Ganguli N, Calero-Hernandez V, Hall G, Longo M, Bix GJ. Neurological sequelae of long COVID: a comprehensive review of diagnostic imaging, underlying mechanisms, and potential therapeutics. Front Neurol 2025; 15:1465787. [PMID: 40046430 PMCID: PMC11881597 DOI: 10.3389/fneur.2024.1465787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/18/2024] [Indexed: 03/09/2025] Open
Abstract
One lingering effect of the COVID-19 pandemic created by SARS-CoV-2 is the emergence of Long COVID (LC), characterized by enduring neurological sequelae affecting a significant portion of survivors. This review provides a thorough analysis of these neurological disruptions with respect to cognitive dysfunction, which broadly manifest as chronic insomnia, fatigue, mood dysregulation, and cognitive impairments with respect to cognitive dysfunction. Furthermore, we characterize how diagnostic tools such as PET, MRI, EEG, and ultrasonography provide critical insight into subtle neurological anomalies that may mechanistically explain the Long COVID disease phenotype. In this review, we explore the mechanistic hypotheses of these neurological changes, which describe CNS invasion, neuroinflammation, blood-brain barrier disruption, and gut-brain axis dysregulation, along with the novel vascular disruption hypothesis that highlights endothelial dysfunction and hypoperfusion as a core underlying mechanism. We lastly evaluate the clinical treatment landscape, scrutinizing the efficacy of various therapeutic strategies ranging from antivirals to anti-inflammatory agents in mitigating the multifaceted symptoms of LC.
Collapse
Affiliation(s)
- Grant McGee Talkington
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paresh Kolluru
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Saifudeen Ismael
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Umar Meenakshi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mariana Acquarone
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | - Amanda White
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Blake Ouvrier
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Kristina Paré
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nicholas Parker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Amanda Watters
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nabeela Siddeeque
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Brooke Sullivan
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nilesh Ganguli
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | | | - Gregory Hall
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Michele Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
9
|
Zhu J, Chen S, Zhou L, Gong X, Cui Y, Zhang Y, Long M, Lü S. Effects of molecular interaction and liver sinusoidal mechanical properties on leukocyte adhesions. Biophys J 2025; 124:480-493. [PMID: 39604258 PMCID: PMC11866978 DOI: 10.1016/j.bpj.2024.11.3315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
It is interesting to find pathologically that leukocytes, especially neutrophils, tend to adhere in the liver sinusoids dominantly but not in the postsinusoidal venules. While both views of receptor-ligand interactions and physical trapping are proposed for mediating leukocyte adhesion in liver sinusoids, integrated investigations for classifying their respective contributions are poorly presented. With a combination of Monte Carlo simulation and immersed boundary method, this study explored numerically the effects of molecular interaction kinetics and sinusoidal mechanical properties on leukocyte adhesion in liver sinusoid jointly. Results showed that, within the range of biological limitations, the lumen stenosis ratio, leukocyte stiffness, Disse space stiffness and endothelium permeability regulate the comprehensive adhesion process in a descending order of significance in the presence of receptor-ligand interactions. While leukocyte adhesions could be mutually promoted with proper combinations of leukocyte stiffness, lumen stenosis, and molecular interaction, the binding affinity is insensitive under the conditions with low leukocyte stiffness in normal lumen stenosis and high leukocyte stiffness in high lumen stenosis. This work deepens the understanding of recruitment mechanism of leukocyte in liver sinusoids.
Collapse
Affiliation(s)
- Jingchen Zhu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shenbao Chen
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lüwen Zhou
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China; Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo Zhejiang, China
| | - Xiaobo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Cui
- Department of Mechanics, Tianjin University, Tianjin, China
| | - Yan Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Yang H, Xiang Y, Wang J, Ke Z, Zhou W, Yin X, Zhang M, Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int J Biol Macromol 2025; 288:138747. [PMID: 39674451 DOI: 10.1016/j.ijbiomac.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an essential stromal cell protein, plays a crucial role in angiogenesis and maintaining endothelial barrier function. This protein is expressed by diverse cell types, including endothelial cells, fibroblasts, and macrophages, with increased expression found in regions of tissues undergoing active remodeling, repair, and proliferation. The role of SPARC in non-neural tissues is of significant interest. In the central nervous system (CNS), SPARC is highly expressed in blood vessels during early development. It becomes down-regulated as the brain matures, a pattern consistent with its role in angiogenesis and blood-brain barrier (BBB) establishment. In this review, we explore the multifaceted roles of SPARC in regulating CNS disorders, particularly its action in angiogenesis, inflammatory responses, neural system development and repair, barrier establishment, maintenance of BBB function, and the pathogenesis of CNS disorders triggered by BBB dysfunction.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yuanyuan Xiang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jiaxuan Wang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
11
|
Sebo DJ, Ali I, Fetsko AR, Trimbach AA, Taylor MR. Activation of Wnt/β-catenin in neural progenitor cells regulates blood-brain barrier development and promotes neuroinflammation. Sci Rep 2025; 15:3496. [PMID: 39875426 PMCID: PMC11775206 DOI: 10.1038/s41598-025-85784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature. Using transgenic reporters of Wnt/β-catenin transcriptional activity, we found an inverse correlation between activated Wnt/β-catenin signaling in endothelial cells (ECs) versus non-ECs within these distinct microenvironments. Our results indicated that the level of Wnt/β-catenin signaling in non-ECs may regulate Wnt/β-catenin activity in adjacent ECs. To further test this concept, we generated a transgenic Tet-On inducible system to drive constitutively active β-catenin expression in neural progenitor cells (NPCs). We found that dose-dependent activation of Wnt/β-catenin in NPCs caused severe deficiency in CNS angiogenesis and BBB development. Additionally, we discovered a significant increase in the proliferation of microglia and infiltration of peripheral neutrophils indicative of a stereotypical neuroinflammatory response. In conclusion, our results demonstrate the importance of proper Wnt/β-catenin signaling within specific CNS microenvironments and highlights the potentially deleterious consequences of aberrant Wnt activation.
Collapse
Affiliation(s)
- Dylan J Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Irshad Ali
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey R Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aubrey A Trimbach
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Walia A, Kaur A, Singh R, Rani N, Swami R. Unveiling the Mysteries of the Blood-brain Barrier: The Problem of the Brain/spinal Pharmacotherapy. Cent Nerv Syst Agents Med Chem 2025; 25:91-108. [PMID: 39206486 DOI: 10.2174/0118715249297247240813104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
The most critical issue impeding the development of innovative cerebrospinal medications is the blood-brain barrier (BBB). The BBB limits the ability of most medications to penetrate the brain to the CNS. The BBB structure and functions are summarized, with the physical barrier generated by endothelial tight junctions and the transport barrier formed by transporters within the membrane and vesicular processes. The functions of connected cells, particularly the end feet of astrocytic glial cells, microglia, and pericytes, are described. The drugs that cross the blood brain barrier are explained below along with their mechanisms. Some of the associated conditions and problems are given.
Collapse
Affiliation(s)
- Aditya Walia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Randhir Singh
- Central University of Punjab, Bathinda, Punjab, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
14
|
Dietrich J, Kang A, Tielemans B, Verleden SE, Khalil H, Länger F, Bruners P, Mentzer SJ, Welte T, Dreher M, Jonigk DD, Ackermann M. The role of vascularity and the fibrovascular interface in interstitial lung diseases. Eur Respir Rev 2025; 34:240080. [PMID: 39909504 PMCID: PMC11795288 DOI: 10.1183/16000617.0080-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
Interstitial lung disease (ILD) is a clinical term that refers to a diverse group of non-neoplastic lung diseases. This group includes idiopathic and secondary pulmonary entities that are often associated with progressive pulmonary fibrosis. Currently, therapeutic approaches based on specific structural targeting of pulmonary fibrosis are limited to nintedanib and pirfenidone, which can only slow down disease progression leading to a lower mortality rate. Lung transplantation is currently the only available curative treatment, but it is associated with high perioperative mortality. The pulmonary vasculature plays a central role in physiological lung function, and vascular remodelling is considered a hallmark of the initiation and progression of pulmonary fibrosis. Different patterns of pulmonary fibrosis commonly exhibit detectable pathological features such as morphomolecular changes, including intussusceptive and sprouting angiogenesis, vascular morphometry, broncho-systemic anastomoses, and aberrant angiogenesis-related gene expression patterns. Dynamic cellular interactions within the fibrovascular interface, such as endothelial activation and endothelial-mesenchymal transition, are also observed. This review aims to summarise the current clinical, radiological and pathological diagnostic algorithm for different ILDs, including usual interstitial pneumonia/idiopathic pulmonary fibrosis, non-specific interstitial pneumonia, alveolar fibroelastosis/pleuroparenchymal fibroelastosis, hypersensitivity pneumonitis, systemic sclerosis-related ILD and coronavirus disease 2019 injury. It emphasises an interdisciplinary clinicopathological perspective. Additionally, the review covers current therapeutic strategies and knowledge about associated vascular abnormalities.
Collapse
Affiliation(s)
- Jana Dietrich
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Alice Kang
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Birger Tielemans
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Edegem, Belgium
- Department of Respiratory Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Hassan Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Danny D Jonigk
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| | - Maximilian Ackermann
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Anatomy, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| |
Collapse
|
15
|
Chrysafi P, Barnum K, Gerhard GM, Chiasakul T, Narang A, Mcnichol M, Riva N, Semmler G, Scheiner B, Acosta S, Rautou PE, Lauw MN, Berry J, Ageno W, Zwicker JI, Patell R. Anticoagulation for splanchnic vein thrombosis in myeloproliferative neoplasms: a systematic review and meta-analysis. J Thromb Haemost 2024; 22:3479-3489. [PMID: 39127323 DOI: 10.1016/j.jtha.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Optimal anticoagulation management in patients with myeloproliferative neoplasms (MPN) experiencing splanchnic vein thrombosis (SpVT) requires balancing risks of bleeding and recurrent thrombosis. OBJECTIVES We conducted a systematic review and meta-analysis to assess the incidence of bleeding and thrombosis recurrence in patients with MPN-SpVT. METHODS We included retrospective or prospective studies in English with ≥10 adult patients with MPN-SpVT. Outcomes included recurrent venous thrombosis (SpVT and non-SpVT), arterial thrombosis, and major bleeding. Pooled rates per 100 patient years with 95% CIs were calculated by DerSimonian-Laird method using random-effects model. RESULTS Out of 4624 studies screened, 9 studies with a total of 443 patients were included in the meta-analysis with median follow-up of 3.5 years. In the 364 patients with MPN-SpVT treated with anticoagulation, pooled event rate for major bleeding was 2.8 (95% CI, 1.5-5.1; I2 = 95%), for recurrent venous thrombosis was 1.4 (95% CI, 0.8-2.2; I2 = 72%), and for arterial thrombosis was 1.4 (95% CI, 0.6-3.3; I2 = 92%) per 100 patient years. Among 79 patients (n = 4 studies) who did not receive anticoagulation, pooled event rate for major bleeding was 3.2 (95% CI, 0.7-12.7; I2 = 97%), for recurrent venous thrombosis 3.5 (95% CI, 1.8-6.4; I2 = 88%), and for arterial thrombosis rate 1.6 (95% CI, 0.4-6.6; I2 = 95%) per 100 patient years. CONCLUSION Patients with MPN-SpVT treated with anticoagulation have significant risks for both major bleeding and thrombosis recurrence. Further studies are necessary to determine the optimal anticoagulation approach in patients with MPN-SpVT.
Collapse
Affiliation(s)
- Pavlina Chrysafi
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts, USA. https://twitter.com/PavlinaChrysafi
| | - Kevin Barnum
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Genevieve M Gerhard
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Thita Chiasakul
- Center of Excellence in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Arshit Narang
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megan Mcnichol
- Department of Information Systems, Division of Knowledge Services, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Georg Semmler
- Department of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Department of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Stefan Acosta
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pierre-Emmanuel Rautou
- Department of Immunology, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre de Recherche sur l'Inflammation, Unité Mixte de Recherche (UMR) 1149, Université Paris-Cité, Paris, France; Division of Hepatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Beaujon, Service d'Hépatologie, Département Médico-Universitaire (DMU) DIGEST, Centre de Référence des Maladies Vasculaires du Foie, Filière des Maladies Hépatiques Rares (FILFOIE), European Reference Network for Rare Liver Diseases (ERN RARE-LIVER), Clichy, France
| | - Mandy N Lauw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jonathan Berry
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jeffrey I Zwicker
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
16
|
Ghosh M, Roy D, Thakur S, Singh A. Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis. Biopharm Drug Dispos 2024; 45:161-189. [PMID: 39665188 DOI: 10.1002/bdd.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.
Collapse
Affiliation(s)
| | - Debajyoti Roy
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| |
Collapse
|
17
|
Lonardo A, Ballestri S, Baffy G, Weiskirchen R. Liver fibrosis as a barometer of systemic health by gauging the risk of extrahepatic disease. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This review article proposes the theory that liver fibrosis, the abnormal accumulation of excessive extracellular matrix, is not just an indicator of liver disease but also a negative reflection of overall systemic health. Liver fibrosis poses a heavy financial burden on healthcare systems worldwide and can develop due to chronic liver disease from various causes, often due to sustained inflammation. Liver fibrosis may not generate symptoms and become apparent only when it reaches the stage of cirrhosis and is associated with clinically significant portal hypertension and leads to decompensation events or promotes the development of hepatocellular carcinoma. While chronic viral hepatitis and excessive alcohol consumption were once the primary causes of chronic liver disease featuring fibrosis, this role is now increasingly taken over by metabolic dysfunction-associated steatotic liver disease (MASLD). In MASLD, endothelial dysfunction is an essential component in pathogenesis, promoting the development of liver fibrosis, but it is also present in endothelial cells of other organs such as the heart, lungs, and kidneys. Accordingly, liver fibrosis is a significant predictor of liver-related outcomes, as well as all-cause mortality, cardiovascular risk, and extrahepatic cancer. Physicians should be aware that individuals seeking medical attention for reasons unrelated to liver health may also have advanced fibrosis. Early identification of these at-risk individuals can lead to a more comprehensive assessment and the use of various treatment options, both approved and investigational, to slow or reverse the progression of liver fibrosis.
Collapse
|
18
|
Luo AC, Wang J, Wang K, Zhu Y, Gong L, Lee U, Li X, Tremmel DM, Lin RZ, Ingber DE, Gorman J, Melero-Martin JM. A streamlined method to generate endothelial cells from human pluripotent stem cells via transient doxycycline-inducible ETV2 activation. Angiogenesis 2024; 27:779-795. [PMID: 38969874 PMCID: PMC11577265 DOI: 10.1007/s10456-024-09937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The development of reliable methods for producing functional endothelial cells (ECs) is crucial for progress in vascular biology and regenerative medicine. In this study, we present a streamlined and efficient methodology for the differentiation of human induced pluripotent stem cells (iPSCs) into induced ECs (iECs) that maintain the ability to undergo vasculogenesis in vitro and in vivo using a doxycycline-inducible system for the transient expression of the ETV2 transcription factor. This approach mitigates the limitations of direct transfection methods, such as mRNA-mediated differentiation, by simplifying the protocol and enhancing reproducibility across different stem cell lines. We detail the generation of iPSCs engineered for doxycycline-induced ETV2 expression and their subsequent differentiation into iECs, achieving over 90% efficiency within four days. Through both in vitro and in vivo assays, the functionality and phenotypic stability of the derived iECs were rigorously validated. Notably, these cells exhibit key endothelial markers and capabilities, including the formation of vascular networks in a microphysiological platform in vitro and in a subcutaneous mouse model. Furthermore, our results reveal a close transcriptional and proteomic alignment between the iECs generated via our method and primary ECs, confirming the biological relevance of the differentiated cells. The high efficiency and effectiveness of our induction methodology pave the way for broader application and accessibility of iPSC-derived ECs in scientific research, offering a valuable tool for investigating endothelial biology and for the development of EC-based therapies.
Collapse
Affiliation(s)
- Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jiuhai Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Yonglin Zhu
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Liyan Gong
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Umji Lee
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiang Li
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel M Tremmel
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, USA
| | - James Gorman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
19
|
Brandon KD, Frank WE, Stroka KM. Junctions at the crossroads: the impact of mechanical cues on endothelial cell-cell junction conformations and vascular permeability. Am J Physiol Cell Physiol 2024; 327:C1073-C1086. [PMID: 39129490 PMCID: PMC11481987 DOI: 10.1152/ajpcell.00605.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.
Collapse
Affiliation(s)
- Ken D Brandon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - William E Frank
- Department of Biology, University of Puerto Rico in Ponce, Ponce, Puerto Rico
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
20
|
Abdelazim H, Barnes A, Stupin J, Hasson R, Muñoz-Ballester C, Young KL, Robel S, Smyth JW, Lamouille S, Chappell JC. Optimized Enrichment of Murine Blood-Brain Barrier Vessels with a Critical Focus on Network Hierarchy in Post-Collection Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613898. [PMID: 39345630 PMCID: PMC11429916 DOI: 10.1101/2024.09.19.613898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cerebrovascular networks contain a unique region of interconnected capillaries known as the blood-brain barrier (BBB). Positioned between upstream arteries and downstream veins, these microvessels have unique structural features, such as the absence of vascular smooth muscle cells (vSMCs) and a relatively thin basement membrane, to facilitate highly efficient yet selective exchange between the circulation and the brain interstitium. This vital role in neurological health and function has garnered significant attention from the scientific community and inspired methodology for enriching BBB capillaries. Extensive characterization of the isolates from such protocols is essential for framing the results of follow-on experiments and analyses, providing the most accurate interpretation and assignment of BBB properties. Seeking to aid in these efforts, here we visually screened output samples using fluorescent labels and found considerable reduction of non-vascular cells following density gradient centrifugation (DGC) and subsequent filtration. Comparatively, this protocol enriched brain capillaries, though larger diameter vessels associated with vSMCs could not be fully excluded. Protein analysis further underscored the enrichment of vascular markers following DGC, with filtration preserving BBB-associated markers and reducing - though not fully removing - arterial/venous contributions. Transcriptional profiling followed similar trends of DGC plus filtration generating isolates with less non-vascular and non- capillary material included. Considering vascular network hierarchy inspired a more comprehensive assessment of the material yielded from brain microvasculature isolation protocols. This approach is important for providing an accurate representation of the cerebrovascular segments being used for data collection and assigning BBB properties specifically to capillaries relative to other regions of the brain vasculature. HIGHLIGHTS We optimized a protocol for the enrichment of murine capillaries using density gradient centrifugation and follow-on filtration.We offer an approach to analyzing post-collection cerebrovascular fragments and cells with respect to vascular network hierarchy.Assessing arterial and venous markers alongside those associated with the BBB provides a more comprehensive view of material collected.Enhanced insight into isolate composition is critical for a more accurate view of BBB biology relative to larger diameter cerebrovasculature. MOTIVATION The recent surge in studies investigating the cerebrovasculature, and the blood-brain barrier (BBB) in particular, has inspired a broad range of approaches to target and observe these specialized blood vessels within murine models. To capture transcriptional and molecular changes during a specific intervention or disease model, techniques have been developed to isolate brain capillary networks and collect their cellular constituents for downstream analysis. Here, we sought to highlight the benefits and cautions of isolating and enriching microvessels from murine brain tissue. Specifically, through rigorous assessment of the output material following application of specific protocols, we presented the benefits of specific approaches to reducing the inclusion of non-vascular cells and non-capillary vessel segments, verified by analysis of vascular-related proteins and transcripts. We also emphasized the levels of larger- caliber vessels (i.e. arteries/arterioles and veins/venules) that are collected alongside cerebral capillaries with each method. Distinguishing these vascular regions with greater precision is critical for attributing specific characteristics exclusively to the BBB where metabolic, ion, and waste exchange occurs. While the addition of larger vessels to molecular / transcriptional analyses or follow-on experiments may not be substantial for a given protocol, it is essential to gauge and report their level of inclusion, as their contributions may be inadvertently assigned to the BBB. Therefore, we present this optimized brain microvessel isolation protocol and associated evaluation methods to underscore the need for increased rigor in characterizing vascular regions that are collected and analyzed within a given study.
Collapse
|
21
|
Chen A, Volpato G, Pong A, Schofield E, Huang J, Qiu Z, Paxinos G, Liang H. The Blood-Brain Barrier in Both Humans and Rats: A Perspective From 3D Imaging. Int J Biomed Imaging 2024; 2024:4482931. [PMID: 39224835 PMCID: PMC11368551 DOI: 10.1155/2024/4482931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/24/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Background: The blood-brain barrier (BBB) is part of the neurovascular unit (NVU) which plays a key role in maintaining homeostasis. However, its 3D structure is hardly known. The present study is aimed at imaging the BBB using tissue clearing and 3D imaging techniques in both human brain tissue and rat brain tissue. Methods: Both human and rat brain tissue were cleared using the CUBIC technique and imaged with either a confocal or two-photon microscope. Image stacks were reconstructed using Imaris. Results: Double staining with various antibodies targeting endothelial cells, basal membrane, pericytes of blood vessels, microglial cells, and the spatial relationship between astrocytes and blood vessels showed that endothelial cells do not evenly express CD31 and Glut1 transporter in the human brain. Astrocytes covered only a small portion of the vessels as shown by the overlap between GFAP-positive astrocytes and Collagen IV/CD31-positive endothelial cells as well as between GFAP-positive astrocytes and CD146-positive pericytes, leaving a big gap between their end feet. A similar structure was observed in the rat brain. Conclusions: The present study demonstrated the 3D structure of both the human and rat BBB, which is discrepant from the 2D one. Tissue clearing and 3D imaging are promising techniques to answer more questions about the real structure of biological specimens.
Collapse
Affiliation(s)
- Aiwen Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji University, Shanghai, China
- Department of Anesthesiology and Perioperative MedicineShanghai Fourth People's HospitalSchool of MedicineTongji University, Shanghai, China
- Department of AcupunctureShuguang HospitalShanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gavin Volpato
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical SciencesThe University of New South Wales, Kensington, New South Wales, Australia
| | - Alice Pong
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical SciencesThe University of New South Wales, Kensington, New South Wales, Australia
| | - Emma Schofield
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical SciencesThe University of New South Wales, Kensington, New South Wales, Australia
| | - Jun Huang
- School of Chemical and Biomolecular EngineeringThe University of Sydney, Camperdown, New South Wales, Australia
| | - Zizhao Qiu
- Centre of Life ScienceSuzhou Industrial Park Monash Research Institute of Science and TechnologySoutheast University-Monash University Joint Graduate SchoolMonash University-Southeast University Joint Research Institute, Suzhou, Jiangsu Province, China
| | - George Paxinos
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical SciencesThe University of New South Wales, Kensington, New South Wales, Australia
| | - Huazheng Liang
- Translational Research Institute of Brain and Brain-Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji University, Shanghai, China
- Department of Brain Structure and FunctionNeuroscience Research Australia, Randwick, New South Wales, Australia
- Centre of Life ScienceSuzhou Industrial Park Monash Research Institute of Science and TechnologySoutheast University-Monash University Joint Graduate SchoolMonash University-Southeast University Joint Research Institute, Suzhou, Jiangsu Province, China
| |
Collapse
|
22
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
23
|
Negrão Pantaleão A, Goudot G, Becari L, Jeunon V, Andrade Bello G, Gallo de Moraes A. Pulmonary embolism following an undiagnosed Paget-Schroetter syndrome: a case report and review of the literature. PHYSICIAN SPORTSMED 2024; 52:414-420. [PMID: 37675985 DOI: 10.1080/00913847.2023.2256642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Paget-Schroetter Syndrome (PSS) is a rare condition characterized by spontaneous thrombosis of the axillary-subclavian vein that occurs predominantly in young athletes engaged in repetitive overhead upper extremity motion, for instance, weightlifting, swimming, baseball, and tennis. PSS is usually a consequence of chronic repetitive microtrauma to the vein intima due to compression of the axillary-subclavian vein by the thoracic outlet structures. This chronic injury can then be acutely exacerbated by vigorous exercise done over a brief period, accelerating thrombus formation. Lack of PSS awareness leads to underdiagnosis, misdiagnosis, or late diagnosis, which can pose life-threatening risks to patients, including pulmonary embolism (PE) and recurrent thrombosis. This case report of a 20-year-old male college athlete exposes a PE caused by PSS, potentially worsened by a delay in diagnosis. Early suspicion and proper management are crucial for optimizing long-term outcomes and facilitating limb rehabilitation. The recommended approach involves early catheter-directed thrombolysis followed by thoracic outlet decompression.
Collapse
Affiliation(s)
- Alexandre Negrão Pantaleão
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guillaume Goudot
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Becari
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vinicius Jeunon
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Alice Gallo de Moraes
- Associate Professor of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Perez-Gutierrez L, Li P, Ferrara N. Endothelial cell diversity: the many facets of the crystal. FEBS J 2024; 291:3287-3302. [PMID: 36266750 DOI: 10.1111/febs.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels and play crucial roles in angiogenesis. While it has been known for a long time that there are considerable differences among ECs from lymphatic and blood vessels, as well as among arteries, veins and capillaries, the full repertoire of endothelial diversity is only beginning to be elucidated. It has become apparent that the role of ECs is not just limited to their exchange functions. Indeed, a multitude of organ-specific functions, including release of growth factors, regulation of immune functions, have been linked to ECs. Recent years have seen a surge into the identification of spatiotemporal molecular and functional heterogeneity of ECs, supported by technologies such as single-cell RNA sequencing (scRNA-seq), lineage tracing and intersectional genetics. Together, these techniques have spurred the generation of epigenomic, transcriptomic and proteomic signatures of ECs. It is now clear that ECs across organs and in different vascular beds, but even within the same vessel, have unique molecular identities and employ specialized molecular mechanisms to fulfil highly specialized needs. Here, we focus on the molecular heterogeneity of the endothelium in different organs and pathological conditions.
Collapse
Affiliation(s)
- Lorena Perez-Gutierrez
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Pin Li
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| |
Collapse
|
25
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Majid QA, Ghimire BR, Merkely B, Randi AM, Harding SE, Talman V, Földes G. Generation and characterisation of scalable and stable human pluripotent stem cell-derived microvascular-like endothelial cells for cardiac applications. Angiogenesis 2024; 27:561-582. [PMID: 38775849 PMCID: PMC11303486 DOI: 10.1007/s10456-024-09929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 08/07/2024]
Abstract
Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further, the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus, we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Qasim A Majid
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary
| | - Anna M Randi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sian E Harding
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Virpi Talman
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gábor Földes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary.
| |
Collapse
|
27
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
28
|
Ren L, Xia J, Huang C, Bai Y, Yao J, Li D, Yan B. Single-cell transcriptomic analysis reveals the antiangiogenic role of Mgarp in diabetic retinopathy. BMJ Open Diabetes Res Care 2024; 12:e004189. [PMID: 39013633 PMCID: PMC11268071 DOI: 10.1136/bmjdrc-2024-004189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR) is a common vascular complication of diabetes mellitus and a leading cause of vision loss worldwide. Endothelial cell (EC) heterogeneity has been observed in the pathogenesis of DR. Elucidating the underlying mechanisms governing EC heterogeneity may provide novel insights into EC-specific therapies for DR. RESEARCH DESIGN AND METHODS We used the single-cell data from the Gene Expression Omnibus database to explore EC heterogeneity between diabetic retinas and non-diabetic retinas and identify the potential genes involved in DR. CCK-8 assays, EdU assays, transwell assays, and tube formation assays were conducted to determine the role of the identified gene in angiogenic effects. RESULTS Our analysis identified three distinct EC subpopulations in retinas and revealed that Mitochondria-localized glutamic acid-rich protein (Mgarp) gene is potentially involved in the pathogenesis of DR. Silencing of Mgarp significantly suppressed the proliferation, migration, and tube formation capacities in retinal endothelial cells. CONCLUSIONS This study not only offers new insights into transcriptomic heterogeneity and pathological alteration of retinal ECs but also holds the promise to pave the way for antiangiogenic therapy by targeting EC-specific gene.
Collapse
Affiliation(s)
- Ling Ren
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiao Xia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
30
|
Thijssen VLJL. Vascular galectins in tumor angiogenesis and cancer immunity. Semin Immunopathol 2024; 46:3. [PMID: 38990363 PMCID: PMC11239785 DOI: 10.1007/s00281-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 07/12/2024]
Abstract
Sustained tumor angiogenesis, i.e., the induction and maintenance of blood vessel growth by tumor cells, is one of the hallmarks of cancer. The vascularization of malignant tissues not only facilitates tumor growth and metastasis, but also contributes to immune evasion. Important players in all these processes are the endothelial cells which line the luminal side of blood vessel. In the tumor vasculature, these cells are actively involved in angiogenesis as well in the hampered recruitment of immune cells. This is the result of the abnormal tumor microenvironment which triggers both angiostimulatory and immune inhibitory gene expression profiles in endothelial cells. In recent years, it has become evident that galectins constitute a protein family that is expressed in the tumor endothelium. Moreover, several members of this glycan-binding protein family have been found to facilitate tumor angiogenesis and stimulate immune suppression. All this has identified galectins as potential therapeutic targets to simultaneously hamper tumor angiogenesis and alleviate immune suppression. The current review provides a brief introduction in the human galectin protein family. The current knowledge regarding the expression and regulation of galectins in endothelial cells is summarized. Furthermore, an overview of the role that endothelial galectins play in tumor angiogenesis and tumor immunomodulation is provided. Finally, some outstanding questions are discussed that should be addressed by future research efforts. This will help to fully understand the contribution of endothelial galectins to tumor progression and to exploit endothelial galectins for cancer therapy.
Collapse
Affiliation(s)
- Victor L J L Thijssen
- Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Kiskin FN, Yang Y, Yang H, Zhang JZ. Cracking the code of the cardiovascular enigma: hPSC-derived endothelial cells unveil the secrets of endothelial dysfunction. J Mol Cell Cardiol 2024; 192:65-78. [PMID: 38761989 DOI: 10.1016/j.yjmcc.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.
Collapse
Affiliation(s)
- Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
32
|
Burboa PC, Corrêa-Velloso JC, Arriagada C, Thomas AP, Durán WN, Lillo MA. Impact of Matrix Gel Variations on Primary Culture of Microvascular Endothelial Cell Function. Microcirculation 2024; 31:e12859. [PMID: 38818977 PMCID: PMC11227414 DOI: 10.1111/micc.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques. METHODS Freshly isolated ECs are vital for examining protein expression, ion channel behavior, and calcium dynamics. Establishing primary endothelial cell cultures is crucial for unraveling vascular functions and understanding intact microvessel endothelium roles. Despite the significance, detailed protocols and comparisons with intact vessels are scarce in microvascular research. We developed a reproducible method to isolate microvascular ECs, assessing substrate influence by cultivating cells on fibronectin and gelatin matrix gels. This comparative approach enhances our understanding of microvascular endothelial cell biology. RESULTS Microvascular mesenteric ECs expressed key markers (VE-cadherin and eNOS) in both matrix gels, confirming cell culture purity. Under uncoated conditions, ECs were undetected, whereas proteins linked to smooth muscle cells and fibroblasts were evident. Examining endothelial cell (EC) physiological dynamics on distinct matrix substrates revealed comparable cell length, shape, and Ca2+ elevations in both male and female ECs on gelatin and fibronectin matrix gels. Gelatin-cultured ECs exhibited analogous membrane potential responses to acetylcholine (ACh) or adenosine triphosphate (ATP), contrasting with their fibronectin-cultured counterparts. In the absence of stimulation, fibronectin-cultured ECs displayed a more depolarized resting membrane potential than gelatin-cultured ECs. CONCLUSIONS Gelatin-cultured ECs demonstrated electrical behaviors akin to intact endothelium from mouse mesenteric arteries, thus advancing our understanding of endothelial cell behavior within diverse microenvironments.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Juliana C. Corrêa-Velloso
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Cecilia Arriagada
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago, Chile
| | - Andrew P. Thomas
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Walter N. Durán
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Mauricio A. Lillo
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| |
Collapse
|
33
|
Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, Liu X, Zhang M, Li W, Li Q, Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact Mater 2024; 37:206-221. [PMID: 38560369 PMCID: PMC10979125 DOI: 10.1016/j.bioactmat.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
With the development of nanomedicine, nanomaterials have been widely used, offering specific drug delivery to target sites, minimal side effects, and significant therapeutic effects. The kidneys have filtration and reabsorption functions, with various potential target cell types and a complex structural environment, making the strategies for kidney function protection and recovery after injury complex. This also lays the foundation for the application of nanomedicine in kidney diseases. Currently, evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials. The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility, including nanoparticles, hydrogels, liposomes, micelles, dendrimer polymers, adenoviruses, lysozymes, and elastin-like polypeptides. These carriers have precise renal uptake, longer half-life, and targeted organ distribution, protecting and improving the efficacy of the drugs they carry. Additionally, attention should also be paid to the toxicity and solubility of the carriers. While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro, extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body. This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases, provide a more comprehensive catalog of nanocarrier materials, and offer prospects for their drug-loading efficacy and clinical applications.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangmeng Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, China
- Peking Union Medical College, Beijing, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Keying Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
34
|
Raslan AA, Pham TX, Lee J, Kontodimas K, Tilston-Lunel A, Schmottlach J, Hong J, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Lung injury-induced activated endothelial cell states persist in aging-associated progressive fibrosis. Nat Commun 2024; 15:5449. [PMID: 38937456 PMCID: PMC11211333 DOI: 10.1038/s41467-024-49545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.
Collapse
Affiliation(s)
- Ahmed A Raslan
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Tho X Pham
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jillian Schmottlach
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jeongmin Hong
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Taha Dinc
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andreea M Bujor
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Aude Thiriot
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Giovanni Ligresti
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
35
|
Miao J, Zhang K, Yang Y, Xu S, Du J, Wu T, Tao C, Wang Y, Yang S. Single-nucleus transcriptomics reveal cardiac cell type-specific diversification in metabolic disease transgenic pigs. iScience 2024; 27:110015. [PMID: 38868189 PMCID: PMC11166884 DOI: 10.1016/j.isci.2024.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiac damage is widely present in patients with metabolic diseases, but the exact pathophysiological mechanisms involved remain unclear. The porcine heart is an ideal material for cardiovascular research due to its similarities to the human heart. This study evaluated pathological features and performed single-nucleus RNA sequencing (snRNA-seq) on myocardial samples from both wild-type and metabolic disease-susceptible transgenic pigs (previously established). We found that transgenic pigs exhibited lipid metabolism disturbances and myocardial injury after a high-fat high-sucrose diet intervention. snRNA-seq reveals the cellular landscape of healthy and metabolically disturbed pig hearts and identifies the major cardiac cell populations affected by metabolic diseases. Within metabolic disorder hearts, metabolically active cardiomyocytes exhibited impaired function and reduced abundance. Moreover, massive numbers of reparative LYVE1+ macrophages were lost. Additionally, proinflammatory endothelial cells were activated with high expression of multiple proinflammatory cytokines. Our findings provide insights into the cellular mechanisms of metabolic disease-induced myocardial injury.
Collapse
Affiliation(s)
- Jiakun Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yu Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shuang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Juan Du
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
36
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
37
|
Yadav D, Conner JA, Wang Y, Saunders TL, Ubogu EE. A novel inducible von Willebrand Factor Cre recombinase mouse strain to study microvascular endothelial cell-specific biological processes in vivo. Vascul Pharmacol 2024; 155:107369. [PMID: 38554988 DOI: 10.1016/j.vph.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Mouse models are invaluable to understanding fundamental mechanisms in vascular biology during development, in health and different disease states. Several constitutive or inducible models that selectively knockout or knock in genes in vascular endothelial cells exist; however, functional and phenotypic differences exist between microvascular and macrovascular endothelial cells in different organs. In order to study microvascular endothelial cell-specific biological processes, we developed a Tamoxifen-inducible von Willebrand Factor (vWF) Cre recombinase mouse in the SJL background. The transgene consists of the human vWF promoter with the microvascular endothelial cell-selective 734 base pair sequence to drive Cre recombinase fused to a mutant estrogen ligand-binding domain [ERT2] that requires Tamoxifen for activity (CreERT2) followed by a polyadenylation (polyA) signal. We initially observed Tamoxifen-inducible restricted bone marrow megakaryocyte and sciatic nerve microvascular endothelial cell Cre recombinase expression in offspring of a mixed strain hemizygous C57BL/6-SJL founder mouse bred with mT/mG mice, with >90% bone marrow megakaryocyte expression efficiency. Founder mouse offspring were backcrossed to the SJL background by speed congenics, and intercrossed for >10 generations to develop hemizygous Tamoxifen-inducible vWF Cre recombinase (vWF-iCre/+) SJL mice with stable transgene insertion in chromosome 1. Microvascular endothelial cell-specific Cre recombinase expression occurred in the sciatic nerves, brains, spleens, kidneys and gastrocnemius muscles of adult vWF-iCre/+ SJL mice bred with Ai14 mice, with retained low level bone marrow and splenic megakaryocyte expression. This novel mouse strain would support hypothesis-driven mechanistic studies to decipher the role(s) of specific genes transcribed by microvascular endothelial cells during development, as well as in physiologic and pathophysiologic states in an organ- and time-dependent manner.
Collapse
Affiliation(s)
- Dinesh Yadav
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy A Conner
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yimin Wang
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
38
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
39
|
Wang L, Zhou J, Wang J, Wang X, Dong H, Zhao L, Wu J, Peng J. Hepatic Stellate Cell-Targeting Micelle Nanomedicine for Early Diagnosis and Treatment of Liver Fibrosis. Adv Healthc Mater 2024; 13:e2303710. [PMID: 38293743 DOI: 10.1002/adhm.202303710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Diagnosing and treating liver fibrosis is a challenging yet crucial endeavor due to its complex pathogenesis and risk of deteriorating into cirrhosis, liver failure, and even hepatic cancer. Herein, a silica cross-linked micelles (SCLMs) based nano-system is developed for both diagnosing and treating liver fibrosis. The SCLMs are first modified with peptide CTCE9908 (CT-SCLMs) and can actively target CXCR4, which is overexpressed in activated hepatic stellate cells (HSCs). To enable diagnosis, an ONOO--responded near-infrared fluorescent probe NOF2 is loaded into the CT-SCLMs. This nano-system can target the aHSCs and diagnose the liver fibrosis particularly in CCl4-induced liver damage, by monitoring the reactive nitrogen species. Furthermore, a step is taken toward treatment by co-encapsulating two anti-fibrosis drugs, silibinin and sorafenib, within the CT-SCLMs. This combined approach results in a significant alleviation of liver injury. Symptoms associated with liver fibrosis, such as deposition of collagen, expression of hydroxyproline, and raised serological indicators show notable improvement. In summary, the CXCR4-targeted nano-system can serve as a promising theragnostic system of early warning and diagnosis for liver fibrosis, offering hope against progression of this serious liver condition.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Jian Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junchen Wu
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
40
|
Chen L, Li H, Liu X, Zhang N, Wang K, Shi A, Gao H, Akdis D, Saguner AM, Xu X, Osto E, Van de Veen W, Li G, Bayés-Genís A, Duru F, Song J, Li X, Hu S. PBX/Knotted 1 homeobox-2 (PKNOX2) is a novel regulator of myocardial fibrosis. Signal Transduct Target Ther 2024; 9:94. [PMID: 38644381 PMCID: PMC11033280 DOI: 10.1038/s41392-024-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiaorui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kui Wang
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Anteng Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hang Gao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Deniz Akdis
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Elena Osto
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich and University of Zürich, Zurich, Switzerland
| | - Willem Van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Guangyu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Antoni Bayés-Genís
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, CIBERCV, Spain
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Xiangjie Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
41
|
Rezzani R, Favero G, Gianò M, Pinto D, Labanca M, van Noorden CJ, Rinaldi F. Transient Receptor Potential Channels in the Healthy and Diseased Blood-Brain Barrier. J Histochem Cytochem 2024; 72:199-231. [PMID: 38590114 PMCID: PMC11020746 DOI: 10.1369/00221554241246032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Mauro Labanca
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| |
Collapse
|
42
|
Morel C, Lemerle E, Tsai FC, Obadia T, Srivastava N, Marechal M, Salles A, Albert M, Stefani C, Benito Y, Vandenesch F, Lamaze C, Vassilopoulos S, Piel M, Bassereau P, Gonzalez-Rodriguez D, Leduc C, Lemichez E. Caveolin-1 protects endothelial cells from extensive expansion of transcellular tunnel by stiffening the plasma membrane. eLife 2024; 12:RP92078. [PMID: 38517935 PMCID: PMC10959525 DOI: 10.7554/elife.92078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.
Collapse
Affiliation(s)
- Camille Morel
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| | - Eline Lemerle
- Sorbonne Université, INSERM UMR974, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Feng-Ching Tsai
- Institut Curie, PSL Research University, CNRS UMR168, Physics of Cells and Cancer LaboratoryParisFrance
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
- Institut Pasteur, Université Paris Cité, G5 Infectious Diseases Epidemiology and AnalyticsParisFrance
| | - Nishit Srivastava
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, Sorbonne UniversityParisFrance
| | - Maud Marechal
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT)ParisFrance
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis HubParisFrance
| | - Caroline Stefani
- Benaroya Research Institute at Virginia Mason, Department of ImmunologySeattleUnited States
| | - Yvonne Benito
- Centre National de Référence des Staphylocoques, Hospices Civiles de LyonLyonFrance
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, FranceLyonFrance
| | - Christophe Lamaze
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR3666, Membrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParisFrance
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM UMR974, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, Sorbonne UniversityParisFrance
| | - Patricia Bassereau
- Institut Curie, PSL Research University, CNRS UMR168, Physics of Cells and Cancer LaboratoryParisFrance
| | | | - Cecile Leduc
- Université Paris Cité, Institut Jacques Monod, CNRS UMR7592ParisFrance
| | - Emmanuel Lemichez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| |
Collapse
|
43
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
44
|
Watson C, Saaid H, Vedula V, Cardenas JC, Henke PK, Nicoud F, Xu XY, Hunt BJ, Manning KB. Venous Thromboembolism: Review of Clinical Challenges, Biology, Assessment, Treatment, and Modeling. Ann Biomed Eng 2024; 52:467-486. [PMID: 37914979 DOI: 10.1007/s10439-023-03390-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Venous thromboembolism (VTE) is a massive clinical challenge, annually affecting millions of patients globally. VTE is a particularly consequential pathology, as incidence is correlated with extremely common risk factors, and a large cohort of patients experience recurrent VTE after initial intervention. Altered hemodynamics, hypercoagulability, and damaged vascular tissue cause deep-vein thrombosis and pulmonary embolism, the two permutations of VTE. Venous valves have been identified as likely locations for initial blood clot formation, but the exact pathway by which thrombosis occurs in this environment is not entirely clear. Several risk factors are known to increase the likelihood of VTE, particularly those that increase inflammation and coagulability, increase venous resistance, and damage the endothelial lining. While these risk factors are useful as predictive tools, VTE diagnosis prior to presentation of outward symptoms is difficult, chiefly due to challenges in successfully imaging deep-vein thrombi. Clinically, VTE can be managed by anticoagulants or mechanical intervention. Recently, direct oral anticoagulants and catheter-directed thrombolysis have emerged as leading tools in resolution of venous thrombosis. While a satisfactory VTE model has yet to be developed, recent strides have been made in advancing in silico models of venous hemodynamics, hemorheology, fluid-structure interaction, and clot growth. These models are often guided by imaging-informed boundary conditions or inspired by benchtop animal models. These gaps in knowledge are critical targets to address necessary improvements in prediction and diagnosis, clinical management, and VTE experimental and computational models.
Collapse
Affiliation(s)
- Connor Watson
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA
| | - Hicham Saaid
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Jessica C Cardenas
- Department of Surgery and the Center for Translational Injury Research, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Peter K Henke
- Section of Vascular Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Franck Nicoud
- CNRS, IMAG, Université de Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Beverley J Hunt
- Department of Thrombosis and Haemostasis, King's College, London, UK
- Thrombosis and Haemophilia Centre, Guy's & St Thomas' NHS Trust, London, UK
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA.
- Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
45
|
Zhong L, Wang F, Liu D, Kuang W, Ji N, Li J, Zeng X, Li T, Dan H, Chen Q. Single-cell transcriptomics dissects premalignant progression in proliferative verrucous leukoplakia. Oral Dis 2024; 30:172-186. [PMID: 35950708 DOI: 10.1111/odi.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Proliferative verrucous leukoplakia (PVL) is characterized by a spectrum of clinicopathological features and a high risk of malignant transformation. In this study, we aimed to delineate the dynamic changes in molecular signature during PVL progression and identify the potential cell subtypes that play a key role in the premalignant evolution of PVL. METHODS We performed single-cell RNA sequencing on three biopsy samples from a large PVL lesion. These samples exhibited a histopathological continuum of PVL progression. RESULTS By analyzing the transcriptome profiles of 27,611 cells from these samples, we identified ten major cell lineages and revealed that cellular remodeling occurred during the progression of PVL lesions, including epithelial, stromal, and immune cells. Epithelial cells are shifted to tumorigenic states and secretory patterns at the premalignant stage. Immune cells showed growing immunosuppressive phenotypes during PVL progression. Remarkably, two novel cell subtypes INSR+ endothelial cells and ASPN+ fibroblasts, were discovered and may play vital roles in microenvironment remodeling, such as angiogenesis and stromal fibrosis, which are closely involved in malignant transformation. CONCLUSION Our work is the first to depict the cellular landscape of PVL and speculate that disease progression may be driven by functional remodeling of multiple cell subtypes.
Collapse
Affiliation(s)
- Liang Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjing Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Sukudom S, Smart L, Macdonald S. Association between intravenous fluid administration and endothelial glycocalyx shedding in humans: a systematic review. Intensive Care Med Exp 2024; 12:16. [PMID: 38403742 PMCID: PMC10894789 DOI: 10.1186/s40635-024-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Several studies have demonstrated associations between greater rate/volume of intravenous (IV) fluid administration and poorer clinical outcomes. One postulated mechanism for harm from exogenous fluids is shedding of the endothelial glycocalyx (EG). METHODS A systematic review using relevant search terms was performed using Medline, EMBASE and Cochrane databases from inception to October 2023. Included studies involved humans where the exposure was rate or volume of IV fluid administration and the outcome was EG shedding. The protocol was prospectively registered on PROSPERO: CRD42021275133. RESULTS The search yielded 450 articles, with 20 articles encompassing 1960 participants included in the review. Eight studies were randomized controlled clinical trials. Half of studies examined patients with sepsis and critical illness; the remainder examined perioperative patients or healthy subjects. Almost all reported blood measurements of soluble EG components; one study used in vivo video-microscopy to estimate EG thickness. Four of 10 sepsis studies, and 9 of 11 non-sepsis studies, found a positive relationship between IV fluid rate/volume and measures of EG shedding. CONCLUSIONS A trend toward an association between IV fluid rate/volume and EG shedding was found in studies of stable patients, but was not consistently observed among studies of septic and critically ill patients.
Collapse
Affiliation(s)
- Sara Sukudom
- Emergency Department, Royal Perth Hospital, PO Box 2213, Perth, WA, 6000, Australia
| | - Lisa Smart
- Emergency and Critical Care, Small Animal Specialist Hospital, Tuggerah, NSW, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Stephen Macdonald
- Emergency Department, Royal Perth Hospital, PO Box 2213, Perth, WA, 6000, Australia.
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.
- Medical School, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
47
|
Piwocka O, Piotrowski I, Suchorska WM, Kulcenty K. Dynamic interactions in the tumor niche: how the cross-talk between CAFs and the tumor microenvironment impacts resistance to therapy. Front Mol Biosci 2024; 11:1343523. [PMID: 38455762 PMCID: PMC10918473 DOI: 10.3389/fmolb.2024.1343523] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem of cells, signaling molecules, and extracellular matrix components that profoundly influence cancer progression. Among the key players in the TME, cancer-associated fibroblasts (CAFs) have gained increasing attention for their diverse and influential roles. CAFs are activated fibroblasts found abundantly within the TME of various cancer types. CAFs contribute significantly to tumor progression by promoting angiogenesis, remodeling the extracellular matrix, and modulating immune cell infiltration. In order to influence the microenvironment, CAFs engage in cross-talk with immune cells, cancer cells, and other stromal components through paracrine signaling and direct cell-cell interactions. This cross-talk can result in immunosuppression, tumor cell proliferation, and epithelial-mesenchymal transition, contributing to disease progression. Emerging evidence suggests that CAFs play a crucial role in therapy resistance, including resistance to chemotherapy and radiotherapy. CAFs can modulate the tumor response to treatment by secreting factors that promote drug efflux, enhance DNA repair mechanisms, and suppress apoptosis pathways. This paper aims to understand the multifaceted functions of CAFs within the TME, discusses cross-talk between CAFs with other TME cells, and sheds light on the contibution of CAFs to therapy resistance. Targeting CAFs or disrupting their cross-talk with other cells holds promise for overcoming drug resistance and improving the treatment efficacy of various cancer types.
Collapse
Affiliation(s)
- Oliwia Piwocka
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
48
|
Huang Z, Huang DX, Wang YY, Jiang LJ, Wang YH, Dai J, Kang X, Wen Y, He SY. Features of thromboelastogram in populations exposed to or transferring from high altitude. Heliyon 2024; 10:e25223. [PMID: 38322976 PMCID: PMC10845907 DOI: 10.1016/j.heliyon.2024.e25223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Background Thromboelastogram (TEG) is an effective indicator that monitors the dynamic changes of blood coagulation in real-time. It still remains controversial about the performance and influence of coagulation at high altitude. The present study intends to describe comprehensively the clinical features of TEG in populations exposed to or transferring from high altitude. Methods Two groups were recruited in the present study. Group A included young males who worked at high-altitude (4888 m or 5418 m) areas for some time, while Group B included young males who had recently returned from high-altitude (4888 m or 5418 m) areas. Medical examinations were performed using portable devices. Spearman's test was used to evaluate the correlations between thromboelastogram (TEG) variables and other variables. Logistic regression analysis was used to analyze the factors affecting various abnormal TEG variables. Results A total of 51 adult males were included in the two groups. Significantly increased reaction time (R) and decreased maximum amplitude (MA) were found in group B (P < 0.05). No significant differences were observed in the comparisons of K and angle between the two groups. Various TEG variables were identified to be correlated with different coagulation and biochemical variables. Logistic regression analysis demonstrated that abnormal R was independently associated with direct bilirubin, and abnormal K was independently associated with the platelet count in Group A (P < 0.05). However, none of the factors were independently associated with abnormal TEG variables in Group B. Conclusion Populations exposed to or transferring from high altitudes are characterized by different TEG characteristics. Our findings give a comprehensive description of the complex interaction between TEG indexes, coagulation dynamics, and hematological parameters, which can help guide the development of appropriate medical approaches tailored to the unique needs of these populations.
Collapse
Affiliation(s)
- Zhu Huang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Dong-xin Huang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
- College of Medicine, Southwest Jiaotong University, Chengdu, 610000, China
| | - Yan-yan Wang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of Clinical Laboratory, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Li-juan Jiang
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yong-hua Wang
- Department of Nursing, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Jing Dai
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yi Wen
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Si-yi He
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of Cardiac Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
| |
Collapse
|
49
|
Dunaway LS, Luse MA, Nyshadham S, Bulut G, Alencar GF, Chavkin NW, Cortese-Krott M, Hirschi KK, Isakson BE. Obesogenic diet disrupts tissue-specific mitochondrial gene signatures in the artery and capillary endothelium. Physiol Genomics 2024; 56:113-127. [PMID: 37982169 PMCID: PMC11281809 DOI: 10.1152/physiolgenomics.00109.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Endothelial cells (ECs) adapt to the unique needs of their resident tissue and metabolic perturbations, such as obesity. We sought to understand how obesity affects EC metabolic phenotypes, specifically mitochondrial gene expression. We investigated the mesenteric and adipose endothelium because these vascular beds have distinct roles in lipid homeostasis. Initially, we performed bulk RNA sequencing on ECs from mouse adipose and mesenteric vasculatures after a normal chow (NC) diet or high-fat diet (HFD) and found higher mitochondrial gene expression in adipose ECs compared with mesenteric ECs in both NC and HFD mice. Next, we performed single-cell RNA sequencing and categorized ECs as arterial, capillary, venous, or lymphatic. We found mitochondrial genes to be enriched in adipose compared with mesentery under NC conditions in artery and capillary ECs. After HFD, these genes were decreased in adipose ECs, becoming like mesenteric ECs. Transcription factor analysis revealed that peroxisome proliferator-activated receptor-γ (PPAR-γ) had high specificity in NC adipose artery and capillary ECs. These findings were recapitulated in single-nuclei RNA-sequencing data from human visceral adipose. The sum of these findings suggests that mesenteric and adipose arterial ECs metabolize lipids differently, and the transcriptional phenotype of the vascular beds converges in obesity due to downregulation of PPAR-γ in adipose artery and capillary ECs.NEW & NOTEWORTHY Using bulk and single-cell RNA sequencing on endothelial cells from adipose and mesentery, we found that an obesogenic diet induces a reduction in adipose endothelial oxidative phosphorylation gene expression, resulting in a phenotypic convergence of mesenteric and adipose endothelial cells. Furthermore, we found evidence that PPAR-γ drives this phenotypic shift. Mining of human data sets segregated based on body mass index supported these findings. These data point to novel mechanisms by which obesity induces endothelial dysfunction.
Collapse
Affiliation(s)
- Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Melissa A Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Shruthi Nyshadham
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Gamze Bulut
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Gabriel F Alencar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Nicholas W Chavkin
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Miriam Cortese-Krott
- Department of Cardiology, Pneumology and Angiology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Karen K Hirschi
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
50
|
Wu X, Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis 2024; 27:5-22. [PMID: 37103631 PMCID: PMC10134732 DOI: 10.1007/s10456-023-09878-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/16/2023] [Indexed: 04/28/2023]
Abstract
The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development. Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage. During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China.
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, MA, Boston, USA.
| |
Collapse
|