1
|
Furlong MA, Liu T, Jung A, Beitel S, Hughes J, Krause R, Graber JM, Calkins MM, Calafat AM, Botelho JC, Huentelman M, Gulotta J, Goodrich JM, Burgess JL. Per- and polyfluoroalkyl substances (PFAS) and microRNA: An epigenome-wide association study in firefighters. ENVIRONMENTAL RESEARCH 2025; 279:121766. [PMID: 40350013 DOI: 10.1016/j.envres.2025.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
The occupation of firefighting is classified as a Group 1 carcinogen. Increased cancer risk among firefighters may be partly attributable to increased occupational exposure to a range of chemicals, including per- and polyfluoroalkyl substances (PFAS). Some PFAS are known and suspect human carcinogens. Investigating epigenetic response to these PFAS exposures in firefighters may help to identify biological pathways of specific cancers, and previously unidentified health outcomes that are associated with PFAS. We therefore investigated the associations of serum PFAS concentrations with miRNA expression in firefighters. Serum samples collected from 303 firefighters from 6 sites across the USA were analyzed for 9 PFAS along with miRNA expression. Covariate-adjusted linear regression was used to estimate associations between log PFAS and miRNA expression, with false discovery rate (FDR) set to 0.05 for significance, and an exploratory cutoff of FDR q < 0.20. Gene set enrichment analysis (GSEA) was performed using miRTarBase's miRWalk pathways. Age, race-ethnicity, BMI, fire department, and sex were controlled for in all models. At FDR<0.05, the linear isomer of perfluorooctane sulfonic acid (PFOS) was inversely associated with miR-128-1-5p expression (Beta = -0.146, 95 % CI -0.216, -0.076). At a relaxed FDR of 0.20, we observed inverse associations for the sum of branched isomers of PFOS (Sm-PFOS) with 5 miRNAs (let-7d-5p, let-7a-5p, miR-423-5p, let-7b-5p, miR-629-5p). Several pathways were enriched for multiple PFAS, including those correlated with certain cancers, blood diseases, thyroid disorders, autoimmune disorders, and neurological outcomes. Some PFAS in firefighters were found to be associated with alteration of miRNA consistent with increased risk for a range of chronic diseases.
Collapse
Affiliation(s)
- Melissa A Furlong
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Community, Environment, and Policy, USA.
| | - Tuo Liu
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Community, Environment, and Policy, USA
| | | | - Shawn Beitel
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Community, Environment, and Policy, USA
| | | | | | | | - Miriam M Calkins
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, USA
| | - Julianne C Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, USA
| | - Matthew Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, USA
| | - John Gulotta
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Community, Environment, and Policy, USA; Tucson Fire Department, USA
| | - Jaclyn M Goodrich
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, USA
| | - Jefferey L Burgess
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Community, Environment, and Policy, USA
| |
Collapse
|
2
|
Caviglia GP, Casalone E, Rosso C, Aneli S, Allione A, Carli F, Grange C, Armandi A, Catalano C, Birolo G, Foglia B, Ribaldone DG, Gastaldelli A, Matullo G, Bugianesi E. Extracellular Vesicles miRNome Profiling Reveals miRNAs Engagement in Dysfunctional Lipid Metabolism, Chronic Inflammation and Liver Damage in Subjects With Metabolic Dysfunction-Associated Steatotic Liver Disease. Aliment Pharmacol Ther 2025. [PMID: 40208030 DOI: 10.1111/apt.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND AND AIMS MicroRNAs (miRNAs) are short non-coding oligonucleotides involved in the post-transcriptional regulation of gene expression. We investigated the association between the miRNome profile of circulating extracellular vesicles (EVs) and metabolic derangements, circulating and hepatic pro-inflammatory cytokines, and liver damage across the histological spectrum of metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS EV miRNAs expression was determined by NGS (NextSeq550, Illumina Inc) in 228 biopsy-proven MASLD patients. In vivo metabolic studies were performed in a subgroup of 54 patients by tracer infusion ([6,6-2H2]glucose and [2H5]glycerol) to assess glucose and lipid fluxes and insulin resistance (IR) in the adipose tissue. RESULTS Seven miRNAs (miR-27b-3p, miR-30a-5p, miR-122-5p, miR-375-3p, miR-103a-3p, let-7d-5p, and let-7f-5p) were differentially expressed according to the diagnosis of steatohepatitis and the presence of significant fibrosis (F ≥ 2), thus marking subjects with 'at-risk MASH'. In the metabolic studies, the above-reported miRNAs had the strongest associations with lipid metabolism: miR-122-5p and miR-375-3p levels directly correlated with circulating free fatty acids (FFAs) and adipose tissue (AT)-IR, while let-7d-5p and let-7f-5p inversely correlated with lipolysis, FFAs, and progressively decreased according to AT-IR severity. In addition, let-7d-5p and let-7f-5p inversely correlated with the circulating and hepatic expression of pro-inflammatory cytokines, which increased by increasing degrees of AT-IR. CONCLUSIONS Our results suggest an intertwined connection between miR-122-5p, miR-375-3p, and the let-7 family in modulating lipid derangements and inflammatory pathways in patients with 'at-risk MASH', paving the basis for further studies aiming at investigating their potential therapeutic value.
Collapse
Affiliation(s)
- Gian Paolo Caviglia
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Casalone
- Unit of Genomic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Serena Aneli
- Unit of Genomic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandra Allione
- Unit of Genomic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Cristina Grange
- Division of Internal Medicine, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
- Metabolic Liver Disease Research Program, I. Department of Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Chiara Catalano
- Unit of Genomic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Birolo
- Unit of Genomic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Davide Giuseppe Ribaldone
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Giuseppe Matullo
- Unit of Genomic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Bamahel AS, Sun X, Wu W, Mu C, Liu J, Bi S, Xu H. Regulatory Roles and Therapeutic Potential of miR-122-5p in Hypoxic-Ischemic Brain Injury: Comprehensive Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01686-6. [PMID: 40016565 DOI: 10.1007/s12013-025-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
In the regulation of gene expression, epigenetic factors, including non-coding RNAs (ncRNAs) play a role in genetics. Among the ncRNA family, microRNAs (miRNAs) have gained significant attention for their involvement in post-transcriptional gene regulation, with profound implications for both normal and pathological processes including neurological diseases such as hypoxic-ischemic brain injury. A specific miRNA, called miR-122-5p, has gained attention in hypoxic-ischemic conditions, where it modulates critical pathways such as inflammation, oxidative stress, and neuronal survival. The purpose of this review is to highlight recent advances in the biogenesis, expression, and regulation of miR-122-5p, focusing on its role in hypoxic-ischemic conditions and its potential as a therapeutic target. We first studied the therapeutic strategies and potential clinical applications of miR-122-5p, our research showing it interacts with key transcription factors, such as HIF-1α and NF-κB, influencing cellular responses to low oxygen levels. Our findings revealed that miR-122-5p plays a vital role in hypoxic-ischemic brain injury, with its abnormal levels strongly associated with increased brain damage and neuroinflammation, suggesting its potential as a promising therapeutic target. Furthermore, miR-122-5p influences various biological processes in the brain, such as metabolism and blood vessel formation. The use of miR-122-5p inhibitor has been shown to increase autophagy, reduce apoptosis, and decrease oxidative stress and inflammation, thereby protecting neurons and improving outcomes in hypoxic encephalopathy by targeting multiple genes related to these processes. Conversely, miR-122-5p mimics exacerbate oxidative stress and reduce autophagy. These findings highlight the therapeutic potential of miR-122-5p inhibition in reducing brain injury and promoting recovery in hypoxic-ischemic encephalopathy through enhanced neuroprotective mechanisms and the suppression of harmful cellular processes. However, further experimental studies are needed to fully understand the therapeutic potential of targeting miR-122-5p and its related genes in hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei Wu
- Public Health College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jia Liu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Sheng Bi
- Clinical Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Xu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
4
|
Goodrich JM, Furlong MA, Urwin DJ, Gabriel J, Hughes J, Jung AM, Calkins MM, DuBose KN, Caban‐Martinez AJ, Solle NS, Beitel SC, Burgess JL. Epigenetic Modifications Associated With Wildland-Urban Interface (WUI) Firefighting. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:22-33. [PMID: 39968828 PMCID: PMC11905879 DOI: 10.1002/em.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Wildland-urban interface (WUI) firefighting involves exposure to burning vegetation, structures, and other human-made hazards, often without respiratory protection. Response activities can last for long periods of time, spanning multiple days or weeks. Epigenetic modifications, including microRNA (miRNA) expression and DNA methylation, are responsive to toxicant exposures and are part of the development of cancers and other diseases. Epigenetic modifications have not been studied in relation to WUI fires. Firefighters (n = 99) from southern California, including 79 firefighters who responded to at least one WUI fire, provided blood samples at baseline and approximately 10 months later. We quantified the relative abundance of 800 miRNAs in blood samples using the nCounter Human v3 miRNA expression panel and blood leukocyte DNA methylation throughout the genome via the Infinium EPIC array. We used linear mixed models to compare the expression of each miRNA across time and DNA methylation at each locus, adjusting for potential confounders. In the miRNA analysis among all firefighters, 65 miRNAs were significantly different at follow-up compared to baseline at a false discovery rate of 5%. Results were similar when restricted to firefighters with a recorded WUI fire exposure during the interim period, although only 50 were significant. Expression of miRNA hsa-miR-518c-3p, a tumor suppressor, was significantly associated with WUI fire response (fold change 0.77, 95% CI = [0.69, 0.87]). In the DNA methylation analysis, no statistically significant changes over time were identified. In summary, WUI fire exposures over a wildfire season altered miRNA expression but did not substantially impact DNA methylation.
Collapse
Affiliation(s)
- Jaclyn M. Goodrich
- Department of Environmental Health SciencesUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Melissa A. Furlong
- Department of Community, Environment and PolicyUniversity of Arizona Mel and Enid Zuckerman College of Public HealthTucsonArizonaUSA
| | - Derek J. Urwin
- Department of Chemistry & BiochemistryUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Los Angeles County Fire DepartmentLos AngelesCaliforniaUSA
| | - Jamie Gabriel
- Los Angeles County Fire DepartmentLos AngelesCaliforniaUSA
| | - Jeff Hughes
- Orange County Fire AuthorityIrvineCaliforniaUSA
| | - Alesia M. Jung
- Department of Community, Environment and PolicyUniversity of Arizona Mel and Enid Zuckerman College of Public HealthTucsonArizonaUSA
- Exponent, Inc.Menlo ParkCaliforniaUSA
| | - Miriam M. Calkins
- National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC)CincinnatiOhioUSA
| | - Kathleen N. DuBose
- United States Department of InteriorOffice of Wildland FireBoiseIdahoUSA
| | | | - Natasha Schaefer Solle
- Department of Public Health SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Shawn C. Beitel
- Department of Community, Environment and PolicyUniversity of Arizona Mel and Enid Zuckerman College of Public HealthTucsonArizonaUSA
| | - Jefferey L. Burgess
- Department of Community, Environment and PolicyUniversity of Arizona Mel and Enid Zuckerman College of Public HealthTucsonArizonaUSA
| |
Collapse
|
5
|
Papenfort K, Storz G. Insights into bacterial metabolism from small RNAs. Cell Chem Biol 2024; 31:1571-1577. [PMID: 39094580 DOI: 10.1016/j.chembiol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
The study of small, regulatory RNAs (sRNA) that act by base-pairing with target RNAs in bacteria has been steadily advancing, particularly with the availability of more and more transcriptome and RNA-RNA interactome datasets. While the characterization of multiple sRNAs has helped to elucidate their mechanisms of action, these studies also are providing insights into protein function, control of metabolic flux, and connections between metabolic pathways as we will discuss here. In describing several examples of the metabolic insights gained, we will summarize the different types of base-pairing sRNAs including mRNA-derived sRNAs, sponge RNAs, RNA mimics, and dual-function RNAs as well as suggest how information about sRNAs could be exploited in the future.
Collapse
Affiliation(s)
- Kai Papenfort
- Friedrich Schiller University Jena, Institute of Microbiology, 07745 Jena, Germany; Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA.
| |
Collapse
|
6
|
Correia de Sousa M, Delangre E, Berthou F, El Harane S, Maeder C, Fournier M, Krause KH, Gjorgjieva M, Foti M. Hepatic miR-149-5p upregulation fosters steatosis, inflammation and fibrosis development in mice and in human liver organoids. JHEP Rep 2024; 6:101126. [PMID: 39263327 PMCID: PMC11388170 DOI: 10.1016/j.jhepr.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 09/13/2024] Open
Abstract
Background & Aims The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. Alterations of hepatic microRNA (miRNA) expression/activity significantly contribute to the development and progression of MASLD. Genetic polymorphisms of miR-149 are associated with an increased susceptibility to MASLD development in humans. Aberrant expression of miR-149 was also associated with metabolic alterations in several organs, but the impact of hepatic miR-149-5p deregulation in MASLD remains poorly characterized. Methods MiR-149-5p was downregulated in the livers of mice by in vivo transduction with hepatotropic adeno-associated virus 8 harboring short-hairpin RNAs (shRNAs) specific for miR-149-5p (shmiR149) or scrambled shRNAs (shCTL). MASLD was then induced with a methionine/choline-deficient (MCD, n = 7 per group) diet or a fructose/palmitate/cholesterol-enriched (FPC, n = 8-12 per group, per protocol) diet. The impact of miR-149-5p modulation on MASLD development was assessed in vivo and in vitro using multi-lineage 3D human liver organoids (HLOs) and Huh7 cells. Results MiR-149-5p expression was strongly upregulated in mouse livers from different models of MASLD (2-4-fold increase in ob/ob, db/db mice, high-fat and FPC-fed mice). In vivo downregulation of miR-149-5p led to an amelioration of diet-induced hepatic steatosis, inflammation/fibrosis, and to increased whole-body fatty acid consumption. In HLOs, miR-149-5p overexpression promoted lipid accumulation, inflammation and fibrosis. In vitro analyses of human Huh7 cells overexpressing miR-149-5p indicated that glycolysis and intracellular lipid accumulation was promoted, while mitochondrial respiration was impaired. Translatomic analyses highlighted deregulation of multiple potential miR-149-5p targets in hepatocytes involved in MASLD development. Conclusions MiR-149-5p upregulation contributes to MASLD development by affecting multiple metabolic/inflammatory/fibrotic pathways in hepatocytes. Our results further demonstrate that HLOs are a relevant 3D in vitro model to investigate hepatic steatosis and inflammation/fibrosis development. Impact and implications Our research shows compelling evidence that miR-149-5p plays a pivotal role in the development and progression of MASLD. By employing in vivo and innovative in vitro models using multi-lineage human liver organoids, we demonstrate that miR-149-5p upregulation significantly impacts hepatocyte energy metabolism, exacerbating hepatic steatosis and inflammation/fibrosis by modulating a wide network of target genes. These findings not only shed light on the intricate miR-149-5p-dependent molecular mechanisms underlying MASLD, but also underscore the importance of human liver organoids as valuable 3D in vitro models for studying the disease's pathogenesis.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Rahman MA, Islam MM, Ripon MAR, Islam MM, Hossain MS. Regulatory Roles of MicroRNAs in the Pathogenesis of Metabolic Syndrome. Mol Biotechnol 2024; 66:1599-1620. [PMID: 37393414 DOI: 10.1007/s12033-023-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Metabolic syndrome refers to a group of several disease conditions together with high glucose triglyceride levels, high blood pressure, lower high-density lipoprotein level, and large waist circumference. About 400 million people worldwide, one-third of the Euro-American population and 27% Chinese population over age 50 have it. microRNAs, an abundant novel class of endogenous small, non-coding RNAs in eukaryotic cells, act as negative controllers of gene expression by promoting either degradation/translational repression of target messenger RNA. More than 2000 microRNAs in the human genome have been identified and they are implicated in various biological & pathophysiological processes, including glucose homeostasis, inflammatory response, and angiogenesis. Destruction of microRNAs has a crucial role in the pathogenesis of obesity, cardiovascular disease, and diabetes. Recently the discovery of circulating microRNAs in human serum may help to promote metabolic crosstalk between organs and serves as a novel approach for the identification of various diseases, like Type 2 diabetes & atherosclerosis. In this review, we will discuss the most recent and up-to-date research on the pathophysiology and histopathology of metabolic syndrome besides their historical background and epidemiological highlight. As well as search the methodologies employed in this field of research and the potential role of microRNAs as novel biomarkers and therapeutic targets for metabolic syndrome in the human body. Furthermore, the significance of microRNAs in promising strategies, like stem cell therapy, which holds enormous promise for regenerative medicine in the treatment of metabolic disorders will also be discussed.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
- Bangladesh Obesity Research Network (BORN), Noakhali, 3814, Bangladesh.
| |
Collapse
|
9
|
Improta-Caria AC, Ferrari F, Gomes JLP, Villalta PB, Soci ÚPR, Stein R, Oliveira EM. Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms. World J Diabetes 2024; 15:1187-1198. [PMID: 38983808 PMCID: PMC11229979 DOI: 10.4239/wjd.v15.i6.1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted and heterogeneous syndrome associated with complications such as hypertension, coronary artery disease, and notably, breast cancer (BC). The connection between T2D and BC is established through processes that involve insulin resistance, inflammation and other factors. Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC, especially through microRNAs (miRNAs), remain elusive. miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes. However, the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated. This review aims to identify dysregulated miRNAs in both T2D and BC, exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - João Lucas Penteado Gomes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Paloma Brasilio Villalta
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas-UNICAMP, Campinas 13484-350, Brazil
| | - Úrsula Paula Renó Soci
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - Edilamar M Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
- Departments of Internal Medicine, Molecular Pharmacology and Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, United States
| |
Collapse
|
10
|
Tzeng HT, Lee WC. Impact of Transgenerational Nutrition on Nonalcoholic Fatty Liver Disease Development: Interplay between Gut Microbiota, Epigenetics and Immunity. Nutrients 2024; 16:1388. [PMID: 38732634 PMCID: PMC11085251 DOI: 10.3390/nu16091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
| |
Collapse
|
11
|
Abdelsam SS, Ghanem SK, Zahid MA, Abunada HH, Bader L, Raïq H, Khan A, Parray A, Djouhri L, Agouni A. Human antigen R: Exploring its inflammatory response impact and significance in cardiometabolic disorders. J Cell Physiol 2024; 239:e31229. [PMID: 38426269 DOI: 10.1002/jcp.31229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) play a crucial role in the regulation of posttranscriptional RNA networks, which can undergo dysregulation in many pathological conditions. Human antigen R (HuR) is a highly researched RBP that plays a crucial role as a posttranscriptional regulator. HuR plays a crucial role in the amplification of inflammatory signals by stabilizing the messenger RNA of diverse inflammatory mediators and key molecular players. The noteworthy correlations between HuR and its target molecules, coupled with the remarkable impacts reported on the pathogenesis and advancement of multiple diseases, position HuR as a promising candidate for therapeutic intervention in diverse inflammatory conditions. This review article examines the significance of HuR as a member of the RBP family, its regulatory mechanisms, and its implications in the pathophysiology of inflammation and cardiometabolic illnesses. Our objective is to illuminate potential directions for future research and drug development by conducting a comprehensive analysis of the existing body of research on HuR.
Collapse
Affiliation(s)
- Shahenda Salah Abdelsam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sarah Khalaf Ghanem
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hanan H Abunada
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Loulia Bader
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hicham Raïq
- Department of Social Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Laiche Djouhri
- Department of Basic Medical Science, College of Medicine, QU health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Office of Vice President for Medical & Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Mokhtari Ardekani A, Kharazinejad E, Ghasemi E, Ghasemi H, Soltani R. Circulating afamin positively correlated with the miR-122 expression and type 2 diabetes mellitus-related phenotype according to the duration of diabetes. Heliyon 2024; 10:e28053. [PMID: 38560140 PMCID: PMC10979149 DOI: 10.1016/j.heliyon.2024.e28053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Afamin is a hepatokine that involves in glucose and lipids metabolism. miR-122 is mainly expressed in liver and involves in lipid and carbohydrate metabolism. This study aimed at investigating the circulating afamin, its correlation with type 2 diabetes mellitus (T2DM) and miR-122 gene expression in T2DM patients and healthy control subjects according to the duration of diabetes. Methods This case-control study included 220 participants, with 100 individuals serving as controls and 120 individuals diagnosed with type 2 diabetes mellitus (T2DM). The miR-122 gene expression was assessed using real-time PCR. The serum concentration of biochemical parameters such as glucose levels, lipid profile, and small-dense low-density lipoprotein (sdLDL) were measured using colorimetric kits. Circulating afamin and insulin levels were assayed using an ELISA kit. Glycated hemoglobin (HbA1c) was measured using capillary electrophoresis. Results Circulating afamin level was significantly higher in T2DM patients compared to the control group, (73.8 ± 10.8 vs. 65.9 ± 8.7, respectively; P < 0.001). Similarly, miR122 expression was significantly increased in T2DM patients compared to healthy control subjects (4.24 ± 2.01 vs. 1.00 ± 0.85, respectively; P < 0.001). Among patients diagnosed with T2DM, those with longstanding diabetes (>5 years) exhibited significantly higher levels of circulating afamin and miR-122 expression compared to individuals with a shorter duration of diabetes (≤5 years) (P < 0.05). Circulating afamin levels were significantly correlated with waist circumference, small-dense low-density lipoprotein (sdLDL), fasting blood sugar (FBS), insulin, resistance to insulin, and miR-122 expression, depending on the duration of the disease (P < 0.05). Furthermore, the performance of afamin as a diagnostic marker for T2DM was confirmed through receiver operating characteristic (ROC) analysis, yielding an area under the curve (AUC) of 0.7 (P < 0.001). Conclusions Circulating afamin involved in the T2DM-related complications and its concentration is positively correlated to the miR-122 expression, especially in patient with longstanding diabetes.
Collapse
Affiliation(s)
- Abnoos Mokhtari Ardekani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | - Rahmatollah Soltani
- Clinical Education Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Price NL, Fernández-Tussy P, Varela L, Cardelo MP, Shanabrough M, Aryal B, de Cabo R, Suárez Y, Horvath TL, Fernández-Hernando C. microRNA-33 controls hunger signaling in hypothalamic AgRP neurons. Nat Commun 2024; 15:2131. [PMID: 38459068 PMCID: PMC10923783 DOI: 10.1038/s41467-024-46427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Pablo Fernández-Tussy
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Glia -Neuron Interactions in the control of Hunger. Achucarro Basque Center for Neuroscience, 48940, Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Vizcaya, Spain
| | - Magdalena P Cardelo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
| | - Marya Shanabrough
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology. Yale University School of Medicine, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA.
- Laboratory of Glia -Neuron Interactions in the control of Hunger. Achucarro Basque Center for Neuroscience, 48940, Leioa, Vizcaya, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Vizcaya, Spain.
- Department of Neuroscience. Yale University School of Medicine, New Haven, CT, USA.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology. Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Atteia HH. MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products. Curr Pharm Biotechnol 2024; 25:1791-1806. [PMID: 38178678 DOI: 10.2174/0113892010282155231222071903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| |
Collapse
|
15
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
16
|
Nureen L, Di Girolamo N. Limbal Epithelial Stem Cells in the Diabetic Cornea. Cells 2023; 12:2458. [PMID: 37887302 PMCID: PMC10605319 DOI: 10.3390/cells12202458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Continuous replenishment of the corneal epithelium is pivotal for maintaining optical transparency and achieving optimal visual perception. This dynamic process is driven by limbal epithelial stem cells (LESCs) located at the junction between the cornea and conjunctiva, which is otherwise known as the limbus. In patients afflicted with diabetes, hyperglycemia-induced impairments in corneal epithelial regeneration results in persistent epithelial and other defects on the ocular surface, termed diabetic keratopathy (DK), which progressively diminish vision and quality of life. Reports of delayed corneal wound healing and the reduced expression of putative stem cell markers in diabetic relative to healthy eyes suggest that the pathogenesis of DK may be associated with the abnormal activity of LESCs. However, the precise role of these cells in diabetic corneal disease is poorly understood and yet to be comprehensively explored. Herein, we review existing literature highlighting aberrant LESC activity in diabetes, focusing on factors that influence their form and function, and emerging therapies to correct these defects. The consequences of malfunctioning or depleted LESC stocks in DK and limbal stem cell deficiency (LSCD) are also discussed. These insights could be exploited to identify novel targets for improving the management of ocular surface complications that manifest in patients with diabetes.
Collapse
Affiliation(s)
| | - Nick Di Girolamo
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
17
|
Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol 2023; 22:260. [PMID: 37749569 PMCID: PMC10521428 DOI: 10.1186/s12933-023-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution. METHODS For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs. RESULTS The results uncovered three miRNAs, miR-218, miR-132 and miR-143, whose expression was found to be significantly up-regulated in both circulating MVs and plasma from diabetic patients with dyslipidemia. These miRNAs showed significant correlations with important plasma markers, representative of this pathology. Thus, MV/plasma miR-218 was negatively correlated with the levels of erythrocyte MVs, plasma miR-132 was positively connected with MV miR-132 and negatively with uric acid and erythrocyte plasma levels, and plasma miR-143 was negatively related with creatinine levels and diastolic blood pressure. Also, three miRNAs common to MV and plasma, namely miR-21, miR-122, and miR-155, were identified to be down-regulated and up-regulated, respectively, in diabetic dyslipidemia. In addition, MV miR-21 was positively linked with cholesterol plasma levels and plasma miR-21 with TNFα plasma levels, MV miR-122 was negatively correlated with LDL-c levels and plasma miR-122 with creatinine and diastolic blood pressure and positively with MV miR-126 levels, MV miR-155 was positively associated with cholesterol and total MV levels and negatively with HDL-c levels, whereas plasma miR-155 was positively correlated with Il-1β plasma levels and total MV levels and negatively with MV miR-223 levels. CONCLUSIONS In conclusion, miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 show potential as biomarkers for diabetic dyslipidemia, but there is a need for more in-depth studies. These findings bring new information regarding the molecular biomarkers specific to diabetic dyslipidemia and could have important implications for the treatment of patients affected by this pathology.
Collapse
Affiliation(s)
- Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| | - Diana Simona Stefan
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
18
|
Venneri M, Passantino A. MiRNA: what clinicians need to know. Eur J Intern Med 2023; 113:6-9. [PMID: 37217408 DOI: 10.1016/j.ejim.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Maria Venneri
- Clinical Scientific Institutes Maugeri IRCCS, Pavia, Italy.
| | | |
Collapse
|
19
|
Ma Y, Xing X, Cheng C, Kong R, Sun L, Zhao F, Zhang D, Li J. Hsa-miR-1269a up-regulation fosters the malignant progression of esophageal squamous cell carcinoma via targeting FAM46C. Mutat Res 2023; 827:111832. [PMID: 37467675 DOI: 10.1016/j.mrfmmm.2023.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignancy of the alimentary tract resulting in death worldwide. The role and underlying mechanism of hsa-miR-1269a in the progression of ESCC remain unclear. In this study, hsa-miR-1269a was screened by differential expression analysis in TCGA, and its target gene FAM46C was predicted. qRT-PCR was conducted to assay the expression of hsa-miR-1269a and FAM46C in ESCC cells. The results showed that hsa-miR-1269a was upregulated in ESCC tissues and cell lines. Hsa-miR-1269a overexpression stimulated the proliferation, migration, and invasion capacities of ESCC cells, and FAM46C overexpression inhibited these phenotypes. Dual-luciferase assay verified that hsa-miR-1269a could target FAM46C. Next, qRT-PCR and western blot demonstrated that hsa-miR-1269a overexpression downregulated FAM46C. Rescue experiments revealed that hsa-miR-1269a accelerated the malignant progression of ESCC through FAM46C down-regulation. These results indicate that the interaction between hsa-miR-1269a and FAM46C plays a regulatory role in driving the malignant progression of ESCC cells, thereby providing a novel molecular mechanism for understanding ESCC.
Collapse
Affiliation(s)
- Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Xin Xing
- Department of Health Care for Cadres, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Chuantao Cheng
- Department of Dermatology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Ranran Kong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Liangzhang Sun
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Feng Zhao
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Danjie Zhang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China.
| |
Collapse
|
20
|
Ortega R, Liu B, Persaud SJ. Effects of miR-33 Deficiency on Metabolic and Cardiovascular Diseases: Implications for Therapeutic Intervention. Int J Mol Sci 2023; 24:10777. [PMID: 37445956 DOI: 10.3390/ijms241310777] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally inhibit gene expression. These small molecules are involved in several biological conditions such as inflammation, cell growth and proliferation, and regulation of energy metabolism. In the context of metabolic and cardiovascular diseases, miR-33 is of particular interest as it has been implicated in the regulation of lipid and glucose metabolism. This miRNA is located in introns harboured in the genes encoding sterol regulatory element-binding protein (SREBP)-1 and SREBP-2, which are key transcription factors involved in lipid biosynthesis and cholesterol efflux. This review outlines the role of miR-33 in a range of metabolic and cardiovascular pathologies, such as dyslipidaemia, nonalcoholic fatty liver disease (NAFLD), obesity, diabetes, atherosclerosis, and abdominal aortic aneurysm (AAA), and it provides discussion about the effectiveness of miR-33 deficiency as a possible therapeutic strategy to prevent the development of these diseases.
Collapse
Affiliation(s)
- Rebeca Ortega
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
21
|
Rochette E, Saidi O, Merlin É, Duché P. Physical activity as a promising alternative for young people with juvenile idiopathic arthritis: Towards an evidence-based prescription. Front Immunol 2023; 14:1119930. [PMID: 36860845 PMCID: PMC9969142 DOI: 10.3389/fimmu.2023.1119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in young people. Although biologics now enable most children and adolescents with JIA to enjoy clinical remission, patients present lower physical activity and spend more time in sedentary behavior than their healthy counterparts. This impairment probably results from a physical deconditioning spiral initiated by joint pain, sustained by apprehension on the part of both the child and the child's parents, and entrenched by lowered physical capacities. This in turn may exacerbate disease activity and lead to unfavorable health outcomes including increased risks of metabolic and mental comorbidities. Over the past few decades, there has been growing interest in the health benefits of increased overall physical activity as well as exercise interventions in young people with JIA. However, we are still far from evidence-based physical activity and / or exercise prescription for this population. In this review, we give an overview of the available data supporting physical activity and / or exercise as a behavioral, non-pharmacological alternative to attenuate inflammation while also improving metabolism, disease symptoms, poor sleep, synchronization of circadian rhythms, mental health, and quality of life in JIA. Finally, we discuss clinical implications, identify gaps in knowledge, and outline a future research agenda.
Collapse
Affiliation(s)
- Emmanuelle Rochette
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Oussama Saidi
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Étienne Merlin
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
| | - Pascale Duché
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| |
Collapse
|
22
|
Luo Y, Peng L, Shan W, Sun M, Luo L, Liang W. Machine learning in the development of targeting microRNAs in human disease. Front Genet 2023; 13:1088189. [PMID: 36685965 PMCID: PMC9845262 DOI: 10.3389/fgene.2022.1088189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
A microRNA is a small, single-stranded, non-coding ribonucleic acid that plays a crucial role in RNA silencing and can regulate gene expression. With the in-depth study of miRNA in development and disease, miRNA has become an attractive target for novel therapeutic strategies. Exploring miRNA targeting therapy only through experiments is expensive and laborious, so it is essential to develop novel and efficient computational methods to narrow down the search. Recent advances in machine learning applied in biomedical informatics provide opportunities to explore miRNA-targeting drugs, thus promoting miRNA therapeutics. This review provides an overview of recent advancements in miRNA targeting therapeutic using machine learning. First, we mainly describe the basics of predicting miRNA targeting drugs, including pharmacogenomic data resources and data preprocessing. Then we present primary machine learning algorithms and elaborate their application in discovering relationships among miRNAs, drugs, and diseases. Along with the progress of miRNA targeting therapeutics, we finally analyze and discuss the current challenges and opportunities that machine learning confronts.
Collapse
Affiliation(s)
- Yuxun Luo
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China
| | - Li Peng
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China
| | - Wenyu Shan
- School of Computer Science, University of South China, Hengyang, China
| | - Mengyue Sun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, United States
| | - Lingyun Luo
- School of Computer Science, University of South China, Hengyang, China
| | - Wei Liang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China,*Correspondence: Wei Liang,
| |
Collapse
|
23
|
Wallace SR, Pagano PJ, Kračun D. MicroRNAs in the Regulation of NADPH Oxidases in Vascular Diabetic and Ischemic Pathologies: A Case for Alternate Inhibitory Strategies? Antioxidants (Basel) 2022; 12:70. [PMID: 36670932 PMCID: PMC9854786 DOI: 10.3390/antiox12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since their discovery in the vasculature, different NADPH oxidase (NOX) isoforms have been associated with numerous complex vascular processes such as endothelial dysfunction, vascular inflammation, arterial remodeling, and dyslipidemia. In turn, these often underlie cardiovascular and metabolic pathologies including diabetes mellitus type II, cardiomyopathy, systemic and pulmonary hypertension and atherosclerosis. Increasing attention has been directed toward miRNA involvement in type II diabetes mellitus and its cardiovascular and metabolic co-morbidities in the search for predictive and stratifying biomarkers and therapeutic targets. Owing to the challenges of generating isoform-selective NOX inhibitors (NOXi), the development of specific NOXis suitable for therapeutic purposes has been hindered. In that vein, differential regulation of specific NOX isoforms by a particular miRNA or combina-tion thereof could at some point become a reasonable approach for therapeutic targeting under some circumstances. Whereas administration of miRNAs chronically, or even acutely, to patients poses its own set of difficulties, miRNA-mediated regulation of NOXs in the vasculature is worth surveying. In this review, a distinct focus on the role of miRNAs in the regulation of NOXs was made in the context of type II diabetes mellitus and ischemic injury models.
Collapse
Affiliation(s)
- Sean R. Wallace
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
Emanuelson C, Ankenbruck N, Kumbhare R, Thomas M, Connelly C, Baktash Y, Randall G, Deiters A. Transcriptional Inhibition of MicroRNA miR-122 by Small Molecules Reduces Hepatitis C Virus Replication in Liver Cells. J Med Chem 2022; 65:16338-16352. [PMID: 36449366 PMCID: PMC9942140 DOI: 10.1021/acs.jmedchem.2c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules of 22-24 nucleotides that are estimated to regulate thousands of genes in humans, and their dysregulation has been implicated in many diseases. MicroRNA-122 (miR-122) is the most abundant miRNA in the liver and has been linked to the development of hepatocellular carcinoma and hepatitis C virus (HCV) infection. Its role in these diseases renders miR-122 a potential target for small-molecule therapeutics. Here, we report the discovery of a new sulfonamide class of small-molecule miR-122 inhibitors from a high-throughput screen using a luciferase-based reporter assay. Structure-activity relationship (SAR) studies and secondary assays led to the development of potent and selective miR-122 inhibitors. Preliminary mechanism-of-action studies suggest a role in the promoter-specific transcriptional inhibition of miR-122 expression through direct binding to the liver-enriched transcription factor hepatocyte nuclear factor 4α. Importantly, the developed inhibitors significantly reduce HCV replication in human liver cells.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rohan Kumbhare
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Meryl Thomas
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Colleen Connelly
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yasmine Baktash
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
25
|
van Wijk N, Zohar K, Linial M. Challenging Cellular Homeostasis: Spatial and Temporal Regulation of miRNAs. Int J Mol Sci 2022; 23:16152. [PMID: 36555797 PMCID: PMC9787707 DOI: 10.3390/ijms232416152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded non-coding RNA (ncRNA) molecules that act in post-transcriptional regulation in animals and plants. A mature miRNA is the end product of consecutive, highly regulated processing steps of the primary miRNA transcript. Following base-paring of the mature miRNA with its mRNA target, translation is inhibited, and the targeted mRNA is degraded. There are hundreds of miRNAs in each cell that work together to regulate cellular key processes, including development, differentiation, cell cycle, apoptosis, inflammation, viral infection, and more. In this review, we present an overlooked layer of cellular regulation that addresses cell dynamics affecting miRNA accessibility. We discuss the regulation of miRNA local storage and translocation among cell compartments. The local amounts of the miRNAs and their targets dictate their actual availability, which determines the ability to fine-tune cell responses to abrupt or chronic changes. We emphasize that changes in miRNA storage and compactization occur under induced stress and changing conditions. Furthermore, we demonstrate shared principles on cell physiology, governed by miRNA under oxidative stress, tumorigenesis, viral infection, or synaptic plasticity. The evidence presented in this review article highlights the importance of spatial and temporal miRNA regulation for cell physiology. We argue that limiting the research to mature miRNAs within the cytosol undermines our understanding of the efficacy of miRNAs to regulate cell fate under stress conditions.
Collapse
Affiliation(s)
| | | | - Michal Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Katturajan R, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Renu K, Dey A, Vellingiri B, Prince SE. Exploring the Regulatory Role of ncRNA in NAFLD: A Particular Focus on PPARs. Cells 2022; 11:3959. [PMID: 36552725 PMCID: PMC9777112 DOI: 10.3390/cells11243959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Liver diseases are responsible for global mortality and morbidity and are a significant cause of death worldwide. Consequently, the advancement of new liver disease targets is of great interest. Non-coding RNA (ncRNA), such as microRNA (miRNA) and long ncRNA (lncRNA), has been proven to play a significant role in the pathogenesis of virtually all acute and chronic liver disorders. Recent studies demonstrated the medical applications of miRNA in various phases of hepatic pathology. PPARs play a major role in regulating many signaling pathways involved in various metabolic disorders. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, encompassing a spectrum spanning from mild steatosis to severe non-alcoholic steatohepatitis (NASH). PPARs were found to be one of the major regulators in the progression of NAFLD. There is no recognized treatment for NAFLD, even though numerous clinical trials are now underway. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC), and its frequency increases as obesity and diabetes become more prevalent. Reprogramming anti-diabetic and anti-obesity drugs is an effective therapy option for NAFLD and NASH. Several studies have also focused on the role of ncRNAs in the pathophysiology of NAFLD. The regulatory effects of these ncRNAs make them a primary target for treatments and as early biomarkers. In this study, the main focus will be to understand the regulation of PPARs through ncRNAs and their role in NAFLD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
27
|
Xu B, Jiang L, Cui JL, Zhu XL, Bai YJ, Chen J, Diao YQ. MiR-363 suppresses the tumor growth of natural killer/T-cell lymphoma via the SIRT6/PI3K/AKT axis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1276. [PMID: 36618816 PMCID: PMC9816826 DOI: 10.21037/atm-22-5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Background Natural killer/T cell lymphoma (NKTCL) is a rare and aggressive tumor of non-Hodgkin's lymphoma. The role of micro ribonucleic acid (RNA) (miR)-363 in NKTCL has not yet been elucidated. The present study aimed to investigate the potential role of miR-363 in NKTCL. Methods The expression of the top five differentially expressed microRNAs (miRNAs) as well as sirtuin 6 (SIRT6) in NK normal cells and its tumor cell lines were explored. The clinical tissues of NKTCL patients were collected and analyzed for expression of miR-363 and SIRT6. In addition, human NK/T-cell lymphoma cells (SNK-6) were transfected into different groups to detect cell proliferation and apoptosis abilities through cell counting kit 8 (CCK-8) experiment and flow cytometry analysis. Western blot assay was employed to examine protein expression. NKTCL nude mice models were constructed by subcutaneous injection of stably transfected SNK-6 cells to validate the mechanism of miR-363 in NKTCL via SIRT6 in vivo. Results MiR-363 was down-regulated in NKTCL tissues and cell lines. Overexpression of miR-363 inhibited cell proliferation and promoted cell apoptosis. In contrast, SIRT6 was up-regulated in NKTCL and proved to be a downstream target of miR-363. SIRT6 could activate the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Also, miR-363 mimic could suppress the proliferation and induce the apoptosis of NKTCL via the SIRT6/PI3K/AKT axis both in vitro and in vivo. Conclusions MiR-363 suppresses the SIRT6/PI3K/AKT pathway to restrain cell proliferation and accelerate cell apoptosis during NKTCL progression.
Collapse
Affiliation(s)
- Bei Xu
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lian Jiang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Li Cui
- Department of Pediatrics, Han Dan Central Hospital, Handan, China
| | - Xiu-Li Zhu
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Jie Bai
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, China
| | - Jian Chen
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu-Qiao Diao
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
Aranda JF, Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Mateos-Gómez PA, Pardo-Marqués V, Busto R, Ramírez CM. Role of miR-199a-5p in the post-transcriptional regulation of ABCA1 in response to hypoxia in peritoneal macrophages. Front Cardiovasc Med 2022; 9:994080. [PMID: 36407436 PMCID: PMC9669644 DOI: 10.3389/fcvm.2022.994080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 01/03/2025] Open
Abstract
Hypoxia is a crucial factor contributing to maintenance of atherosclerotic lesions. The ability of ABCA1 to stimulate the efflux of cholesterol from cells in the periphery, particularly foam cells in atherosclerotic plaques, is an important anti-atherosclerotic mechanism. The posttranscriptional regulation by miRNAs represents a key regulatory mechanism of a number of signaling pathways involved in atherosclerosis. Previously, miR-199a-5p has been shown to be implicated in the endocytic and retrograde intracellular transport. Although the regulation of miR-199a-5p and ABCA1 by hypoxia has been already reported independently, the role of miR-199a-5p in macrophages and its possible role in atherogenic processes such us regulation of lipid homeostasis through ABCA1 has not been yet investigated. Here, we demonstrate that both ABCA1 and miR-199a-5p show an inverse regulation by hypoxia and Ac-LDL in primary macrophages. Moreover, we demonstrated that miR-199a-5p regulates ABCA1 mRNA and protein levels by directly binding to its 3'UTR. As a result, manipulation of cellular miR-199a-5p levels alters ABCA1 expression and cholesterol efflux in primary mouse macrophages. Taken together, these results indicate that the correlation between ABCA1-miR-199a-5p could be exploited to control macrophage cholesterol efflux during the onset of atherosclerosis, where cholesterol alterations and hypoxia play a pathogenic role.
Collapse
Affiliation(s)
- Juan Francisco Aranda
- Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | | | | | | | - Pedro A. Mateos-Gómez
- Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | | | - Rebeca Busto
- Department of Clinical Biochemistry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | | |
Collapse
|
29
|
New Insights on the Regulation of the Insulin-Degrading Enzyme: Role of microRNAs and RBPs. Cells 2022; 11:cells11162538. [PMID: 36010613 PMCID: PMC9406717 DOI: 10.3390/cells11162538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The evident implication of the insulin-degrading enzyme (IDE) in Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM), among its capacity to degrade insulin and amyloid-β peptide (Aβ), suggests that IDE could be an essential link in the relation between hyperinsulinemia, insulin resistance and AD. However, little is known about the cellular and molecular regulation of IDE expression, and even less has been explored regarding the post-transcriptional regulation of IDE, although it represents a great molecular target of interest for therapeutic treatments. We recently described that miR-7, a novel candidate for linking AD and T2DM at the molecular level, regulates IDE and other key genes in both pathologies, including some key genes involved in the insulin signaling pathway. Here, we explored whether other miRNAs as well as other post-transcriptional regulators, such as RNA binding proteins (RBP), could potentially participate in the regulation of IDE expression in vitro. Our data showed that in addition to miR-7, miR-125, miR-490 and miR-199 regulate IDE expression at the post-transcriptional level. Moreover, we also found that IDE contains multiple potential binding sites for several RBPs, and a narrow-down prediction analysis led us to speculate on a novel regulation of IDE by RALY and HuD. Taken together, these results demonstrate the novel players controlling IDE expression that could represent potential therapeutical targets to treat several metabolic diseases with a high impact on human health, including AD and T2DM.
Collapse
|
30
|
Shityakov S, Nagai M, Ergün S, Braunger BM, Förster CY. The Protective Effects of Neurotrophins and MicroRNA in Diabetic Retinopathy, Nephropathy and Heart Failure via Regulating Endothelial Function. Biomolecules 2022; 12:biom12081113. [PMID: 36009007 PMCID: PMC9405668 DOI: 10.3390/biom12081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.
Collapse
Affiliation(s)
- Sergey Shityakov
- Division of Chemoinformatics, Infochemistry Scientific Center, Lomonosova Street 9, 191002 Saint-Petersburg, Russia
| | - Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, 2-1-1 Kabeminami, Aaskita-ku, Hiroshima 731-0293, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| |
Collapse
|
31
|
García-Fernández-Bravo I, Torres-Do-Rego A, López-Farré A, Galeano-Valle F, Demelo-Rodriguez P, Alvarez-Sala-Walther LA. Undertreatment or Overtreatment With Statins: Where Are We? Front Cardiovasc Med 2022; 9:808712. [PMID: 35571155 PMCID: PMC9105719 DOI: 10.3389/fcvm.2022.808712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Statins, in addition to healthy lifestyle interventions, are the cornerstone of lipid-lowering therapy. Other low-density lipoprotein (LDL)-lowering drugs include ezetimibe, bile acid sequestrants, and PCSK9 inhibitors. As new evidence emerges from new clinical trials, therapeutic goals change, leading to renewed clinical guidelines. Nowadays, LDL goals are getting lower, leading to the "lower is better" paradigm in LDL-cholesterol (LDL-C) management. Several observational studies have shown that LDL-C control in real life is suboptimal in both primary and secondary preventions. It is critical to enhance the adherence to guideline recommendations through shared decision-making between clinicians and patients, with patient engagement in selecting interventions based on individual values, preferences, and associated conditions and comorbidities. This narrative review summarizes the evidence regarding the benefits of lipid-lowering drugs in reducing cardiovascular events, the pleiotropic effect of statins, real-world data on overtreatment and undertreatment of lipid-lowering therapies, and the changing LDL-C in targets in the clinical guidelines of dyslipidemias over the years.
Collapse
Affiliation(s)
| | - Ana Torres-Do-Rego
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio López-Farré
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Galeano-Valle
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo Demelo-Rodriguez
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis A. Alvarez-Sala-Walther
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Liao W, Du J, Wang Z, Feng Q, Liao M, Liu H, Yuan K, Zeng Y. The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma. Int J Cancer 2022; 151:337-347. [PMID: 35460073 PMCID: PMC9325518 DOI: 10.1002/ijc.34040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Metabolic reprogramming is considered to be an important hallmark of cancer. Emerging studies have demonstrated that noncoding RNAs (ncRNAs) are closely associated with metabolic reprogramming of HCC. NcRNAs can directly regulate the expressions or functions of metabolic enzymes or indirectly regulate the metabolism of HCC cells through some vital signaling pathways. Until now, the mechanisms of HCC development and progression remain largely unclear, and understanding the regulatory mechanism of ncRNAs on metabolic reprogramming of HCC may provide an important basis for breakthrough progress in the treatment of HCC. In this review, we summarize the ncRNAs involved in regulating metabolic reprogramming of HCC. Specifically, the regulatory roles of ncRNAs in glucose, lipid and amino acid metabolism are elaborated. In addition, we discuss the molecular mechanism of ncRNAs in regulation of metabolic reprogramming and possible therapeutic strategies that target the metabolism of cancer cells by modulating the expressions of specific ncRNAs.
Collapse
Affiliation(s)
- Wenwei Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinpeng Du
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Huixian Liu
- Department of Postanesthesia Care Unit & Surgical Anesthesia Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
33
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
34
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
35
|
Chung J, Kim KH, Yu N, An SH, Lee S, Kwon K. Fluid Shear Stress Regulates the Landscape of microRNAs in Endothelial Cell-Derived Small Extracellular Vesicles and Modulates the Function of Endothelial Cells. Int J Mol Sci 2022; 23:ijms23031314. [PMID: 35163238 PMCID: PMC8836123 DOI: 10.3390/ijms23031314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022] Open
Abstract
Blood fluid shear stress (FSS) modulates endothelial function and vascular pathophysiology. The small extracellular vesicles (sEVs) such as exosomes are potent mediators of intercellular communication, and their contents reflect cellular stress. Here, we explored the miRNA profiles in endothelial cells (EC)-derived sEVs (EC-sEVs) under atheroprotective laminar shear stress (LSS) and atheroprone low-oscillatory shear stress (OSS) and conducted a network analysis to identify the main biological processes modulated by sEVs’ miRNAs. The EC-sEVs were collected from culture media of human umbilical vein endothelial cells exposed to atheroprotective LSS (20 dyne/cm2) and atheroprone OSS (±5 dyne/cm2). We explored the miRNA profiles in FSS-induced EC-sEVs (LSS-sEVs and OSS-sEVs) and conducted a network analysis to identify the main biological processes modulated by sEVs’ miRNAs. In vivo studies were performed in a mouse model of partial carotid ligation. The sEVs’ miRNAs-targeted genes were enriched for endothelial activation such as angiogenesis, cell migration, and vascular inflammation. OSS-sEVs promoted tube formation, cell migration, monocyte adhesion, and apoptosis, and upregulated the expression of proteins that stimulate these biological processes. FSS-induced EC-sEVs had the same effects on endothelial mechanotransduction signaling as direct stimulation by FSS. In vivo studies showed that LSS-sEVs reduced the expression of pro-inflammatory genes, whereas OSS-sEVs had the opposite effect. Understanding the landscape of EC-exosomal miRNAs regulated by differential FSS patterns, this research establishes their biological functions on a system level and provides a platform for modulating the overall phenotypic effects of sEVs.
Collapse
Affiliation(s)
- Jihwa Chung
- Exollence Biotechnology Co., Ltd., Seoul 07985, Korea; (J.C.); (K.H.K.); (S.H.A.)
| | - Kyoung Hwa Kim
- Exollence Biotechnology Co., Ltd., Seoul 07985, Korea; (J.C.); (K.H.K.); (S.H.A.)
| | - Namhee Yu
- Research Institute, National Cancer Center, Goyangsi 10408, Korea;
| | - Shung Hyun An
- Exollence Biotechnology Co., Ltd., Seoul 07985, Korea; (J.C.); (K.H.K.); (S.H.A.)
| | - Sanghyuk Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Kihwan Kwon
- Exollence Biotechnology Co., Ltd., Seoul 07985, Korea; (J.C.); (K.H.K.); (S.H.A.)
- Department of Internal Medicine, Cardiology Division, School of Medicine, Ewha Womans University, Seoul 07985, Korea
- Correspondence: ; Tel.: +82-2-2650-2640
| |
Collapse
|
36
|
Thibonnier M, Ghosh S, Blanchard A. Effects of a short-term cold exposure on circulating microRNAs and metabolic parameters in healthy adult subjects. J Cell Mol Med 2021; 26:548-562. [PMID: 34921497 PMCID: PMC8743656 DOI: 10.1111/jcmm.17121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
This discovery study investigated in healthy subjects whether a short‐term cold exposure may alter circulating microRNAs and metabolic parameters and if co‐expression networks between these factors could be identified. This open randomized crossover (cold vs no cold exposure) study with blind end‐ point evaluation was conducted at 1 center with 10 healthy adult male volunteers. Wearing a cooling vest perfused at 14°C for 2 h reduced the local skin temperature without triggering shivering, increased norepinephrine and blood pressure while decreasing copeptin, C‐peptide and heart rate. Circulating microRNAs measured before and after wearing the cooling vest twice (4 time points) identified 196 mature microRNAs with excellent reproducibility over 72 h. Significant correlations of microRNA expression with copeptin, norepinephrine and C‐peptide were found. A co‐expression‐based microRNA‐microRNA network, as well as microRNA pairs displaying differential correlation as a function of temperature were also detected. This study demonstrates that circulating miRNAs are differentially expressed and coregulated upon cold exposure in humans, supporting their use as predictive and dynamic biomarkers of cardio‐metabolic disorders.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore City, Singapore.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Anne Blanchard
- Clinical Investigation Center, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
37
|
Lee H, Lee J. Anti-diabetic effect of hydroxybenzoic acid derivatives in free fatty acid-induced HepG2 cells via miR-1271/IRS1/PI3K/AKT/FOXO1 pathway. J Food Biochem 2021; 45:e13993. [PMID: 34730253 DOI: 10.1111/jfbc.13993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023]
Abstract
Type 2 diabetes is characterized by insulin resistance (IR) and increased hepatic glucose production. MicroRNAs (miRs) are considered regulators of glucose metabolism. This study evaluated anti-diabetic activity of hydroxybenzoic acid derivatives and determined the involvement of miR-1271. Among the hydroxybenzoic acid derivatives, gallic acid (GA) showed the best anti-diabetic activity. GA improved free fatty acid (FFA)-induced hepatic IR, increased glucose consumption, and decreased reactive oxygen species. GA inhibited the upregulation of miR-1271 induced by FFA and upregulated its targets such as p-IRS, p-PI3K, p-AKT, and p-FOXO1, accompanied by the regulation of glucose metabolism genes. The involvement of miR-1271 in the protective effect of GA against IR was further confirmed in the presence of miR-1271 mimic or miR-1271 inhibitor. Our results suggest that GA attenuates IR via the miR-1271/IRS/PI3K/AKT/FOXO1 pathway and thus might be considered for the management of IR. PRACTICAL APPLICATIONS: MicroRNAs can regulate insulin resistance by affecting protein expressions involved in insulin signaling. Experimental data suggest that some phytochemicals regulate the expression of various microRNAs. However, it is not clear whether phenolic acids play any role in the hepatic insulin signaling pathway through the regulation of microRNA expression. This study assessed the anti-diabetic activity of hydroxybenzoic acid derivatives through down-regulation of microRNA-1271 and its association with the IRS1/PI3K/AKT/FOXO1 pathways. This research will be able to offer basic information regarding a potential therapeutic strategy to control hepatic insulin resistance.
Collapse
Affiliation(s)
- Hana Lee
- Department of Food Science and Biotechnology, College of Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, College of Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
38
|
Ozfiliz-Kilbas P, Sonmez O, Obakan-Yerlikaya P, Coker-Gurkan A, Palavan-Ünsal N, Uysal-Onganer P, Arisan ED. In Vitro Investigations of miR-33a Expression in Estrogen Receptor-Targeting Therapies in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13215322. [PMID: 34771486 PMCID: PMC8582455 DOI: 10.3390/cancers13215322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Increased fatty acid synthesis leads to the aggressive phenotype of breast cancer and renders efficiency of therapeutics. Regulatory microRNAs (miRNAs) on lipid biosynthesis pathways as miR-33a have potential to clarify the exact mechanism. (2) Methods: We determined miR-33a expression levels following exposure of MCF-7 and MDA-MB-231 breast cancer cells to estrogen receptor (ER) activator (estradiol-17β, E2) or anti-estrogens (ICI 182,780, Fulvestrant, FUL) at non-cytotoxic concentrations. We related miR-33a expression levels in the cells to cellular lipid biosynthesis-related pathways through immunoblotting. (3) Results: miR-33a mimic treatment led to significantly downregulation of fatty acid synthase (FASN) in MCF-7 cells but not in MDA-MB-231 cells in the presence of estradiol-17β (E2) or Fulvestrant (FUL). In contrast to the miR-33a inhibitor effect, miR-33a mimic co-transfection with E2 or FUL led to diminished AMP-activated protein kinase α (AMPKα) activity in MCF-7 cells. E2 increases FASN levels in MDA-MB-231 cells regardless of miR-33a cellular levels. miR-33a inhibitor co-treatment suppressed E2-mediated AMPKα activity in MDA-MB-231 cells. (4) Conclusions: The cellular expression levels of miR-33a are critical to understanding differential responses which include cellular energy sensors such as AMPKα activation status in breast cancer cells.
Collapse
Affiliation(s)
- Pelin Ozfiliz-Kilbas
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul 34158, Turkey; (P.O.-K.); (O.S.)
| | - Ozlem Sonmez
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul 34158, Turkey; (P.O.-K.); (O.S.)
| | | | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Biruni University, Istanbul 34010, Turkey;
| | - Narcin Palavan-Ünsal
- Department of Engineering, Netkent Mediterranean Research and Science University, 38-44 Kyrenia, Macka 99300, Turkey;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: (P.U.-O.); (E.D.A.)
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Turkey
- Correspondence: (P.U.-O.); (E.D.A.)
| |
Collapse
|
39
|
Refeat MM, Hassan NAM, Ahmad IH, Mostafa ERM, Amr KS. Correlation of circulating miRNA-33a and miRNA-122 with lipid metabolism among Egyptian patients with metabolic syndrome. J Genet Eng Biotechnol 2021; 19:147. [PMID: 34611771 PMCID: PMC8492848 DOI: 10.1186/s43141-021-00246-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022]
Abstract
Background Metabolic syndrome is defined as a group of interrelated biochemical, clinical, and metabolic factors that directly increase the risk of cardiovascular disease, obesity, and type 2 diabetes mellitus. MicroRNA-33a (miR-33a) and MicroRNA-122 (miR-122) play a crucial role in various biological processes by regulating the gene expression level through post-transcriptional mechanisms, and alterations of their levels are associated with lipid and glucose metabolic disorders. In the present study, we aimed to investigate the correlation of miR-33a and miR-122 with obesity indices and glycemic parameters in a cohort of Egyptian patients. Quantitative real-time polymerase chain reaction (RT-PCR) using TaqMan assay was carried out to estimate the expression levels of miR-33a and miR-122 in serum samples of 100 patients diagnosed as having metabolic syndrome and 50 healthy controls. All patients (100%) had type 2 diabetes (by both history and laboratory assessment) and 70% were obese (BMI ≥ 30 kg/m2). Results Compared to controls, patients had significantly higher serum expression level of miR-33a (p value < 0.001) and miR-122 (p value = 0.0016). miR-33a was less expressed (downregulation expression) with 0.8 fold change in the patient group (obese and diabetic) compared to healthy controls, while miR-122 was highly expressed (upregulation expression) in the patient group of patients with 1.9 fold change. Clinical parameters as body mass index (BMI), wrist circumference (Wc), weight (Wt), and height (Ht) (all p < 0.001); total cholesterol (TC) (p = 0.0115); and triglyceride (TG) (p = 0.0286), all were significantly higher in patients compared to the healthy group. Both miRNAs show statistically significant correlations with clinical and biochemical parameters (p < 0.001). Conclusions Circulating miR-33a and miR-122 might be convincing as possible biomarkers for the diagnosis of metabolic syndrome.
Collapse
Affiliation(s)
- Miral M Refeat
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | | | - Inass Hassan Ahmad
- Endocrinology Department, Medicine for Girls Faculty, Al-Azhar University, Cairo, Egypt
| | | | - Khalda S Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt.
| |
Collapse
|
40
|
Drugs Interfering with Insulin Resistance and Their Influence on the Associated Hypermetabolic State in Severe Burns: A Narrative Review. Int J Mol Sci 2021; 22:ijms22189782. [PMID: 34575946 PMCID: PMC8466307 DOI: 10.3390/ijms22189782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
It has become widely accepted that insulin resistance and glucose hypermetabolism can be linked to acute pathologies, such as burn injury, severe trauma, or sepsis. Severe burns can determine a significant increase in catabolism, having an important effect on glucose metabolism and on muscle protein metabolism. It is imperative to acknowledge that these alterations can lead to increased mortality through organ failure, even when the patients survive the initial trauma caused by the burn. By limiting the peripheral use of glucose with consequent hyperglycemia, insulin resistance determines compensatory increased levels of insulin in plasma. However, the significant alterations in cellular metabolism lead to a lack of response to insulin's anabolic functions, as well as to a decrease in its cytoprotective role. In the end, via pathological insulin signaling associated with increased liver gluconeogenesis, elevated levels of glucose are detected in the blood. Several cellular mechanisms have been incriminated in the development of insulin resistance in burns. In this context, the main aim of this review article is to summarize some of the drugs that might interfere with insulin resistance in burns, taking into consideration that such an approach can significantly improve the prognosis of the burned patient.
Collapse
|
41
|
Mohany KM, Al Rugaie O, Al-Wutayd O, Al-Nafeesah A. Investigation of the levels of circulating miR-29a, miR-122, sestrin 2 and inflammatory markers in obese children with/without type 2 diabetes: a case control study. BMC Endocr Disord 2021; 21:152. [PMID: 34344352 PMCID: PMC8330040 DOI: 10.1186/s12902-021-00829-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
AIM The present work investigated serum levels of miR-29a, miR-122 and sestrin2 in obese children with/without type-2-diabetes mellitus (T2DM), and their correlations with inflammatory, metabolic and anthropometric parameters. METHODS The study included 298 children, divided into: G1 (control, n = 136), G2 (obese without diabetes, n = 90) and G3 (obese with T2DM, n = 72). Metabolic and anthropometric parameters, miR-29a, miR-122 relative expressions, and sestrin2, high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured by their specific methods. The data was processed and analyzed by SPSS V.26 using the corresponding tests. After testing the variables' normality, Kruskal-Wallis one-way-ANOVA, Spearman correlations coefficient were used. RESULTS Significant higher serum miR-29a, miR-122, IL-6, hsCRP and TNF-α and lower sestrin2 levels were found in G2 and G3 than G1 and in G3 than G2 (p= > 0.001 for all). Especially in G3, miR-29a and miR-122 levels correlated positively while sestrin2 levels correlated negatively with waist circumference and BMI percentiles, serum levels of LDL-cholesterol, triacylglycerol, total cholesterol, HbA1c%, glucose, insulin, c-peptide, homeostatic model assessment-insulin resistance (HOMA-IR), IL-6, hsCRP and TNF-α. CONCLUSION The change in the serum miR-29a, miR-122 and sestrin2 levels in obese children with/without T2DM may suggest a possible role of these biomarkers in the pathogenesis of childhood obesity and their accompanied complications e.g. inflammations and T2DM. Also, further studies are required to test drugs that antagonize the action miR-29a and miR-122 or upregulate sestrin2 in the management of these cases.
Collapse
Affiliation(s)
- Khalid M Mohany
- Department of Medical Biochemistry, College of Medicine, Assiut University, P.O. Box, Assiut, 71515, Egypt.
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia.
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Osama Al-Wutayd
- Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Abdullah Al-Nafeesah
- Department of Pediatrics, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
42
|
Mandraffino G, Lo Gullo A, Cinquegrani M, D’Ascola A, Sinicropi D, Imbalzano E, Blando G, Campo GM, Morace C, Giuffrida C, Campo S, Squadrito G, Scuruchi M. Expression and Change of miRs 145, 221 and 222 in Hypertensive Subjects Treated with Enalapril, Losartan or Olmesartan. Biomedicines 2021; 9:860. [PMID: 34440064 PMCID: PMC8389596 DOI: 10.3390/biomedicines9080860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
miR profile could be associated to CV risk, and also to prognosis/outcome in response to therapeutic approach. We aimed to evaluate if anti-hypertensive drugs enalapril, losartan or olmesartan have effects on monocyte miR profile in essential hypertensives without target organ involvement. For this purpose, 82 hypertensives and 49 controls were included; we evaluated SBP/DBP, lipid profile, glucose, CRP, fibrinogen, arterial stiffness indices (PWV; AIx), and cIMT at baseline (T0) and after 24 weeks of treatment (T1). Subjects with LDL-C ≥ 160 mg/dL, TG ≥ 200 mg/dL, BMI ≥ 30, and other additional CV risk factors were excluded. Patients who were prescribed to receive once-a-day enalapril 20 mg, losartan 100 mg or olmesartan 20 mg were eligible for the study. At T1, we found a significant improvement of SBP (-18.5%), DBP (-18%), HDL-C and LDL-C (+3% and -5.42%), glucose (-2.15%), BMI (-3.23%), fibrinogen (-11%), CRP (-17.5%,), AIx (-49.1%) PWV (-32.2%), and monocyte miR expression (miR-221: -28.4%; miR-222: -36%; miR-145: +41.7%) with respect to baseline. miR profile was compared to control subjects at baseline and at T1. We found some little difference in the behaviour of the three treatments on some variables: olmesartan was the most effective in reducing fibrinogen, DBP, CRP, and AIx (-13.1%, -19.3%, -21.4%, and -56.8%, respectively). Enalapril was the drug more significantly increasing the expression of miR-145. In conclusion, enalapril, losartan and olmesartan are effective in improving mechanical and humoral factors associated to AS and atherogenesis. These drugs appear to be able to modify miRs 221/222 and miR-145 expression in drug-naïve hypertensives, making it closer to that of control subjects; additionally, this provides a good blood pressure compensation, contributing to slow the progression of vascular damage.
Collapse
Affiliation(s)
- Giuseppe Mandraffino
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (D.S.); (E.I.); (G.B.); (C.M.); (G.S.)
- Lipid Center, Internal Medicine Unit, University of Messina, 98122 Messina, Italy;
- Laboratory of Clinical Biochemistry, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (A.D.); (G.M.C.)
| | | | - Maria Cinquegrani
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (D.S.); (E.I.); (G.B.); (C.M.); (G.S.)
| | - Angela D’Ascola
- Laboratory of Clinical Biochemistry, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (A.D.); (G.M.C.)
| | - Davide Sinicropi
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (D.S.); (E.I.); (G.B.); (C.M.); (G.S.)
| | - Egidio Imbalzano
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (D.S.); (E.I.); (G.B.); (C.M.); (G.S.)
| | - Giuseppe Blando
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (D.S.); (E.I.); (G.B.); (C.M.); (G.S.)
| | - Giuseppe Maurizio Campo
- Laboratory of Clinical Biochemistry, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (A.D.); (G.M.C.)
| | - Carmela Morace
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (D.S.); (E.I.); (G.B.); (C.M.); (G.S.)
| | | | - Salvatore Campo
- Laboratory of Molecular Biology, Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98122 Messina, Italy;
| | - Giovanni Squadrito
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (D.S.); (E.I.); (G.B.); (C.M.); (G.S.)
| | - Michele Scuruchi
- Lipid Center, Internal Medicine Unit, University of Messina, 98122 Messina, Italy;
- Laboratory of Clinical Biochemistry, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (A.D.); (G.M.C.)
| |
Collapse
|
43
|
Fu J, Li T, Jiang X, Xia B, Hu L. MicroRNA-199-3p targets Sp1 transcription factor to regulate proliferation and epithelial to mesenchymal transition of human lung cancer cells. 3 Biotech 2021; 11:352. [PMID: 34249593 PMCID: PMC8219823 DOI: 10.1007/s13205-021-02881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022] Open
Abstract
The present study was undertaken to study the function of miRNA-199-3p in the regulation of human lung cancer growth and metastasis. The results showed significant (P < 0.05) downregulation of miRNA-199-3p in lung cancer tissues and cell lines. Overexpression of miR-197 caused considerable inhibition of the viability and colony formation of the lung cancer cells. The inhibition of proliferation was found to be due to the arrest of the SK-LU-1 lung cancer cells. At the G2/M phase of the cell cycle. In silico analysis and subsequent the dual-luciferase assays showed that miR-199-3p targets Sp1 at molecular. The expression of Sp1 was significantly (P < 0.05) upregulated in lung cancer cells and tissues. Nonetheless, miR-199-3p overexpression could cause post-transcriptional suppression of Sp1. Silencing of Sp1suppress the proliferation of SK-LU-1 lung cancer cells. However, overexpression Sp1 transcription factor prevents the tumor-suppressive effects of miR-199-3p on lung cancer cells. Additionally, miR-199-3p was found to suppresses the migration, invasion and epithelial-to-mesenchymal transition of human lung cancer cells. Summing up, miRNA-199-3p/SP1 axis controls the growth and metastasis of SK-LU-1 lung cancer cells.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of Pulmonary Medicine, The Second People’s Hospital of Yueqing, Zhejiang, 325608 China
| | - Tong Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Xiaozhen Jiang
- Department of Pulmonary Medicine, PingYang Hospital Affiliated to Wenzhou Medical University, Zhenjiang, 325400 China
| | - Bin Xia
- Department of Pulmonary Medicine, The Second People’s Hospital of Yueqing, Zhejiang, 325608 China
| | - Lijuan Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| |
Collapse
|
44
|
Missae L, Rossoni B, Tenorio EJR, Ribeiro MS, Tirapelli D, Joviliano EE. Expression of MicroRNA-1281, C-Reactive Protein, and Renal Function in Individuals with Abdominal Aortic Aneurysm and their Clinical Correlation after Endovascular Repair. Braz J Cardiovasc Surg 2021; 36:301-307. [PMID: 34387972 PMCID: PMC8357382 DOI: 10.21470/1678-9741-2020-0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction: The treatment of infrarenal aortic aneurysms has changed in the last three decades. Endovascular aneurysm repair (EVAR) has become the primary treatment option in anatomically suitable patients with infrarenal aortic aneurysms. However, there is no serum biomarker to be used in EVAR follow-up. Methods: This is a prospective single-centre study of 30 consecutive patients with abdominal aortic aneurysm (AAA) who underwent EVAR. Serum dosages of micro ribonucleic acid 1281 (miRNA-1281), creatinine, total cholesterol, triglycerides, and C-reactive protein (CRP) were evaluated and angiotomographic evaluations were performed preoperatively and six months after the intervention. Results: There was a hyperexpression of miRNA-1281 in patients with AAA and a significant reduction of it after EVAR, from 1.66-fold before EVAR to 0.27 after the procedure (P<0.0001). MiRNA-1281 expression was not influenced by renal function (creatinine: 1.14±0.29, P=0.68), total cholesterol (179.9±59.9, P=0.22), or CRP (1.17±3.5; P=0.48). There is correlation between AAA size and CRP serum levels, however there was no statically significant reduction of CRP after EVAR. Discussion: MiRNA-1281 expression may be influenced by cholesterol, triglycerides levels, and renal function. We found no difference in these markers before and six months after EVAR. However, miRNA-1281 presents a significant reduction in patients with no follow-up complications. We hypothesize that miRNA-1281 expression may be related to aortic wall stress or flow changes. Conclusion: MiRNA-1281 may contribute as a possible marker of EVAR follow-up.
Collapse
Affiliation(s)
- Lais Missae
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Clinical Hospital of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Breno Rossoni
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Clinical Hospital of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Emanuel Junio Ramos Tenorio
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Clinical Hospital of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maurício Serra Ribeiro
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Clinical Hospital of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Tirapelli
- Department of Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edwaldo Edner Joviliano
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Clinical Hospital of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
45
|
Peripheral Blood miRome Identified miR-155 as Potential Biomarker of MetS and Cardiometabolic Risk in Obese Patients. Int J Mol Sci 2021; 22:ijms22031468. [PMID: 33540559 PMCID: PMC7867145 DOI: 10.3390/ijms22031468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
This study explored circulating miRNAs and target genes associated with metabolic syndrome (MetS) and cardiometabolic risk in obese patients. Small-RNA sequencing was used to assess the peripheral blood miRNome of 12 obese subjects (6 MetS and 6 non-MetS). Differentially expressed miRNAs and target genes were further analyzed by qPCR in a larger sample of obese patients (48 MetS and 32 non-MetS). miRNA:mRNA interactions were studied using in silico tools. miRNome analysis identified 10 downregulated miRNAs in MetS compared to non-Met patients (p < 0.05). In silico studies revealed three miRNAs (miR-155, miR-181a, and let-7a) and their predictive targets (CCAAT/enhancer-binding protein beta-CEBPB, KRAS proto-oncogene, GTPase-KRAS and suppressor of cytokine signaling 1-SOCS1) with a potential role in the insulin receptor signaling pathway. miR-155 expression was reduced and CEBPB mRNA levels were increased in MetS patients (p < 0.05), and these effects were correlated with the number of MetS diagnostic criteria (p < 0.05). Increased HOMA-IR (>7.6) was associated with low miR-155 levels, high CEBPB expression, and serum hsCRP (p < 0.05). miR-155 was negatively correlated with CEBPB, HOMA-IR, and plasma fibrinogen, and positively correlated with serum adiponectin (p < 0.05). Downregulation of circulating miR-155 is associated with insulin resistance, poor glycemic control, and increased MetS-related cardiometabolic risk, and these effects are potentially mediated by interaction with CEBPB.
Collapse
|
46
|
Malayaperumal S, Sriramulu S, Jothimani G, Banerjee A, Pathak S. A Review of AEG-1 Oncogene Regulating MicroRNA Expression in Colon Cancer Progression. Endocr Metab Immune Disord Drug Targets 2021; 21:27-34. [PMID: 32552658 DOI: 10.2174/1871530320666200618104116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs that perform a crucial function in posttranscriptional gene regulation. Dysregulation of these microRNAs is associated with many types of cancer progression. In tumorigenesis, downregulated microRNAs might function as a tumour suppressor by repressing oncogenes, whereas overexpressed miRs might function as oncogenes by suppressing tumour suppressor. Similarly, Metadherin (also known as AEG-1/ LYRIC), is an oncogene, the levels of which are found to be very high in various cancers and play a crucial role in the proliferation of cells and invasion. Our review focuses on the study, which shows the alteration of microRNA expression profile and suppression of carcinogenesis when MTDH/AEG-1 is targeted. It summarises the studies where downregulation and upregulation of AEG-1 and microRNAs, respectively, alter the biological functions of the cell, such as proliferation and apoptosis. Studies have reported that AEG-1 can be direct or indirect target of microRNA, which could provide a new-insight to know the underlying molecular mechanism and might contribute to the progress of new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarubala Malayaperumal
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
47
|
Liu L, Gao H, Guo C, Liu T, Li N, Qian Q. Therapeutic Mechanism of Nucleic Acid Drugs. ChemistrySelect 2021. [DOI: 10.1002/slct.202002901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lianxiao Liu
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Haixia Gao
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Chuanxin Guo
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Tao Liu
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Ning Li
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Qijun Qian
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| |
Collapse
|
48
|
Benito-Vicente A, Uribe KB, Rotllan N, Ramírez CM, Jebari-Benslaiman S, Goedeke L, Canfrán-Duque A, Galicia-García U, Saenz De Urturi D, Aspichueta P, Suárez Y, Fernández-Hernando C, Martín C. miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression. Int J Mol Sci 2020; 21:ijms21228675. [PMID: 33212990 PMCID: PMC7698485 DOI: 10.3390/ijms21228675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Kepa B. Uribe
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Cristina M. Ramírez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Diego Saenz De Urturi
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (D.S.D.U.); (P.A.)
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (D.S.D.U.); (P.A.)
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
- Correspondence: (C.F.-H.); (C.M.)
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
- Correspondence: (C.F.-H.); (C.M.)
| |
Collapse
|
49
|
Ge C, Su F, Fu H, Wang Y, Tian B, Liu B, Zhu J, Ding Y, Zheng X. RNA Profiling Reveals a Common Mechanism of Histone Gene Downregulation and Complementary Effects for Radioprotectants in Response to Ionizing Radiation. Dose Response 2020; 18:1559325820968433. [PMID: 33117095 PMCID: PMC7573744 DOI: 10.1177/1559325820968433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
High-dose ionizing radiation (IR) alters the expression levels of non-coding RNAs (ncRNAs). However, the roles of ncRNAs and mRNAs in mediating radiation protection by radioprotectants remain unknown. Microarrays were used to determine microRNA (miRNA), long ncRNA (lncRNA), and mRNA expression profiles in the bone marrow of irradiated mice pretreated with amifostine, CBLB502, and nilestriol. Differentially expressed mRNAs were functionally annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Some histone cluster genes were validated by real-time PCR, and the effects of radioprotectant combinations were monitored by survival analysis. We found that these radioprotectants increased the induction of lncRNAs and mRNAs. miRNA, lncRNA, and mRNA expression patterns were similar with amifostine and CBLB502, but not nilestriol. The radioprotectants exhibited mostly opposite effects against IR-induced miRNAs, lncRNAs, and mRNAs while inducing a common histone gene downregulation following IR, mainly via nucleosome assembly and related signaling pathways. Notably, the effects of nilestriol significantly complemented those of amisfostine or CBLB502; low-dose drug combinations resulted in better radioprotective effects in pretreated mice. Thus, we present histone gene downregulation by radioprotectants, together with the biological functions of miRNA, lncRNA, and mRNA, to explain the mechanism underlying radioprotection.
Collapse
Affiliation(s)
- Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuan Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baolei Tian
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bin Liu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Ding
- 5th Medical Center, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
50
|
Hepatic miR-192-3p reactivation alleviates steatosis by targeting glucocorticoid receptor. JHEP Rep 2020; 2:100179. [PMID: 33134908 PMCID: PMC7588854 DOI: 10.1016/j.jhepr.2020.100179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Background & Aims The paradox of hepatic insulin resistance describes the inability for liver to respond to bioenergetics hormones in suppressing gluconeogenesis whilst maintaining lipid synthesis. Here, we report the deficiency of miR-192-3p in the livers of mice with diabetes and its role in alleviating hepatic steatosis. Methods As conventional pre-microRNA (miRNA) stem-loop overexpression only boosts guiding strand (i.e. miR-192-5p) expression, we adopted an artificial AAV(DJ)-directed, RNA Pol III promoter-driven miRNA hairpin construct for star-strand-specific overexpression in the liver. Liver steatosis and insulin resistance markers were evaluated in primary hepatocytes, mice with diabetes, and mice with excessive carbohydrate consumption. Results Functional loss of miR-192-3p in liver exacerbated hepatic micro-vesicular steatosis and insulin resistance in either mice with diabetes or wild-type mice with excessive fructose consumption. Liver-specific overexpression of miR-192-3p effectively halted hepatic steatosis and ameliorated insulin resistance in these mice models. Likewise, hepatocytes overexpressing miR-192-3p exhibited improved lipid accumulation, accompanied with decreases in lipogenesis and lipid-accumulation-related transcripts. Mechanistically, glucocorticoid receptor (GCR, also known as nuclear receptor subfamily 3, group C, member 1 [NR3C1]) was demonstrated to be negatively regulated by miR-192-3p. The effect of miR-192-3p on mitigating micro-vesicular steatosis was ablated by the reactivation of NR3C1. Conclusions The star strand miR-192-3p was an undermined glycerolipid regulator involved in controlling fat accumulation and insulin sensitivity in liver through blockade of hepatic GCR signalling; this miRNA may serve as a potential therapeutic option for the common co-mobility of diabetic mellitus and fatty liver disease. Lay summary The potential regulatory activity of star strand microRNA (miRNA) species has been substantially underestimated. In this study, we investigate the role and mechanism of an overlooked star strand miRNA (miR-192-3p) in regulating hepatic steatosis and insulin signalling in the livers of mice with diabetes and mice under excessive carbohydrate consumption. Liver-specific knockdown of miR-192-3p recapitulated functional loss of the miRNA as in mice with diabetes. This knockdown was characterised by pronounced hepatic micro-vesicular steatosis coupled to insulin resistance. In vivo overexpression of miR-192-3p alleviated hepatic steatosis in mice with diabetes and wild-type mice with excessive fructose consumption. Glucocorticoid receptor (also known as NR3C1) was discovered as the immediate target of miR-192-3p in regulating hepatic lipid turnover and storage.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- AAV, adeno-associated virus
- CPT, carnitine palmitoyl transferase
- DEG, differentially expressed gene
- DEX, dexamethasone
- DM, diabetes mellitus
- DNL, de novo lipogenesis
- Diabetes mellitus
- FA, fatty acid
- FAO, fatty acid oxidation
- FASN, fatty acid synthase
- GCR, glucocorticoid receptor
- Glucocorticoid receptor
- HFD, high-fat diet
- HFrD, high-fructose drink
- HOMA-IR, homeostatic model assessment of insulin resistance
- Hepatic steatosis
- High carbohydrate consumption
- MicroRNA
- NAFLD, non-alcoholic fatty liver disease
- NR3C1, nuclear receptor subfamily 3, group C, member 1
- NT, non-targeting
- OA, oleic acid
- OGTT, oral glucose tolerance test
- SCD1, stearoyl-CoA desaturase-1
- T2DM, type 2 diabetes mellitus
- TAG, triacylglyceride/triglyceride
- Transcription repressor
- VAT, visceral adipose tissue
- miRNA, microRNA
- shRNA, short hairpin RNA
Collapse
|