1
|
Amirkhizi F, Taghizadeh M, Hamedi-Shahraki S, Asghari S. Association of dietary phytochemical index with metabolic markers, serum asymmetric dimethylarginine and atherogenic indices in patients with polycystic ovary syndrome. Nutr Metab (Lond) 2025; 22:39. [PMID: 40336098 PMCID: PMC12060492 DOI: 10.1186/s12986-025-00932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is associated with an increased risk of cardiovascular diseases (CVD). Plant-based diets are associated with reduced CVD risk factors. This study aimed to explore the associations between dietary phytochemical index (DPI) and asymmetric dimethylarginine (ADMA), lipid profile, atherogenic indices, and other metabolic biomarkers in women with PCOS. METHODS In this cross-sectional study, 150 females aged 18-45 years diagnosed with PCOS were recruited. An interviewer-administered questionnaire was applied to gather the relevant demographic characteristics, detailed clinical information, and lifestyle habits of participants. A validated semi-quantitative food frequency questionnaire was used to assess dietary intake, and DPI was calculated accordingly. We used multiple linear regression to determine the association between serum concentrations of ADMA, total testosterone, sex hormone-binding globulin (SHBG), fasting serum glucose (FSG), insulin, and lipid profile, as well as atherogenic indices across quartiles of DPI. RESULTS There was a negative correlation between the DPI and serum levels of ADMA (p-trend = 0.022), triglycerides (TG) (p-trend = 0.003), oxidized low-density lipoprotein cholesterol (ox-LDL) (p-trend = 0.001), insulin (p-trend = 0.045) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (p-trend = 0.018). Moreover, there was a tendency for visceral adiposity index (VAI) (p-trend = 0.005) and atherogenic index of plasma (AIP) (p-trend = 0.001) to decrease as the quartile categories of DPI increased. No significant regular trend was found for serum levels of FSG, SHBG, total testosterone, other lipid profiles, and lipid accumulation product (LAP). CONCLUSIONS These findings suggest that adherence to a phytochemical-rich diet decrease the CVD risk factors in PCOS patients.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdiyeh Taghizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Bagheri St., Shahid Rajaei St, Zabol, 9861615881, Iran.
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran.
| |
Collapse
|
2
|
He J, Dai Y, Xu F, Huang X, Gao Y, Liu L, Zhang W, Liu J. High-density lipoprotein-based nanoplatforms for macrophage-targeted diagnosis and therapy of atherosclerosis. Int J Biol Macromol 2025; 306:140826. [PMID: 40010459 DOI: 10.1016/j.ijbiomac.2025.140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/19/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Atherosclerosis, the primary cause of cardiovascular disease, which has the highest mortality worldwide, is a chronic inflammatory disease mainly induced by excessive lipid accumulation in plaque macrophages. Lipid-laden macrophages are crucial at all stages of atherosclerotic lesion progression and are, thus, regarded as popular therapeutic targets for atherosclerosis. High-density lipoprotein (HDL), an endogenous particle with excellent atherosclerotic plaque-homing properties, is considered a potential therapeutic agent for treating atherosclerosis. Based on the excellent properties of HDL, reconstituted HDL (rHDL), with physiological functions similar to those of its natural counterparts, have been successfully prepared as therapeutics and are also recognized as a potential nanoplatform for delivering drugs or contrast agents to atherosclerotic plaques owing to their high biocompatibility, amphiphilic structure, and macrophage-targeting capability. In this review, we focus on the (a) important role of macrophages in atherosclerotic lesions, (b) biological properties of rHDL as a delivery nanoplatform in atherosclerotic diseases, and (c) multiple applications of rHDL in the diagnosis and treatment of atherosclerosis. We systematically summarize the novel applications of rHDL with unique advantages in atherosclerosis, aiming to provide specific insights and inspire additional innovative research in this field.
Collapse
Affiliation(s)
- Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Fengfei Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yu Gao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Durrington PN, Bashir B, Soran H. How Does HDL Participate in Atherogenesis? Antioxidant Activity Versus Role in Reverse Cholesterol Transport. Antioxidants (Basel) 2025; 14:430. [PMID: 40298833 PMCID: PMC12023944 DOI: 10.3390/antiox14040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/30/2025] Open
Abstract
Low-density lipoprotein (LDL) chemically modified by reactive oxygen species (ROS), for example, leaking from red blood cells in the vascular compartment, more readily crosses the vascular endothelium than does nonoxidatively modified LDL to enter tissue fluid. Oxidatively modified LDL (oxLDL) may also be created in the tissue fluid by ROS leaking from cells by design, for example, by inflammatory white cells, or simply leaking from other cells as a consequence of oxygen metabolism. As well as oxLDL, glycatively modified LDL (glycLDL) is formed in the circulation. High-density lipoprotein (HDL) appears capable of decreasing the burden of lipid peroxides formed on LDL exposed to ROS or to glucose and its metabolites. The mechanism for this that has received the most attention is the antioxidant activity of HDL, which is due in large part to the presence of paraoxonase 1 (PON1). PON1 is intimately associated with its apolipoprotein A1 component and with HDL's lipid domains into which lipid peroxides from LDL or cell membranes can be transferred. It is frequently overlooked that for PON1 to hydrolyze lipid substrates, it is essential that it remain by virtue of its hydrophobic amino acid sequences within a lipid micellar environment, for example, during its isolation from serum or genetically modified cells in tissue culture. Otherwise, it may retain its capacity to hydrolyze water-soluble substrates, such as phenyl acetate, whilst failing to hydrolyze more lipid-soluble molecules. OxLDL and probably glycLDL, once they have crossed the arterial endothelium by receptor-mediated transcytosis, are rapidly taken up by monocytes in a process that also involves scavenger receptors, leading to subendothelial foam cell formation. These are the precursors of atheroma, inducing more monocytes to cross the endothelium into the lesion and the proliferation and migration of myocytes present in the arterial wall into the developing lesion, where they transform into foam cells and fibroblasts. The atheroma progresses to have a central extracellular lake of cholesteryl ester following necrosis and apoptosis of foam cells with an overlying fibrous cap whilst continuing to grow concentrically around the arterial wall by a process involving oxLDL and glycLDL. Within the arterial wall, additional oxLDL is generated by ROS secreted by inflammatory cells and leakage from cells generally when couplet oxygen is reduced. PON1 is important for the mechanism by which HDL opposes atherogenesis, which may provide a better avenue of inquiry in the identification of vulnerable individuals and the provision of new therapies than have emerged from the emphasis placed on its role in RCT.
Collapse
Affiliation(s)
- Paul N. Durrington
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
| | - Bilal Bashir
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
- Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
- Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
4
|
Theofilis P, Vlachakis PK, Karakasis P, Kalaitzidis RG. Managing Dyslipidemia in Chronic Kidney Disease: Implications for Cardiovascular and Renal Risk. Curr Atheroscler Rep 2025; 27:41. [PMID: 40117057 DOI: 10.1007/s11883-025-01290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE OF REVIEW The review aims to address the complex relationship between dyslipidemia and chronic kidney disease (CKD), emphasizing its dual role in driving cardiovascular disease (CVD) risk and contributing to CKD progression. It explores pathophysiological mechanisms, highlights recent biomarker discoveries, and evaluates contemporary and emerging lipid-lowering therapies tailored for CKD patients. RECENT FINDINGS Recent studies have highlighted the inadequacy of traditional lipid markers like LDL-C in reflecting cardiovascular risk in CKD. Novel biomarkers, such as remnant cholesterol and lipoprotein(a), demonstrate stronger associations with adverse outcomes. Emerging lipid-lowering agents, including bempedoic acid, pemafibrate, and PCSK9 inhibitors, show promise for risk reduction, especially in non-dialysis-dependent CKD. However, evidence remains limited for advanced stages of CKD and dialysis patients. Furthermore, alterations in lipid metabolism, such as dysfunctional HDL and triglyceride-rich lipoproteins, are now recognized as significant contributors to CVD and renal damage in CKD populations. Dyslipidemia is a pivotal modifiable risk factor in CKD, exacerbating both cardiovascular risk and disease progression. While statins remain the cornerstone of therapy in early-to-moderate CKD, their efficacy diminishes in advanced stages. The advent of novel therapeutic options and a deeper understanding of dyslipidemia's pathophysiology hold potential for improving outcomes. Future research should prioritize personalized approaches, focusing on the unique metabolic derangements of CKD and advancing treatments for high-risk and dialysis-dependent patients.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia-Piraeus Agios Panteleimon, 18454, Piraeus, Greece
- First Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Panayotis K Vlachakis
- First Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Paschalis Karakasis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642, Thessaloniki, Greece
| | - Rigas G Kalaitzidis
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia-Piraeus Agios Panteleimon, 18454, Piraeus, Greece.
| |
Collapse
|
5
|
Ondracek AS, Afonyushkin T, Aszlan A, Taqi S, Koller T, Artner T, Porsch F, Resch U, Sharma S, Scherz T, Spittler A, Haertinger M, Hofbauer TM, Ozsvar-Kozma M, Seidl V, Beitzke D, Krueger M, Testori C, Lang IM, Binder CJ. Malondialdehyde-specific natural IgM inhibit NETosis triggered by culprit site-derived extracellular vesicles from myocardial infarction patients. Eur Heart J 2025; 46:926-939. [PMID: 39215577 PMCID: PMC11887544 DOI: 10.1093/eurheartj/ehae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIMS Neutrophil extracellular traps (NETs) trigger atherothrombosis during acute myocardial infarction (AMI), but mechanisms of induction remain unclear. Levels of extracellular vesicles (EV) carrying oxidation-specific epitopes (OSE), which are targeted by specific natural immunoglobulin M (IgM), are increased at the culprit site in AMI. This study investigated EV as inducers of NETosis and assessed the inhibitory effect of natural anti-OSE-IgM in this process. METHODS Blood from the culprit and peripheral site of ST-segment elevation myocardial infarction (STEMI) patients (n = 28) was collected, and myocardial function assessed by cardiac magnetic resonance imaging (cMRI) 4 ± 2 days and 195 ± 15 days post-AMI. Extracellular vesicles were isolated from patient plasma and cell culture supernatants for neutrophil stimulation in vitro and in vivo, in the presence of a malondialdehyde (MDA)-specific IgM or an isotype control. NETosis and neutrophil functions were assessed via enzyme-linked immunosorbent assay and fluorescence microscopy. Pharmacological inhibitors were used to map signalling pathways. Neutrophil extracellular trap markers and anti-OSE-IgM were measured by ELISA. RESULTS CD45+ MDA+ EV and NET markers were elevated at the culprit site. Extracellular vesicles induced neutrophil activation and NET formation via TLR4 and PAD4, and mice injected with EV showed increased NETosis. Malondialdehyde-specific IgM levels were inversely associated with citH3 in STEMI patient blood. An MDA-specific IgM inhibited EV-induced NET release in vitro and in vivo. CD45+ MDA+ EV concentrations inversely correlated with left ventricular ejection fraction post-AMI. CONCLUSIONS Culprit site-derived EV induce NETosis, while MDA-specific natural IgM inhibit this effect, potentially impacting outcome after AMI.
Collapse
Affiliation(s)
- Anna S Ondracek
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Taras Afonyushkin
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Adrienne Aszlan
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Soreen Taqi
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute for Genetics and Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Thomas Scherz
- Department of Dermatology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Maximilian Haertinger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas M Hofbauer
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Maria Ozsvar-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| | - Veronika Seidl
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Krueger
- Institute for Genetics and Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christoph Testori
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 6L, 1090 Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 5H, 1090 Vienna, Austria
| |
Collapse
|
6
|
Hajsadeghi S, Iranpour A, Mirshafiee S, Nekouian R, Mollababaei M, Motevalli H, Yasin Ahmadi SA, Dakkali MS. Impact of smoking on microRNAs in significant coronary artery disease. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2025; 63:49-59. [PMID: 39543851 DOI: 10.2478/rjim-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Given the importance of coronary artery disease (CAD) and the range of cardiovascular disease phenotypes in smokers, as well as the potential genetic and epigenetic factors, we were motivated to explore the impact of smoking on some selected microRNAs associated with significant CAD. METHODS A total of 60 individuals were selected in four groups including non-smoker without significant CAD (S-A-), non-smokers with significant CAD (S-A+), smokers without significant CAD (S+A-) and smokers with significant CAD (S+A+). Micro-RNA expression was investigated using real-time PCR. General linear model was used to calculate fold change (FC) considering S-A- as the reference group. RESULTS For mir-34a, down-regulation was observed in S+A- (FC =0.13, P =0.007) and S+A+ (FC =0.23, P =0.036) groups. For mir-126-3p, down-regulation was observed in S-A+ group (FC =0.05, P =0.024). For mir-199, up-regulation was observed for S+A- group (FC =9.38, P =0.007). The only significant interaction between pack-years of smoking and number of significantly narrowed vessels (≥75% stenosis) was for mir-199 which was in favor of down-regulation (P =0.006), while the main effects were in favor of up-regulation (P <0.05). CONCLUSION Mir-34a expression may be affected by smoking, whereas mir-126-3p expression may be affected by atherosclerosis, the most common reason of CAD. The significant down-regulation of mir-199 for the interaction of smoking dose and severity of CAD was a notable finding showing the harmful consequence of this interaction. Further studies are needed for this micro-RNA.
Collapse
Affiliation(s)
- Shokoufeh Hajsadeghi
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Aida Iranpour
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Mirshafiee
- Department of Cardiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Nekouian
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mollababaei
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Motevalli
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Amir Yasin Ahmadi
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Squier K, Waugh C, Callow J, Patola W, Hunt MA, Brunham LR, Jakobi J, Scott A. Understanding the impact of Achilles lipid content on tendon mechanical parameters: a cross-sectional study of people with familial hypercholesterolemia and healthy controls. BMC Musculoskelet Disord 2025; 26:183. [PMID: 39987058 PMCID: PMC11846310 DOI: 10.1186/s12891-025-08430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a genetic condition that affects cholesterol metabolism, resulting in life-long elevated serum levels of low-density lipoprotein cholesterol. Systemically elevated cholesterol levels are associated with the onset of tendon injury and potentially lead to impaired mechanical properties. Applying a cross-sectional design, we examined whether FH patients present with altered Achilles biomechanics compared to healthy controls and conducted correlational analyses to determine the relationship between Achilles tendon biomechanics and tendon lipid or water content. METHODS Patients with FH (n = 33) and healthy controls (n = 31) were recruited from the Greater Vancouver area. Achilles cross sectional area, thickness, lipid and water content was determined using Dixon method magnetic resonance imaging (3.0T). Achilles mechanical properties were determined using synchronized dynamometry, motion capture, ultrasound and electromyography during ramped maximal voluntary isometric contractions, and stiffness and Young's modulus calculated. Between group differences were assessed with independent t-tests or Mann-Whitney U tests and Pearson's r or Spearman's ρ were employed for correlational analyses. Sensitivity analysis was conducted on FH patients diagnosed with Achilles xanthoma and the remaining FH patients. RESULTS FH patients had significantly elevated Achilles total water content (p = 0.006), cross-sectional area (p = 0.006), and thickness (p = 0.019). No between-group differences were observed in any of the biomechanical parameters. In patients with FH there were significant positive relationships between tendon lipid or water content and tendon strain (ρ = 0.35, p = 0.046; r = 0.42, p = 0.02, respectively). No significant relationships were observed in control participants. In patients with FH, increased tendon cross-sectional area was associated with reduced stiffness (r=-0.371, p = 0.033) and increased strain (r = 0.48, p = 0.005). The presence of xanthoma was associated with increased Achilles dimensions (p < 0.05), total water content (p = 0.03), strain (p = 0.029), and decreased Young's modulus (p = 0.001). CONCLUSION Increased Achilles lipid and water content is associated with increased tendon strain in people with FH and the presence of xanthoma might indicate altered tendon mechanics. This study holds relevance for individuals with hypercholesteremia, as best management practices advocate for physical activity as part of a healthy lifestyle.
Collapse
Affiliation(s)
- Kipling Squier
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Charlie Waugh
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Joanne Callow
- School of Nursing, Faculty of Applied Science, University of British Columbia, Vancouver, BC, Canada
| | - Wayne Patola
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael A Hunt
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Jakobi
- School of Health & Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
- Aging in Place Research Cluster, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Alexander Scott
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
8
|
Zhang S, Ji Y, Xu B, Hu D, Zhang X, Song Y, Chen K, Wen Y, He X, Chen Y, Zheng T. Study on the use of black phosphorus quantum dots in the treatment of atherosclerosis. Aging (Albany NY) 2025; 17:563-587. [PMID: 39998897 PMCID: PMC11892921 DOI: 10.18632/aging.206205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/01/2025] [Indexed: 02/27/2025]
Abstract
Atherosclerosis is the pathological basis of cardiovascular disease, and there are no clinical drugs that can safely and efficiently remove atherosclerotic plaques. In this study, black phosphorus quantum dots (BPQDs) were applied to the treatment of atherosclerosis in high fat diet ApoE-/- model mice that BPQDs were given every other day for 3 weeks without changing the high-fat diet. 45.3% atherosclerotic plaque was cleared efficiently within 3 weeks in BPQDs intravenous administration way every other day. The treatment was more effective than traditional statins. The findings suggest that BPQDs have great potential to be applied for clinical prevention and treatment of AS that does not require dietary changes.
Collapse
Affiliation(s)
- Shengwei Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
- Department of Ultrasound, Xiaolan People’s Hospital of Zhongshan, Zhongshan 528415, Guangdong, P.R. China
| | - Yiran Ji
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
| | - Bingxuan Xu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
| | - Die Hu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
| | - Xue Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
| | - Yujian Song
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
- Ultrasound Diagnosis and Treatment Center of the First People’s Hospital of Foshan, Foshan 528000, Guangdong, P.R. China
| | - Keke Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
- Department of Ultrasound, Nanjing Drum Tower Hospital, Nanjing 210000, Jiangsu, P.R. China
| | - Yilin Wen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
| | - Xiaoxin He
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P.R. China
| |
Collapse
|
9
|
Fedotova EI, Berezhnov AV, Popov DY, Shitikova EY, Vinokurov AY. The Role of mtDNA Mutations in Atherosclerosis: The Influence of Mitochondrial Dysfunction on Macrophage Polarization. Int J Mol Sci 2025; 26:1019. [PMID: 39940788 PMCID: PMC11817597 DOI: 10.3390/ijms26031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis is a complex inflammatory process associated with high-mortality cardiovascular diseases. Today, there is a growing body of evidence linking atherosclerosis to mutations of mitochondrial DNA (mtDNA). But the mechanism of this link is insufficiently studied. Atherosclerosis progression involves different cell types and macrophages are one of the most important. Due to their high plasticity, macrophages can demonstrate pro-inflammatory and pro-atherogenic (macrophage type M1) or anti-inflammatory and anti-atherogenic (macrophage type M2) effects. These two cell types, formed as a result of external stimuli, differ significantly in their metabolic profile, which suggests the central role of mitochondria in the implementation of the macrophage polarization route. According to this, we assume that mtDNA mutations causing mitochondrial disturbances can play the role of an internal trigger, leading to the formation of macrophage M1 or M2. This review provides a comparative analysis of the characteristics of mitochondrial function in different types of macrophages and their possible associations with mtDNA mutations linked with inflammation-based pathologies including atherosclerosis.
Collapse
Affiliation(s)
- Evgeniya I. Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Elena Y. Shitikova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| |
Collapse
|
10
|
Lian PA, Zhu WQ, Zhao WX, Huang PP, Ran JL, Tang YX, Huang XS, Li R. Lipoprotein(a) in atherosclerotic cardiovascular disease and proprotein convertase subtilisin/kexin-type 9 inhibitors. Clin Chim Acta 2025; 565:119982. [PMID: 39366516 DOI: 10.1016/j.cca.2024.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
High plasma lipoprotein(a) (Lp(a)) levels increase the cardiovascular risk in populations with atherosclerotic cardiovascular disease (ASCVD). Apolipoprotein (a) [apo(a)], a unique protein component of Lp(a), plays an important role in the pathogenesis of atherosclerosis. Statins, the primary medication in managing ASCVD, lower low-density lipoprotein cholesterol (LDL-C) but concurrently elevate plasma Lp(a) levels, contributing to an increased residual cardiovascular risk. In turn, proprotein convertase subtilisin/kexin-type 9 (PCSK9) inhibitors, a novel class of LDL-C lowering drugs, effectively reduce plasma Lp(a) levels, which is believed to decrease residual cardiovascular risk. However, the mechanism by which PCSK9 inhibitors reduce Lp(a) levels remains unknown. In addition, there are some clinical limitations of PCSK9 inhibitors. Here, we systematically review the past, present, and prospects of studies pertaining to Lp(a), PCSK9 inhibitors, and ASCVD.
Collapse
Affiliation(s)
- Ping-An Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Qiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei-Xin Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Piao-Piao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan-Li Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Xin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Sheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cardiovascular Medicine, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Stomatology, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China.
| |
Collapse
|
11
|
Wang Y, Magliano DJ. Special Issue: "New Trends in Diabetes, Hypertension, and Cardiovascular Diseases-2nd Edition". Int J Mol Sci 2025; 26:449. [PMID: 39859164 PMCID: PMC11764960 DOI: 10.3390/ijms26020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) encompass a range of conditions affecting both the heart (e.g., coronary heart disease and heart failure [1]) and blood vessels (e.g., cerebrovascular disease [2] and peripheral artery disease [3]) [...].
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Dianna J. Magliano
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| |
Collapse
|
12
|
Matsuo K, Inoue I, Matsuda T, Arai T, Nakano S. Relative increase in production ratio of small dense low-density lipoprotein in acute coronary syndrome with high coronary plaque burden: an ex-vivo analysis. Heart Vessels 2025; 40:26-35. [PMID: 39017677 DOI: 10.1007/s00380-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The absolute value of small dense low-density lipoprotein (sd-LDL) including small LDL (s-LDL) and very small LDL (vs-LDL) has been shown to be associated with increased incidence of atherosclerosis. However, the impact of short-timeframe increases in sd-LDL on arteriosclerosis has not yet been elucidated. Therefore, we investigated the clinical roles of ex-vivo induced sd-LDL in acute coronary syndrome (ACS) using a novel method. This is a prospective, single-blind, and observational study that screened patients who underwent coronary angiography (CAG) for the treatment of ACS or investigation of heart-failure etiology between June 2020 and April 2022 (n = 247). After excluding patients with known diabetes mellitus and advanced renal disease, the patients were further divided into the ACS (n = 34) and control (non-obstructive coronary artery, n = 34) groups. The proportion of sd-LDL (s-LDL + vs-LDL) in total lipoproteins was observed before and after 2-h incubation at 37 ℃ (to approximate physiologic conditions) using 3% polyacrylamide gel electrophoresis. The coronary plaque burden was quantified upon CAG in the ACS group. There were no significant differences between the ACS and control groups in terms of clinical coronary risk factors. The baseline of large, medium, small, and very small LDL were comparable between the two groups. Following a 2-h incubation period, significant increases were observed in the ratios of s-LDL and vs-LDL in both the ACS and control groups (ACS, p = 0.01*; control, p = 0.01*). Notably, the magnitude of increase in sd-LDL was more pronounced in the ACS group compared to the control group, with s-LDL showing a significant difference (p = 0.03*) and vs-LDL showing a tread toward significance (p = 0.08). In addition, in both groups, there was a decrease in IDL and L-LDL, while M-LDL remained unchanged. The plaque burden index and rate of short-timeframe changes in both s-LDL (p = 0.01*) and vs-LDL (p = 0.04*) before and after incubation were significantly correlated in the ACS group. The enhanced production rate of sd-LDL induced under short-term physiologic culture in an ex-vivo model was greater in patients with ACS than in the control group. The increase in sd-LDL is positively correlated with coronary plaque burden. Short-timeframe changes in sd-LDL may serve as markers for the severity of coronary artery disease.
Collapse
Affiliation(s)
- Keisuke Matsuo
- Department of Cardiology, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-Shi, Saitama, 350-1298, Japan.
| | - Ikuo Inoue
- Department of Endocrine Diabetology, Saitama Medical University Hospital, Saitama, Japan
| | | | - Takahide Arai
- Department of Cardiology, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-Shi, Saitama, 350-1298, Japan
| | - Shintaro Nakano
- Department of Cardiology, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-Shi, Saitama, 350-1298, Japan
| |
Collapse
|
13
|
Kotlyarov SN. Place of lipid theory in history of study of atherosclerosis. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2024; 32:681-689. [DOI: 10.17816/pavlovj636812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
INTRODUCTION: Despite the significant advances in the study of atherosclerosis in recent decades, the diseases associated with it still remain one of the leading problems of modern Western society. In the complicated history of the study of atherosclerosis, various theories have been proposed that attempted to explain its nature from positions of the scientific knowledge of those years.
АIM: To analyze the place of lipid disorders in various theories of atherogenesis that have been proposed in different historic periods and have shaped the current understanding of its nature and are the basis for future research.
The lipid theory, proposed more than a hundred years ago, is still the basis for the prevention and treatment of atherosclerosis. Subsequent findings on the role of endothelial dysfunction, on the importance of immune cells and innate immune mechanisms, and the importance of vascular hemodynamic disturbances, have shaped today's understanding of the pathogenesis of atherosclerosis, which regards it as a complex chain of immune and metabolic events occurring over many years and involving various cells of the vascular wall and the bloodstream. Much of the data on the pathogenesis of atherosclerosis obtained to date have no therapeutic application and are promising areas for future research.
CONCLUSION: The lipid theory of atherogenesis has passed a complicated way from understanding the role of lipids as a simple substrate for development of atherosclerosis to the fact of their performing complex immune and metabolic functions and being an important diagnostic and therapeutic target.
Collapse
|
14
|
Nicholls SJ, Nelson AJ, Michael LF. Oral agents for lowering lipoprotein(a). Curr Opin Lipidol 2024; 35:275-280. [PMID: 39329200 DOI: 10.1097/mol.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
PURPOSE OF REVIEW To review the development of oral agents to lower Lp(a) levels as an approach to reducing cardiovascular risk, with a focus on recent advances in the field. RECENT FINDINGS Extensive evidence implicates Lp(a) in the causal pathway of atherosclerotic cardiovascular disease and calcific aortic stenosis. There are currently no therapies approved for lowering of Lp(a). The majority of recent therapeutic advances have focused on development of injectable agents that target RNA and inhibit synthesis of apo(a). Muvalaplin is the first, orally administered, small molecule inhibitor of Lp(a), which acts by disrupting binding of apo(a) and apoB, in clinical development. Nonhuman primate and early human studies have demonstrated the ability of muvalaplin to produce dose-dependent lowering of Lp(a). Ongoing clinical trials will evaluate the impact of muvalaplin in high cardiovascular risk and will ultimately need to determine whether this strategy lowers the rate of cardiovascular events. SUMMARY Muvalaplin is the first oral agent, developed to lower Lp(a) levels. The ability of muvalaplin to reduce cardiovascular risk remains to be investigated, in order to determine whether it will be a useful agent for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Nicholls
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Adam J Nelson
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | | |
Collapse
|
15
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
16
|
Spitznagle JC, Kacha-Ochana A, Cook-Mills JM, Morgan GA, Pachman LM. Increased vascular deposition of oxidized LDL in untreated juvenile dermatomyositis. Pediatr Rheumatol Online J 2024; 22:73. [PMID: 39118148 PMCID: PMC11308466 DOI: 10.1186/s12969-024-01001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Juvenile dermatomyositis (JDM) is a systemic vasculopathy associated with metabolic derangements and possible increased risk for premature atherosclerosis. Oxidation of low-density lipoprotein (LDL) in the endothelium is an early step in atherosclerotic plaque formation. It is not known if oxidized LDL is altered in children with untreated JDM. The deposition of oxidized LDL in the vasculature of muscle biopsies (MBx) from patients with untreated JDM and pediatric controls was assessed. FINDINGS Frozen tissue sections of MRI-directed MBx from 20 female children with untreated JDM and 5 female controls were stained with DAPI and fluorescently labeled antibodies against von Willebrand factor (vWF) and LDL oxidized by copper (oxLDL). Blood vessels were identified by positive vWF staining, and total fluorescence of oxLDL within the vessel walls was measured. Children with untreated JDM had increased deposition of oxLDL in the walls of muscle vasculature compared to healthy children (difference in means ± SEM = 19.86 ± 8.195, p = 0.03). Within the JDM cohort, there was a trend towards increased oxLDL deposition with longer duration of untreated disease (r = 0.43, p = 0.06). There was no significant correlation found between oxLDL deposition and markers of acute JDM disease activity including disease activity scores or muscle enzymes. CONCLUSIONS This study found increased deposition of oxLDL within blood vessels of children with untreated JDM supporting the concern that these children are at increased risk for premature atherosclerosis from chronic exposure to vascular oxLDL. This study highlights the importance of early diagnosis and treatment initiation to ameliorate cardiovascular damage.
Collapse
Affiliation(s)
- Jacob C Spitznagle
- Division of Pediatric Rheumatology, Children's Hospital Los Angeles, 4560 Sunset Blvd., #60, Los Angeles, CA, 90027, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Akadia Kacha-Ochana
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA
| | - Joan M Cook-Mills
- Herman B. Wells Center for Pediatric Research in Department of Pediatrics, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabrielle A Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA
| | - Lauren M Pachman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 50, Chicago, IL, 60611, USA.
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Wang A, Yue K, Zhong W, Zhang G, Wang L, Zhang H, Zhang X. Delivery of rapamycin by biomimetic peptide nanoparticles targeting oxidized low-density lipoprotein in atherosclerotic plaques. Biomater Sci 2024; 12:4181-4193. [PMID: 38979569 DOI: 10.1039/d4bm00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Drug delivery systems based on biomimetic peptide nanoparticles are steadily gaining prominence in the treatment of diverse medical conditions. This study focused on the development of peptides that depend on ligand-receptor interactions to load rapamycin (RAPA). Furthermore, a multifunctional peptide was engineered to target oxidized low-density lipoprotein (oxLDL) within atherosclerotic plaques, facilitating the localized delivery of RAPA. The interactions between peptides and RAPA/oxLDL were analyzed by simulations and experimental approaches. Results show that the main amino acid residues on the mammalian target of rapamycin that bind to RAPA are constructed as peptides (P1 and P2), which have specific interactions with RAPA and can effectively improve the loading efficiency of RAPA. The encapsulation and drug loading efficiencies of P1/P2 were 68.0/47.9% and 48.3/36.5%, respectively. In addition, the interaction force of the multifunctional peptide (P3) and oxLDL surpassed that of their interaction with human umbilical vein endothelial cells by a factor of 3.6, conclusively establishing the specific targeting of oxLDL by these nanoparticles. The encapsulation and drug loading efficiencies of P3 for RAPA were determined to be 60.2% and 41.5%. P3 can effectively load RAPA and target oxLDL within the plaque, suggesting that P3 has potential as a therapeutic agent for atherosclerotic disease.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province, 528399, China
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province, 528399, China
| |
Collapse
|
18
|
Alboaklah HKM, McNeish AJ, Leake DS. Low density lipoprotein oxidized under lysosomal conditions decreases arterial vasodilatation. Free Radic Res 2024; 58:509-516. [PMID: 39268686 DOI: 10.1080/10715762.2024.2403038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Endothelial dysfunction is a risk factor for atherosclerosis and includes impaired endothelium-dependent vasodilatation. We have shown previously that low density lipoprotein (LDL) can be oxidized by iron in the lysosomes of macrophages. Macrophage lysis in atherosclerotic lesions might expose endothelial cells to this oxidized LDL and adversely affect their function. LDL was oxidized by ferrous sulfate (5 µM) for 24 h at pH 4.5 at 37 °C. Aortas from male Wistar rats were cut into rings and subjected to wire myography for isometric tension recording. The rings were incubated with or without oxidized LDL (50 µg protein/ml) for one hour, constricted with 100 nM phenylephrine and relaxation to acetylcholine (1 nM - 3 µM) was measured. There was about 50% less relaxation in the presence of this oxidized LDL. Endothelial-independent vasodilatation induced by sodium nitroprusside was less affected by oxidized LDL. Oxidized LDL increased the formation of reactive oxygen species by the aortic rings and by cultured human aortic and dermal microvascular endothelial cells, which might have inactivated nitric oxide. Acetylcholine increased the activatory phosphorylation of eNOS (ser-1177), but oxidized LDL had little effect on this activation in cultured human aortic endothelial cells. These findings raise the possibility that LDL oxidized in lysosomes and released from lysed macrophages might decrease vasodilatation in atherosclerotic arteries.
Collapse
Affiliation(s)
- Hadeel K M Alboaklah
- School of Biological Sciences and Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, UK
- College of Pharmacy, University of Kerbala, Kerbala, Iraq
| | - Alister J McNeish
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - David S Leake
- School of Biological Sciences and Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
19
|
Somacal S, Schüler da Silva LC, de Oliveira J, Emanuelli T, Fabro de Bem A. Bixin, a New Atheroprotective Carotenoid Candidate, Prevents oxLDL-Induced Cytotoxicity and Mitochondrial Dysfunction in Macrophages: Involvement of the Nrf2 and NF-κB Pathways. Foods 2024; 13:2002. [PMID: 38998509 PMCID: PMC11241531 DOI: 10.3390/foods13132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The accumulation of oxidized low-density lipoprotein (oxLDL) and its toxicity in the arterial wall have been implicated in atherosclerosis. This study aimed to investigate the mechanisms underlying the atheroprotective effect of bixin, a carotenoid obtained from the seeds of the tropical plant Bixa orellana, on Cu2+-induced LDL oxidation and oxLDL-mediated effects in J774A.1 macrophage cells. Bixin's effects were compared to those of lycopene, a carotenoid widely studied for its cardiovascular protective effects. LDL was isolated from human plasma, incubated with bixin or lycopene (positive control), and subjected to oxidation with CuSO4. Afterward, bixin or lycopene was incubated with J774A.1 macrophage cells and exposed to oxLDL. The levels of ROS, RNS, GSH, nitrite, mitochondrial function, and foam cell formation, as well as the expression of proteins related to the antioxidant and inflammatory status, were evaluated. The effect of bixin in inhibiting in vitro human-isolated LDL oxidation was more potent (5-6-fold) than that of lycopene. Bixin pretreatment reduced the atherogenic signaling triggered by oxLDL in the macrophages, namely the generation of reactive species, disturbance of nitric oxide homeostasis, mitochondrial dysfunction, and foam cell formation. The cytoprotective effects of bixin were accompanied by the upregulation of Nrf2 and the downregulation of the NF-kB pathways. Lycopene showed the same protective effect as bixin, except that it did not prevent mitochondrial dysfunction. The efficient performance of bixin makes it an ideal candidate for further trials as a new nutraceutical compound for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Sabrina Somacal
- Graduate Program on Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | | | - Jade de Oliveira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-000, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetic and Metabolism, Institute of Biological Science, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
20
|
Nicholls SJ. Therapeutic Potential of Lipoprotein(a) Inhibitors. Drugs 2024; 84:637-643. [PMID: 38849700 PMCID: PMC11196316 DOI: 10.1007/s40265-024-02046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/09/2024]
Abstract
Increasing evidence has implicated lipoprotein(a) [Lp(a)] in the causality of atherosclerosis and calcific aortic stenosis. This has stimulated immense interest in developing novel approaches to integrating Lp(a) into the setting of cardiovascular prevention. Current guidelines advocate universal measurement of Lp(a) levels, with the potential to influence cardiovascular risk assessment and triage of higher-risk patients to use of more intensive preventive therapies. In parallel, considerable activity has been undertaken to develop novel therapeutics with the potential to achieve selective and substantial reductions in Lp(a) levels. Early studies of antisense oligonucleotides (e.g., mipomersen, pelacarsen), RNA interference (e.g., olpasiran, zerlasiran, lepodisiran) and small molecule inhibitors (e.g., muvalaplin) have demonstrated effective Lp(a) lowering and good tolerability. These agents are moving forward in clinical development, in order to determine whether Lp(a) lowering reduces cardiovascular risk. The results of these studies have the potential to transform our approach to the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, Melbourne, VIC, 3168, Australia.
| |
Collapse
|
21
|
Baek KI, Ryu K. Role of Flow-Sensitive Endothelial Genes in Atherosclerosis and Antiatherogenic Therapeutics Development. J Cardiovasc Transl Res 2024; 17:609-623. [PMID: 38010480 DOI: 10.1007/s12265-023-10463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that is the underlying cause of cardiovascular disease which initiates from endothelial dysfunction from genetic and environmental risk factors, including biomechanical forces: blood flow. Endothelial cells (ECs) lining the inner arterial wall regions exposed to disturbed flow are prone to atherosclerosis development, whereas the straight regions exposed to stable flow are spared from the disease. These flow patterns induce genome- and epigenome-wide changes in gene expression in ECs. Through the sweeping changes in gene expression, disturbed flow reprograms ECs from athero-protected cell types under the stable flow condition to pro-atherogenic cell conditions. The pro-atherogenic changes induced by disturbed flow, in combination with additional risk factors such as hypercholesterolemia, lead to the progression of atherosclerosis. The flow-sensitive genes and proteins are critical in understanding the mechanisms and serve as novel targets for antiatherogenic therapeutics.
Collapse
Affiliation(s)
- Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kitae Ryu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Biotechnology, The University of Suwon, 17, Wauan-Gil, Bongdam-Eup, Hwaseong-Si, Gyeonggi-Do, 18323, Republic of Korea.
| |
Collapse
|
22
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
23
|
Li JN, Wang MY, Tan YR, Wang LL. Multidirectional Intervention of Chinese Herbal Medicine in the Prevention and Treatment of Atherosclerosis: From Endothelial Protection to Immunomodulation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:925-947. [PMID: 38798151 DOI: 10.1142/s0192415x24500381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Atherosclerosis is a significant risk factor for developing cardiovascular disease and a leading cause of death worldwide. The occurrence of atherosclerosis is closely related to factors such as endothelial injury, lipid deposition, immunity, and inflammation. Conventional statins, currently used in atherosclerosis treatment, have numerous adverse side effects that limit their clinical utility, prompting the urgent need to identify safer and more effective therapeutic alternatives. Growing evidence indicates the significant potential of Chinese herbs in atherosclerosis treatment. Herbal monomer components, such as natural flavonoid compounds extracted from herbs like Coptis chinensis and Panax notoginseng, have been utilized for their lipid-lowering and inflammation-inhibiting effects in atherosclerosis treatment. These herbs can be used as single components in treating diseases and with other Chinese medicines to form herbal combinations. This approach targets the disease mechanism in multiple ways, enhancing the therapeutic effects. Thus, this review examines the roles of Chinese herbal medicine monomers and Chinese herbal compounds in inhibiting atherosclerosis, including regulating lipids, improving endothelial function, reducing oxidative stress, regulating inflammation and the immune response, and apoptosis. By highlighting these roles, our study offers new perspectives on atherosclerosis treatment with Chinese herbs and is anticipated to contribute to advancements in related research fields.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Meng-Yu Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Yu-Rong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Li-Li Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| |
Collapse
|
24
|
Singh S, Baars DP, Aggarwal K, Desai R, Singh D, Pinto-Sietsma SJ. Association between lipoprotein (a) and risk of heart failure: A systematic review and meta-analysis of Mendelian randomization studies. Curr Probl Cardiol 2024; 49:102439. [PMID: 38301917 DOI: 10.1016/j.cpcardiol.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Rising incidence of heart failure (HF) in the Western world despite advanced clinical care necessitate exploration of further preventive tools and strategies. Lipoprotein(a) [Lp(a)], recognized as one of the major cardiovascular risk factors has also been implicated as a risk factor for HF. However, existing evidence remains inconclusive and that has led us to perform this meta-analysis. METHODS PubMed/Medline, EMBASE and Scopus were systematically searched for studies evaluating an association of Lp(a) with occurrence of HF from inception-till November 2023. Random effects models and I2 statistics were used for pooled odds ratio (OR) and heterogeneity assessment. We performed leave one out sensitivity analyses by sequentially removing one study at a time and recalculating the pooled effect size. RESULT Our search rendered in total 360 studies and after final screening this resulted in 7 Mendelian randomization (MR) design. According to the MR analysis, increasing Lp(a) level were significantly associated with increased risk of HF (OR 1.064, 95 % CI: 1.043-1.086, I2= 97.59 %, P < 0.001). In addition, Leave-one-out sensitivity analysis showed that the effect size did not change substantially by removal of any particular study in MR studies and ORs ranged from 1.051 (when excluding Levin) to a maximum of 1.111 (when excluding Wang or Jiang), hereby confirming the association. CONCLUSION We were able to show that by meta-analysis of MR data, increasing lipoprotein (a) levels are associated with an increased risk of HF. Whether this is due to a direct effect on heart muscle contraction or whether this is due to an increased risk of ischemic cardiac disease remains to be elucidated.
Collapse
Affiliation(s)
- Sandeep Singh
- Departments of Clinical Epidemiology, Biostatistics and Bio-informatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands; Department of Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Daniël P Baars
- Department of Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | | | - Rupak Desai
- Independent Researcher, Atlanta, Georgia, United States
| | - Dyutima Singh
- Department of Cardiology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Sara-Joan Pinto-Sietsma
- Departments of Clinical Epidemiology, Biostatistics and Bio-informatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands; Department of Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Beg MA, Huang M, Vick L, Rao KNS, Zhang J, Chen Y. Targeting mitochondrial dynamics and redox regulation in cardiovascular diseases. Trends Pharmacol Sci 2024; 45:290-303. [PMID: 38458847 PMCID: PMC11837222 DOI: 10.1016/j.tips.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Accumulating evidence highlights the pivotal role of mitochondria in cardiovascular diseases (CVDs). Understanding the molecular mechanisms underlying mitochondrial dysfunction is crucial for developing targeted therapeutics. Recent years have seen substantial advancements in unraveling mitochondrial regulatory pathways in both normal and pathological states and the development of potent drugs. However, specific delivery of drugs into the mitochondria is still a challenge. We present recent findings on regulators of mitochondrial dynamics and reactive oxygen species (ROS), critical factors influencing mitochondrial function in CVDs. We also discuss advancements in drug delivery strategies aimed at overcoming the technical barrier in targeting mitochondria for CVD treatment.
Collapse
Affiliation(s)
| | - Minqi Huang
- HD Biosciences Inc. a WuXi AppTec company, San Diego, CA 92121, USA
| | - Lance Vick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - K N Shashanka Rao
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI 53226, USA
| | - Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
26
|
Dennis E, Murach M, Blackburn CM, Marshall M, Root K, Pattarabanjird T, Deroissart J, Erickson LD, Binder CJ, Bekiranov S, McNamara CA. Loss of TET2 increases B-1 cell number and IgM production while limiting CDR3 diversity. Front Immunol 2024; 15:1380641. [PMID: 38601144 PMCID: PMC11004297 DOI: 10.3389/fimmu.2024.1380641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.
Collapse
Affiliation(s)
- Emily Dennis
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Maria Murach
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Cassidy M.R. Blackburn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Melissa Marshall
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Katherine Root
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Tanyaporn Pattarabanjird
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Justine Deroissart
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Loren D. Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Christoph J. Binder
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Bekiranov
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Coleen A. McNamara
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
27
|
Abstract
Prolonged or excessive exposure to oxidized phospholipids (OxPLs) generates chronic inflammation. OxPLs are present in atherosclerotic lesions and can be detected in plasma on apolipoprotein B (apoB)-containing lipoproteins. When initially conceptualized, OxPL-apoB measurement in plasma was expected to reflect the concentration of minimally oxidized LDL, but, surprisingly, it correlated more strongly with plasma lipoprotein(a) (Lp(a)) levels. Indeed, experimental and clinical studies show that Lp(a) particles carry the largest fraction of OxPLs among apoB-containing lipoproteins. Plasma OxPL-apoB levels provide diagnostic information on the presence and extent of atherosclerosis and improve the prognostication of peripheral artery disease and first and recurrent myocardial infarction and stroke. The addition of OxPL-apoB measurements to traditional cardiovascular risk factors improves risk reclassification, particularly in patients in intermediate risk categories, for whom improving decision-making is most impactful. Moreover, plasma OxPL-apoB levels predict cardiovascular events with similar or greater accuracy than plasma Lp(a) levels, probably because this measurement reflects both the genetics of elevated Lp(a) levels and the generalized or localized oxidation that modifies apoB-containing lipoproteins and leads to inflammation. Plasma OxPL-apoB levels are reduced by Lp(a)-lowering therapy with antisense oligonucleotides and by lipoprotein apheresis, niacin therapy and bariatric surgery. In this Review, we discuss the role of role OxPLs in the pathophysiology of atherosclerosis and Lp(a) atherogenicity, and the use of OxPL-apoB measurement for improving prognosis, risk reclassification and therapeutic interventions.
Collapse
Affiliation(s)
- Sotirios Tsimikas
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Mukherjee D, Nissen SE. Lipoprotein (a) as a Biomarker for Cardiovascular Diseases and Potential New Therapies to Mitigate Risk. Curr Vasc Pharmacol 2024; 22:171-179. [PMID: 38141196 DOI: 10.2174/0115701611267835231210054909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] is a molecule that induces inflammation of the blood vessels, atherogenesis, valvular calcification, and thrombosis. METHODS We review the available evidence that suggests that high Lp(a) levels are associated with a persisting risk for atherosclerotic cardiovascular diseases despite optimization of established risk factors, including low-density lipoprotein cholesterol (LDL-C) levels. OBSERVATIONS Approximately a quarter of the world population have Lp(a) levels of >50 mg/dL (125 nmol/L), a level associated with elevated cardiovascular risk. Lifestyle modification, statins, and ezetimibe do not effectively lower Lp(a) levels, while proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors and niacin only lower Lp(a) levels modestly. We describe clinical studies suggesting that gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotide targeting Lp(a), offer a targeted approach with the potential for safe and robust Lp(a)- lowering with only a few doses (3-4) per year. Prospective randomized phase 3 studies are ongoing to validate safety, effectiveness in improving hard clinical outcomes, and tolerability to assess these therapies. CONCLUSION Several emerging treatments with robust Lp(a)-lowering effects may significantly lower atherosclerotic cardiovascular risk.
Collapse
Affiliation(s)
- Debabrata Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, USA
| | - Steven E Nissen
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Lin H, Gao D, Wang S, Wang Z, Guan H, Wang Y, Zhou Y. Inhibition of circ_0000231 suppresses oxidized low density lipoprotein-induced apoptosis, autophagy and inflammation in human umbilical vein endothelial cells by regulating miR-590-5p/PDCD4 axis. Clin Hemorheol Microcirc 2024; 87:283-299. [PMID: 37066904 DOI: 10.3233/ch-231696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are the emerging informative RNAs, involved in cardiovascular diseases including atherosclerosis (AS). Endothelial injury is the initial qualitative change of AS. Thus, the objective of this study was to confirm the dysregulation and mechanism of circ_0000231 in cell model of AS at early stage in human umbilical vein endothelial cells (HUVECs) induced by oxidized low-density lipoprotein (ox-LDL). METHODS The expression of circ_0000231, miR-590-5p and programmed cell death 4 (PDCD4) was detected using real-time quantitative PCR and western blot. Cell injury was measured with MTT, flow cytometry, caspase-3 activity assay and enzyme-linked immunosorbent assay (ELISA). The interaction among circ_0000231, miR-590-5p and PDCD4 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assays. RESULTS Stress ox-LDL decreased cell viability, and increased apoptosis rate and caspase-3 activity in HUVECs in a dose- and time-dependent manner in concomitant with promotions of interleukin-6, interleukin-1β, tumor necrosis factor-α, LC3-II/I and Beclin-1 levels. Besides, circ_0000231 and PDCD4 expressions were upregulated, and miR-590-5p was downregulated in ox-LDL-stimulated HUVECs. Functionally, knockdown of circ_0000231 and overexpression of miR-590-5p could suppress ox-LDL-elicited above effects on apoptosis, autophagy and inflammatory response, accompanied with PDCD4 downregulation. Physically, miR-590-5p could directly interact with circ_0000231 and PDCD4. CONCLUSION Downregulation of circ_0000231 suppresses HUVECs from ox-LDL-induced injury partially through regulating miR-590-5p/PDCD4 axis via competing endogenous RNA mechanism, showing a novel potential target for the pathology and treatment of endothelial injury in AS.
Collapse
Affiliation(s)
- Haiyan Lin
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Da Gao
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Shengjie Wang
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zicheng Wang
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Haiwang Guan
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yanwei Wang
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ying Zhou
- Department of Cardiology, Zhejiang Provincial People's HospitalHangzhou, China
| |
Collapse
|
30
|
Papamichail GV, Georgiadis AN, Tellis CC, Rapti I, Markatseli TE, Xydis VG, Tselepis AD, Drosos AA, Voulgari PV. Antibodies against oxidized LDL and atherosclerosis in rheumatoid arthritis patients treated with biological agents: a prospective controlled study. Clin Rheumatol 2024; 43:481-488. [PMID: 37642764 DOI: 10.1007/s10067-023-06744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the relation among atherosclerosis, antibodies against oxidized LDL (anti-oxLDL), and inflammation in rheumatoid arthritis (RA) patients treated with biological (b) disease-modifying anti-rheumatic drugs (DMARDs). METHODS Fifty-nine patients who were receiving conventional synthetic DMARDs and were eligible for treatment with a biological agent were included in the study. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and IgG antibodies against oxidized LDL (anti-oxLDL) as well as carotid intima-media thickness (cIMT) were determined before and after 6 months of treatment. Thirty-one healthy individuals were used as a control group. RESULTS At baseline, RA patients had lower TC and HDL-C levels and increased cIMT compared to controls. After a 6-month follow-up, the re-evaluation of carotids revealed a statistically important decrease of cIMT values. This observation was accompanied by a statistically important elevation of HDL-C levels and a reduction of the titer of anti-oxLDL antibodies regardless of the bDMARD that was administered. No statistically significant association was found between the cIMT and anti-oxLDL, HDL-C, CRP, or DAS28 score neither before nor 6 months after treatment using linear regression analyses adjusted for age and gender. CONCLUSIONS We provide evidence that atherogenic lipid profile and ongoing atherosclerosis which characterize RA patients appear to improve after biological therapy, and we also suggest a possible atherogenic effect of IgG anti-ox LDL antibodies.
Collapse
Affiliation(s)
- G V Papamichail
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - A N Georgiadis
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - C C Tellis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - I Rapti
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - T E Markatseli
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - V G Xydis
- Department of Radiology, Medical School, University of Ioannina, Ioannina, Greece
| | - A D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - A A Drosos
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - P V Voulgari
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
31
|
Chehab O, Abdollahi A, Whelton SP, Wu CO, Ambale-Venkatesh B, Post WS, Bluemke DA, Tsai MY, Lima JAC. Association of Lipoprotein(a) Levels With Myocardial Fibrosis in the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol 2023; 82:2280-2291. [PMID: 38057070 PMCID: PMC11730445 DOI: 10.1016/j.jacc.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Lipoprotein(a) (Lp[a]) has been identified as an emerging risk factor for adverse cardiovascular (CV) outcomes, including heart failure. However, the connections among Lp(a), myocardial fibrosis (interstitial and replacement), and cardiac remodeling as pathways to CV diseases remains unclear. OBJECTIVES This study investigated the relationship between Lp(a) levels and myocardial fibrosis by cardiac magnetic resonance (CMR) T1 mapping and late gadolinium enhancement, as well as cardiac remodeling by cine CMR, in the MESA (Multi-Ethnic Study of Atherosclerosis) cohort. METHODS The study included 2,040 participants with baseline Lp(a) measurements and T1 mapping for interstitial myocardial fibrosis (IMF) evaluation in 2010. Lp(a) was analyzed as a continuous variable (per log unit) and using clinical cutoff values of 30 and 50 mg/dL. Multivariate linear and logistic regression were used to assess the associations of Lp(a) with CMR measures of extracellular volume (ECV fraction [ECV%]), native T1 time, and myocardial scar, as well as parameters of cardiac remodeling, in 2,826 participants. RESULTS Higher Lp(a) levels were associated with increased ECV% (per log-unit Lp[a]; β = 0.2%; P = 0.007) and native T1 time (per log-unit Lp[a]; β = 4%; P < 0.001). Similar relationships were observed between elevated Lp(a) levels and a higher risk of clinically significant IMF defined by prognostic thresholds per log-unit Lp(a) of ECV% (OR: 1.20; 95% CI: 1.04-1.43) and native T1 (OR: 1.2; 95% CI: 1.1-1.4) equal to 30% and 955 ms, respectively. Clinically used Lp(a) cutoffs (30 and 50 mg/dL) were associated with greater prevalence of myocardial scar (OR: 1.85; 95% CI: 1.1-3.2 and OR: 1.9; 95% CI: 1.1-3.4, respectively). Finally, higher Lp(a) levels were associated with left atrial enlargement and dysfunction. CONCLUSIONS Elevated Lp(a) levels are linked to greater subclinical IMF, increased myocardial scar prevalence, and left atrial remodeling.
Collapse
Affiliation(s)
- Omar Chehab
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ashkan Abdollahi
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seamus P Whelton
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David A Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Heath, Madison, Wisconsin, USA
| | - Michael Y Tsai
- Department of Pathology, University of Minnesota, Saint Paul-Minneapolis, Minneapolis, Minnesota, USA
| | - João A C Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
32
|
Pinheiro‐de‐Sousa I, Fonseca‐Alaniz MH, Giudice G, Valadão IC, Modestia SM, Mattioli SV, Junior RR, Zalmas L, Fang Y, Petsalaki E, Krieger JE. Integrated systems biology approach identifies gene targets for endothelial dysfunction. Mol Syst Biol 2023; 19:e11462. [PMID: 38031960 PMCID: PMC10698507 DOI: 10.15252/msb.202211462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro- and anti-ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro-ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti-ED network was enriched in hypoxia, angiogenesis and cancer-related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease-specific candidate drug targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Iguaracy Pinheiro‐de‐Sousa
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Miriam Helena Fonseca‐Alaniz
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Girolamo Giudice
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Iuri Cordeiro Valadão
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Silvestre Massimo Modestia
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Sarah Viana Mattioli
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- Department of Biophysics and PharmacologyInstitute of Biosciences of Botucatu, Universidade Estadual PaulistaBotucatuBrazil
| | - Ricardo Rosa Junior
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Lykourgos‐Panagiotis Zalmas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusCambridgeUK
- Open Targets, Wellcome Genome CampusCambridgeUK
| | - Yun Fang
- Department of MedicineUniversity of ChicagoChicagoILUSA
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
33
|
Zhang Q, Du G, Tong L, Guo X, Wei Y. Overexpression of LOX-1 in hepatocytes protects vascular smooth muscle cells from phenotype transformation and wire injury induced carotid neoatherosclerosis through ALOX15. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166805. [PMID: 37468019 DOI: 10.1016/j.bbadis.2023.166805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Neoatherosclerosis (NA), the main pathological basis of late stent failure, is the main limitation of interventional therapy. However, the specific pathogenesis and treatment remain unclear. In vivo, NA model was established by carotid wire injury and high-fat feeding in ApoE-/- mice. Oxidized low-density lipoprotein receptor-1/lectin-like oxidized low-density lipoprotein receptor-1 (OLR1/LOX-1), a specific receptor for oxidized low-density lipoprotein (ox-LDL), was specifically ectopically overexpressed in hepatocytes by portal vein injection of adeno-associated serotype 8 (AAV8)-thyroid binding globulin (TBG)-Olr1 and the protective effect against NA was examined. In vitro, LOX-1 was overexpressed on HHL5 using lentivirus (LV)-OLR1 and the vascular smooth muscle cells (VSMCs)-HHL5 indirect co-culture system was established to examine its protective effect on VSMCs and the molecular mechanism. Functionally, we found that specific ectopic overexpression of LOX-1 by hepatocytes competitively engulfed and metabolized ox-LDL, alleviating its resulting phenotypic transformation of VSMCs including migration, downregulation of contractile shape markers (smooth muscle α-actin (SMαA) and smooth muscle-22α (SM22α)), and upregulation of proliferative/migratory shape markers (osteopontin (OPN) and Vimentin) as well as foaminess and apoptosis, thereby alleviating NA, which independent of low-density lipoprotein (LDL) lowering treatment (evolocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9)). Mechanistically, we found that overexpression of LOX-1 in hepatocytes competitively engulfed and metabolized ox-LDL through upregulation of arachidonate-15-lipoxygenase (ALOX15), which further upregulated scavenger receptor class B type I (SRBI) and ATP-binding cassette transporter A1 (ABCA1). In conclusion, the overexpression of LOX-1 in liver protects VSMCs from phenotypic transformation and wire injury induced carotid neoatherosclerosis through ALOX15.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohui Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Zhang L, Li Y, Yang W, Lin L, Li J, Liu D, Li C, Wu J, Li Y. Protocatechuic aldehyde increases pericyte coverage and mitigates pericyte damage to enhance the atherosclerotic plaque stability. Biomed Pharmacother 2023; 168:115742. [PMID: 37871558 DOI: 10.1016/j.biopha.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Pericyte dysfunction and loss contribute substantially to the destabilization and rupture of atherosclerotic plaques. Protocatechuic aldehyde (PCAD), a natural polyphenol, exerts anti-atherosclerotic effects. However, the effects and mechanisms of this polyphenol on pericyte recruitment, coverage, and pericyte function remain unknown. We here treated apolipoprotein E-deficient mice having high-fat diet-induced atherosclerosis with PCAD. PCAD achieved therapeutic effects similar to rosuvastatin in lowering lipid levels and thus preventing atherosclerosis progression. With PCAD administration, plaque phenotype exhibited higher stability with markedly reduced lesion vulnerability, which is characterized by reduced lipid content and macrophage accumulation, and a consequent increase in collagen deposition. PCAD therapy increased pericyte coverage in the plaques, reduced VEGF-A production, and inhibited intraplaque neovascularization. PCAD promoted pericyte proliferation, adhesion, and migration to mitigate ox-LDL-induced pericyte dysfunction, which thus maintained the capillary network structure and stability. Furthermore, TGFBR1 silencing partially reversed the protective effect exerted by PCAD on human microvascular pericytes. PCAD increased pericyte coverage and impeded ox-LDL-induced damages through TGF-β1/TGFBR1/Smad2/3 signaling. All these novel findings indicated that PCAD increases pericyte coverage and alleviates pericyte damage to improve the stability of atherosclerotic plaques, which is accomplished by regulating TGF-β1/TGFBR1/Smad2/3 signaling in pericytes.
Collapse
Affiliation(s)
- Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dekun Liu
- Shool of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Shandong Provincial Engineering Laboratory of Traditional Chinese Medicine Precision Therapy for Cardiovascular Diseases, Jinan 250355, China.
| |
Collapse
|
35
|
Park S, Kim I, Han SJ, Kwon S, Min EJ, Cho W, Koh H, Koo BN, Lee JS, Kwon JS, Seo KY, Ha JW, Park YM. Oral Porphyromonas gingivalis infection affects intestinal microbiota and promotes atherosclerosis. J Clin Periodontol 2023; 50:1553-1567. [PMID: 37621247 DOI: 10.1111/jcpe.13864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
AIM The link between periodontitis and intestinal dysbiosis, two factors that contribute to atherosclerosis, has not been clearly defined. We investigated the integrative effects of oral infection with Porphyromonas gingivalis (PG), the major pathogen for periodontitis, on intestinal microbiota and atherosclerosis. MATERIALS AND METHODS ApoE-/- mice were fed a normal chow diet (NC), a Western diet (WD) or a WD with oral PG infection (PG). The PG infection was investigated by placing a total of 109 CFUs of live PG into the oral cavity of each mouse using a feeding needle five times a week for 3 weeks. Atherosclerotic lesions of the aortae were measured, and blood lipoproteins and the expression of molecules related to lipid metabolism in the liver were analysed. We also performed 16S RNA sequencing and a microbiome analysis using faeces. RESULTS En face bloc preparation of the aortae showed that the PG group had a 1.7-fold increase in atherosclerotic lesions compared with the WD group (p < .01). Serum analyses showed that oral PG infection induced a significant decrease in high-density lipoprotein (HDL) and triglyceride. Western blots of hepatic tissue lysates revealed that PG infection reduced the expression of scavenger receptor class B type 1 (SR-B1) in the liver by 50%. Faecal microbiota analysis revealed that species richness estimates (Chao1, ACE) decreased immediately after PG infection. PG infection also induced a significant decrease in Shannon diversity and an increase in Simpson's indices in the WD-fed mice. PG infection significantly increased the phyla Actinobacteria and Deferribacteres, along with the species Mucispirillum schaedleri and Lactobacillus gasseri, in the mice. The functional study showed that PG infection increased the expression of proteins that function in carbohydrate and glucose metabolism, including phosphotransferase system (PTS) proteins and the GntR family transcriptional regulator. CONCLUSIONS Oral PG infection promotes atherosclerosis and induces significant metabolic changes, including reduced serum HDL and reduced hepatic SR-B1 and ABCA1 expression, as well as changes in intestinal microbiota. Our study suggests that intestinal dysbiosis accompanies periodontitis and could play a role in atherosclerosis.
Collapse
Affiliation(s)
- Sowon Park
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Inyoung Kim
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Soyeon Kwon
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Eun-Ji Min
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Wonkyoung Cho
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Seok Lee
- Department of Periodontics, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Won Ha
- Cardiology Division, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Li Y, Sun M, Li R, Dou M, Dong H, Xue L, Sun G. Acute effect of proprotein convertase subtilisin/kexin type 9 inhibitor on oxidized low-density lipoprotein and lipid profile in patients at cardiovascular risk. J Clin Biochem Nutr 2023; 73:249-254. [PMID: 37970546 PMCID: PMC10636578 DOI: 10.3164/jcbn.23-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 11/17/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are a new class of potent lipid-lowering drugs. Oxidized low-density lipoprotein (ox-LDL) is the key pathogenic factor leading to atherosclerosis. However, its effect on ox-LDL levels has not been clinically reported. The clinical data of 290 very high-risk atherosclerotic cardiovascular disease (ASCVD) patients diagnosed in the First Affiliated Hospital of Zhengzhou University from May 2022 to October 2022 were collected retrospectively. According to whether evolocumab (a PCSK9 inhibitor) was used after percutaneous coronary intervention (PCI), they were divided into evolocumab group (153 cases) and statin monotherapy group (137 cases). At hospital admission, ox-LDL, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoproteinA1 (apoA1), apolipoprotein B-100 (apoB), lipoprotein (a) [Lp(a)], and high-sensitivity reactive protein (hs-CRP) levels were collected and used as baseline data. After two weeks of treatment, ox-LDL in the evolocumab group and statin monotherapy group were significantly lower than those before treatment (p<0.05). The decrease of ox-LDL in the evolocumab group was more than in the stain monotherapy group (p<0.05). In conclusion, PCSK9 inhibitors reduce ox-LDL levels in very high-risk ASCVD patients in a short time.
Collapse
Affiliation(s)
- Yiming Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Minni Sun
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Ran Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Min Dou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Haozhe Dong
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Liqi Xue
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Guoju Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| |
Collapse
|
37
|
Erlandsson L, Ohlsson L, Masoumi Z, Rehnström M, Cronqvist T, Edvinsson L, Hansson SR. Preliminary evidence that blocking the uptake of placenta-derived preeclamptic extracellular vesicles protects the vascular endothelium and prevents vasoconstriction. Sci Rep 2023; 13:18425. [PMID: 37891193 PMCID: PMC10611745 DOI: 10.1038/s41598-023-45830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy syndrome characterized by hypertension and organ damage manifesting after 20 gestational weeks. The etiology is of multifactorial origin, where placental stress causes increased levels of placenta-derived extracellular vesicles (STBEVs) in the maternal circulation, shown to cause inflammation, endothelial activation, vasoconstriction, and anti-angiogenic activity. General endothelial dysfunction is believed to be initiated by endothelial insult during pregnancy that alters vascular function resulting in increased arterial stiffness, cardiac dysfunction, and increased risk of cardiovascular disease later in life. We compared the effect of normal and PE derived STBEVs in vitro on vascular contractility of human subcutaneous arteries using wire myography. Cellular structures of exposed vessels were investigated by transmission electron microscopy. We explored strategies to pharmacologically block the effects of the STBEVs on human vessels. The PE STBEVs caused significantly stronger angiotensin II-mediated contractions and extended structural damage to human subcutaneous arteries compared to normal STBEVs. These negative effects could be reduced by blocking vesicle uptake by endothelial cells, using chlorpromazine or specific antibodies towards the LOX-1 receptor. The therapeutic potential of blocking vesicle uptake should be further explored, to reduce the permanent damage caused on the vasculature during PE pregnancy to prevent future cardiovascular risk.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden.
| | - Lena Ohlsson
- Experimental Vascular Research, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zahra Masoumi
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Mimmi Rehnström
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Tina Cronqvist
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Lars Edvinsson
- Experimental Vascular Research, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Skåne University Hospital, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
- Skåne University Hospital, Lund, Sweden
| |
Collapse
|
38
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
39
|
Ma GS, Chiou TT, Wilkinson MJ. Is Lipoprotein(a) Clinically Actionable with Today's Evidence? The Answer is Yes. Curr Cardiol Rep 2023; 25:1175-1187. [PMID: 37632608 PMCID: PMC10651710 DOI: 10.1007/s11886-023-01937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE OF REVIEW Lipoprotein(a) is an independent risk factor for cardiovascular disease. We review the ongoing shifts in consensus guidelines for the testing and management of Lp(a) and provide insight into whether current evidence suggests that awareness and testing of Lp(a) is clinically actionable. RECENT FINDINGS GWAS and Mendelian randomization studies have established causal links between elevated Lp(a) and forms of CVD, including CAD and calcific aortic valve disease. Testing of Lp(a) identifies patients with similar risk to that of heterozygous FH, enhances risk stratification in patients with borderline/intermediate risk as determined through traditional factors, and facilitates the assessment of inherited CVD risk through cascade screening in patients with known family history of elevated Lp(a). Reductions in Lp(a) through non-targeted therapies including PCSK9 inhibition and lipoprotein apheresis have demonstrated reductions in ASCVD risk that are likely attributable to lowering Lp(a). Targeted therapies to potently lower Lp(a) are in clinical development. Lp(a) is actionable, and can be used to identify high risk patients for primary prevention and their family members through cascade screening, and to guide intensification of therapy in primary and secondary prevention of ASCVD.
Collapse
Affiliation(s)
- Gary S Ma
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, UC San Diego Health, Sulpizio Cardiovascular Center, University of California San Diego, 9434 Medical Center Dr, MC 7241, La Jolla, CA, 92037, San Diego, USA
| | - Tommy T Chiou
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, UC San Diego Health, Sulpizio Cardiovascular Center, University of California San Diego, 9434 Medical Center Dr, MC 7241, La Jolla, CA, 92037, San Diego, USA
| | - Michael J Wilkinson
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, UC San Diego Health, Sulpizio Cardiovascular Center, University of California San Diego, 9434 Medical Center Dr, MC 7241, La Jolla, CA, 92037, San Diego, USA.
| |
Collapse
|
40
|
Li J, Xu J, Zhang W, Li P, Zhang W, Wang H, Tang B. Detection and Imaging of Active Substances in Early Atherosclerotic Lesions Using Fluorescent Probes. Chembiochem 2023; 24:e202300105. [PMID: 36898970 DOI: 10.1002/cbic.202300105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Atherosclerosis (AS) is a vascular disease caused by chronic inflammation and lipids that is the main cause of myocardial infarction, stroke and other cardiovascular diseases. Atherosclerosis is often difficult to detect in its early stages due to the absence of clinically significant vascular stenosis. This is not conducive to early intervention or treatment of the disease. Over the past decade, researchers have developed various imaging methods for the detection and imaging of atherosclerosis. At the same time, more and more biomarkers are being found that can be used as targets for detecting atherosclerosis. Therefore, the development of a variety of imaging methods and a variety of targeted imaging probes is an important project to achieve early assessment and treatment of atherosclerosis. This paper provides a comprehensive review of the optical probes used to detect and target atherosclerosis imaging in recent years, and describes the current challenges and future development directions.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jiheng Xu
- School of Materials Science and Engineering, Shandong University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
41
|
Cao J, Wang Z, Zhu M, Huang Y, Jin Z, Xiong Z. Low-density lipoprotein cholesterol and risk of hepatocellular carcinoma: a Mendelian randomization and mediation analysis. Lipids Health Dis 2023; 22:110. [PMID: 37525197 PMCID: PMC10388495 DOI: 10.1186/s12944-023-01877-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND A previous study demonstrated that low-density lipoprotein cholesterol (LDL-C) is associated with hepatocellular carcinoma (HCC); however, the causality between them has not been proven due to conflicting research results and the interference of confounders. This study utilized Mendelian randomization (MR) to investigate the causal relationship between LDL-C and HCC and identify the mediating factors. METHODS LDL-C, HCC, and coronary artery disease (CAD) genome-wide association study (GWAS) data were obtained from a public database. To investigate causality, inverse variance weighting (IVW) was the main analysis approach. MR‒Egger, simple mode, weighted median (WM), and weighted mode were employed as supplementary analytic methods. In addition, horizontal pleiotropy and heterogeneity were tested. To evaluate the stability of the MR results, a "leave-one-out" approach was used. Multivariate MR (MVMR) was utilized to correct the confounders that might affect causality, and mediation analysis was used to investigate the potential mediating effects. Finally, we used HCC risk to infer the reverse causality with LDL-C level. RESULTS Random effects IVW results were (LDL-C-HCC: odds ratio (OR) = 0.703, 95% confidence interval (CI) = [0.508, 0.973], P = 0.034; CAD-HCC: OR = 0.722, 95% CI = [0.645, 0.808], P = 1.50 × 10-8; LDL-C-CAD: OR = 2.103, 95% CI = [1.862, 2.376], P = 5.65 × 10-33), demonstrating a causal link between LDL-C levels and a lower risk of HCC. Through MVMR, after mutual correction, the causal effect of LDL-C and CAD on HCC remained significant (P < 0.05). Through mediation analysis, it was proven that CAD mediated the causative connection between LDL-C and HCC, and the proportion of mediating effect on HCC was 58.52%. Reverse MR showed that HCC could affect LDL-C levels with a negative correlation (ORIVW = 0.979, 95% CI = [0.961, 0.997], P = 0.025). CONCLUSION This MR study confirmed the causal effect between LDL-C levels and HCC risk, with CAD playing a mediating role. It may provide a new view on HCC occurrence and development mechanisms, as well as new metabolic intervention targets for treatment.
Collapse
Affiliation(s)
- Jiali Cao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Ziwen Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, China.
| |
Collapse
|
42
|
Theofilis P, Oikonomou E, Chasikidis C, Tsioufis K, Tousoulis D. Pathophysiology of Acute Coronary Syndromes-Diagnostic and Treatment Considerations. Life (Basel) 2023; 13:1543. [PMID: 37511918 PMCID: PMC10381786 DOI: 10.3390/life13071543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Coronary artery disease and acute coronary syndromes are accountable for significant morbidity and mortality, despite the preventive measures and technological advancements in their management. Thus, it is mandatory to further explore the pathophysiology in order to provide tailored and more effective therapies, since acute coronary syndrome pathogenesis is more varied than previously assumed. It consists of plaque rupture, plaque erosion, and calcified nodules. The advancement of vascular imaging tools has been critical in this regard, redefining the epidemiology of each mechanism. When it comes to acute coronary syndrome management, the presence of ruptured plaques almost always necessitates emergent reperfusion, whereas the presence of plaque erosions may indicate the possibility of conservative management with potent antiplatelet and anti-atherosclerotic medications. Calcified nodules, on the other hand, are an uncommon phenomenon that has largely gone unexplored in terms of the best management plan. Future studies should further establish the importance of detecting the underlying mechanism and the role of various treatment plans in each of these distinct entities.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 115 27 Athens, Greece; (P.T.); (K.T.)
| | - Evangelos Oikonomou
- Third Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, University of Athens Medical School, 115 27 Athens, Greece;
| | - Christos Chasikidis
- Department of Cardiology, General Hospital of Corinth, 201 00 Corinth, Greece;
| | - Konstantinos Tsioufis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 115 27 Athens, Greece; (P.T.); (K.T.)
| | - Dimitris Tousoulis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 115 27 Athens, Greece; (P.T.); (K.T.)
| |
Collapse
|
43
|
Domingues N, Marques ARA, Calado RDA, Ferreira IS, Ramos C, Ramalho J, Soares MIL, Pereira T, Oliveira L, Vicente JR, Wong LH, Simões ICM, Pinho E Melo TMVD, Peden A, Almeida CG, Futter CE, Puertollano R, Vaz WLC, Vieira OV. Oxidized cholesteryl ester induces exocytosis of dysfunctional lysosomes in lipidotic macrophages. Traffic 2023; 24:284-307. [PMID: 37129279 DOI: 10.1111/tra.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Neuza Domingues
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - André R A Marques
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rita Diogo Almeida Calado
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Inês S Ferreira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria I L Soares
- CQC and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Telmo Pereira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luís Oliveira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José R Vicente
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Louise H Wong
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Inês C M Simões
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Andrew Peden
- Department of Biomedical Science & Center for Membrane Interactions and Dynamics, University of Sheffield, UK
| | - Cláudia Guimas Almeida
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Clare E Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Winchil L C Vaz
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
44
|
Abeer MI, Abdulhasan A, Haguar Z, Narayanaswami V. Isoform-specific modification of apolipoprotein E by 4-hydroxynonenal: protective role of apolipoprotein E3 against oxidative species. FEBS J 2023; 290:3006-3025. [PMID: 36661393 PMCID: PMC11296219 DOI: 10.1111/febs.16729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
High levels of 4-hydroxynonenal (HNE), arising from lipid peroxidation, and HNE-modified proteins have been identified in postmortem brains of ageing and Alzheimer's disease (AD) patients. The goal of this study is to understand the effect of HNE modification on the structure and function of recombinant apolipoprotein E3 (apoE3) and apolipoprotein E4 (apoE4), which play a critical role in brain cholesterol homeostasis. The two isoforms differ in a single amino acid at position 112: Cys in apoE3 and Arg in apoE4. Immunoblot with HNE-specific antibody indicates HNE modification of apoE3 and apoE4 with a major band at ~ 36 kDa, while LC-MS/MS revealed Michael addition at His140 (60-70% abundance) and His299 (3-5% abundance) in apoE3 and apoE4, and Cys112 adduct in apoE3 (75% abundance). Circular dichroism spectroscopy revealed no major differences in the overall secondary structure or helical content between unmodified and HNE-modified apoE. HNE modification did not affect their ability to promote cholesterol efflux from J774.1 macrophages. However, it led to a 3-fold decrease in their ability to bind lipids and 25-50% decrease in the ability of cerebral cortex endothelial cells to uptake lipoproteins bearing HNE-modified HNE-apoE3 or HNE-apoE4 as noted by fluorescence microscopy and flow cytometry. Taken together, the data indicate that HNE modification impairs lipid binding and cellular uptake of both isoforms, and that apoE3, bearing a Cys, offers a protective role by sequestering lipid peroxidation products that would otherwise cause indiscriminate damage to biomolecules. ApoE4, lacking Cys, is unable to protect against oxidative damage that is commensurate with ageing.
Collapse
Affiliation(s)
- Muhammad I Abeer
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Abbas Abdulhasan
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Zahraa Haguar
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| |
Collapse
|
45
|
Pillai SS, Pereira DG, Zhang J, Huang W, Beg MA, Knaack DA, de Souza Goncalves B, Sahoo D, Silverstein RL, Shapiro JI, Sodhi K, Chen Y. Contribution of adipocyte Na/K-ATPase α1/CD36 signaling induced exosome secretion in response to oxidized LDL. Front Cardiovasc Med 2023; 10:1046495. [PMID: 37180782 PMCID: PMC10174328 DOI: 10.3389/fcvm.2023.1046495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Adipose tissue constantly secretes adipokines and extracellular vesicles including exosomes to crosstalk with distinct tissues and organs for whole-body homeostasis. However, dysfunctional adipose tissue under chronic inflammatory conditions such as obesity, atherosclerosis, and diabetes shows pro-inflammatory phenotypes accompanied by oxidative stress and abnormal secretion. Nevertheless, molecular mechanisms of how adipocytes are stimulated to secrete exosomes under those conditions remain poorly understood. Methods Mouse and human in vitro cell culture models were used for performing various cellular and molecular studies on adipocytes and macrophages. Statistical analysis was performed using Student's t-test (two-tailed, unpaired, and equal variance) for comparisons between two groups or ANOVA followed by Bonferroni's multiple comparison test for comparison among more than two groups. Results and discussion In this work, we report that CD36, a scavenger receptor for oxidized LDL, formed a signaling complex with another membrane signal transducer Na/K-ATPase in adipocytes. The atherogenic oxidized LDL induced a pro-inflammatory response in in vitro differentiated mouse and human adipocytes and also stimulated the cells to secrete more exosomes. This was largely blocked by either CD36 knockdown using siRNA or pNaKtide, a peptide inhibitor of Na/K-ATPase signaling. These results showed a critical role of the CD36/Na/K-ATPase signaling complex in oxidized LDL-induced adipocyte exosome secretion. Moreover, by co-incubation of adipocyte-derived exosomes with macrophages, we demonstrated that oxidized LDL-induced adipocyte-derived exosomes promoted pro-atherogenic phenotypes in macrophages, including CD36 upregulation, IL-6 secretion, metabolic switch to glycolysis, and mitochondrial ROS production. Altogether, we show here a novel mechanism through which adipocytes increase exosome secretion in response to oxidized LDL and that the secreted exosomes can crosstalk with macrophages, which may contribute to atherogenesis.
Collapse
Affiliation(s)
- Sneha S. Pillai
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Duane G. Pereira
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Wenxin Huang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Mirza Ahmar Beg
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Darcy A. Knaack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bruno de Souza Goncalves
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joseph I. Shapiro
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Komal Sodhi
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
46
|
Rodríguez-Jiménez C, de la Peña G, Sanguino J, Poyatos-Peláez S, Carazo A, Martínez-Hernández PL, Arrieta F, Mostaza JM, Gómez-Coronado D, Rodríguez-Nóvoa S. Identification and Functional Analysis of APOB Variants in a Cohort of Hypercholesterolemic Patients. Int J Mol Sci 2023; 24:ijms24087635. [PMID: 37108800 PMCID: PMC10142790 DOI: 10.3390/ijms24087635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mutations in APOB are the second most frequent cause of familial hypercholesterolemia (FH). APOB is highly polymorphic, and many variants are benign or of uncertain significance, so functional analysis is necessary to ascertain their pathogenicity. Our aim was to identify and characterize APOB variants in patients with hypercholesterolemia. Index patients (n = 825) with clinically suspected FH were analyzed using next-generation sequencing. In total, 40% of the patients presented a variant in LDLR, APOB, PCSK9 or LDLRAP1, with 12% of the variants in APOB. These variants showed frequencies in the general population lower than 0.5% and were classified as damaging and/or probably damaging by 3 or more predictors of pathogenicity. The variants c.10030A>G;p.(Lys3344Glu) and c.11401T>A;p.(Ser3801Thr) were characterized. The p.(Lys3344Glu) variant co-segregated with high low-density lipoprotein (LDL)-cholesterol in 2 families studied. LDL isolated from apoB p.(Lys3344Glu) heterozygous patients showed reduced ability to compete with fluorescently-labelled LDL for cellular binding and uptake compared with control LDL and was markedly deficient in supporting U937 cell proliferation. LDL that was carrying apoB p.(Ser3801Thr) was not defective in competing with control LDL for cellular binding and uptake. We conclude that the apoB p.(Lys3344Glu) variant is defective in the interaction with the LDL receptor and is causative of FH, whereas the apoB p.(Ser3801Thr) variant is benign.
Collapse
Affiliation(s)
- Carmen Rodríguez-Jiménez
- Metabolic Diseases Laboratory, Genetics Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- Dyslipidemias of Genetic Origin and Metabolic Diseases Group, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Gema de la Peña
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, km 9, 28034 Madrid, Spain
| | - Javier Sanguino
- Metabolic Diseases Laboratory, Genetics Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- Dyslipidemias of Genetic Origin and Metabolic Diseases Group, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Sara Poyatos-Peláez
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, km 9, 28034 Madrid, Spain
| | - Ana Carazo
- Metabolic Diseases Laboratory, Genetics Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- Dyslipidemias of Genetic Origin and Metabolic Diseases Group, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Pedro L Martínez-Hernández
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Francisco Arrieta
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, km 9, 28034 Madrid, Spain
| | - José M Mostaza
- Lipid and Vascular Unit, Department of Internal Medicine, Hospital Carlos III-La Paz, Sinesio Delgado, 10, 28029 Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar, km 9, 28034 Madrid, Spain
| | - Sonia Rodríguez-Nóvoa
- Metabolic Diseases Laboratory, Genetics Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- Dyslipidemias of Genetic Origin and Metabolic Diseases Group, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| |
Collapse
|
47
|
de Mello Barros Pimentel MV, Bertolami A, Fernandes LP, Barroso LP, Castro IA. Could a lipid oxidative biomarker be applied to improve risk stratification in the prevention of cardiovascular disease? Biomed Pharmacother 2023; 160:114345. [PMID: 36753953 DOI: 10.1016/j.biopha.2023.114345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
There is significant evidence demonstrating the influence of oxidative stress on atherosclerosis and cardiovascular diseases (CVD). However, oxidative biomarkers have not been applied to follow patients under primary or secondary prevention. Many factors can explain this paradox: the higher complexity of the methods applied to quantify oxidative markers, the high variability observed among the studies, the lack of reference values, and the weak correlation with clinical endpoints. This review presents the role of the major reactive oxygen species (ROS) involved in cardiovascular pathophysiology and how they can be neutralized by endogenous and exogenous antioxidants based on classical and recent studies, highlighting the importance of the secondary products of fatty acid oxidation as potential biomarkers. Furthermore, we discuss the great variability of oxidative stress biomarkers, using as an example data obtained from 55 studies. Among the molecules directly formed from lipid oxidation, such as malondialdehyde (MDA), oxidized LDL (oxLDL), and isoprostanes (F2-IsoP), and those associated with general oxidative conditions (ferric-reducing antioxidant power (FRAP), superoxide dismutase (SOD), glutathione (GSH)), MDA was the most lipid biomarker evaluated in the treatments and proved to be an independent factor compared with traditional markers used in the algorithms to stratify the patient's risk. Finally, this review suggests four steps to follow, aiming to include MDA in the algorithms applied to estimate CVD risk.
Collapse
Affiliation(s)
| | - Adriana Bertolami
- Dyslipidemia Medical Section, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Lígia Prestes Fernandes
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lúcia Pereira Barroso
- Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo 05468-140, Brazil.
| |
Collapse
|
48
|
Lu Y, Chen S, Jin H, Tang L, Xia M. Associations of bisphenol F and S, as substitutes for bisphenol A, with cardiovascular disease in American adults. J Appl Toxicol 2023; 43:500-507. [PMID: 36189736 DOI: 10.1002/jat.4401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
Bisphenol A (BPA) exposure may be positively associated with cardiovascular disease (CVD). For more than a past decade, exposure to bisphenol F (BPF) and bisphenol S (BPS), as substitutes for BPA, has gradually increased in the population. Whether BPF and BPS exposure are associated with CVD remains unclear. We used data from the United States National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016. A total of 3,502 participants, including 368 with CVD, were enrolled in the final analysis. Associations of BPA, BPF and BPS with CVD were determined using multivariate logistic regression analysis. The highest level of urinary BPA (≥2.5 ng/ml) was significantly associated with a higher CVD prevalence (odds ratio [OR], 1.58; 95% confidence interval [CI], 1.08-2.3) among all participants in the quartile analysis. In stratified analyses, the highest level of urinary BPA was positively associated with CVD prevalence in males (1.86, 1.1-3.13) and the elderly population (≥60 years old) (1.89, 1.2-2.97). Higher levels of urinary BPF were positively associated with CVD prevalence in females (Q2: 1.81, 1.03-3.18; Q4: 1.73, 1.07-2.79) and in the elderly population (Q3: 1.7, 1.16-2.48). No associations were found between urinary BPS levels and CVD, regardless of whether the participants were stratified by age or sex. In conclusion, exposure to BPA or BPF was positively correlated with CVD prevalence, but an association was not found for exposure to BPS. BPF may not be as safe as assumed for human health.
Collapse
Affiliation(s)
- Yuan Lu
- Division of Cardiac surgery, Zhejiang Hospital, Hangzhou City, China
| | - Shaoxi Chen
- Division of Cardiac surgery, Zhejiang Hospital, Hangzhou City, China
| | - Hongfeng Jin
- Division of Cardiology, Zhejiang Hospital, Hangzhou City, China
| | - Lijiang Tang
- Division of Cardiology, Zhejiang Hospital, Hangzhou City, China
| | - Ming Xia
- Division of Cardiology, Zhejiang Hospital, Hangzhou City, China
| |
Collapse
|
49
|
Huseynov A, Reinhardt J, Chandra L, Dürschmied D, Langer HF. Novel Aspects Targeting Platelets in Atherosclerotic Cardiovascular Disease—A Translational Perspective. Int J Mol Sci 2023; 24:ijms24076280. [PMID: 37047253 PMCID: PMC10093962 DOI: 10.3390/ijms24076280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Platelets are important cellular targets in cardiovascular disease. Based on insights from basic science, translational approaches and clinical studies, a distinguished anti-platelet drug treatment regimen for cardiovascular patients could be established. Furthermore, platelets are increasingly considered as cells mediating effects “beyond thrombosis”, including vascular inflammation, tissue remodeling and healing of vascular and tissue lesions. This review has its focus on the functions and interactions of platelets with potential translational and clinical relevance. The role of platelets for the development of atherosclerosis and therapeutic modalities for primary and secondary prevention of atherosclerotic disease are addressed. Furthermore, novel therapeutic options for inhibiting platelet function and the use of platelets in regenerative medicine are considered.
Collapse
|
50
|
Maaninka K, Neuvonen M, Kerkelä E, Hyvärinen K, Palviainen M, Kamali-Moghaddam M, Federico A, Greco D, Laitinen S, Öörni K, Siljander PR. OxLDL sensitizes platelets for increased formation of extracellular vesicles capable of finetuning macrophage gene expression. Eur J Cell Biol 2023; 102:151311. [PMID: 36963245 DOI: 10.1016/j.ejcb.2023.151311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Platelet extracellular vesicles (PEVs) generated upon platelet activation may play a role in inflammatory pathologies such as atherosclerosis. Oxidized low-density lipoprotein (oxLDL), a well-known contributor to atherogenesis, activates platelets and presensitizes them for activation by other agonists. We studied the effect of oxLDL on the secretion, composition, and inflammatory functions of PEVs using contemporary EV analytics. Platelets were activated by co-stimulation with thrombin (T) and collagen (C) ± oxLDL and characterized by high-resolution flow cytometry, nanoparticle tracking analysis, proximity extension assay, western blot, and electron microscopy. The effect of PEVs on macrophage differentiation and functionality was examined by analyzing macrophage surface markers, cytokine secretion, and transcriptome. OxLDL upregulated TC-induced formation of CD61+, P-selectin+ and phosphatidylserine+ PEVs. Blocking the scavenger receptor CD36 significantly suppressed the oxLDL+TC-induced PEV formation, and HDL caused a slight but detectable suppression. The inflammatory protein cargo differed between the PEVs from stimulated and unstimulated platelets. Both oxLDL+TC- and TC-induced PEVs enhanced macrophage HLA-DR and CD86 expression and decreased CD11c expression as well as secretion of several cytokines. Pathways related to cell cycle and regulation of gene expression, and immune system signaling were overrepresented in the differentially expressed genes between TC PEV -treated vs. control macrophages and oxLDL+TC PEV -treated vs. control macrophages, respectively. In conclusion, we speculate that oxLDL and activated platelets contribute to proatherogenic processes by increasing the number of PEVs that provide an adhesive and procoagulant surface, contain inflammatory mediators, and subtly finetune the macrophage gene expression.
Collapse
Affiliation(s)
- Katariina Maaninka
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maarit Neuvonen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland.
| | - Erja Kerkelä
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland.
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland.
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Saara Laitinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland.
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.
| | - Pia Rm Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|