1
|
Eckel O, Mirea MA, Gschwendtner A, Pistek M, Kinslechner K, Röhrl C, Stangl H, Hengstschläger M, Mikula M. Expression of the cholesterol transporter SR-B1 in melanoma cells facilitates inflammatory signaling leading to reduced cholesterol synthesis. Neoplasia 2025; 63:101154. [PMID: 40120430 PMCID: PMC11981749 DOI: 10.1016/j.neo.2025.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Scavenger receptor class B type 1 (SR-B1) is a cholesterol transporter, abundantly expressed in human melanoma, yet its precise role for melanoma progression is not fully understood. This study investigates the involvement of SR-B1 in cholesterol homeostasis of tumor cells and its implications for potential therapy. We found that SR-B1 depletion in melanoma cells does not alter total cholesterol levels, but induces cholesterol biosynthesis. This effect was characterized by an increased expression of HMG-CoA reductase (HMGCR), a rate limiting enzyme of cholesterol biosynthesis. Notably, further analyses indicated that this regulation occurs at the post-translational level, mediated via the hypoxia-inducible factor (HIF) signaling pathway. Importantly, we identified SR-B1 as a transporter of the lipid hormone sphingosine-1-phosphate (S1P) and we found that S1P exposure leads to HIF1A up-regulation. Finally, we used a pluripotent stem cell-derived skin organoid model to show that targeting SR-B1 in combination with targeted melanoma therapy can lead to increased apoptosis and suppressed proliferation of transplanted tumor cells. Our study shows that functional SR-B1 is linked to inflammatory signaling, which reduces cholesterol synthesis, while enabling melanoma cell survival during chemotherapy treatment.
Collapse
Affiliation(s)
- Oliver Eckel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Madalina A Mirea
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Anna Gschwendtner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Martina Pistek
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Katharina Kinslechner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Clemens Röhrl
- University of Applied Sciences Upper Austria, Faculty of Engineering, Stelzhamerstraße 23, 4600, Wels, Austria
| | - Herbert Stangl
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Mario Mikula
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Pandian K, van Zonneveld AJ, Harms A, Hankemeier T. Metabolic alterations of endothelial cells under transient and persistent hypoxia: study using a 3D microvessels-on-chip model. Tissue Barriers 2024:2431416. [PMID: 39584359 DOI: 10.1080/21688370.2024.2431416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Numerous signaling pathways are activated during hypoxia to facilitate angiogenesis, promoting interactions among endothelial cells and initiating downstream signaling cascades. Although the pivotal role of the nitric oxide (NO) response pathway is well-established, the involvement of arginine-specific metabolism and bioactive lipid mechanisms in 3D flow-activated in vitro models remains less understood. In this study, we explored the levels of arginine-specific metabolites and bioactive lipids in human coronary artery endothelial cells (HCAECs) under both transient and persistent hypoxia. We compared targeted metabolite levels between a 2D static culture model and a 3D microvessels-on-chip model. Notably, we observed robust regulation of NO metabolites in both transient and persistent hypoxic conditions. In the 2D model under transient hypoxia, metabolic readouts of bioactive lipids revealed increased oxidative stress markers, a phenomenon not observed in the 3D microvessels. Furthermore, we made a novel discovery that the responses of bioactive lipids were regulated by hypoxia inducible factor-1α (HIF-1α) in the 2D cell culture model and partially by HIF-1α and flow-induced shear stress in the 3D microvessels. Immunostaining confirmed the HIF-1α-induced regulation under both hypoxic conditions. Real-time oxygen measurements in the 3D microvessels using an oxygen probe validated that oxygen levels were maintained in the 3D model. Overall, our findings underscore the critical regulatory roles of HIF-1α and shear stress in NO metabolites and bioactive lipids in both 2D and 3D cell culture models.
Collapse
Affiliation(s)
- Kanchana Pandian
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Amy Harms
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Zhu Y, Chai Y, Su Z, Qi W, Yin M, Li L, Wei M, Ge J, Wang H, Jiao Z, Bei Y. Danlou Tablet Protects Against Myocardial Infarction Through Promoting eNOS-Dependent Endothelial Protection and Angiogenesis. J Cardiovasc Transl Res 2024; 17:403-416. [PMID: 37784003 DOI: 10.1007/s12265-023-10437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. Danlou tablet (Dan) is an effective traditional Chinese medicine for cardiac protection, although the underlying mechanism was not fully understood. In this study, we used a murine MI model and demonstrated that Dan administration effectively attenuated myocardial apoptosis, cardiac remodeling, and heart failure post MI. Dan increased CD31-positive capillaries in MI hearts, and reduced the apoptosis and oxidative stress in human umbilical vein endothelial cells after oxygen-glucose deprivation stress, simultaneously with the activated HIF-1α/VEGFA/eNOS signaling. Moreover, inhibition of eNOS by L-NAME attenuated Dan-induced protection against MI, and abolished its effect in promoting angiogenesis and reducing endothelial apoptosis and oxidative stress. Collectively, Dan is beneficial to promote eNOS-dependent endothelial protection and angiogenesis thus protecting against MI. A deep understanding of Dan-induced protection might help promote clinical usage of Dan in MI treatment.
Collapse
Affiliation(s)
- Yujiao Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
| | - Yibo Chai
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Zhuhua Su
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Weitong Qi
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Mingming Yin
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lin Li
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Jun Ge
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Zheng Jiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Al-Kuraishy HM, Batiha GES, Al-Gareeb AI, Al-Harcan NAH, Welson NN. Receptor-dependent effects of sphingosine-1-phosphate (S1P) in COVID-19: the black side of the moon. Mol Cell Biochem 2023; 478:2271-2279. [PMID: 36652045 PMCID: PMC9848039 DOI: 10.1007/s11010-023-04658-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection leads to hyper-inflammation and amplified immune response in severe cases that may progress to cytokine storm and multi-organ injuries like acute respiratory distress syndrome and acute lung injury. In addition to pro-inflammatory cytokines, different mediators are involved in SARS-CoV-2 pathogenesis and infection, such as sphingosine-1-phosphate (S1P). S1P is a bioactive lipid found at a high level in plasma, and it is synthesized from sphingomyelin by the action of sphingosine kinase. It is involved in inflammation, immunity, angiogenesis, vascular permeability, and lymphocyte trafficking through G-protein coupled S1P receptors. Reduction of the circulating S1P level correlates with COVID-19 severity. S1P binding to sphingosine-1-phosphate receptor 1 (S1PR1) elicits endothelial protection and anti-inflammatory effects during SARS-CoV-2 infection, by limiting excessive INF-α response and hindering mitogen-activated protein kinase and nuclear factor kappa B action. However, binding to S1PR2 opposes the effect of S1PR1 with vascular inflammation, endothelial permeability, and dysfunction as the concomitant outcome. This binding also promotes nod-like receptor pyrin 3 (NLRP3) inflammasome activation, causing liver inflammation and fibrogenesis. Thus, higher expression of macrophage S1PR2 contributes to the activation of the NLRP3 inflammasome and the release of pro-inflammatory cytokines. In conclusion, S1PR1 agonists and S1PR2 antagonists might effectively manage COVID-19 and its severe effects. Further studies are recommended to elucidate the potential conflict in the effects of S1P in COVID-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Baghdad, Iraq
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
5
|
Zhang F, Lu Y. The Sphingosine 1-Phosphate Axis: an Emerging Therapeutic Opportunity for Endometriosis. Reprod Sci 2023; 30:2040-2059. [PMID: 36662421 PMCID: PMC9857924 DOI: 10.1007/s43032-023-01167-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Endometriosis is a common condition in women of reproductive age, but its current interventions are unsatisfactory. Recent research discovered a dysregulation of the sphingosine 1-phosphate (S1P) signaling pathway in endometriosis and showed a positive outcome by targeting it. The S1P axis participates in a series of fundamental pathophysiological processes. This narrative review is trying to expound the reported and putative (due to limited reports in this area for now) interactions between the S1P axis and endometriosis in those pathophysiological processes, to provide some perspectives for future research. In short, S1P signaling pathway is highly activated in the endometriotic lesion. The S1P concentration has a surge in the endometriotic cyst fluid and the peritoneal fluid, with the downstream dysregulation of its receptors. The S1P axis plays an essential role in the migration and activation of the immune cells, fibrosis, angiogenesis, pain-related hyperalgesia, and innervation. S1P receptor (S1PR) modulators showed an impressive therapeutic effect by targeting the different S1P receptors in the endometriosis model, and many other conditions resemble endometriosis. And several of them already got approval for clinical application in many diseases, which means a drug repurposing direction and a rapid clinical translation for endometriosis treatments.
Collapse
Affiliation(s)
- Fengrui Zhang
- Department of Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, People's Republic of China
| | - Yuan Lu
- Department of Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
6
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
7
|
GONG W, XU S, SONG Y, ZHOU Y, QIN X. Hepatic metabolomics combined with network pharmacology to reveal the correlation between the anti-depression effect and nourishing blood effect of Angelicae Sinensis Radix. Chin J Nat Med 2023; 21:197-213. [PMID: 37003642 DOI: 10.1016/s1875-5364(23)60421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 04/01/2023]
Abstract
Angelicae Sinensis Radix (AS) is reproted to exert anti-depression effect (ADE) and nourishing blood effect (NBE) in a rat model of depression. The correlation between the two therapeutic effects and its underlying mechanisms deserves further study. The current study is designed to explore the underlying mechanisms of correlation between the ADE and NBE of AS based on hepatic metabonomics, network pharmacology and molecular docking. According to metabolomics analysis, 30 metabolites involved in 11 metabolic pathways were identified as the potential metabolites for depression. Furthermore, principal component analysis and correlation analysis showed that glutathione, sphinganine, and ornithine were related to pharmacodynamics indicators including behavioral indicators and hematological indicators, indicating that metabolic pathways such as sphingolipid metabolism were involved in the ADE and NBE of AS. Then, a target-pathway network of depression and blood deficiency syndrome was constructed by network pharmacology analysis, where a total of 107 pathways were collected. Moreover, 37 active components obtained from Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer (UPLC-Triple-TOF/MS) in AS extract that passed the filtering criteria were used for network pharmacology, where 46 targets were associated with the ADE and NBE of AS. Pathway enrichment analysis further indicated the involvement of sphingolipid metabolism in the ADE and NBE of AS. Molecular docking analysis indciated that E-ligustilide in AS extract exhibited strong binding activity with target proteins (PIK3CA and PIK3CD) in sphingolipid metabolism. Further analysis by Western blot verified that AS regulated the expression of PIK3CA and PIK3CD on sphingolipid metabolism. Our results demonstrated that sphingolipid metabolic pathway was the core mechanism of the correlation between the ADE and NBE of AS.
Collapse
|
8
|
Pullamsetti SS, Mamazhakypov A, Weissmann N, Seeger W, Savai R. Hypoxia-inducible factor signaling in pulmonary hypertension. J Clin Invest 2021; 130:5638-5651. [PMID: 32881714 DOI: 10.1172/jci137558] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary artery remodeling that can subsequently culminate in right heart failure and premature death. Emerging evidence suggests that hypoxia-inducible factor (HIF) signaling plays a fundamental and pivotal role in the pathogenesis of PH. This Review summarizes the regulation of HIF isoforms and their impact in various PH subtypes, as well as the elaborate conditional and cell-specific knockout mouse studies that brought the role of this pathway to light. We also discuss the current preclinical status of pan- and isoform-selective HIF inhibitors, and propose new research areas that may facilitate HIF isoform-specific inhibition as a novel therapeutic strategy for PH and right heart failure.
Collapse
Affiliation(s)
- Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany
| | - Argen Mamazhakypov
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Norbert Weissmann
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
9
|
A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22020582. [PMID: 33430140 PMCID: PMC7826574 DOI: 10.3390/ijms22020582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington’s disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington’s disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington’s disease from this knowledge base.
Collapse
|
10
|
Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2020; 78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important immune modulator responsible for physiological cellular responses like lymphocyte development and function, positioning and emigration of T and B cells and cytokine secretion. Recent reports indicate that S1P does not only regulate immunity, but can also protect the function of organs by inducing disease tolerance. S1P also influences the replication of certain pathogens, and sphingolipids are also involved in pathogen recognition and killing. Certain carrier molecules for S1P like serum albumin and high density lipoproteins contribute to the regulation of S1P effects. They are able to associate with S1P and modulate its signaling properties. Similar to S1P, both carrier molecules are also decreased in sepsis patients and likely contribute to sepsis pathology and severity. In this review, we will introduce the concept of disease tolerance and the involvement of S1P. We will also discuss the contribution of S1P and its precursor sphingosine to host defense mechanisms against pathogens. Finally, we will summarize current data demonstrating the influence of carrier molecules for differential S1P signaling. The presented data may lead to new strategies for the prevention and containment of sepsis.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
11
|
Burtscher J, Di Pardo A, Maglione V, Schwarzer C, Squitieri F. Mitochondrial Respiration Changes in R6/2 Huntington's Disease Model Mice during Aging in a Brain Region Specific Manner. Int J Mol Sci 2020; 21:ijms21155412. [PMID: 32751413 PMCID: PMC7432063 DOI: 10.3390/ijms21155412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial dysfunction is crucially involved in aging and neurodegenerative diseases, such as Huntington’s Disease (HD). How mitochondria become compromised in HD is poorly understood but instrumental for the development of treatments to prevent or reverse resulting deficits. In this paper, we investigate whether oxidative phosphorylation (OXPHOS) differs across brain regions in juvenile as compared to adult mice and whether such developmental changes might be compromised in the R6/2 mouse model of HD. We study OXPHOS in the striatum, hippocampus, and motor cortex by high resolution respirometry in female wild-type and R6/2 mice of ages corresponding to pre-symptomatic and symptomatic R6/2 mice. We observe a developmental shift in OXPHOS-control parameters that was similar in R6/2 mice, except for cortical succinate-driven respiration. While the LEAK state relative to maximal respiratory capacity was reduced in adult mice in all analyzed brain regions, succinate-driven respiration was reduced only in the striatum and cortex, and NADH-driven respiration was higher as compared to juvenile mice only in the striatum. We demonstrate age-related changes in respirational capacities of different brain regions with subtle deviations in R6/2 mice. Uncovering in situ oxygen conditions and potential substrate limitations during aging and HD disease progression are interesting avenues for future research to understand brain-regional vulnerability in HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (J.B.); (V.M.); (C.S.); Tel.: +41-21-692-37-97 (J.B.)
| | | | - Vittorio Maglione
- IRCCS, Neuromed, 86077 Pozzilli, Italy;
- Correspondence: (J.B.); (V.M.); (C.S.); Tel.: +41-21-692-37-97 (J.B.)
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (J.B.); (V.M.); (C.S.); Tel.: +41-21-692-37-97 (J.B.)
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Research Hospital, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
12
|
Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21010307. [PMID: 31906427 PMCID: PMC6981703 DOI: 10.3390/ijms21010307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets.
Collapse
|
13
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
14
|
Preventive preclinical efficacy of intravenously administered sphingosine-1-phosphate (S1P) in strengthening hypoxia adaptive responses to acute and sub-chronic hypobaric hypoxia. Eur J Pharmacol 2019; 870:172877. [PMID: 31866409 DOI: 10.1016/j.ejphar.2019.172877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Sphingosine-1-phosphate (S1P) is emerging as a hypoxia responsive bio-lipid; systemically raised levels of S1P are proposed to have potential hypoxia pre-conditioning effects. The study aims to evaluate the hypoxia pre-conditioning efficacy of exogenously administered S1P in rats exposed to acute (24-48 hs (h)) and sub-chronic (7 days) hypobaric hypoxia. Sprague-Dawley rats (200 ± 20 g) were preconditioned with 1 μg/kg body weight S1P intravenously for three consecutive days. On the third day, control and S1P preconditioned animals were exposed to hypobaric hypoxia equivalent to 7620 m for 24 h, 48 h and 7 days. Post exposure analysis included body weight quantitation, blood gas/chemistry analysis, vascular permeability assays, evaluation of oxidative stress/inflammation parameters, and estimation of hypoxia responsive molecules. S1P preconditioned rats exposed to acute HH display a significant reduction in body weight loss, as a culmination of improved oxygen carrying capacity, increased 2,3- diphosphoglycerate levels and recuperation from energy deficit. Pathological disturbances such as vascular leakage in the lungs and brain, oxidative stress, pro-inflammatory milieu and raised level of endothelin-1 were also reined. The adaptive and protective advantage conferred by S1P in the acute phase of hypobaric hypoxia exposure, is observed to precipitate into an improved sustenance even after sub-chronic (7d) hypobaric hypoxia exposure as indicated by decreased body weight loss, lower edema index and improvement in general pathology biomarkers. Conclusively, administration of 1 μg/kg body weight S1P, in the aforementioned schedule, confer hypoxia pre-conditioning benefits, sustained up to 7 days of hypobaric hypoxia exposure.
Collapse
|
15
|
Torretta E, Barbacini P, Al-Daghri NM, Gelfi C. Sphingolipids in Obesity and Correlated Co-Morbidities: The Contribution of Gender, Age and Environment. Int J Mol Sci 2019; 20:ijms20235901. [PMID: 31771303 PMCID: PMC6929069 DOI: 10.3390/ijms20235901] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
This paper reviews our present knowledge on the contribution of ceramide (Cer), sphingomyelin (SM), dihydroceramide (DhCer) and sphingosine-1-phosphate (S1P) in obesity and related co-morbidities. Specifically, in this paper, we address the role of acyl chain composition in bodily fluids for monitoring obesity in males and females, in aging persons and in situations of environmental hypoxia adaptation. After a brief introduction on sphingolipid synthesis and compartmentalization, the node of detection methods has been critically revised as the node of the use of animal models. The latter do not recapitulate the human condition, making it difficult to compare levels of sphingolipids found in animal tissues and human bodily fluids, and thus, to find definitive conclusions. In human subjects, the search for putative biomarkers has to be performed on easily accessible material, such as serum. The serum “sphingolipidome” profile indicates that attention should be focused on specific acyl chains associated with obesity, per se, since total Cer and SM levels coupled with dyslipidemia and vitamin D deficiency can be confounding factors. Furthermore, exposure to hypoxia indicates a relationship between dyslipidemia, obesity, oxygen level and aerobic/anaerobic metabolism, thus, opening new research avenues in the role of sphingolipids.
Collapse
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- Ph.D. school in Molecular and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department,College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- I.R.C.C.S Orthopedic Institute Galeazzi, R. Galeazzi 4, 20161 Milan, Italy
- Correspondence: ; Tel.: +39-025-033-0475
| |
Collapse
|
16
|
Terao R, Honjo M, Totsuka K, Miwa Y, Kurihara T, Aihara M. The role of sphingosine 1-phosphate receptors on retinal pigment epithelial cells barrier function and angiogenic effects. Prostaglandins Other Lipid Mediat 2019; 145:106365. [PMID: 31415870 DOI: 10.1016/j.prostaglandins.2019.106365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator, promoting angiogenesis and inflammation via interactions with its receptors (S1P1-5), but the receptors and signaling pathways responsible for the progression of choroidal neovascularization (CNV) remain unknown. We investigated the roles of S1P/S1P receptors in RPE cells. ARPE-19 cells were treated with S1P dissolved in carrier proteins of albumin or apolipoprotein M (ApoM). The mRNA expression levels of interleukin-8 (IL-8), C-C motif chemokine ligand 2 (CCL2), and vascular endothelial growth factor (VEGF) were evaluated using quantitative real-time polymerase chain reaction. The protein level of hypoxia-inducible factor (HIF)-1α was assessed via enzyme-linked immunosorbent assay. HIF transcriptional activity was evaluated with a dual-reporter luciferase assay. Cellular barrier integrity was evaluated using transepithelial electrical resistance and the FITC-dextran permeability assay. The suppressive effect of an S1P antagonist on CNV progression was investigated with a laser-induced CNV model in mice. The increase in expression of IL-8, CCL2, and VEGF due to albumin-bound S1P was significantly mitigated by an S1P2 antagonist. The expression of HIF-1α significantly decreased with inhibition of S1P2 and S1P3. In addition, albumin-bound S1P disrupted the barrier integrity of retinal pigment epithelial cells via S1P2, whereas integrity was strengthened by ApoM-bound S1P. CNV lesions were significantly reduced in the mouse model with intravitreal injection of S1P2 antagonist. This study demonstrated that S1P significantly promotes angiogenesis, inflammation, and barrier integrity, which was attenuated by inhibition of S1P2 or S1P3, suggesting that regulation of S1P2 and S1P3 is a novel therapeutic target for CNV.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kiyohito Totsuka
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Yukihiro Miwa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| |
Collapse
|
17
|
Lee HJ, Jung YH, Choi GE, Kim JS, Chae CW, Lim JR, Kim SY, Lee JE, Park MC, Yoon JH, Choi MJ, Kim KS, Han HJ. O-cyclic phytosphingosine-1-phosphate stimulates HIF1α-dependent glycolytic reprogramming to enhance the therapeutic potential of mesenchymal stem cells. Cell Death Dis 2019; 10:590. [PMID: 31383843 PMCID: PMC6683124 DOI: 10.1038/s41419-019-1823-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
O-cyclic phytosphingosine-1-phosphate (cP1P) is a novel chemically synthesized sphingosine metabolite derived from phytosphingosine-1-phosphate. Although structurally similar to sphingosine-1-phosphate (S1P), its biological properties in stem cells remain to be reported. We investigated the effect of cP1P on the therapeutic potential of mesenchymal stem cells (MSCs) and their regulatory mechanism. We found that, under hypoxia, cP1P suppressed MSC mitochondrial dysfunction and apoptosis. Metabolic data revealed that cP1P stimulated glycolysis via the upregulation of glycolysis-related genes. cP1P-induced hypoxia-inducible factor 1 alpha (HIF1α) plays a key role for MSC glycolytic reprogramming and transplantation efficacy. The intracellular calcium-dependent PKCα/mammalian target of the rapamycin (mTOR) signaling pathway triggered by cP1P regulated HIF1α translation via S6K1, which is critical for HIF1 activation. Furthermore, the cP1P-activated mTOR pathway induced bicaudal D homolog 1 expression, leading to HIF1α nuclear translocation. In conclusion, cP1P enhances the therapeutic potential of MSC through mTOR-dependent HIF1α translation and nuclear translocation.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Eun Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Chul Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myeong Jun Choi
- Axcesobiopharma, 268 Hakuiro, Dongan-gu, Anyang, 14056, Republic of Korea
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Rahar B, Chawla S, Tulswani R, Saxena S. Acute Hypobaric Hypoxia-Mediated Biochemical/Metabolic Shuffling and Differential Modulation of S1PR-SphK in Cardiac and Skeletal Muscles. High Alt Med Biol 2019; 20:78-88. [PMID: 30892968 DOI: 10.1089/ham.2018.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM High altitude exposure alters biochemical, metabolic, and physiological features of heart and skeletal muscles, and hence has pathological consequences in these tissues. Central to these hypoxia-associated biochemical/metabolic shuffling are energy deficit accumulation of free radicals and ensuing oxidative damage in the tissue. Recent preclinical/clinical studies indicate sphingosine-1-phosphate (S1P) axis, comprising S1P G protein coupled receptors (S1PR1-5) and its synthesizing enzyme-sphingosine kinase (SphK) to have key regulatory roles in homeostatic cardiac and skeletal muscle biology. In view of this, the aim of the present study was to chart the initiation and progression of biochemical/metabolic shuffling and assess the coincident differential modulation of S1PR(1-5) expression and total SphK activity in cardiac and skeletal muscles from rats exposed to progressive hypobaric hypoxia (HH; 21,000 feet for 12, 24, and 48 hours). RESULTS HH-associated responses were evident as raised damage markers in plasma, oxidative stress, decreased total tissue protein, imbalance of intermediate metabolites, and aerobic/anaerobic enzyme activities in cardiac and skeletal muscles (gastrocnemius and soleus) culminating as energy deficit. CONCLUSION Cardiac and gastrocnemius muscles were more susceptible to hypoxic environment than soleus muscle. These differential responses were directly and indirectly coincident with temporal expression of S1PR(1-5) and SphK activity.
Collapse
Affiliation(s)
- Babita Rahar
- 1 Experimental Biology Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| | - Sonam Chawla
- 1 Experimental Biology Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| | - Rajkumar Tulswani
- 2 PACT Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| | - Shweta Saxena
- 3 Medicinal and Aromatic Plant Division, Defense Institute of High Altitude Research (DIHAR), Defense Research and Development Organization, Jammu and Kashmir, India
| |
Collapse
|
19
|
Impairment of chemical hypoxia-induced sphingosine kinase-1 expression and activation in rheumatoid arthritis synovial fibroblasts: A signature of exhaustion? Biochem Pharmacol 2019; 165:249-262. [DOI: 10.1016/j.bcp.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
20
|
Abstract
While normal angiogenesis is critical for development and tissue growth, pathological angiogenesis is important for the growth and spread of cancers by supplying nutrients and oxygen as well as providing a conduit for distant metastasis. The interaction among extracellular matrix molecules, tumor cells, endothelial cells, fibroblasts, and immune cells is critical in pathological angiogenesis, in which various angiogenic growth factors, chemokines, and lipid mediators produced from these cells as well as hypoxic microenvironment promote angiogenesis by regulating expression and/or activity of various related genes. Sphingosine 1-phosphate and lysophosphatidic acid, bioactive lipid mediators which act via specific G protein-coupled receptors, play critical roles in angiogenesis. In addition, other lipid mediators including prostaglandin E2, lipoxin, and resolvins are produced in a stimulus-dependent manner and have pro- or anti-angiogenic effects, presumably through their specific GPCRs. Dysregulated lipid mediator signaling pathways are observed in the contxt of some tumors. This review will focus on LPA and S1P, two bioactive lipid mediators in their regulation of angiogenesis and cell migration that are critical for tumor growth and spread.
Collapse
Affiliation(s)
- Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
21
|
Apolipoprotein M Inhibits Angiogenic and Inflammatory Response by Sphingosine 1-Phosphate on Retinal Pigment Epithelium Cells. Int J Mol Sci 2017; 19:ijms19010112. [PMID: 29301231 PMCID: PMC5796061 DOI: 10.3390/ijms19010112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent lipid mediator that modulates inflammatory responses and proangiogenic factors. It has been suggested that S1P upregulates choroidal neovascularization (CNV) and may be deeply involved in the pathogenesis of exudative age-related macular degeneration (AMD). Recent studies have suggested that apolipoprotein M (ApoM), a carrier protein for S1P, modulates the biological properties of S1P in the pathogenesis of atherosclerosis. However, the role of ApoM/S1P in AMD has not been explored. We investigated the effect of S1P on proangiogenic factors in human retinal pigment epithelium (RPE) cell lines in vitro. S1P promoted the expression of vascular endothelial growth factor in RPE cells. Hypoxia inducible factor-1α expression was also upregulated. These S1P-induced enhancements in growth factors and chemotactic cytokines in RPE cells were significantly inhibited by ApoM treatment. Additionally, in vivo experiments using a laser-induced CNV murine model demonstrated that intravitreal ApoM injection significantly reduced the progression of CNV formation. Although the detailed mechanisms remain to be elucidated, the present results provide a novel potential therapeutic target for AMD, and demonstrate a suppressive role for ApoM and S1P in the pathology of CNV progression.
Collapse
|
22
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
23
|
Jalouli M, Mokas S, Turgeon CA, Lamalice L, Richard DE. Selective HIF-1 Regulation under Nonhypoxic Conditions by the p42/p44 MAP Kinase Inhibitor PD184161. Mol Pharmacol 2017; 92:510-518. [PMID: 28814529 DOI: 10.1124/mol.117.108654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/02/2017] [Indexed: 02/14/2025] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key gene regulator for cellular adaptation to low oxygen. In addition to hypoxia, several nonhypoxic stimuli, including hormones and growth factors, are essential for cell-specific HIF-1 regulation. Our studies have highlighted angiotensin II (AngII), a vasoactive hormone, as a potent HIF-1 activator in vascular smooth muscle cells (VSMC). AngII increases HIF-1 transcriptional activity by modulating specific signaling pathways. In VSMC, p42/p44 mitogen-activated protein kinase (MAPK) pathway activation is essential for HIF-1-mediated transcription during AngII treatment. The present study shows that PD184161, a potent MEK1/2 inhibitor, is an HIF-1 blocker in Ang II-treated VSMC. Unlike PD98059, a widely-used MEK1/2 inhibitor, we found that PD184161 blocked AngII-driven HIF-1α protein induction in a dose-dependent manner. Interestingly, the effect of PD184161 was specific to nonhypoxic activators, since HIF-1α induction by hypoxia (1% O2) was unaffected under similar conditions. VSMC treatment with MG132, a proteasome inhibitor, indicated that PD184161 influenced HIF-1α protein stability. PD184161 also increased HIF-1α binding to von Hippel-Lindau tumor suppressor protein, an E3 ligase component and an indication of HIF-1α hydroxylation. Finally, we show that PD184161 blocked mitochondrial ROS (mtROS) production and cellular ATP levels, at the same time enhancing ascorbate availability in AngII-treated VSMC. Taken together, our study indicates that, independently of p42/p44 MAPK activation, PD184161 blocks mtROS generation by AngII, leading to re-establishment of cellular ascorbate levels, increased VHL binding, and decreased HIF-1α stability. Therefore, this study reveals a previously unsuspected role for PD184161 as an HIF-1 inhibitor in VSMC under nonhypoxic conditions.
Collapse
Affiliation(s)
- Maroua Jalouli
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Sophie Mokas
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Catherine A Turgeon
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Laurent Lamalice
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Darren E Richard
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
24
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
25
|
Mokas S, Larivière R, Lamalice L, Gobeil S, Cornfield DN, Agharazii M, Richard DE. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification. Kidney Int 2016; 90:598-609. [PMID: 27470678 DOI: 10.1016/j.kint.2016.05.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022]
Abstract
Medial vascular calcification is a common complication of chronic kidney disease (CKD). Although elevated inorganic phosphate stimulates vascular smooth muscle cell (VSMC) osteogenic transdifferentiation and calcification, the mechanisms involved in their calcification during CKD are not fully defined. Because hypoxic gene activation is linked to CKD and stimulates bone cell osteogenic differentiation, we used in vivo and in vitro rodent models to define the role of hypoxic signaling during elevated inorganic phosphate-induced VSMC calcification. Cell mineralization studies showed that elevated inorganic phosphate rapidly induced VSMC calcification. Hypoxia strongly enhanced elevated inorganic phosphate-induced VSMC calcification and osteogenic transdifferentiation, as seen by osteogenic marker expression. Hypoxia-inducible factor-1 (HIF-1), the key hypoxic transcription factor, was essential for enhanced VSMC calcification. Targeting HIF-1 expression in murine VSMC blocked calcification in hypoxia with elevated inorganic phosphate while HIF-1 activators, including clinically used FG-4592/Roxadustat, recreated a procalcifying environment. Elevated inorganic phosphate rapidly activated HIF-1, even in normal oxygenation; an effect mediated by HIF-1α subunit stabilization. Thus, hypoxia synergizes with elevated inorganic phosphate to enhance VSMC osteogenic transdifferentiation. Our work identifies HIF-1 as an early CKD-related pathological event, prospective marker, and potential target against vascular calcification in CKD-relevant conditions.
Collapse
Affiliation(s)
- Sophie Mokas
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Centre de recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - Richard Larivière
- Department of Medicine, Centre de recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - Laurent Lamalice
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Centre de recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - Stéphane Gobeil
- Department of Molecular Medicine, Centre de recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - David N Cornfield
- Center for Excellence in Pulmonary Biology, Stanford University, Stanford, California, USA
| | - Mohsen Agharazii
- Department of Medicine, Centre de recherche du CHU de Québec, Université Laval, Québec, Québec, Canada
| | - Darren E Richard
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Centre de recherche du CHU de Québec, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
26
|
Sanagawa A, Iwaki S, Asai M, Sakakibara D, Norimoto H, Sobel BE, Fujii S. Sphingosine 1‑phosphate induced by hypoxia increases the expression of PAI‑1 in HepG2 cells via HIF‑1α. Mol Med Rep 2016; 14:1841-8. [PMID: 27357063 DOI: 10.3892/mmr.2016.5451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Our group has recently reported that in the immortal human HepG2 liver cell line, sphingosine 1‑phosphate (S1P) increases transcription of plasminogen activator inhibitor type‑1 (PAI‑1), the major physiological inhibitor of fibrinolysis, within 4 h. The present study aimed to elucidate the molecular mechanisms underlying this effect. PAI‑1 expression was measured by reverse transcription‑quantitative polymerase chain reaction and immunoblotting. It was demonstrated that S1P increased PAI‑1 promoter activity but did not increase the activity of promoters lacking the hypoxia responsive element (HRE) 2. In addition, S1P transiently increased the concentration of hypoxia inducible factor (HIF)‑1α, a transcription factor capable of binding to HRE. When HIF‑1α was knocked down, the induction of transcription of PAI‑1 by S1P was no longer observed. Sphingosine kinase (SPHK) activity is increased by hypoxia. It was demonstrated that increases in the concentration of the HIF‑1α protein induced by hypoxia were prevented by treatment with SPHK inhibitor or S1P receptor antagonists. Thus, modification of the induction of HIF‑1α by S1P, leading to increased transcription of PAI‑1, may be an attractive therapeutic target for thrombosis and consequent inhibition of fibrinolysis associated with hypoxia.
Collapse
Affiliation(s)
- Akimasa Sanagawa
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Soichiro Iwaki
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Moyoko Asai
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Daisuke Sakakibara
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Hiroaki Norimoto
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Burton E Sobel
- Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
| | - Satoshi Fujii
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| |
Collapse
|
27
|
Ader I, Gstalder C, Bouquerel P, Golzio M, Andrieu G, Zalvidea S, Richard S, Sabbadini RA, Malavaud B, Cuvillier O. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer. Oncotarget 2016; 6:13803-21. [PMID: 25915662 PMCID: PMC4537051 DOI: 10.18632/oncotarget.3144] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/12/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy.
Collapse
Affiliation(s)
- Isabelle Ader
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Cécile Gstalder
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Pierre Bouquerel
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Muriel Golzio
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Guillaume Andrieu
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Santiago Zalvidea
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, CHU Arnaud de Villeneuve, Montpellier, France
| | - Sylvain Richard
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, CHU Arnaud de Villeneuve, Montpellier, France
| | | | - Bernard Malavaud
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| |
Collapse
|
28
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. Aging Dis 2016; 7:180-200. [PMID: 27114850 PMCID: PMC4809609 DOI: 10.14336/ad.2015.0929] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in pathological processes emphasizing that long-term stress-related insults can impair the maintenance of chromatin landscape and provoke cellular senescence and tissue fibrosis associated with aging and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Kuopio University Hospital, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
29
|
Bouquerel P, Gstalder C, Müller D, Laurent J, Brizuela L, Sabbadini RA, Malavaud B, Pyronnet S, Martineau Y, Ader I, Cuvillier O. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer. Oncogenesis 2016; 5:e209. [PMID: 26974204 PMCID: PMC4815047 DOI: 10.1038/oncsis.2016.13] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC.
Collapse
Affiliation(s)
- P Bouquerel
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | - C Gstalder
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | - D Müller
- Equipe Labellisée Ligue contre le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer (TOUCAN), INSERM UMR-1037, Cancer Research Center of Toulouse (CRCT), Université de Toulouse, Toulouse, France
| | - J Laurent
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | - L Brizuela
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | | | - B Malavaud
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, Toulouse, France.,Institut Universitaire du Cancer Toulouse Oncopôle, Toulouse, France
| | - S Pyronnet
- Equipe Labellisée Ligue contre le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer (TOUCAN), INSERM UMR-1037, Cancer Research Center of Toulouse (CRCT), Université de Toulouse, Toulouse, France
| | - Y Martineau
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), INSERM UMR-1037, Cancer Research Center of Toulouse (CRCT), Université de Toulouse, Toulouse, France
| | - I Ader
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | - O Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| |
Collapse
|
30
|
Chawla S, Rahar B, Saxena S. S1P prophylaxis mitigates acute hypobaric hypoxia-induced molecular, biochemical, and metabolic disturbances: A preclinical report. IUBMB Life 2016; 68:365-75. [PMID: 26959531 DOI: 10.1002/iub.1489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/13/2016] [Indexed: 12/17/2022]
Abstract
Sphingosine-1-phosphate (S1P) is emerging to have hypoxic preconditioning potential in various preclinical studies. The study aims to evaluate the preclinical preconditioning efficacy of exogenously administered S1P against acute hypobaric hypoxia (HH)-induced pathological disturbances. Male Sprague Dawley rats (200 ± 20 g) were preconditioned with 1, 10, and 100 μg/kg body weight (b.w.) S1P (i.v.) for three consecutive days. On the third day, S1P preconditioned animals, along with hypoxia control animals, were exposed to HH equivalent to 7,620 m (280 mm Hg) for 6 h. Postexposure status of cardiac energy production, circulatory vasoactive mediators, pulmonary and cerebral oxidative damage, and inflammation were assessed. HH exposure led to cardiac energy deficit indicated by low ATP levels and pronounced AMPK activation levels, raised circulatory levels of brain natriuretic peptide and endothelin-1 with respect to total nitrate (NOx), redox imbalance, inflammation, and alterations in NOx levels in the pulmonary and cerebral tissues. These pathological precursors have been routinely reported to be coincident with high-altitude diseases. Preconditioning with S1P, especially 1 µg/kg b.w. dose, was seen to reverse the manifestation of these pathological disturbances. The protective efficacy could be attributed, at least in part, to enhanced activity of cardioprotective protein kinase C and activation of small GTPase Rac1, which led to further induction of hypoxia-adaptive molecular mediators: hypoxia-inducible factor (HIF)-1α and Hsp70. This is a first such report, to the best of our knowledge, elucidating the mechanism of exogenous S1P-mediated HIF-1α/Hsp70 induction. Conclusively, systemic preconditioning with 1 μg/kg b.w. S1P in rats protects against acute HH-induced pathological disturbances. © 2016 IUBMB Life 68(5):365-375, 2016.
Collapse
Affiliation(s)
- Sonam Chawla
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Babita Rahar
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Shweta Saxena
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi, India
| |
Collapse
|
31
|
Igarashi J, Okamoto R, Yamashita T, Hashimoto T, Karita S, Nakai K, Kubota Y, Takata M, Yamaguchi F, Tokuda M, Sakakibara N, Tsukamoto I, Konishi R, Hirano K. A key role of PGC-1α transcriptional coactivator in production of VEGF by a novel angiogenic agent COA-Cl in cultured human fibroblasts. Physiol Rep 2016; 4:e12742. [PMID: 27033444 PMCID: PMC4814893 DOI: 10.14814/phy2.12742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 01/16/2023] Open
Abstract
We previously demonstrated a potent angiogenic effect of a newly developed adenosine-like agent namedCOA-Cl.COA-Cl exerted tube forming activity in human umbilical vein endothelial cells in the presence of normal human dermal fibroblasts (NHDF). We therefore explored whether and howCOA-Cl modulates gene expression and protein secretion ofVEGF, a master regulator of angiogenesis, inNHDFRT-PCRandELISArevealed thatCOA-Cl upregulatedVEGF mRNAexpression and protein secretion inNHDFHIF1α(hypoxia-inducible factor 1α), a transcription factor, andPGC-1α(peroxisome proliferator-activated receptor-γcoactivator-1α), a transcriptional coactivator, are known to positively regulate theVEGFgene. Immunoblot andRT-PCRanalyses revealed thatCOA-Cl markedly upregulated the expression ofPGC-1αprotein andmRNACOA-Cl had no effect on the expression ofHIF1αprotein andmRNAin both hypoxia and normoxia. SilencingPGC-1αgene, but notHIF1αgene, by small interferingRNAattenuated the ability ofCOA-Cl to promoteVEGFsecretion. When an N-terminal fragment ofPGC-1αwas cotransfected with its partner transcription factorERRα(estrogen-related receptor-α) inCOS-7 cells,COA-Cl upregulated the expression of the endogenousVEGF mRNA However,COA-Cl had no effect on the expression ofVEGF, whenHIF1αwas transfected.COA-Cl inducesVEGFgene expression and protein secretion in fibroblasts. The transcriptional coactivatorPGC-1α, in concert withERRα, plays a key role in theCOA-Cl-inducedVEGFproduction.COA-Cl-induced activation ofPGC-1α-ERRα-VEGFpathway has a potential as a novel means for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Ryuji Okamoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Sakiko Karita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Kozo Nakai
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Yasuo Kubota
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Maki Takata
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Fuminori Yamaguchi
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Norikazu Sakakibara
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Ryoji Konishi
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| |
Collapse
|
32
|
Luo B, Gan W, Liu Z, Shen Z, Wang J, Shi R, Liu Y, Liu Y, Jiang M, Zhang Z, Wu Y. Erythropoeitin Signaling in Macrophages Promotes Dying Cell Clearance and Immune Tolerance. Immunity 2016; 44:287-302. [PMID: 26872696 DOI: 10.1016/j.immuni.2016.01.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/03/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
The failure of apoptotic cell clearance is linked to autoimmune diseases, nonresolving inflammation, and developmental abnormalities; however, pathways that regulate phagocytes for efficient apoptotic cell clearance remain poorly known. Apoptotic cells release find-me signals to recruit phagocytes to initiate their clearance. Here we found that find-me signal sphingosine 1-phosphate (S1P) activated macrophage erythropoietin (EPO) signaling promoted apoptotic cell clearance and immune tolerance. Dying cell-released S1P activated macrophage EPO signaling. Erythropoietin receptor (EPOR)-deficient macrophages exhibited impaired apoptotic cell phagocytosis. EPO enhanced apoptotic cell clearance through peroxisome proliferator activated receptor-γ (PPARγ). Moreover, macrophage-specific Epor(-/-) mice developed lupus-like symptoms, and interference in EPO signaling ameliorated the disease progression in lupus-like mice. Thus, we have identified a pathway that regulates macrophages to clear dying cells, uncovered the priming function of find-me signal S1P, and found a role of the erythropoiesis regulator EPO in apoptotic cell disposal, with implications for harnessing dying cell clearance.
Collapse
Affiliation(s)
- Bangwei Luo
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Woting Gan
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Zongwei Liu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Zigang Shen
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Jinsong Wang
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Rongchen Shi
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Yuqi Liu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Yu Liu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Man Jiang
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Zhiren Zhang
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China.
| | - Yuzhang Wu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China.
| |
Collapse
|
33
|
Chemical Hypoxia Brings to Light Altered Autocrine Sphingosine-1-Phosphate Signalling in Rheumatoid Arthritis Synovial Fibroblasts. Mediators Inflamm 2015; 2015:436525. [PMID: 26556954 PMCID: PMC4628658 DOI: 10.1155/2015/436525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023] Open
Abstract
Emerging evidence suggests a role for sphingosine-1-phosphate (S1P) in various aspects of rheumatoid arthritis (RA) pathogenesis. In this study we compared the effect of chemical hypoxia induced by cobalt chloride (CoCl2) on the expression of S1P metabolic enzymes and cytokine/chemokine secretion in normal fibroblast-like synoviocytes (FLS) and RAFLS. RAFLS incubated with CoCl2, but not S1P, produced less IL-8 and MCP-1 than normal FLS. Furthermore, incubation with the S1P2 and S1P3 receptor antagonists, JTE-013 and CAY10444, reduced CoCl2-mediated chemokine production in normal FLS but not in RAFLS. RAFLS showed lower levels of intracellular S1P and enhanced mRNA expression of S1P phosphatase 1 (SGPP1) and S1P lyase (SPL), the enzymes that are involved in intracellular S1P degradation, when compared to normal FLS. Incubation with CoCl2 decreased SGPP1 mRNA and protein and SPL mRNA as well. Inhibition of SPL enhanced CoCl2-mediated cytokine/chemokine release and restored autocrine activation of S1P2 and S1P3 receptors in RAFLS. The results suggest that the sphingolipid pathway regulating the intracellular levels of S1P is dysregulated in RAFLS and has a significant impact on cell autocrine activation by S1P. Altered sphingolipid metabolism in FLS from patients with advanced RA raises the issue of synovial cell burnout due to chronic inflammation.
Collapse
|
34
|
Differential Modulation of S1PR(1–5) and Specific Activities of SphK and nSMase in Pulmonary and Cerebral Tissues of Rats Exposed to Hypobaric Hypoxia. Lipids 2014; 50:39-48. [DOI: 10.1007/s11745-014-3967-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/22/2014] [Indexed: 01/18/2023]
|
35
|
Lafleur VN, Richard S, Richard DE. Transcriptional repression of hypoxia-inducible factor-1 (HIF-1) by the protein arginine methyltransferase PRMT1. Mol Biol Cell 2014; 25:925-35. [PMID: 24451260 PMCID: PMC3952860 DOI: 10.1091/mbc.e13-07-0423] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypoxia-inducible factors (HIF) are essential for the adaptive response of cells to low-oxygen conditions. Transcription of HIF-α subunits and HIF activity are repressed by the arginine methyltransferase PRMT1. Therefore PRMT1 is a novel regulator of hypoxic cell responses. Hypoxia-inducible factors (HIF-1 and HIF-2) are essential mediators for the adaptive transcriptional response of cells and tissues to low-oxygen conditions. Under hypoxia or when cells are treated with various nonhypoxic stimuli, the active HIF-α subunits are mainly regulated through increased protein stabilization. For HIF-1α, it is clear that further transcriptional, translational, and posttranslational regulations are important for complete HIF-1 activity. Novel evidence links hypoxia and HIF-1 to arginine methylation, an important protein modification. These studies suggest that arginine methyltransferases may be important for hypoxic responses. Protein arginine methyltransferase 1 (PRMT1), the predominant arginine methyltransferase, can act as a transcriptional activator or repressor by modifying a diverse set of substrates. In this work, we show that PRMT1 is a repressor of both HIF-1 and HIF-2. The cellular depletion of PRMT1 by small interference RNA targeting leads to increased HIF transcriptional activity. This activation is the result of enhanced HIF-α subunit transcription, which allows increased HIF-α subunit availability. We provide evidence that PRMT1-dependent HIF-1α regulation is mediated through the activities of both specificity protein 1 (Sp1) and Sp3, two transcription factors known to control HIF-1α expression. This study therefore identifies PRMT1 as a novel regulator of HIF-1– and HIF-2–mediated responses.
Collapse
Affiliation(s)
- Véronique N Lafleur
- Centre de Recherche du CHU de Québec, L'Hôtel-Dieu de Québec, and Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1R 2J6, Canada Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | |
Collapse
|
36
|
Pham DH, Powell JA, Gliddon BL, Moretti PAB, Tsykin A, Van der Hoek M, Kenyon R, Goodall GJ, Pitson SM. Enhanced expression of transferrin receptor 1 contributes to oncogenic signalling by sphingosine kinase 1. Oncogene 2013; 33:5559-68. [PMID: 24276247 DOI: 10.1038/onc.2013.502] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/10/2013] [Accepted: 10/19/2013] [Indexed: 12/25/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid kinase that catalyses the formation of sphingosine-1-phosphate (S1P). Considerable evidence has implicated elevated cellular SK1 in tumour development, progression and disease severity. In particular, SK1 has been shown to enhance cell survival and proliferation and induce neoplastic transformation. Although S1P has been found to have both cell-surface G-protein-coupled receptors and intracellular targets, the specific downstream pathways mediating oncogenic signalling by SK1 remain poorly defined. Here, using a gene expression array approach, we have demonstrated a novel mechanism whereby SK1 regulates cell survival, proliferation and neoplastic transformation through enhancing expression of transferrin receptor 1 (TFR1). We showed that elevated levels of SK1 enhanced total as well as cell-surface TFR1 expression, resulting in increased transferrin uptake into cells. Notably, we also found that SK1 activation and localization to the plasma membrane, which are critical for its oncogenic effects, are necessary for regulation of TFR1 expression specifically through engagement of the S1P G-protein coupled receptor, S1P2. Furthermore, we showed that blocking TFR1 function with a neutralizing antibody inhibits SK1-induced cell proliferation, survival and neoplastic transformation of NIH3T3 fibroblasts. Similar effects were observed following antagonism of S1P2. Together these findings suggest that TFR1 has an important role in SK1-mediated oncogenesis.
Collapse
Affiliation(s)
- D H Pham
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA, Australia [2] School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - J A Powell
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA, Australia
| | - B L Gliddon
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA, Australia
| | - P A B Moretti
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA, Australia
| | - A Tsykin
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA, Australia [2] School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - M Van der Hoek
- Adelaide Microarray Facility, SA Pathology, Frome Road, Adelaide, SA, Australia
| | - R Kenyon
- Adelaide Microarray Facility, SA Pathology, Frome Road, Adelaide, SA, Australia
| | - G J Goodall
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA, Australia [2] School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia [3] School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| | - S M Pitson
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA, Australia [2] School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia [3] School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
37
|
Exogenous sphingosine 1-phosphate protects murine splenocytes against hypoxia-induced injury. Lipids 2013; 49:191-202. [PMID: 24190514 DOI: 10.1007/s11745-013-3860-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/21/2013] [Indexed: 01/07/2023]
Abstract
Sphingosine-1-phosphate (S1P), a biologically active pleiotropic lipid, is involved in several physiological processes especially in the area of vascular biology and immunology encompassing cell survival, angiogenesis, vascular tone, immune response etc. by interacting with specific cell surface receptors. Hypoxia, a condition common to innumerable pathologies, is known to lethally affect cell survival by throwing off balance global gene expression, redox homeostasis, bioenergetics etc. Several molecular events of cellular adaptations to hypoxia have been closely linked to stabilization of hypoxia inducible factor-1α (HIF-1α). Signalling functions of S1P in physiological events central to hypoxia-induced pathologies led us to investigate efficacy of exogenous S1P in preconditioning murine splenocytes to sustain during cellular stress associated with sub-optimal oxygen. The present study recapitulated the pro-survival benefits of exogenous S1P under normobaric hypoxia. Results indicate a direct effect of S1P supplementation on boosting cellular adaptive responses via HIF-1α stabilization and, activation of pro-survival mediators ERK and Akt. Overwhelming anti-oxidative and anti-inflammatory benefits of S1P preconditioning could also be captured in the present study, as indicated by improved redox homeostasis, reduced oxidative damage, balanced anti/pro-inflammatory cytokine profiles and temporal regulation of nitric oxide secretion and intra-cellular calcium release. Hypoxia induced cell death and the associated stress in cellular milieu in terms of oxidative damage and inflammation could be alleviated with exogenous S1P preconditioning.
Collapse
|
38
|
Kalhori V, Kemppainen K, Asghar MY, Bergelin N, Jaakkola P, Törnquist K. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells. PLoS One 2013; 8:e66189. [PMID: 23824493 PMCID: PMC3688870 DOI: 10.1371/journal.pone.0066189] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 05/05/2013] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1) is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3), Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1.
Collapse
Affiliation(s)
- Veronica Kalhori
- Department of Biosciences, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute, Helsinki, Finland
| | - Kati Kemppainen
- Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | | - Nina Bergelin
- Department of Biosciences, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute, Helsinki, Finland
| | | | - Kid Törnquist
- Department of Biosciences, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute, Helsinki, Finland
- * E-mail:
| |
Collapse
|
39
|
Cuvillier O, Ader I, Bouquerel P, Brizuela L, Gstalder C, Malavaud B. Hypoxia, therapeutic resistance, and sphingosine 1-phosphate. Adv Cancer Res 2013; 117:117-41. [PMID: 23290779 DOI: 10.1016/b978-0-12-394274-6.00005-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia, defined as a poor oxygenation, has been long recognized as a hallmark of solid tumors and a negative prognostic factor for response to therapeutics and survival of patients. Cancer cells have evolved biochemical mechanisms that allow them to react and adapt to hypoxia. At the cellular level, this adaptation is under the control of two related transcription factors, HIF-1 and HIF-2 (hypoxia-inducible factor), that respond rapidly to decreased oxygen levels to activate the expression of a broad range of genes promoting neoangiogenesis, glycolysis, metastasis, increased tumor growth, and resistance to treatments. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway-which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis-as a new regulator of HIF-1 or HIF-2 activity. In this review, we will focus on how the inhibition/neutralization of the SphK1/S1P signaling could be exploited for cancer therapy.
Collapse
Affiliation(s)
- Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France; Université de Toulouse, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
40
|
Morozov VI, Sakuta GA, Kalinski MI. Sphingosine-1-phosphate: distribution, metabolism and role in the regulation of cellular functions. UKRAINIAN BIOCHEMICAL JOURNAL 2013; 85:5-21. [PMID: 23534286 DOI: 10.15407/ubj85.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of sphingosine-1-phosphate (S1P) in regulation of cellular functions and cell protection is reviewed. S1P, along with other sphingolipid metabolites, is believed to act as an intracellular second messenger and as an extracellular mediator molecule. S1P chemistry, production and metabolism are described. Cellular receptors for S1P and their tissue specificity are described. Platelets and erythrocytes have a crucial significance in blood transport of S1P. Hypoxic conditions induce an increase in S1P, which initiates a set of cytoprotective events via its cellular receptors. S1P involvement in regulation of cell migration, myogenesis, control of skeletal muscle function is described. It is shown that S1P balance disturbances may mediate pathological state. S1P system implication in regulation of the most important cellular functions allows considering it as a prospective remedial target.
Collapse
Affiliation(s)
- V I Morozov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia.
| | | | | |
Collapse
|
41
|
Fraisl P. Crosstalk between oxygen- and nitric oxide-dependent signaling pathways in angiogenesis. Exp Cell Res 2013; 319:1331-9. [PMID: 23485765 DOI: 10.1016/j.yexcr.2013.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
With every heart beat blood rushes through a complex network of tubes to deliver essential ingredients of life, oxygen and nutrients. Consequently, this network of blood vessels is an indispensable part of vertebrate physiology. Its organization and architecture is highly dynamic in its form and function. Understanding how blood vessels develop, a process referred to as angiogenesis, is equally important as to know how they function considering that failure or misalignment of this process results in disorder and disease, in many cases of which death is inevitable. Much has been learned about the angiogenic process and the critical contributors of blood vessel function. A central determinant is oxygen, an evident contributor given the fact that oxygen delivery is a primary feature of blood vessel function. Not only is oxygen however essential for mitochondrial energy production, it also serves as a key molecule in various biochemical reactions, such as the formation of nitric oxide (NO), on its part a critical regulator of vascular tone and vessel homeostasis. Hence, oxygen abundance relates to the production of NO, and NO in turn regulates oxygen delivery and consumption. Given the importance of the intrinsic link these two molecules exert on angiogenesis and vessel function; this review shall highlight our current understanding on how these two molecules cooperate to form blood vessels.
Collapse
Affiliation(s)
- Peter Fraisl
- Cell Metabolism and Proliferation Laboratory, Vesalius Research Center (VRC), VIB, 3000 Leuven, Belgium.
| |
Collapse
|
42
|
Yasuo M, Mizuno S, Allegood J, Kraskauskas D, Bogaard HJ, Spiegel S, Voelkel NF. Fenretinide causes emphysema, which is prevented by sphingosine 1-phoshate. PLoS One 2013; 8:e53927. [PMID: 23326540 PMCID: PMC3543313 DOI: 10.1371/journal.pone.0053927] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/07/2012] [Indexed: 01/08/2023] Open
Abstract
Sphingolipids play a role in the development of emphysema and ceramide levels are increased in experimental models of emphysema; however, the mechanisms of ceramide-related pulmonary emphysema are not fully understood. Here we examine mechanisms of ceramide-induced pulmonary emphysema. Male Sprague-Dawley rats were treated with fenretinide (20 mg/kg BW), a synthetic derivative of retinoic acid that causes the formation of ceramide, and we postulated that the effects of fenretinide could be offset by administering sphingosine 1-phosphate (S1P) (100 µg/kg BW). Lung tissues were analyzed and mean alveolar airspace area, total length of the alveolar perimeter and the number of caspase-3 positive cells were measured. Hypoxia-inducible factor alpha (HIF-1α), vascular endothelial growth factor (VEGF) and other related proteins were analyzed by Western blot analysis. Immunohistochemical analysis of HIF-1α was also performed. Ceramide, dihydroceramide, S1P, and dihydro-S1P were measured by mass spectrometer. Chronic intraperitoneal injection of fenretinide increased the alveolar airspace surface area and increased the number of caspase-3 positive cells in rat lungs. Fenretinide also suppressed HIF-1α and VEGF protein expression in rat lungs. Concomitant injection of S1P prevented the decrease in the expression of HIF-1α, VEGF, histone deacetylase 2 (HDAC2), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein expression in the lungs. S1P injection also increased phosphorylated sphingosine kinase 1. Dihydroceramide was significantly increased by fenretinide injection and S1P treatment prevented the increase in dihydroceramide levels in rat lungs. These data support the concept that increased de novo ceramide production causes alveolar septal cell apoptosis and causes emphysema via suppressing HIF-1α. Concomitant treatment with S1P normalizes the ceramide-S1P balance in the rat lungs and increases HIF-1α protein expression via activation of sphingosine kinase 1; as a consequence, S1P salvages fenretinide induced emphysema in rat lungs.
Collapse
Affiliation(s)
- Masanori Yasuo
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shiro Mizuno
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jeremy Allegood
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Donatas Kraskauskas
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harm J. Bogaard
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Norbert F. Voelkel
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
43
|
Abstract
Sphingosine-1-phosphate (S1P) regulates important functions in cardiac and vascular homeostasis. It has been implied to play causal roles in the pathogenesis of many cardiovascular disorders such as coronary artery disease, atherosclerosis, myocardial infarction, and heart failure. The majority of S1P in plasma is associated with high-density lipoproteins (HDL), and their S1P content has been shown to be responsible, at least in part, for several of the beneficial effects of HDL on cardiovascular risk. The attractiveness of S1P-based drugs for potential cardiovascular applications is increasing in the wake of the clinical approval of FTY720, but answers to important questions on the effects of S1P in cardiovascular biology and medicine must still be found. This chapter focuses on the current understanding of the role of S1P and its receptors in cardiovascular physiology, pathology, and disease.
Collapse
Affiliation(s)
- Bodo Levkau
- University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
44
|
Wacker BK, Perfater JL, Gidday JM. Hypoxic preconditioning induces stroke tolerance in mice via a cascading HIF, sphingosine kinase, and CCL2 signaling pathway. J Neurochem 2012; 123:954-62. [PMID: 23043544 DOI: 10.1111/jnc.12047] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 07/26/2012] [Accepted: 10/04/2012] [Indexed: 12/30/2022]
Abstract
The induction of ischemic tolerance by preconditioning provides a platform to elucidate endogenous mechanisms of stroke protection. In these studies, we characterize the relationship between hypoxia-inducible factor (HIF), sphingosine kinase 2 (SphK2), and chemokine (C-C motif) ligand 2 (CCL2) in models of hypoxic or pharmacological preconditioning-induced ischemic tolerance. A genetics-based approach using SphK2- and CCL2-null mice showed both SphK2 and CCL2 to be necessary for the induction of ischemic tolerance following preconditioning with hypoxia, the hypoxia-mimetic cobalt chloride, or the sphingosine-1-phosphate (S1P) agonist FTY720. A pharmacological approach confirmed the necessity of HIF signaling for all three preconditioning stimuli, and showed that the SphK/S1P pathway transduces tolerance via the S1P(1) receptor. In addition, our data suggest significant cross-talk between HIF and SphK2-produced S1P signaling, which together act to up-regulate CCL2 expression. Overall, HIF, SphK, S1P, and CCL2 participate in a signaling cascade to induce the gene expression responsible for the stroke-tolerant phenotype established by hypoxic and FTY720 preconditioning. The identification of these common molecular mediators involved in signaling the genomic response to multiple preconditioning stimuli provides several targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Bradley K Wacker
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
45
|
Labbé A, Lafleur VN, Patten DA, Robitaille GA, Garand C, Lamalice L, Lebel M, Richard DE. The Werner syndrome gene product (WRN): a repressor of hypoxia-inducible factor-1 activity. Exp Cell Res 2012; 318:1620-32. [PMID: 22659133 DOI: 10.1016/j.yexcr.2012.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/19/2012] [Accepted: 04/10/2012] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in WS patients (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. Hypoxia-inducible factor-1 (HIF-1) is a decisive element for the transcriptional regulation of genes essential for adaptation to low oxygen conditions. HIF-1 is also implicated in the molecular mechanisms of ageing. Here, we show that the cellular depletion of WRN protein (by siRNA targeting) leads to increased HIF-1 complex stabilization and activation. HIF-1 activation in the absence of WRN involves the generation of mitochondrial reactive oxygen species (mtROS) since SkQ1, a mitochondrial-targeted antioxidant, and stigmatellin, an inhibitor of mitochondrial complex III, blocked increased HIF-1 levels. Ascorbate, an essential co-factor involved in HIF-1 stability, was decreased in WRN-depleted cells. Interestingly, expression levels of GLUT1, a known dehydroascorbic acid transporter, were also decreased in WRN-depleted cells. Ascorbate supplementation of WRN-depleted cells led to a dose-dependent inhibition of HIF-1 activation. These results indicate that WRN protein regulates HIF-1 activation by affecting mitochondrial ROS production and intracellular ascorbate levels. This work provides a novel mechanistic link between HIF-1 activity and different age-associated pathologies.
Collapse
Affiliation(s)
- Adam Labbé
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de recherche du CHUQ, L'Hôtel-Dieu de Québec, Québec, QC, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Hypoxia is a pathological hallmark feature of solid tumors. Though hypoxia is an adverse physiological state, tumors have evolved to utilize this unsuitable environment to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival, and metastasis. Several studies have emphasized the importance of lipid mediators in regulating key biomolecules in the hypoxic microenvironment, for example hypoxia inducible factor-1 (HIF-1), the master regulator of hypoxia. Lipid mediators have been reported to enhance the levels and activity of HIF-1, which subsequently signal to stimulate angiogenesis and tumor cell survival under hypoxic conditions. There are also reports of hypoxia and HIF-1 enhancing the levels of some lipid mediators mostly by upregulating the levels of the enzymes responsible for their biosynthesis. This review gives a brief overview of these two mechanisms and the role played by bioactive lipid mediators in the regulation of tumor progression and survival under hypoxia.
Collapse
|
47
|
Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JTG, Sohn-Lee C, Loyer X, Soutschek J, Brand T, Tuschl T, Heineke J, Martin U, Schulte-Merker S, Ertl G, Engelhardt S, Bauersachs J, Thum T. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 2011; 124:720-30. [PMID: 21788589 DOI: 10.1161/circulationaha.111.039008] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. METHODS AND RESULTS Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. CONCLUSIONS Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease.
Collapse
Affiliation(s)
- Jan Fiedler
- Hannover Medical School, Institute for Molecular and Translational Therapeutic Strategies, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE. Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 2010; 21:3247-57. [PMID: 20660157 PMCID: PMC2938389 DOI: 10.1091/mbc.e10-01-0025] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor for responses to low oxygen. Different nonhypoxic stimuli, including hormones and growth factors, are also important HIF-1 activators in the vasculature. Angiotensin II (Ang II), the main effecter hormone in the renin-angiotensin system, is a potent HIF-1 activator in vascular smooth muscle cells (VSMCs). HIF-1 activation by Ang II involves intricate mechanisms of HIF-1α transcription, translation, and protein stabilization. Additionally, the generation of reactive oxygen species (ROS) is essential for HIF-1 activation during Ang II treatment. However, the role of the different VSMC ROS generators in HIF-1 activation by Ang II remains unclear. This work aims at elucidating this question. Surprisingly, repression of NADPH oxidase-generated ROS, using Vas2870, a specific inhibitor or a p22(phox) siRNA had no significant effect on HIF-1 accumulation by Ang II. In contrast, repression of mitochondrial-generated ROS, by complex III inhibition, by Rieske Fe-S protein siRNA, or by the mitochondrial-targeted antioxidant SkQ1, strikingly blocked HIF-1 accumulation. Furthermore, inhibition of mitochondrial-generated ROS abolished HIF-1α protein stability, HIF-1-dependent transcription and VSMC migration by Ang II. A large number of studies implicate NADPH oxidase-generated ROS in Ang II-mediated signaling pathways in VSMCs. However, our work points to mitochondrial-generated ROS as essential intermediates for HIF-1 activation in nonhypoxic conditions.
Collapse
Affiliation(s)
- David A Patten
- Centre de recherche du CHUQ, L'Hôtel-Dieu de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, G1R 2J6, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Hsp90 as a gatekeeper of tumor angiogenesis: clinical promise and potential pitfalls. JOURNAL OF ONCOLOGY 2010; 2010:412985. [PMID: 20628489 PMCID: PMC2902748 DOI: 10.1155/2010/412985] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 04/12/2010] [Indexed: 01/05/2023]
Abstract
Tumor vascularization is an essential modulator of early tumor growth, progression, and therapeutic outcome. Although antiangiogenic treatments appear promising, intrinsic and acquired tumor resistance contributes to treatment failure. Clinical inhibition of the molecular chaperone heat shock protein 90 (Hsp90) provides an opportunity to target multiple aspects of this signaling resiliency, which may elicit more robust and enduring tumor repression relative to effects elicited by specifically targeted agents. This review highlights several primary effectors of angiogenesis modulated by Hsp90 and describes the clinical challenges posed by the redundant circuitry of these pathways. The four main topics addressed include (1) Hsp90-mediated regulation of HIF/VEGF signaling, (2) chaperone-dependent regulation of HIF-independent VEGF-mediated angiogenesis, (3) Hsp90-dependent targeting of key proangiogenic receptor tyrosine kinases and modulation of drug resistance, and (4) consideration of factors such as tumor microenvironment that pose several challenges for the clinical efficacy of anti-angiogenic therapy and Hsp90-targeted strategies.
Collapse
|
50
|
Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod 2009; 16:135-52. [PMID: 19880575 DOI: 10.1093/molehr/gap095] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Uterine receptivity to implantation varies among species, and involves changes in expression of genes that are coordinate with attachment of trophectoderm to uterine lumenal and superficial glandular epithelia, modification of phenotype of uterine stromal cells, silencing of receptors for progesterone and estrogen, suppression of genes for immune recognition, alterations in membrane permeability to enhance conceptus-maternal exchange of factors, angiogenesis and vasculogenesis, increased vascularity of the endometrium, activation of genes for transport of nutrients into the uterine lumen, and enhanced signaling for pregnancy recognition. Differential expression of genes by uterine epithelial and stromal cells in response to progesterone, glucocorticoids, prostaglandins and interferons may influence uterine receptivity to implantation in mammals. Uterine receptivity to implantation is progesterone-dependent; however, implantation is preceded by loss of expression of receptors for progesterone (PGR) so that progesterone most likely acts via PGR-positive stromal cells throughout pregnancy. Endogenous retroviruses expressed by the uterus and/or blastocyst also affect implantation and placentation in various species. Understanding the roles of the variety of hormones, growth factors and endogenous retroviral proteins in uterine receptivity for implantation is essential to enhancing reproductive health and fertility in humans and domestic animals.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M Health Sciences Center, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|