1
|
Guo XJ, Zhu BB, Li J, Guo P, Niu YB, Shi JL, Yokoyama W, Huang QS, Shao DY. Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem Pharmacol 2025; 234:116802. [PMID: 39954742 DOI: 10.1016/j.bcp.2025.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cholesterol is an essential component of the cell membrane which plays a critical role in the survival of immune and tumor cells. Reprogramming of cholesterol metabolism in both tumor cells and immune cells can impact tumor progression and anti-tumor immune responses. Strategies aimed at modulating cholesterol metabolism have been demonstrated to be effective in hindering tumor growth and boosting anti-tumor immune functions. This review provides a thorough analysis of intracellular cholesterol homeostasis regulation in cells, focusing on key genes and signaling pathways. It particularly emphasizes the regulatory mechanisms and importance of the cholesterol presence state (esterified/free), levels of cholesterol, and its metabolites in immune and tumor cells. Additionally, the review thoroughly explores how cholesterol metabolism and sources (endogenous/exogenous) in the tumor microenvironment (TME) contribute to the interplay among tumor cells, immune suppressor cells, and immune effector cells, promoting cancer progression and immune evasion. It also delves into current insights on the influence of cholesterol metabolites and related drugs in regulating tumor development or immunotherapy. Finally, it presents an overview of recent advancements in clinical and preclinical trials investigating the efficacy of targeted cholesterol metabolism treatments and combination therapies in cancer management, while proposing potential future research directions in tumor immunity. This review is poised to offer fresh perspectives and avenues for examining the potential of cancer immunotherapy centered on cholesterol metabolism regulation.
Collapse
Affiliation(s)
- Xiao-Jia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Bo-Bo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jing Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710072, PR China
| | - Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Yin-Bo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jun-Ling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Wallace Yokoyama
- Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China.
| | - Dong-Yan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City 518063, PR China.
| |
Collapse
|
2
|
Wang Y, Li C, Zhao W, Dong Y, Wang P. SYNTAX I score is associated with genetically confirmed familial hypercholesterolemia in chinese patients with coronary heart disease. BMC Cardiovasc Disord 2024; 24:737. [PMID: 39709366 PMCID: PMC11663336 DOI: 10.1186/s12872-024-04428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a genetically inherited disorder caused by monogenic mutations or polygenic deleterious variants. Patients with FH innate with significantly elevated risks for coronary heart disease (CHD). FH prevalence based on genetic testing in Chinese CHD patients is missing. Whether classical index of coronary atherosclerosis severity can be used as indicators of FH needs to be explored. To investigate the FH prevalence in Chinese CHD patients and the association of SYNTAX I score with FH genotype. METHODS The monogenic and polygenic FH related genes were genotyped in 400 consecutively enrolled CHD patients. The clinical characteristics and SYNTAX I scores were analyzed in a retrospective nested case-control study. RESULTS The prevalence of genetically confirmed FH in our CHD cohort was 8.75%. The cLDL-C level, SYNTAX I scores and incidences of triple vessel lesions in FH patients were significantly higher, while cLDL-C and SYNTAX I scores were independent risk factors for FH. Furthermore, cLDL-C levels of polygenic FH were significantly lower than monogenic FH, while their severity of coronary atherosclerosis was comparable. CONCLUSIONS Our study revealed that the SYNTAX I score was an independent risk factor for FH. Besides, polygenic origin of FH should be taken into consideration for CHD patients suspected of FH.
Collapse
Affiliation(s)
- Yihan Wang
- School of The Third Clinical Medical College, Capital Medical University, Beijing, People's Republic of China
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chuang Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenshu Zhao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ying Dong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Peijia Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
- Department of General Practice, Beijing Chaoyang District Sunhe Community Health Center, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Javed M, Goswami DK, Raj H, Lohana K, Goswami B, Karim A, Warayo A, Farooqi P, Alamy H, Ullah ZO, Mohammad A, Farooqi SA, Ali H, Shuja D, Malik J, Baloch ZQ. Cardiac Manifestations in Inherited Metabolic Diseases. Cardiol Rev 2024:00045415-990000000-00299. [PMID: 38980048 DOI: 10.1097/crd.0000000000000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Inherited metabolic diseases (IMDs) stem from genetic defects affecting enzyme function within specific metabolic pathways, collectively constituting rare conditions with an incidence of less than 1/100,000 births. While IMDs typically manifest with multisystemic symptoms, cardiac manifestations are common, notably hypertrophic cardiomyopathy. Additionally, they can lead to dilated or restrictive cardiomyopathy, as well as noncompacted left ventricular cardiomyopathy. Rhythm disturbances such as atrioventricular conduction abnormalities, Wolff-Parkinson-White syndrome, and ventricular arrhythmias, along with valvular pathologies and ischemic coronary issues, are also prevalent. This study aims to provide a narrative review of IMDs associated with cardiac involvement, delineating the specific cardiac manifestations of each disorder alongside systemic symptoms pivotal for diagnosis.
Collapse
Affiliation(s)
- Mubeena Javed
- From the Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Danish Kumar Goswami
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Hem Raj
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Kiran Lohana
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Barkha Goswami
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Karim
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Allah Warayo
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Palwasha Farooqi
- Department of Medicine, Kabul University of Medical Sciences, Kabul, Afghanistan
| | - Haroon Alamy
- Department of Medicine, Kabul University of Medical Sciences, Kabul, Afghanistan
| | - Zainab Obaid Ullah
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Aamer Mohammad
- Department of Medicine, Rajiv Gandhi University of Health Sciences, Bengaluru, India
| | - Syed Ahmad Farooqi
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Hafsah Ali
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Darab Shuja
- Department of Medicine, Services Hospital, Lahore, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | | |
Collapse
|
4
|
Cuenca-Gómez JÁ, Lara-Rojas CM, Bonilla-López A. Cardiac manifestations in inherited metabolic diseases. Curr Probl Cardiol 2024; 49:102587. [PMID: 38653442 DOI: 10.1016/j.cpcardiol.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Inherited metabolic diseases (IMD) are caused by the functional defect of an enzyme, of genetic origin, that provokes a blockage in a specific metabolic pathway. Individually, IMD are considered rare diseases, with an incidence of less than 1/100,000 births. The symptoms are usually multisystemic, but frequently include cardiac manifestations. Of these, the most common are cardiomyopathies, especially hypertrophic cardiomyopathy. In addition, they can cause dilated or restrictive cardiomyopathy and non-compacted cardiomyopathy of the left ventricle. Characteristic signs also include rhythm alterations (atrio-ventricular conduction disturbances, Wolff-Parkinson-White syndrome or ventricular arrhythmias), valvular pathology and ischaemic coronary pathologies. The aim of this study is to present a narrative review of the IMD that may produce cardiac involvement. We describe both the specific cardiac manifestations of each disease and the systemic symptoms that guide diagnosis.
Collapse
Affiliation(s)
- José Ángel Cuenca-Gómez
- Internal Medicine Service Hospital de Poniente El Ejido, Almería, Spain; Working Group on Minority Diseases of the Spanish Society of Internal Medicine (GTEM-SEMI), Almería, Spain.
| | | | | |
Collapse
|
5
|
Humphries SE, Ramaswami U, Hopper N. Should Familial Hypercholesterolaemia Be Included in the UK Newborn Whole Genome Sequencing Programme? Curr Atheroscler Rep 2023; 25:1083-1091. [PMID: 38060059 DOI: 10.1007/s11883-023-01177-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW The UK National Health Service (NHS) has recently announced a Newborn Genomes Programme (NGP) to identify infants with treatable inherited disorders using whole genome sequencing (WGS). Here, we address, for familial hypercholesterolaemia (FH), the four principles that must be met for the inclusion of a disorder in the NGP. RECENT FINDINGS Principle A: There is strong evidence that the genetic variants causing FH can be reliably detected. Principle B: A high proportion of individuals who carry an FH-causing variant are likely to develop early heart disease if left undiagnosed and not offered appropriate treatment. Principle C: Early intervention has been shown to lead to substantially improved outcomes in children with FH. Principle D: The recommended interventions are equitably accessible for all. FH meets all the Wilson and Jungner criteria for inclusion in a screening programme, and it also meets all four principles and therefore should be included in the Newborn Genomes Programme.
Collapse
Affiliation(s)
- Steve E Humphries
- Centre for Cardiovascular Genetics, Rayne Building, 5 University Street, University College London, London, United Kingdom, WC1E 6JJ
| | - Uma Ramaswami
- Lysosomal Disorders Unit, Royal Free London NHS Foundation Trust, Royal Free Hospital, London, United Kingdom, NW3 2QG.
| | - Neil Hopper
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland Royal Hospital, Sunderland, United Kingdom
| |
Collapse
|
6
|
Giraldo P, López de Frutos L, Cebolla JJ. Recommendations for overcoming challenges in the diagnosis of lysosomal acid lipase deficiency. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pilar Giraldo
- Hematology. Hospital Quironsalud. Zaragoza. SPAIN
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG). Zaragoza. SPAIN
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
| | - Laura López de Frutos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG). Zaragoza. SPAIN
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
| | - Jorge J Cebolla
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza. SPAIN
| |
Collapse
|
7
|
Besler KJ, Blanchard V, Francis GA. Lysosomal acid lipase deficiency: A rare inherited dyslipidemia but potential ubiquitous factor in the development of atherosclerosis and fatty liver disease. Front Genet 2022; 13:1013266. [PMID: 36204319 PMCID: PMC9530988 DOI: 10.3389/fgene.2022.1013266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, is the sole neutral lipid hydrolase in lysosomes, responsible for cleavage of cholesteryl esters and triglycerides into their component parts. Inherited forms of complete (Wolman Disease, WD) or partial LAL deficiency (cholesteryl ester storage disease, CESD) are fortunately rare. Recently, LAL has been identified as a cardiovascular risk gene in genome-wide association studies, though the directionality of risk conferred remains controversial. It has also been proposed that the low expression and activity of LAL in arterial smooth muscle cells (SMCs) that occurs inherently in nature is a likely determinant of the propensity of SMCs to form the majority of foam cells in atherosclerotic plaque. LAL also likely plays a potential role in fatty liver disease. This review highlights the nature of LAL gene mutations in WD and CESD, the association of LAL with prediction of cardiovascular risk from genome-wide association studies, the importance of relative LAL deficiency in SMC foam cells, and the need to further interrogate the pathophysiological impact and cell type-specific role of enhancing LAL activity as a novel treatment strategy to reduce the development and induce the regression of ischemic cardiovascular disease and fatty liver.
Collapse
|
8
|
Grabowski GA, Du H. Lysosomal acid lipase: Roles in rare deficiency diseases, myeloid cell biology, innate immunity, and common neutral lipid diseases. CHOLESTEROL 2022:639-673. [DOI: 10.1016/b978-0-323-85857-1.00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Martín-Campos JM. Genetic Determinants of Plasma Low-Density Lipoprotein Cholesterol Levels: Monogenicity, Polygenicity, and "Missing" Heritability. Biomedicines 2021; 9:biomedicines9111728. [PMID: 34829957 PMCID: PMC8615680 DOI: 10.3390/biomedicines9111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Collapse
Affiliation(s)
- Jesús Maria Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IR-HSCSP)-Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Quintí 77-79, 08041 Barcelona, Spain
| |
Collapse
|
10
|
He B, Kang S, Chen Z, Liu X, Wang J, Li X, Liu X, Zheng L, Luo M, Wang Y. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159006. [PMID: 34274505 DOI: 10.1016/j.bbalip.2021.159006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Hypercholesterolemia has strong heritability and about 40-60% of hypercholesterolemia is caused by genetic risk factors. A number of monogenic genes have been identified so far for familial hypercholesterolemia (FH). However, in the general population, more than 90% of individuals with LDL cholesterol over 190 mg/dL do not carry known FH mutations. Large scale whole-exome sequencing has identified thousands of variants that are predicted to be loss-of-function (LoF) and each individual has a median of about twenty rare LoF variants and several hundreds more common LoF variants. However, majority of those variants have not been characterized and their functional consequence remains largely unknown. Rs77542162 is a common missense variant in ABCA6 and is strongly associated with hypercholesterolemia in different populations. ABCA6 is a cholesterol responsive gene and has been suggested to play a role in lipid metabolism. However, whether and how rs77542162 and ABCA6 regulate lipoprotein metabolism remain unknown. In current study, we systemically characterized the function of rs77542162 and ABCA6 in cultured cells and in vivo of rodents. We found that Abca6 is specifically expressed on the basolateral surface of hepatocytes in mouse liver. The rs77542162 variant disrupts ABCA6 protein stability and results in loss of functional protein. However, we found no evidence that Abca6 plays a role in lipoprotein metabolism in either normal mice or hypercholesterolemia mice or hamsters. Thus, our results suggest that Abca6 does not regulate lipoprotein metabolism in rodents and highlight the challenge and importance of functional characterization of disease-associated variants in animal models.
Collapse
Affiliation(s)
- Baoshen He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Shijia Kang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Zhen Chen
- Hubei Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xiao Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Jinkai Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xiaomin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Mengcheng Luo
- Hubei Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
11
|
Tomlinson B, Patil NG, Fok M, Lam CWK. Role of PCSK9 Inhibitors in Patients with Familial Hypercholesterolemia. Endocrinol Metab (Seoul) 2021; 36:279-295. [PMID: 33866776 PMCID: PMC8090480 DOI: 10.3803/enm.2021.964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with familial hypercholesterolemia (FH) are at high or very high risk for cardiovascular disease. Those with heterozygous FH (HeFH) often do not reach low-density lipoprotein cholesterol (LDL-C) targets with statin and ezetimibe therapy, and those with homozygous FH (HoFH) usually require additional lipid-modifying therapies. Drugs that inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) offer a novel approach to reduce LDL-C. The monoclonal antibodies, alirocumab and evolocumab, given by subcutaneous injection every 2 or 4 weeks produce reductions in LDL-C of 50% to 60% in patients with HeFH, allowing many of them to achieve their LDL-C goals. Patients with HoFH show a reduced and more variable LDL-C response, which appears to depend on residual LDL receptor activity, and those with receptor-negative mutations may show no response. Inclisiran is a long-acting small interfering RNA therapeutic agent that inhibits the synthesis of PCSK9. Subcutaneous doses of 300 mg can reduce LDL-C by more than 50% for at least 6 months and the responses in HeFH and HoFH patients are similar to those achieved with monoclonal antibodies. These PCSK9 inhibitors are generally well tolerated and they provide a new opportunity for effective treatment for the majority of patients with FH.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | |
Collapse
|
12
|
Reeskamp LF, Tromp TR, Defesche JC, Grefhorst A, Stroes ESG, Hovingh GK, Zuurbier L. Next-generation sequencing to confirm clinical familial hypercholesterolemia. Eur J Prev Cardiol 2020; 28:875-883. [PMID: 34298557 DOI: 10.1093/eurjpc/zwaa451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial hypercholesterolemia is characterised by high low-density lipoprotein-cholesterol levels and is caused by a pathogenic variant in LDLR, APOB or PCSK9. We investigated which proportion of suspected familial hypercholesterolemia patients was genetically confirmed, and whether this has changed over the past 20 years in The Netherlands. METHODS Targeted next-generation sequencing of 27 genes involved in lipid metabolism was performed in patients with low-density lipoprotein-cholesterol levels greater than 5 mmol/L who were referred to our centre between May 2016 and July 2018. The proportion of patients carrying likely pathogenic or pathogenic variants in LDLR, APOB or PCSK9, or the minor familial hypercholesterolemia genes LDLRAP1, ABCG5, ABCG8, LIPA and APOE were investigated. This was compared with the yield of Sanger sequencing between 1999 and 2016. RESULTS A total of 227 out of the 1528 referred patients (14.9%) were heterozygous carriers of a pathogenic variant in LDLR (80.2%), APOB (14.5%) or PCSK9 (5.3%). More than 50% of patients with a Dutch Lipid Clinic Network score of 'probable' or 'definite' familial hypercholesterolemia were familial hypercholesterolemia mutation-positive; 4.8% of the familial hypercholesterolemia mutation-negative patients carried a variant in one of the minor familial hypercholesterolemia genes. The mutation detection rate has decreased over the past two decades, especially in younger patients in which it dropped from 45% in 1999 to 30% in 2018. CONCLUSIONS A rare pathogenic variant in LDLR, APOB or PCSK9 was identified in 14.9% of suspected familial hypercholesterolemia patients and this rate has decreased in the past two decades. Stringent use of clinical criteria algorithms is warranted to increase this yield. Variants in the minor familial hypercholesterolemia genes provide a possible explanation for the familial hypercholesterolemia phenotype in a minority of patients.
Collapse
Affiliation(s)
- Laurens F Reeskamp
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Tycho R Tromp
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Joep C Defesche
- Department of Clinical Genetics, University of Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, University of Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Linda Zuurbier
- Department of Clinical Genetics, University of Amsterdam, The Netherlands
| |
Collapse
|
13
|
Reeskamp LF, Tromp TR, Defesche JC, Grefhorst A, Stroes ES, Hovingh GK, Zuurbier L. Next-generation sequencing to confirm clinical familial hypercholesterolemia. Eur J Prev Cardiol 2020:2047487320942996. [PMID: 32718233 DOI: 10.1177/2047487320942996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Familial hypercholesterolemia is characterised by high low-density lipoprotein-cholesterol levels and is caused by a pathogenic variant in LDLR, APOB or PCSK9. We investigated which proportion of suspected familial hypercholesterolemia patients was genetically confirmed, and whether this has changed over the past 20 years in The Netherlands. METHODS Targeted next-generation sequencing of 27 genes involved in lipid metabolism was performed in patients with low-density lipoprotein-cholesterol levels greater than 5 mmol/L who were referred to our centre between May 2016 and July 2018. The proportion of patients carrying likely pathogenic or pathogenic variants in LDLR, APOB or PCSK9, or the minor familial hypercholesterolemia genes LDLRAP1, ABCG5, ABCG8, LIPA and APOE were investigated. This was compared with the yield of Sanger sequencing between 1999 and 2016. RESULTS A total of 227 out of the 1528 referred patients (14.9%) were heterozygous carriers of a pathogenic variant in LDLR (80.2%), APOB (14.5%) or PCSK9 (5.3%). More than 50% of patients with a Dutch Lipid Clinic Network score of 'probable' or 'definite' familial hypercholesterolemia were familial hypercholesterolemia mutation-positive; 4.8% of the familial hypercholesterolemia mutation-negative patients carried a variant in one of the minor familial hypercholesterolemia genes. The mutation detection rate has decreased over the past two decades, especially in younger patients in which it dropped from 45% in 1999 to 30% in 2018. CONCLUSIONS A rare pathogenic variant in LDLR, APOB or PCSK9 was identified in 14.9% of suspected familial hypercholesterolemia patients and this rate has decreased in the past two decades. Stringent use of clinical criteria algorithms is warranted to increase this yield. Variants in the minor familial hypercholesterolemia genes provide a possible explanation for the familial hypercholesterolemia phenotype in a minority of patients.
Collapse
Affiliation(s)
- Laurens F Reeskamp
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Tycho R Tromp
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Joep C Defesche
- Department of Clinical Genetics, University of Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, University of Amsterdam, The Netherlands
| | - Erik Sg Stroes
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Linda Zuurbier
- Department of Clinical Genetics, University of Amsterdam, The Netherlands
| |
Collapse
|
14
|
Rashu EB, Junker AE, Danielsen KV, Dahl E, Hamberg O, Borgwardt L, Christensen VB, Wewer Albrechtsen NJ, Gluud LL. Cholesteryl ester storage disease of clinical and genetic characterisation: A case report and review of literature. World J Clin Cases 2020; 8:1642-1650. [PMID: 32432142 PMCID: PMC7211528 DOI: 10.12998/wjcc.v8.i9.1642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cholesteryl ester storage disease (CESD) is a rare genetic disease. Its symptoms and severity are highly variable. CESD is a systemic disease that can lead to the accumulation of fat and inflammation in the liver, as well as gastrointestinal and cardiovascular disease. The majority of patients require liver transplantation due to decompensated cirrhosis. Enzyme replacement therapy has been approved based on a randomized trial. Our study aims to clinically and genetically evaluate two siblings with CESD who underwent liver transplantation, as well as their first-degree family members.
CASE SUMMARY The siblings were compound heterozygous for the missense variant in LIPA exon 8, c.894G>A, (p.Gln298Gln) and a single base pair deletion, c.482del (p.Asn161Ilefs*19). Analyses of single nucleotide polymorphisms showed variants with an increased risk of fatty liver disease and fibrosis for both patients. Clinically, both patients show signs of recurrence of CESD in the liver after transplantation and additional gastrointestinal and cardiovascular signs of CESD. Three family members who were LIPA heterozygous had a lysosomal acid lipase activity below the reference value. One of these carriers, a seven-year-old boy, was found to have severe dyslipidemia and was subsequently treated with statins.
CONCLUSION Our study underlines that CESD is a multi-organ disease, the progression of which may occur post-liver transplantation. Our findings underline the need for monitoring of complications and assessment of possible further treatment.
Collapse
Affiliation(s)
- Elias Badal Rashu
- Gastrounit, Copenhagen University Hospital Hvidovre, Hvidovre 2650, Denmark
| | | | | | - Emilie Dahl
- Department of Hepatology, Rigshospitalet, Copenhagen University, Copenhagen 2100, Denmark
| | - Ole Hamberg
- Department of Hepatology, Rigshospitalet, Copenhagen University, Copenhagen 2100, Denmark
| | - Line Borgwardt
- Centre of Genomic Medicine, Rigshospitalet, Copenhagen University, Copenhagen 2100, Denmark
| | - Vibeke Brix Christensen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University, Copenhagen 2100, Denmark
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department for Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lise L Gluud
- Gastrounit, Copenhagen University Hospital Hvidovre, Hvidovre 2650, Denmark
| |
Collapse
|
15
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
16
|
Affiliation(s)
- Robert A. Hegele
- From the Departments of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.)
| | - Joshua W. Knowles
- Department of Internal Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University, Palo Alto, CA (J.W.K.)
| | - Jay D. Horton
- Departments of Internal Medicine and Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas (J.D.H.)
| |
Collapse
|
17
|
LIPA gene mutations affect the composition of lipoproteins: Enrichment in ACAT-derived cholesteryl esters. Atherosclerosis 2020; 297:8-15. [DOI: 10.1016/j.atherosclerosis.2020.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023]
|
18
|
Kohli R, Ratziu V, Fiel MI, Waldmann E, Wilson DP, Balwani M. Initial assessment and ongoing monitoring of lysosomal acid lipase deficiency in children and adults: Consensus recommendations from an international collaborative working group. Mol Genet Metab 2020; 129:59-66. [PMID: 31767214 DOI: 10.1016/j.ymgme.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lysosomal acid lipase (LAL) deficiency is an ultra-rare, progressive, autosomal recessive disorder. Functional mutations in LIPA, the gene that encodes LAL, result in accumulation of cholesteryl esters and triglycerides in hepatocytes and in the macrophages of the intestines, vascular endothelial system, and numerous other organs. LAL deficiency has a broad clinical spectrum; children and adults can present with dyslipidemia, liver enzyme elevations, hepatosplenomegaly, hepatic steatosis, liver fibrosis and/or cirrhosis, and vascular disease, which may lead to significant morbidity and premature mortality in some patients. Given the systemic involvement and the wide range of healthcare specialists who manage patients with LAL deficiency, there is a need for guidelines to assess and monitor disease involvement. OBJECTIVES To provide a set of recommendations for the initial assessment and ongoing monitoring of patients with LAL deficiency to help physicians in various disciplines effectively manage the disease based on the observed presentation and progression in each case. METHODS A group of internationally recognized healthcare specialists with expertise in clinical genetics, pathology, hepatology, gastroenterology, cardiology, and lipidology convened to develop an evidence-based consensus of best practices for the initial assessment and ongoing monitoring of children and adults with LAL deficiency, regardless of treatment status; infants with LAL deficiency have been excluded from these guidelines because they require specialized care. RESULTS The authors present guidance for the assessment and monitoring of patients with LAL deficiency based on age and disease manifestations that include the hepatic, cardiovascular, and gastrointestinal systems. A schedule for ongoing monitoring of disease progression is provided. In addition, the need to establish an interdisciplinary and integrated care team to optimize the approach to managing this systemic disease is highlighted. CONCLUSIONS There is currently no published guidance on the assessment and monitoring of patients with LAL deficiency. These consensus recommendations for the initial assessment and ongoing monitoring of children and adults with LAL deficiency are intended to help improve the management of these patients.
Collapse
Affiliation(s)
- Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Vlad Ratziu
- Department of HepaGastroenterology, Université Pierre et Marie Curie, Hôpital Pitié Salpêtrière, Paris, France
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, NY, New York, USA
| | - Elisa Waldmann
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Don P Wilson
- Division of Pediatric Endocrinology & Diabetes, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai Hospital, NY, New York, USA.
| |
Collapse
|
19
|
Abstract
Lysosomal acid lipase (LAL), encoded by the lipase A ( LIPA) gene, hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The essential role of LAL in lipid metabolism has been confirmed in mice and human with LAL deficiency. In humans, loss-of-function mutations of LIPA cause rare lysosomal disorders, Wolman disease and cholesteryl ester storage disease, in which LAL enzyme-replacement therapy has shown significant benefits in a phase 3 clinical trial. Recent studies have revealed the regulatory role of lipolytic products of lysosomal lipid hydrolysis in catabolic, anabolic, and signaling pathways. In vivo studies in mice with knockout of Lipa highlight the systemic impact of Lipa deficiency on metabolic homeostasis and immune cell function. Genome-wide association studies and functional genomic studies have identified LIPA as a risk locus for coronary heart disease, but the causal variants and mechanisms remain to be determined. Future studies will continue to focus on the role of LAL in the crosstalk between lipid metabolism and cellular function in health and diseases including coronary heart disease.
Collapse
Affiliation(s)
- Fang Li
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Hanrui Zhang
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York
| |
Collapse
|
20
|
del Angel G, Hutchinson AT, Jain NK, Forbes CD, Reynders J. Large-scale functional LIPA variant characterization to improve birth prevalence estimates of lysosomal acid lipase deficiency. Hum Mutat 2019; 40:2007-2020. [PMID: 31180157 PMCID: PMC6852163 DOI: 10.1002/humu.23837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Lysosomal acid lipase (LAL) deficiency is an autosomal recessive disorder caused by LIPA gene mutations that disrupt LAL activity. We performed in vitro functional testing of 149 LIPA variants to increase the understanding of the variant effects on LAL deficiency and to improve disease prevalence estimates. Chosen variants had been reported in literature or population databases. Functional testing was done by plasmid transient transfection and LAL activity assessment. We assembled a set of 165 published LAL deficient patient genotypes to evaluate this assay's effectiveness to recapitulate genotype/phenotype relationships. Rapidly progressive LAL deficient patients showed negligible enzymatic activity (<1%), whereas patients with childhood/adult LAL deficiency typically have 1-7% average activity. We benchmarked six in silico variant effect prediction algorithms with these functional data. PolyPhen-2 was shown to have a superior area under the receiver operating curve performance. We used functional data along with Genome Aggregation Database (gnomAD) allele frequencies to estimate LAL deficiency birth prevalence, yielding a range of 3.45-5.97 cases per million births in European-ancestry populations. The low estimate only considers functionally assayed variants in gnomAD. The high estimate computes allele frequencies for variants absent in gnomAD, and uses in silico scores for unassayed variants. Prevalence estimates are lower than previously published, underscoring LAL deficiency's rarity.
Collapse
Affiliation(s)
- Guillermo del Angel
- Strategy, Program Management and Data Science DepartmentAlexion Pharmaceuticals Inc.BostonMassachusetts
| | | | - Nina K. Jain
- Research DepartmentAlexion Pharmaceuticals Inc.BostonMassachusetts
| | - Chris D. Forbes
- Research DepartmentAlexion Pharmaceuticals Inc.BostonMassachusetts
| | - John Reynders
- Strategy, Program Management and Data Science DepartmentAlexion Pharmaceuticals Inc.BostonMassachusetts
| |
Collapse
|
21
|
Evans TD, Zhang X, Clark RE, Alisio A, Song E, Zhang H, Reilly MP, Stitziel NO, Razani B. Functional Characterization of LIPA (Lysosomal Acid Lipase) Variants Associated With Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2019; 39:2480-2491. [PMID: 31645127 DOI: 10.1161/atvbaha.119.313443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE LIPA (lysosomal acid lipase) mediates cholesteryl ester hydrolysis, and patients with rare loss-of-function mutations develop hypercholesterolemia and severe disease. Genome-wide association studies of coronary artery disease have identified several tightly linked, common intronic risk variants in LIPA which unexpectedly associate with increased mRNA expression. However, an exonic variant (rs1051338 resulting in T16P) in linkage with intronic variants lies in the signal peptide region and putatively disrupts trafficking. We sought to functionally investigate the net impact of this locus on LIPA and whether rs1051338 could disrupt LIPA processing and function to explain coronary artery disease risk. Approach and Results: In monocytes isolated from a large cohort of healthy individuals, we demonstrate both exonic and intronic risk variants are associated with increased LIPA enzyme activity coincident with the increased transcript levels. To functionally isolate the impact of rs1051338, we studied several in vitro overexpression systems and consistently observed no differences in LIPA expression, processing, activity, or secretion. Further, we characterized a second common exonic coding variant (rs1051339), which is predicted to alter LIPA signal peptide cleavage similarly to rs1051338, yet is not linked to intronic variants. rs1051339 also does not impact LIPA function in vitro and confers no coronary artery disease risk. CONCLUSIONS Our findings show that common LIPA exonic variants in the signal peptide are of minimal functional significance and suggest coronary artery disease risk is instead associated with increased LIPA function linked to intronic variants. Understanding the mechanisms and cell-specific contexts of LIPA function in the plaque is necessary to understand its association with cardiovascular risk.
Collapse
Affiliation(s)
- Trent D Evans
- From the Cardiovascular Division, Department of Medicine (T.D.E., X.Z., R.E.C., A.A., E.S., N.O.S., B.R.), Washington University in St. Louis School of Medicine, MO
| | - Xiangyu Zhang
- From the Cardiovascular Division, Department of Medicine (T.D.E., X.Z., R.E.C., A.A., E.S., N.O.S., B.R.), Washington University in St. Louis School of Medicine, MO
| | - Reece E Clark
- From the Cardiovascular Division, Department of Medicine (T.D.E., X.Z., R.E.C., A.A., E.S., N.O.S., B.R.), Washington University in St. Louis School of Medicine, MO
| | - Arturo Alisio
- From the Cardiovascular Division, Department of Medicine (T.D.E., X.Z., R.E.C., A.A., E.S., N.O.S., B.R.), Washington University in St. Louis School of Medicine, MO
| | - Eric Song
- From the Cardiovascular Division, Department of Medicine (T.D.E., X.Z., R.E.C., A.A., E.S., N.O.S., B.R.), Washington University in St. Louis School of Medicine, MO
| | - Hanrui Zhang
- Department of Medicine, Cardiology Division, Columbia University Medical Center, New York (H.Z., M.P.R.)
| | - Muredach P Reilly
- Department of Medicine, Cardiology Division, Columbia University Medical Center, New York (H.Z., M.P.R.).,Irving Institute for Clinical and Translational Research, Columbia University, New York (M.P.R.)
| | - Nathan O Stitziel
- From the Cardiovascular Division, Department of Medicine (T.D.E., X.Z., R.E.C., A.A., E.S., N.O.S., B.R.), Washington University in St. Louis School of Medicine, MO
| | - Babak Razani
- From the Cardiovascular Division, Department of Medicine (T.D.E., X.Z., R.E.C., A.A., E.S., N.O.S., B.R.), Washington University in St. Louis School of Medicine, MO.,Department of Pathology and Immunology (B.R.), Washington University in St. Louis School of Medicine, MO.,John Cochran VA Medical Center, St. Louis, MO (B.R.)
| |
Collapse
|
22
|
Evaluation of the role of STAP1 in Familial Hypercholesterolemia. Sci Rep 2019; 9:11995. [PMID: 31427613 PMCID: PMC6700100 DOI: 10.1038/s41598-019-48402-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/02/2019] [Indexed: 02/02/2023] Open
Abstract
Familial hypercholesterolemia (FH) is characterised by elevated serum levels of low-density lipoprotein cholesterol (LDL-C) and a substantial risk for cardiovascular disease. The autosomal-dominant FH is mostly caused by mutations in LDLR (low density lipoprotein receptor), APOB (apolipoprotein B), and PCSK9 (proprotein convertase subtilisin/kexin). Recently, STAP1 has been suggested as a fourth causative gene. We analyzed STAP1 in 75 hypercholesterolemic patients from Berlin, Germany, who are negative for mutations in canonical FH genes. In 10 patients with negative family history, we additionally screened for disease causing variants in LDLRAP1 (low density lipoprotein receptor adaptor protein 1), associated with autosomal-recessive hypercholesterolemia. We identified one STAP1 variant predicted to be disease causing. To evaluate association of serum lipid levels and STAP1 carrier status, we analyzed 20 individuals from a population based cohort, the Cooperative Health Research in South Tyrol (CHRIS) study, carrying rare STAP1 variants. Out of the same cohort we randomly selected 100 non-carriers as control. In the Berlin FH cohort STAP1 variants were rare. In the CHRIS cohort, we obtained no statistically significant differences between carriers and non-carriers of STAP1 variants with respect to lipid traits. Until such an association has been verified in more individuals with genetic variants in STAP1, we cannot estimate whether STAP1 generally is a causative gene for FH.
Collapse
|
23
|
Cebolla JJ, Irún P, Mozas P, Giraldo P. Evaluation of two approaches to lysosomal acid lipase deficiency patient identification: An observational retrospective study. Atherosclerosis 2019; 285:49-54. [PMID: 31004967 DOI: 10.1016/j.atherosclerosis.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Lysosomal acid lipase deficiency (LALD) leads to the accumulation of cholesteryl esters and/or triglycerides (TG) in lysosomes due to the lack of the enzyme codified by the LIPA gene. The most common symptoms are dyslipidaemia and hypertransaminasemia, together with manifestations common to other lysosomal storage disorders (LSDs), including visceromegalies and elevated plasma biomarkers. Alteration of the lipid-liver profile (LLP) has been widely applied as a criterion for LALD screening, but the usefulness of biomarkers has not yet been explored. Our purpose was to explore the utility of plasma chitotriosidase activity (ChT) and CCL18/PARC concentration in addition to LLP to identify LALD patients in an observational retrospective study of two different sample collections. METHODS Biological samples refining: Collection 1 (primary hypercholesterolemia suspected) included unrelated individuals with hyperlipidaemia and without LDLR, APOB and PCSK9 gene mutations (Set 1), and Collection 2 (LSD suspected) included individuals without definitive LSD diagnosis (Set 2). We assessed plasma LLP (total cholesterol and its fractions, TG concentration and transaminases activities), as well as plasma ChT and CCL18/PARC. All subjects with anomalous LLP and/or biomarker levels were LIPA sequenced. RESULTS Twenty-four subjects showed altered LLP and/or biomarkers. We identified two LALD patients (one homozygous and one compound heterozygous) and one carrier of a novel LIPA variant. CONCLUSIONS The measurement of plasma ChT and CCL18/PARC combined with LLP will be a useful approach to identifying LALD patients in retrospective LALD patient studies.
Collapse
Affiliation(s)
- Jorge J Cebolla
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), GIIS-012, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain; Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza, 50008, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, 50009, Spain.
| | - Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain
| | - Pilar Mozas
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Pilar Giraldo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), GIIS-012, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain; Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza, 50008, Spain
| |
Collapse
|
24
|
Abstract
The reduction of plasma apolipoprotein B (apoB) containing lipoproteins has long been pursued as the main modifiable risk factor for the development of cardiovascular disease (CVD). This has led to an intense search for strategies aiming at reducing plasma apoB-lipoproteins, culminating in reduction of overall CV risk. Despite 3 decades of progress, CVD remains the leading cause of morbidity and mortality worldwide and, as such, new therapeutic targets are still warranted. Clinical and preclinical research has moved forward from the original concept, under which some lipids must be accumulated and other removed to achieve the ideal condition in disease prevention, into the concept that mechanisms that orchestrate lipid movement between lipoproteins, cells and organelles is equally involved in CVD. As such, this review scrutinizes potentially atherogenic changes in lipid trafficking and assesses the molecular mechanisms behind it. New developments in risk assessment and new targets for the mitigation of residual CVD risk are also addressed.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil.
| | | | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
25
|
Strebinger G, Müller E, Feldman A, Aigner E. Lysosomal acid lipase deficiency - early diagnosis is the key. Hepat Med 2019; 11:79-88. [PMID: 31213932 PMCID: PMC6536894 DOI: 10.2147/hmer.s201630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/22/2019] [Indexed: 01/21/2023] Open
Abstract
Lysosomal acid lipase deficiency (LAL-D) is an ultra-rare lysosomal storage disease that may present from infancy to late adulthood depending on residual enzyme activity. While the severe form manifests as a rapidly progressive disease with near universal mortality within the first 6 months of life, milder forms frequently go undiagnosed for prolonged periods and typically present with progressive fatty liver disease, enlarged spleen, atherogenic dyslipidemia and premature atherosclerosis. The adult variant of LAL-D is typically diagnosed late or even overlooked due to the unspecific nature of the presenting symptoms, which are similar to common changes observed in the context of the metabolic syndrome. This review is aimed at delineating clinically useful scenarios in which pediatric or adult medicine clinicians should be aware of LAL-D as a differential diagnosis for selected patients. This is particularly relevant as a potentially life-saving enzyme replacement therapy has become available and the diagnosis can easily be ruled out or confirmed using a dried blood spot test.
Collapse
Affiliation(s)
- Georg Strebinger
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Elena Müller
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Feldman
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
26
|
Carter A, Brackley SM, Gao J, Mann JP. The global prevalence and genetic spectrum of lysosomal acid lipase deficiency: A rare condition that mimics NAFLD. J Hepatol 2019; 70:142-150. [PMID: 30315827 DOI: 10.1016/j.jhep.2018.09.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Lysosomal acid lipase deficiency (LAL-D) is an autosomal recessive condition that may present in a mild form (cholesteryl ester storage disease [CESD]), which mimics non-alcoholic fatty liver disease (NAFLD). It has been suggested that CESD may affect 1 in 40,000 and is under-diagnosed in NAFLD clinics. Therefore, we aimed to estimate the prevalence of LAL-D using analysis of genetic variation in LIPA. METHODS MEDLINE and EMBASE were systematically searched for previously reported disease variants and prevalence estimates. Previous prevalence estimates were meta-analysed. Disease variants in LIPA were annotated with allele frequencies from gnomAD and combined with unreported major functional variants found in humans. Pooled ethnicity-specific prevalences for LAL-D and CESD were calculated using the Hardy-Weinberg equation. RESULTS Meta-analysis of existing genetic studies estimated the prevalence of LAL-D as 1 per 160,000 (95% CI 1 per 65,025-761,652) using the allele frequency of c.894G>A in LIPA. A total of 98 previously reported disease variants in LIPA were identified, of which 32/98 were present in gnomAD, giving a prevalence of 1 per 307,482 (95% CI 257,672-366,865). Wolman disease was associated with more loss-of-function variants than CESD. When this was combined with 22 previously unreported major functional variants in LIPA identified in humans, the pooled prevalence of LAL-D was 1 per 177,452 (95% CI 149,467-210,683) with a carrier frequency of 1 per 421. The prevalence is lowest in those of East Asian, South Asian, and Finnish ancestry. CONCLUSION Using 120 disease variants in LIPA, these data can reassure clinicians that LAL-D is an ultra-rare disorder. Given the therapeutic capability of sebelipase alpha, investigation for LAL-D might be included in second-line metabolic screening in NAFLD. LAY SUMMARY Lysosomal Acid Lipase Deficiency (LAL-D) is a rare genetic condition that can cause severe liver disease, but it is difficult to diagnose and sometimes can look like simple fatty liver. It was not clear how common LAL-D was and whether many cases were being missed. To study this, we searched for all genetic mutations that could cause LAL-D, calculated how common those mutations were, and added them up. This let us estimate that LAL-D affects roughly 1 in 175,000 people. We conclude that LAL-D is a very rare condition, but it is treatable so may be included in a 'second-line' of tests for causes of fatty liver.
Collapse
Affiliation(s)
- Anna Carter
- Manchester University Foundation Trust, Manchester, United Kingdom
| | - Simon Mark Brackley
- University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Jiali Gao
- University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Jake Peter Mann
- University of Cambridge, Department of Paediatrics, Cambridge, United Kingdom; University of Cambridge, Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, United Kingdom.
| |
Collapse
|
27
|
Diagnostic Algorithm for Cholesteryl Ester Storage Disease: Clinical Presentation in 19 Polish Patients. J Pediatr Gastroenterol Nutr 2018; 67:452-457. [PMID: 29958253 DOI: 10.1097/mpg.0000000000002084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal lipid storage disorder that results in an early-onset, severe, and lethal phenotype, known as Wolman disease, or a late-onset, attenuated phenotype, cholesteryl ester storage disease (CESD). The aim of our study was to describe the clinical presentation of CESD, focusing on the first noted abnormalities in patients. A diagnostic algorithm of CESD was also proposed. METHODS This is an observational, 1-center study of 19 Polish patients with late-onset LAL-D. RESULTS The mean age at which the first symptoms were reported was 4 years and 6 months. A mild hepatomegaly was the most common initial abnormality observed in all (100%) patients. Seven (37%) patients were noted to have mildly to moderately elevated serum transaminases. At the time of first hospitalization all (100%) patients presented with hepatomegaly, 15 (79%) patients presented with elevated serum transaminases and all (100%) patients had dyslipidemia. The mean age at the time of CESD diagnosis was 7 years and 2 months. Diagnoses were based on a deficient LAL activity in leukocytes (in all patients) and the LIPA gene mutations (in 47% of them). All the patients were carriers for the mutation c.894G>A in the LIPA gene. There was approximately a 3-year delay from initial symptoms to final diagnosis. CONCLUSIONS Hepatomegaly constitutes the most common presenting clinical sign of CESD. Hepatomegaly and dyslipidemia defined as elevated serum total and LDL cholesterol, elevated triglycerides and normal to low HDL cholesterol, comprises the most characteristic findings at CESD diagnosis.
Collapse
|
28
|
Ashfield-Watt P, Haralambos K, Edwards R, Townsend D, Gingell R, Wa Li K, Humphries SE, McDowell I. Estimation of the prevalence of cholesteryl ester storage disorder in a cohort of patients with clinical features of familial hypercholesterolaemia. Ann Clin Biochem 2018; 56:112-117. [PMID: 30056760 DOI: 10.1177/0004563218793165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIM Familial hypercholesterolaemia is caused by variants in the low-density lipoprotein cholesterol metabolic pathway involving LDLR, APOB and PCSK9 genes. A national genetic testing service in Wales, UK has observed that no familial hypercholesterolaemia variant is found in almost 80% patients with the familial hypercholesterolaemia phenotype. It has recently been suggested that some adult patients with a familial hypercholesterolaemia phenotype may have cholesteryl ester storage disease which can also present as a mixed hyperlipidaemia. The commonest genetic cause of cholesteryl ester storage disease is an exon 8 splice junction variant in the LIPA gene (rs116928232, c.894G>A; E8SJM) previously found to have an allele frequency of 0.0011 (1 in 450 individuals) in a large European population. This study investigated the prevalence of the E8SJM in patients with a familial hypercholesterolaemia phenotype in Wales, UK. METHOD A total of 1203 patients with a clinical suspicion of familial hypercholesterolaemia but no familial hypercholesterolaemia variant were invited to participate. Of these, 668 patients provided informed written consent. Stored DNA samples from 663 patients were genotyped for the E8SJM variant. RESULTS Three heterozygotes were identified (allele frequency 0.0023). Whole gene sequencing of the LIPA gene was undertaken in these three individuals, but no other variants were found. Therefore, there were no cholesteryl ester storage disease patients (homozygote or compound heterozygote) identified in this cohort. CONCLUSION The allele frequency 0.0023 (1 in 221 individuals) for the E8SJM variant was more prevalent in this cohort than in a European population study; however, no cholesteryl ester storage disease homozygotes were identified. We found no evidence to support routine testing for cholesteryl ester storage disease in adult patients with a familial hypercholesterolaemia phenotype.
Collapse
Affiliation(s)
- Pauline Ashfield-Watt
- 1 FH Wales Research Team, Cardiff University, Wales Heart Research Institute, Cardiff, UK
| | - Kate Haralambos
- 1 FH Wales Research Team, Cardiff University, Wales Heart Research Institute, Cardiff, UK
| | - Rhiannon Edwards
- 2 All Wales FH Cascade Testing Service, All Wales Medical Genetics Service, Cardiff, UK
| | - Delyth Townsend
- 2 All Wales FH Cascade Testing Service, All Wales Medical Genetics Service, Cardiff, UK
| | - Rob Gingell
- 2 All Wales FH Cascade Testing Service, All Wales Medical Genetics Service, Cardiff, UK
| | - Kah Wa Li
- 3 Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Steve E Humphries
- 3 Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Ian McDowell
- 1 FH Wales Research Team, Cardiff University, Wales Heart Research Institute, Cardiff, UK
| |
Collapse
|
29
|
Sturm AC, Knowles JW, Gidding SS, Ahmad ZS, Ahmed CD, Ballantyne CM, Baum SJ, Bourbon M, Carrié A, Cuchel M, de Ferranti SD, Defesche JC, Freiberger T, Hershberger RE, Hovingh GK, Karayan L, Kastelein JJP, Kindt I, Lane SR, Leigh SE, Linton MF, Mata P, Neal WA, Nordestgaard BG, Santos RD, Harada-Shiba M, Sijbrands EJ, Stitziel NO, Yamashita S, Wilemon KA, Ledbetter DH, Rader DJ. Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. J Am Coll Cardiol 2018; 72:662-680. [PMID: 30071997 DOI: 10.1016/j.jacc.2018.05.044] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 01/01/2023]
Abstract
Although awareness of familial hypercholesterolemia (FH) is increasing, this common, potentially fatal, treatable condition remains underdiagnosed. Despite FH being a genetic disorder, genetic testing is rarely used. The Familial Hypercholesterolemia Foundation convened an international expert panel to assess the utility of FH genetic testing. The rationale includes the following: 1) facilitation of definitive diagnosis; 2) pathogenic variants indicate higher cardiovascular risk, which indicates the potential need for more aggressive lipid lowering; 3) increase in initiation of and adherence to therapy; and 4) cascade testing of at-risk relatives. The Expert Consensus Panel recommends that FH genetic testing become the standard of care for patients with definite or probable FH, as well as for their at-risk relatives. Testing should include the genes encoding the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9); other genes may also need to be considered for analysis based on patient phenotype. Expected outcomes include greater diagnoses, more effective cascade testing, initiation of therapies at earlier ages, and more accurate risk stratification.
Collapse
Affiliation(s)
- Amy C Sturm
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University, Stanford California; The Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Samuel S Gidding
- Nemours Cardiac Center, A.I. DuPont Hospital for Children, Wilmington, Delaware
| | - Zahid S Ahmad
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Seth J Baum
- The Familial Hypercholesterolemia Foundation, Pasadena, California; Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Mafalda Bourbon
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Alain Carrié
- Sorbonne Université and Centre de Génétique Moléculaire et Chromosomique, unité de Génétique de l'Obésitéet des dyslipidémies, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah D de Ferranti
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joep C Defesche
- Department of Clinical Genetics, Academic Medical Center at the University of Amsterdam, Amsterdam, the Netherlands
| | - Tomas Freiberger
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Ray E Hershberger
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Lala Karayan
- The Familial Hypercholesterolemia Foundation, Pasadena, California
| | | | - Iris Kindt
- The Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Stacey R Lane
- The Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Sarah E Leigh
- Bioinformatics, Genomics England, Queen Mary University of London, London, United Kingdom
| | - MacRae F Linton
- Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - William A Neal
- The Familial Hypercholesterolemia Foundation, Pasadena, California; Department of Pediatrics (Cardiology), West Virginia University, Morgantown, West Virginia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor) University of São Paulo Medical School Hospital and Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Eric J Sijbrands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nathan O Stitziel
- Department of Medicine, Division of Cardiology, Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Rinku General Medical Center, Osaka, Japan; Departments of Community Medicine and Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | - Daniel J Rader
- The Familial Hypercholesterolemia Foundation, Pasadena, California; Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
|
31
|
Real J, Arbona C, Goterris R, Ascaso JF. Management of homozygous familial hypercholesterolaemia in two brothers. BMJ Case Rep 2018; 2018:bcr-2017-222155. [PMID: 29306853 PMCID: PMC5775811 DOI: 10.1136/bcr-2017-222155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homozygous familial hypercholesterolaemia (HoFH) is a rare, genetic disorder of abnormally high levels of low-density lipoprotein cholesterol (LDL-C) requiring aggressive interventions to retard the evolution of atherosclerotic cardiovascular disease. We treated two brothers (ages 46 years and 47 years) with HoFH with statins, lipoproteinapheresis (LA) and the microsomal triglyceride transfer protein inhibitor lomitapide. Both brothers carried the p.Thr434Arg homozygous LDLR mutation and had childhood total cholesterol levels >700 mg/dL. Inter-LA LDL-C levels remained high; therefore, they were given escalating doses of oral lomitapide (5–10 mg/day). One brother was able to maintain LDL-C levels <70 mg/dL and stop LA. Lomitapide was well tolerated, with only an episode of headache requiring dose reduction from 40 mg/day to 20 mg/day in one patient. In two HoFH cases, lomitapide was an effective and well-tolerated adjunct therapy. Lomitapide doses required to maintain LDL-C goal levels appear to be lower in clinical practice than in clinical trials.
Collapse
Affiliation(s)
- José Real
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Cristina Arbona
- Apheresis Unit, Haematology Service, University of Valencia, Valencia, Spain
| | - Rosa Goterris
- Apheresis Unit, Haematology Service, University of Valencia, Valencia, Spain
| | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolaemia (FH) is an inherited disorder of low-density lipoprotein cholesterol (LDL-C) which is characterised by a raised cholesterol level from birth and a high risk of premature coronary heart disease. In this paper, we review the genetic basis of FH and its impact on the clinical presentation. RECENT FINDINGS Mutations in any of three genes (LDLR, APOB and PCSK9) are known to cause autosomal dominant FH, but a mutation can be found in only ∼40% of patients with a clinical diagnosis of FH. In the remainder, a polygenic aetiology is most likely, due to the co-inheritance of common LDL-C-raising variants. The cardiovascular presentation and management of FH will differ between patients based on their underlying genetic factors. New genotyping methods such as next-generation sequencing will provide us with better understanding of the genetic architecture of FH.
Collapse
Affiliation(s)
- Mahtab Sharifi
- Institute of Cardiovascular Science, University College London, 5 University St, London, WC1E 6JF, UK.,Department of Clinical Biochemistry, the Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Marta Futema
- Institute of Cardiovascular Science, University College London, 5 University St, London, WC1E 6JF, UK
| | - Devaki Nair
- Department of Clinical Biochemistry, the Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Steve E Humphries
- Institute of Cardiovascular Science, University College London, 5 University St, London, WC1E 6JF, UK.
| |
Collapse
|
33
|
Vázquez-Frias R, García-Ortiz J, Valencia-Mayoral P, Castro-Narro G, Medina-Bravo P, Santillán-Hernández Y, Flores-Calderón J, Mehta R, Arellano-Valdés C, Carbajal-Rodríguez L, Navarrete-Martínez J, Urbán-Reyes M, Valadez-Reyes M, Zárate-Mondragón F, Consuelo-Sánchez A. Mexican consensus on lysosomal acid lipase deficiency diagnosis. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2018. [DOI: 10.1016/j.rgmxen.2018.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
34
|
Vázquez-Frias R, García-Ortiz JE, Valencia-Mayoral PF, Castro-Narro GE, Medina-Bravo PG, Santillán-Hernández Y, Flores-Calderón J, Mehta R, Arellano-Valdés CA, Carbajal-Rodríguez L, Navarrete-Martínez JI, Urbán-Reyes ML, Valadez-Reyes MT, Zárate-Mondragón F, Consuelo-Sánchez A. Mexican consensus on lysosomal acid lipase deficiency diagnosis. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2018; 83:51-61. [PMID: 29287906 DOI: 10.1016/j.rgmx.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Lysosomal acid lipase deficiency (LAL-D) causes progressive cholesteryl ester and triglyceride accumulation in the lysosomes of hepatocytes and monocyte-macrophage system cells, resulting in a systemic disease with various manifestations that may go unnoticed. It is indispensable to recognize the deficiency, which can present in patients at any age, so that specific treatment can be given. The aim of the present review was to offer a guide for physicians in understanding the fundamental diagnostic aspects of LAL-D, to successfully aid in its identification. METHODS The review was designed by a group of Mexican experts and is presented as an orienting algorithm for the pediatrician, internist, gastroenterologist, endocrinologist, geneticist, pathologist, radiologist, and other specialists that could come across this disease in their patients. An up-to-date review of the literature in relation to the clinical manifestations of LAL-D and its diagnosis was performed. The statements were formulated based on said review and were then voted upon. The structured quantitative method employed for reaching consensus was the nominal group technique. RESULTS A practical algorithm of the diagnostic process in LAL-D patients was proposed, based on clinical and laboratory data indicative of the disease and in accordance with the consensus established for each recommendation. CONCLUSION The algorithm provides a sequence of clinical actions from different studies for optimizing the diagnostic process of patients suspected of having LAL-D.
Collapse
Affiliation(s)
- R Vázquez-Frias
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México, México
| | - J E García-Ortiz
- Centro de Investigación Biomédica de Occidente, CMNO-IMSS, Guadalajara, Jalisco, México
| | - P F Valencia-Mayoral
- Dirección de Planeación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México, México
| | - G E Castro-Narro
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - P G Medina-Bravo
- Departamento de Endocrinología, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México, México
| | - Y Santillán-Hernández
- Departamento de Genética, Centro Médico Nacional 20 de Noviembre, ISSSTE, Ciudad de México, México
| | - J Flores-Calderón
- Servicio de Gastroenterología, Hospital de Pediatría «Dr. Silvestre Frenk Freund», Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| | - R Mehta
- Departamento de Endocrinología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | - L Carbajal-Rodríguez
- Departamento de Medicina Interna, Instituto Nacional de Pediatría, Ciudad de México, México
| | - J I Navarrete-Martínez
- Departamento de Genética, Hospital Central Sur de Alta Especialidad de Petróleos Mexicanos, Ciudad de México, México
| | - M L Urbán-Reyes
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México, México
| | - M T Valadez-Reyes
- Departamento de Imagenología, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México, México
| | - F Zárate-Mondragón
- Departamento de Gastroenterología y Nutrición, Instituto Nacional de Pediatría, Ciudad de México, México
| | - A Consuelo-Sánchez
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México, México.
| |
Collapse
|
35
|
Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Dis Primers 2017; 3:17093. [PMID: 29219151 DOI: 10.1038/nrdp.2017.93] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Familial hypercholesterolaemia is a common inherited disorder characterized by abnormally elevated serum levels of low-density lipoprotein (LDL) cholesterol from birth, which in time can lead to cardiovascular disease (CVD). Most cases are caused by autosomal dominant mutations in LDLR, which encodes the LDL receptor, although mutations in other genes coding for proteins involved in cholesterol metabolism or LDLR function and processing, such as APOB and PCSK9, can also be causative, although less frequently. Several sets of diagnostic criteria for familial hypercholesterolaemia are available; common diagnostic features are an elevated LDL cholesterol level and a family history of hypercholesterolaemia or (premature) CVD. DNA-based methods to identify the underlying genetic defect are desirable but not essential for diagnosis. Cascade screening can contribute to early diagnosis of the disease in family members of an affected individual, which is crucial because familial hypercholesterolaemia can be asymptomatic for decades. Clinical severity depends on the nature of the gene that harbours the causative mutation, among other factors, and is further modulated by the type of mutation. Lifelong LDL cholesterol-lowering treatment substantially improves CVD-free survival and longevity. Statins are the first-line therapy, but additional drugs, such as ezetimibe, bile acid sequestrants, PCSK9 inhibitors and other emerging therapies, are often required.
Collapse
Affiliation(s)
- Joep C Defesche
- Department of Clinical Genetics, Academic Medical Centre, PO Box 22 660, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Samuel S Gidding
- Nemours Cardiac Center, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Robarts Research Institute, 4288A 1151 Richmond Street North, University of Western Ontario, N6A 5B7 London, Ontario, Canada
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil.,Preventive Medicine Centre and Cardiology Program Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Anthony S Wierzbicki
- Metabolic Medicine and Chemical Pathology, Guy's and St. Thomas' Hospitals, London, UK
| |
Collapse
|
36
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
37
|
Abstract
INTRODUCTION With the growing obesity epidemic, nonalcoholic fatty liver disease (NAFLD) is rapidly becoming one of the leading causes of liver disease worldwide. Although obesity is a main risk factor for the development of NAFLD, it can also develop in lean subjects and can be encountered in different clinical setting and in association with an array of genetic, metabolic, nutritional, infectious and drug-induced disorders. Areas covered: This article discusses causes of fatty liver in non-obese subjects focusing on Lysosomal acid lipase deficiency (LAL-D), a commonly overlooked disorder reviewing its prevalence, genetics, pathogenesis, clinical features, diagnosis and treatment. It will also review other causes of non-alcoholic fatty liver disease, which can be encountered in the absence of obesity and metabolic syndrome. Expert commentary: Although the prevalence of LAL-D has been estimated in the range of 1 in 40,000 and 1 in 300,000, this estimate is much more than the identified cases reported in the literature, which suggests that that the disease may be considerably under-diagnosed. There is a pressing need to educate clinicians about the disease, especially with the development of new promising therapeutic modalities.
Collapse
Affiliation(s)
- Hassan H A-Kader
- a Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics , The University of Arizona , Tucson , AZ , USA
| |
Collapse
|
38
|
Pericleous M, Kelly C, Wang T, Livingstone C, Ala A. Wolman's disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol 2017; 2:670-679. [PMID: 28786388 DOI: 10.1016/s2468-1253(17)30052-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
Lysosomal acid lipase deficiency is a rare, autosomal recessive condition caused by mutations in the gene encoding lysosomal acid lipase (LIPA) that result in reduced or absent activity of this essential enzyme. The severity of the resulting disease depends on the nature of the underlying mutation and magnitude of its effect on enzymatic function. Wolman's disease is a severe disorder that presents during infancy, resulting in failure to thrive, hepatomegaly, and hepatic failure, and an average life expectancy of less than 4 months. Cholesteryl ester storage disorder arises later in life and is less severe, although the two diseases share many common features, including dyslipidaemia and transaminitis. The prevalence of these diseases has been estimated at one in 40 000 to 300 000, but many cases are undiagnosed and unreported, and awareness among clinicians is low. Lysosomal acid lipase deficiency-which can be diagnosed using dry blood spot testing-is often misdiagnosed as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hereditary dyslipidaemia, or cryptogenic cirrhosis. There are no formal guidelines for treatment of these patients, and treatment options are limited. In this Review we appraise the existing literature on Wolman's disease and cholesteryl ester storage disease, and discuss available treatments, including enzyme replacement therapy, oral lipid-lowering therapy, stem-cell transplantation, and liver transplantation.
Collapse
Affiliation(s)
- Marinos Pericleous
- Department of Gastroenterology and Hepatology, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey, UK; Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - Claire Kelly
- Department of Gastroenterology and Hepatology, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey, UK; Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - Tim Wang
- Department of Clinical Biochemistry, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey, UK; School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, UK
| | - Callum Livingstone
- Department of Clinical Biochemistry, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey, UK; School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, UK
| | - Aftab Ala
- Department of Gastroenterology and Hepatology, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey, UK; Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
39
|
Buonuomo PS, Iughetti L, Pisciotta L, Rabacchi C, Papadia F, Bruzzi P, Tummolo A, Bartuli A, Cortese C, Bertolini S, Calandra S. Timely diagnosis of sitosterolemia by next generation sequencing in two children with severe hypercholesterolemia. Atherosclerosis 2017; 262:71-77. [DOI: 10.1016/j.atherosclerosis.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 01/27/2023]
|
40
|
Erwin AL. The role of sebelipase alfa in the treatment of lysosomal acid lipase deficiency. Therap Adv Gastroenterol 2017; 10:553-562. [PMID: 28804516 PMCID: PMC5484437 DOI: 10.1177/1756283x17705775] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/28/2017] [Indexed: 02/04/2023] Open
Abstract
Lysosomal acid lipase deficiency (LALD) is a lysosomal storage disorder (LSD) characterized either by infantile onset with fulminant clinical course and very poor prognosis or childhood/adult-onset disease with an attenuated phenotype. The disorder is often misdiagnosed or remains undiagnosed in children and adults due to a rather unspecific clinical presentation with dyslipidemia and steatohepatitis. Until recently, no good treatment options were available for LALD. Despite supportive and symptomatic therapies, death occurred before 1 year of age in patients with infantile-onset disease and patients with childhood/adult-onset LALD suffered from significant complications, such as liver cirrhosis, requiring liver transplantation and early-onset cardiovascular disease. With the recent approval of sebelipase alfa for clinical use in infantile- as well as childhood/adult-onset LALD, a new treatment era for this disorder has begun. Sebelipase alfa is a recombinant human lysosomal acid lipase (LAL), which is administered via the intravenous route. Clinical trials have shown significant improvement of disease parameters such as liver transaminases, hepatomegaly, and dyslipidemia in childhood/adult-onset LALD patients. Treatment of infants with the severe infantile-onset form of the disease has led to improved survival beyond the age of 1 year, and also showed improvement of hepatic and gastrointestinal symptoms, as well as growth. Overall, sebelipase alfa has a favorable safety profile and promises to be a good long-term treatment option for patients with LALD, with significant reduction of disease burden and increased life expectancy.
Collapse
Affiliation(s)
- Angelika L. Erwin
- Center for Personalized Genomic Healthcare, Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Ave, NE-50, Cleveland, OH 44195, USA
| |
Collapse
|
41
|
Abstract
Lysosomal acid lipase deficiency (LAL-D) is a rare, life-threatening, autosomal recessive, lysosomal storage disease caused by mutations in the LIPA gene, which encodes for lysosomal acid lipase (LAL). This enzyme is necessary for the hydrolysis of cholesteryl ester and triglyceride in lysosomes. Deficient LAL activity causes accumulation of these lipids in lysosomes and a marked decrease in the cytoplasmic free cholesterol concentration, leading to dysfunctional cholesterol homeostasis. The accumulation of neutral lipid occurs predominantly in liver, spleen, and macrophages throughout the body, and the aberrant cholesterol homeostasis causes a marked dyslipidemia. LAL-D is characterized by accelerated atherosclerotic cardiovascular disease (ASCVD) and hepatic microvesicular or mixed steatosis, leading to inflammation, fibrosis, cirrhosis and liver failure. LAL-D presents as a clinical continuum with two phenotypes: the infantile-onset phenotype, formally referred to as Wolman disease, and the later-onset phenotype, formerly referred to as cholesteryl ester storage disease. Infants with LAL-D present within the first few weeks of life with vomiting, diarrhea, hepatosplenomegaly, failure to thrive and rapid progression to liver failure and death by 6-12 months of age. Children and young adults with LAL-D generally present with marked dyslipidemia, hepatic enzyme elevation, hepatomegaly and mixed steatosis by liver biopsy. The average age of the initial signs and symptoms of the later-onset phenotype is about 5 years old. The typical dyslipidemia is a significantly elevated low-density lipoprotein cholesterol (LDL-C) concentration and a low high-density lipoprotein cholesterol (HDL-C) concentration, placing these individuals at heightened risk for premature ASCVD. Diagnosis of the later-onset phenotype of LAL-D requires a heightened awareness of the disease because the dyslipidemia and hepatic transaminase elevation combination are common and overlap with other metabolic disorders. LAL-D should be considered in the differential diagnosis of healthy weight children and young adults with unexplained hepatic transaminase elevation accompanied by an elevated LDL-C level (>160 mg/dL) and low HDL-C level (<35 mg/dL) that is not caused by monogenic and polygenic lipid disorders or secondary factors. Treatment of LAL-D with sebelipase alfa (LAL replacement enzyme) should be considered as the standard of treatment in all individuals diagnosed with LAL-D. Other ASCVD risk factors that may be present (hypertension, tobacco use, diabetes mellitus, etc.) should be managed appropriately, consistent with secondary prevention goals.
Collapse
Affiliation(s)
- James J Maciejko
- Division of Cardiology, St. John Hospital and Medical Center, 22101 Moross Road, Detroit, MI, 48236, USA.
- Department of Internal Medicine, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
42
|
Camarena C, Aldamiz-Echevarria LJ, Polo B, Barba Romero MA, García I, Cebolla JJ, Ros E. Update on lysosomal acid lipase deficiency: Diagnosis, treatment and patient management. Med Clin (Barc) 2017; 148:429.e1-429.e10. [PMID: 28285817 DOI: 10.1016/j.medcli.2016.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
Abstract
Lysosomal acid lipase deficiency (LALD) is an ultra-rare disease caused by a congenital disorder of the lipid metabolism, characterized by the deposition of cholesterol esters and triglycerides in the organism. In patients with no enzyme function, the disease develops during the perinatal period and is invariably associated with death during the first year of life. In all other cases, the phenotype is heterogeneous, although most patients develop chronic liver diseases and may also develop an early cardiovascular disease. Treatment for LALD has classically included the use of supportive measures that do not prevent the progression of the disease. In 2015, regulatory agencies approved the use of a human recombinant LAL for the treatment of LALD. This long-term enzyme replacement therapy has been associated with significant improvements in the hepatic and lipid profiles of patients with LALD, increasing survival rates in infants with a rapidly progressive disease. Both the severity of LALD and the availability of a specific treatment highlight the need to identify these patients in clinical settings, although its low prevalence and the existing clinical overlap with other more frequent pathologies limit its diagnosis. In this paper we set out practical recommendations to identify and monitor patients with LALD, including a diagnostic algorithm, along with an updated treatment.
Collapse
Affiliation(s)
- Carmen Camarena
- Servicio de Hepatología Infantil, Hospital La Paz, Madrid, España
| | - Luis J Aldamiz-Echevarria
- Unidad de Enfermedades Metabólicas Pediátricas, Hospital Universitario Cruces, Bilbao, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, España; CSUR de Enfermedades Metabólicas Congénitas, Ministerio de Sanidad, Madrid, España
| | - Begoña Polo
- Servicio de Gastroenterología y Hepatología Pediátrica, Hospital La Fe, Valencia, España
| | - Miguel A Barba Romero
- Servicio de Medicina Interna, Complejo Hospitalario y Universitario de Albacete, Universidad de Castilla-La Mancha, Albacete, España
| | - Inmaculada García
- Unidad de Enfermedades Metabólicas Pediátricas, Hospital Miguel Servet, Zaragoza, España
| | - Jorge J Cebolla
- Instituto de Investigación Sanitaria Aragón, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Emilio Ros
- Unidad de Lípidos, Servicio de Endocrinología y Nutrición, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, España.
| |
Collapse
|
43
|
Chora JR, Alves AC, Medeiros AM, Mariano C, Lobarinhas G, Guerra A, Mansilha H, Cortez-Pinto H, Bourbon M. Lysosomal acid lipase deficiency: A hidden disease among cohorts of familial hypercholesterolemia? J Clin Lipidol 2017; 11:477-484.e2. [PMID: 28502505 DOI: 10.1016/j.jacl.2016.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lysosomal acid lipase deficiency (LALD) is an autosomal recessive disorder and an unrecognized cause of dyslipidemia. Patients usually present with dyslipidemia and altered liver function and mutations in LIPA gene are the underlying cause of LALD. OBJECTIVE The aim of this study was to investigate LALD in individuals with severe dyslipidemia and/or liver steatosis. METHODS Coding, splice regions, and promoter region of LIPA were sequenced by Sanger sequencing in a cohort of mutation-negative familial hypercholesterolemia (FH) patients (n = 492) and in a population sample comprising individuals with several types of dyslipidemia and/or liver steatosis (n = 258). RESULTS This study led to the identification of LALD in 4 children referred to the Portuguese FH Study, all with a clinical diagnosis of FH. Mild liver dysfunction was present at the age of FH diagnosis; however, a diagnosis of LALD was not considered. No adults at the time of referral have been identified with LALD. CONCLUSION LALD is a life-threatening disorder, and early identification is crucial for the implementation of specific treatment to avoid premature mortality. FH cohorts should be investigated to identify possible LALD patients, who will need appropriate treatment. These results highlight the importance of correctly identifying the etiology of the dyslipidemia.
Collapse
Affiliation(s)
- Joana Rita Chora
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Ana Catarina Alves
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Ana Margarida Medeiros
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Cibelle Mariano
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Goreti Lobarinhas
- Serviço de Pediatria, Hospital de Santa Maria Maior, Barcelos, Portugal
| | - António Guerra
- Serviço de Pediatria, Centro Hospitalar de São João, Porto, Portugal; Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Helena Mansilha
- Serviço de Pediatria/Nutrição Pediátrica, Departamento da Infância e Adolescência, Centro Materno-Infantil do Norte (CMIN), Porto, Portugal
| | - Helena Cortez-Pinto
- Departamento de Gastrenterologia, Laboratório de Nutrição, Hospital Santa Maria, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Portugal
| | - Mafalda Bourbon
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
44
|
Valayannopoulos V, Mengel E, Brassier A, Grabowski G. Lysosomal acid lipase deficiency: Expanding differential diagnosis. Mol Genet Metab 2017; 120:62-66. [PMID: 27876313 DOI: 10.1016/j.ymgme.2016.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
The differential diagnoses for metabolic liver diseases may be challenging in clinical settings, which represents a critical issue for disorders such as lysosomal acid lipase deficiency (LAL-D). LAL-D is caused by deficient activity of the LAL enzyme, resulting in the accumulation of cholesteryl esters and triglycerides throughout the body, predominately in the liver, spleen, gastrointestinal tract, and blood vessel walls. LAL-D is a progressive, multi-organ disease with early mortality and significant morbidity characterized by a combination of hepatic dysfunction and dyslipidemia. Evidence suggests LAL-D may be substantially underdiagnosed or misdiagnosed, which is critical given that disease progression can be unpredictable, with liver failure and/or accelerated atherosclerosis potentially contributing to early mortality. However, given the development of a simple diagnostic test and recently approved treatment, LAL-D should be incorporated into the differential diagnosis in relevant clinical settings. LAL-D can be diagnosed using an LAL enzyme-based biochemical test, thereby allowing for active monitoring of patients to detect potential disease complications and consider treatment options including diet, lipid-lowering medication, and treatment with sebelipase alfa, a recombinant enzyme replacement therapy shown to provide clinical benefit and improve disease-relevant markers in clinical trials. To illustrate the complexity of diagnosing LAL-D, this manuscript will describe the path to diagnosing LAL-D in a series of patient cases in which LAL-D was diagnosed as well as in patients where other diseases, such as Gaucher disease and Niemann-Pick disease, were initially suspected.
Collapse
Affiliation(s)
- Vassili Valayannopoulos
- Hôpital Necker, Enfants Malades, Paris, France; Sanofi Genzyme Corporation, Cambridge, MA, USA.
| | - Eugen Mengel
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Anais Brassier
- Hôpital Necker, Enfants Malades, Paris, France; Sanofi Genzyme Corporation, Cambridge, MA, USA
| | | |
Collapse
|
45
|
Alkindi M, Siminovitch KA, Gupta M, Genest J. Monoclonal Antibodies for the Treatment of Hypercholesterolemia: Targeting PCSK9. Can J Cardiol 2016; 32:1552-1560. [DOI: 10.1016/j.cjca.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
|
46
|
Su K, Donaldson E, Sharma R. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa. Appl Clin Genet 2016; 9:157-167. [PMID: 27799810 PMCID: PMC5074735 DOI: 10.2147/tacg.s86760] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lysosomal acid lipase deficiency (LAL-D) is a rare disorder of cholesterol metabolism with an autosomal recessive mode of inheritance. The absence or deficiency of the LAL enzyme gives rise to pathological accumulation of cholesterol esters in various tissues. A severe LAL-D phenotype manifesting in infancy is associated with adrenal calcification and liver and gastrointestinal involvement with characteristic early mortality. LAL-D presenting in childhood and adulthood is associated with hepatomegaly, liver fibrosis, cirrhosis, and premature atherosclerosis. There are currently no curative pharmacological treatments for this life-threatening condition. Supportive management with lipid-modifying agents does not ameliorate disease progression. Hematopoietic stem cell transplantation as a curative measure in infantile disease has mixed success and is associated with inherent risks and complications. Sebelipase alfa (Kanuma) is a recombinant human LAL protein and the first enzyme replacement therapy for the treatment of LAL-D. Clinical trials have been undertaken in infants with rapidly progressive LAL-D and in children and adults with later-onset LAL-D. Initial data have shown significant survival benefits in the infant group and improvements in biochemical parameters in the latter. Sebelipase alfa has received marketing authorization in the United States and Europe as long-term therapy for all affected individuals. The availability of enzyme replacement therapy for this rare and progressive disorder warrants greater recognition and awareness by physicians.
Collapse
Affiliation(s)
- Kim Su
- Division of Gastroenterology/Hepatology
| | | | - Reena Sharma
- The Mark Holland Metabolic Unit, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| |
Collapse
|
47
|
Block RC, Razani B. Options to consider when treating lysosomal acid lipase deficiency. J Clin Lipidol 2016; 10:1280-1. [PMID: 27678449 DOI: 10.1016/j.jacl.2016.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Robert C Block
- Cardiology Division, Departments of Medicine and Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Babak Razani
- Cardiology Division, Departments of Medicine and Pathology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
48
|
Sjouke B, Defesche JC, de Randamie JSE, Wiegman A, Fouchier SW, Hovingh GK. Sequencing for LIPA mutations in patients with a clinical diagnosis of familial hypercholesterolemia. Atherosclerosis 2016; 251:263-265. [PMID: 27423329 DOI: 10.1016/j.atherosclerosis.2016.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS We recently identified lysosomal acid lipase (LAL) deficiency, a recessive disease caused by mutations in LIPA, in 3 patients with a clinical diagnosis of familial hypercholesterolemia (FH). We aimed to determine the prevalence of LIPA mutations among individuals with a clinical FH diagnosis. METHODS In 276 patients with phenotypic FH, in whom no genetic basis for their phenotype was found, LIPA was sequenced. All variants were assessed for pathogenicity using a literature search and in silico prediction models. RESULTS We included 213 adults and 63 children with mean (±SD) LDL-C levels of 7.8 ± 1.3 and 4.4 ± 1.5 mmol/L, respectively. Twenty-one variants were identified. Six patients were heterozygous carrier of a (potentially) pathogenic mutation. No homozygous LIPA mutation carriers were identified. CONCLUSIONS Our data show that LAL deficiency was not missed as diagnosis in our study population but the frequency of heterozygous LIPA mutations implies that the FH population might be relatively enriched with LIPA mutation carriers.
Collapse
Affiliation(s)
- Barbara Sjouke
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | - Joep C Defesche
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Albert Wiegman
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands
| | - Sigrid W Fouchier
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Diagnostic scoring for familial hypercholesterolaemia (FH) can be used either to screen for possible FH or guide the selection of patients for genetic (DNA) testing. We review the published diagnostic criteria and discuss the options for future development. RECENT FINDINGS Scoring systems have been developed internationally based on lipid values and various combinations of clinical signs and cardiovascular history. The predictive value varies according to the test population, be it lipid clinic referrals, general population, or relatives of patients with FH. Also, there is increasing recognition of genetic heterogeneity in FH so that criteria are of differing predictive value depending on the genetic variant of FH. SUMMARY These clinical scoring systems are increasingly used to guide selection of patients for FH genetic testing but no single approach has yet emerged as the system of choice. Further refinement of these scoring tools using more sophisticated calculators are superseding the more manual approaches. These are well suited to web-based tools or smartphone applications.
Collapse
Affiliation(s)
- Kate Haralambos
- aCardiff UniversitybCardiff and Vale University Health Board, Cardiff, UK
| | | | | |
Collapse
|
50
|
Wilson DP, de la Torre A, Brautbar A, Hamilton L. Screening for genetic mutations in children and adolescents with dyslipidemia: importance of early identification and implications of missed diagnoses. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1189824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Don P. Wilson
- Cardiovascular Health and Risk Reduction Program, Cook Children’s Medical Center, Fort Worth, TX, USA
| | - Alejandro de la Torre
- Cardiovascular Health and Risk Reduction Program, Cook Children’s Medical Center, Fort Worth, TX, USA
| | - Ariel Brautbar
- Cardiovascular Health and Risk Reduction Program, Cook Children’s Medical Center, Fort Worth, TX, USA
| | - Luke Hamilton
- Cardiovascular Health and Risk Reduction Program, Cook Children’s Medical Center, Fort Worth, TX, USA
| |
Collapse
|