1
|
Horton WB, Love KM, Gregory JM, Liu Z, Barrett EJ. Metabolic and vascular insulin resistance: partners in the pathogenesis of cardiovascular disease in diabetes. Am J Physiol Heart Circ Physiol 2025; 328:H1218-H1236. [PMID: 40257392 PMCID: PMC12172477 DOI: 10.1152/ajpheart.00826.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Vascular insulin resistance has emerged as a pivotal factor in the genesis of cardiovascular disease (CVD) in people with diabetes. It forms a complex pathogenic partnership with metabolic insulin resistance to significantly amplify the CVD risk of diabetes and other affected populations. Metabolic insulin resistance (characterized by quantitatively diminished insulin action on glucose metabolism in skeletal muscle, liver, and adipose tissue) is a hallmark of diabetes, obesity, and related conditions. In contrast, vascular insulin resistance is a less appreciated and not well-quantified complication of these conditions. Importantly, an impaired vascular response to insulin contributes directly to vascular dysfunction and over 40 years of research has convincingly shown that vascular and metabolic insulin resistance synergize to create an environment that predisposes individuals to CVD. In this review, we examine the multifaceted vascular actions of insulin, including its roles in regulating blood pressure, blood flow, endothelial health, and arterial stiffness. We also examine how these processes become disrupted in the setting of vascular insulin resistance, which subsequently undermines endothelial function, compromises tissue microvascular perfusion, and promotes vascular rigidity and atherosclerosis. We then highlight potential therapeutic strategies with demonstrated efficacy to improve vascular insulin sensitivity in people with diabetes and suggest that targeting disordered vascular insulin signaling holds promise not only for refining the functional understanding of vascular insulin resistance but also for developing innovative treatments with potential to reduce CVD risk and improve cardiovascular outcomes in people with diabetes.
Collapse
Affiliation(s)
- William B. Horton
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine; Charlottesville, VA
| | - Kaitlin M. Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine; Charlottesville, VA
| | - Justin M. Gregory
- Ian M. Burr Division of Pediatric Endocrinology and Diabetes, Vanderbilt University School of Medicine; Nashville, TN
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine; Charlottesville, VA
| | - Eugene J. Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine; Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine; Charlottesville, VA
| |
Collapse
|
2
|
Climente-González H, Oh M, Chajewska U, Hosseini R, Mukherjee S, Gan W, Traylor M, Hu S, Fatemifar G, Ghouse J, Del Villar PP, Vernet E, Koelling N, Du L, Abraham R, Li C, Howson JMM. Interpretable machine learning leverages proteomics to improve cardiovascular disease risk prediction and biomarker identification. COMMUNICATIONS MEDICINE 2025; 5:170. [PMID: 40389651 PMCID: PMC12089484 DOI: 10.1038/s43856-025-00872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) rank amongst the leading causes of long-term disability and mortality. Predicting CVD risk and identifying associated genes are crucial for prevention, early intervention, and drug discovery. The recent availability of UK Biobank Proteomics data enables investigation of blood proteins and their association with a variety of diseases. We sought to predict 10 year CVD risk using this data modality and known CVD risk factors. METHODS We focused on the UK Biobank participants that were included in the UK Biobank Pharma Proteomics Project. After applying exclusions, 50,057 participants were included, aged 40-69 years at recruitment. We employed the Explainable Boosting Machine (EBM), an interpretable machine learning model, to predict the 10 year risk of primary coronary artery disease, ischemic stroke or myocardial infarction. The model had access to 2978 features (2923 proteins and 55 risk factors). Model performance was evaluated using 10-fold cross-validation. RESULTS The EBM model using proteomics outperforms equation-based risk scores such as PREVENT, with a receiver operating characteristic curve (AUROC) of 0.767 and an area under the precision-recall curve (AUPRC) of 0.241; adding clinical features improves these figures to 0.785 and 0.284, respectively. Our models demonstrate consistent performance across sexes and ethnicities and provide insights into individualized disease risk predictions and underlying disease biology. CONCLUSIONS In conclusion, we present a more accurate and explanatory framework for proteomics data analysis, supporting future approaches that prioritize individualized disease risk prediction, and identification of target genes for drug development.
Collapse
Affiliation(s)
- Héctor Climente-González
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, The Innovation Building, Roosevelt Dr, Headington, Oxford, OX3 7FZ, United Kingdom.
| | - Min Oh
- Microsoft Corporation, 14820 NE 36th St, Redmond, WA, 98052, USA
| | | | - Roya Hosseini
- Microsoft Corporation, 14820 NE 36th St, Redmond, WA, 98052, USA
| | | | - Wei Gan
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, The Innovation Building, Roosevelt Dr, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Matthew Traylor
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, The Innovation Building, Roosevelt Dr, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Sile Hu
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, The Innovation Building, Roosevelt Dr, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Ghazaleh Fatemifar
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, The Innovation Building, Roosevelt Dr, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Jonas Ghouse
- Digital Science & Innovation, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Erik Vernet
- Digital Science & Innovation, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Nils Koelling
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, The Innovation Building, Roosevelt Dr, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Liang Du
- Microsoft Corporation, 14820 NE 36th St, Redmond, WA, 98052, USA
| | - Robin Abraham
- Microsoft Corporation, 14820 NE 36th St, Redmond, WA, 98052, USA
| | - Chuan Li
- Microsoft Corporation, 14820 NE 36th St, Redmond, WA, 98052, USA.
| | - Joanna M M Howson
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, The Innovation Building, Roosevelt Dr, Headington, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
Klersy T, Achner L, Fels B, Rezende F, Lopez M, Alenina N, Spiecker F, Stölting I, Häuser W, Reinberger T, Aherrahrou Z, Kuenne C, Vahldieck C, Matschl U, Hille S, Bader M, Brandes RP, Müller OJ, Kusche-Vihrog K, Raasch W. The anti-atherosclerotic effect of chronic AT1 receptor blocker treatment also depends on the ACE2/Ang(1-7)/Mas axis. Biomed Pharmacother 2025; 186:117990. [PMID: 40106968 DOI: 10.1016/j.biopha.2025.117990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Blockade of AT1-receptors by telmisartan (TEL) has anti-atherosclerotic efficacy. We investigated to what extent the ACE2/Ang1-7/Mas axis-dependent mechanism contributes to the TEL-induced protection of endothelial function. Atherosclerosis was induced in C57BL/6 N, Mas-knock out (ko), and Ace2-ko mice by AAV-PCSK9DY (2 ×1011 VG) injections plus Western diet (WD) feeding (12w). Mice were treated (12w) with TEL or vehicle. Controls received no PCSK9DY, chow-feeding, and vehicle-treatment. In the aortae of mice, the plaque burden was determined, RNAseq analyses were performed and functional properties were assessed by quantifying the mechanical properties of the endothelial surface by Atomic Force Microscopy. Regardless of strain, plaque burden and total cholesterol were increased upon AAV-PCSK9DY+WD but decreased by TEL. Cortical stiffness was also enhanced in all strains by AAV-PCSK9DY+WD but reduced under TEL only in the C57BL/6 N, while remaining still high in both knockout strains. Plasma NO negatively correlated with cortical stiffness in C57BL/6 N, but not in transgenic mice. TNFα plasma levels and aortic MMP12 expression was increased in PCSK9DY/WD vehicle-treated controls and was normalized by TEL in C57BL/6 N but not in Mas-ko and Ace2-ko mice. We conclude that TEL-induced reduction of endothelial stiffness occurred only in the C57BL/6 N but not in the Mas-ko and Ace2-ko mice. We suggest that the protective TEL effect is partly due to an Ang(1-7)/ACE2/Mas axis mediated mechanism. Since Mmp12 has well-known proatherogenic properties but was not altered in the two transgenic mouse lines, follow-up studies are required to further elucidate the correlation between Mmp12 and the Ang(1-7)/ACE2/Mas axis with respect to atherosclerosis.
Collapse
Affiliation(s)
- Tobias Klersy
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Leonie Achner
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Benedikt Fels
- Institute for Physiology, University Lübeck, Germany
| | - Flavia Rezende
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Germany; DZHK (German Center for Cardiovascular Research) Partner site Rhine-Main, Germany
| | - Melina Lopez
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Germany; DZHK (German Center for Cardiovascular Research) Partner site Rhine-Main, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Frauke Spiecker
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Walter Häuser
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University Lübeck; University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University Lübeck; University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Carsten Kuenne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Urte Matschl
- Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Susanne Hille
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Department of Internal Medicine V, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany; Center for Structural and Cell Biology in Medicine, Institute for Biology, University of Lübeck, Lübeck, Germany; Charité - University Medicine Berlin, Berlin, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Germany; DZHK (German Center for Cardiovascular Research) Partner site Rhine-Main, Germany
| | - Oliver J Müller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Department of Internal Medicine V, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Kristina Kusche-Vihrog
- Institute for Physiology, University Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Walter Raasch
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Germany.
| |
Collapse
|
4
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Zhou H, Kee HJ, Wan L, Asfaha Y, Fischer F, Kassack MU, Kurz T, Kim SH, Kee SJ, Hong YJ, Jeong MH. YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12. Korean Circ J 2025; 55:231-247. [PMID: 39601396 PMCID: PMC11922594 DOI: 10.4070/kcj.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism. METHODS New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area. The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12). RESULTS YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9-11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes. HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes. CONCLUSIONS YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
Collapse
Affiliation(s)
- Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.
| | - Le Wan
- Deparment of Orthopedics, Chonnam National University Hospital, Gwangju, Korea
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Seong Hoon Kim
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Gwangju Veterans Hospital, Gwangju, Korea.
| |
Collapse
|
6
|
ElKabbany ZA, Ismail EAR, Hamed ET, Elbarbary NS. The impact of vildagliptin as an add-on therapy on matrix metalloproteinase-14 levels, liver stiffness and subclinical atherosclerosis in adolescents with type 1 diabetes and non-alcoholic steatohepatitis: A randomized controlled trial. Diabetes Obes Metab 2024; 26:5857-5869. [PMID: 39318059 DOI: 10.1111/dom.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
AIM Many patients with type 1 diabetes mellitus (T1DM) met the histological criteria for non-alcoholic steatohepatitis (NASH), which leads to cardiovascular disease morbidity and mortality. Matrix metalloproteinase-14 (MMP-14) is involved in cardiovascular disease and atherosclerosis. OBJECTIVES To assess the impact of oral dipeptidyl peptidase-4 inhibitor, vildagliptin, as adjunctive therapy on NASH in adolescents with T1DM and its effect on glycaemic control, MMP-14 levels and carotid intima media thickness (CIMT). METHODS Sixty adolescents with T1DM and NASH were randomly assigned to receive oral vildagliptin (50 mg once daily) for 6 months or not. Glycated haemoglobin, lipid profile, hepatic steatosis index, triglyceride glucose (TyG) index and MMP-14 levels were assessed. Transient elastography with controlled attenuation parameter (CAP) was performed together with measuring CIMT. RESULTS By transient elastography, 12 (20%) patients with T1DM with NASH had elevated liver stiffness ≥7 kPa (F2 stage or higher). Baseline MMP-14 was positively correlated to insulin dose (p = 0.016), triglycerides and TyG index, CIMT, liver stiffness and CAP levels among the studied patients (p < 0.001 for all). After 6 months, patients with T1DM on vildagliptin therapy had significantly lower glycated haemoglobin, lipid profile, hepatic steatosis index and TyG index, as well as MMP-14 (p < 0.001). CIMT, liver stiffness and CAP were significantly decreased post-therapy compared with baseline levels and compared with the control group (p < 0.001). Vildagliptin was safe and well-tolerated. CONCLUSIONS Administration of vildagliptin for adolescents with T1DM and NASH improved glycaemic control, dyslipidaemia and MMP-14 levels and decreased liver stiffness and CIMT; hence, reducing subclinical atherosclerosis and disease progression.
Collapse
|
7
|
Chen L, Liao K, Zhang Y, Zheng S, He J, Tang H, Wu H, Zhong W, Li S, Li Y. Association of GWAS-Reported Variant of Matrix Metalloproteinase 12 Gene with Susceptibility to Ischemic Stroke in Southern Chinese Population. J Inflamm Res 2024; 17:9231-9241. [PMID: 39583862 PMCID: PMC11585993 DOI: 10.2147/jir.s487321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Background Accumulating evidence suggests that matrix metalloproteinase (MMP) 12 plays a detrimental role in cerebro-cardiovascular diseases, including ischemic stroke (IS). Previous genome-wide association studies (GWAS) correlated the MMP12 rs660599 variant to IS risk in Europeans. However, this association is yet to be elucidated in the Chinese population. This study aims to assess the genetic predisposition of the MMP12 rs660599 G > A variant with regard to IS risk and short-term outcomes in individuals from Southern China. Methods The Multiplex SNaPshot assay was used to genotype rs660599 in 1035 IS patients and 1061 age-matched healthy controls. Multivariate logistic regression analyses evaluated the effect of the rs660599 G > A polymorphism on IS susceptibility and short-term outcomes. Results No significant association was found between the rs660599 G > A polymorphism and IS risk, even in dominant and recessive models. However, a relationship between rs660599 genotypes and diabetic status revealed that carriers of the A allele and the GA/AA genotype were more likely to develop IS. The presence of diabetes exacerbated the larger infarct volumes and elevated serum MMP12 levels seen in IS patients with the rs660599 A allele. The A allele of rs660599 and the GA/AA genotype were both correlated to moderate and severe stroke with poor short-term outcomes. Conclusion The MMP12 rs660599 polymorphism is associated with a higher incidence of IS in people with diabetes and can serve as a biomarker for assessing the severity of IS and its short-term consequences.
Collapse
Affiliation(s)
- Linfa Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, People’s Republic of China
| | - Keqi Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yutian Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shutao Zheng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Jiawen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Henglei Tang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Hailing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
8
|
Titova OE, Yuan S, Byberg L, Baron JA, Lind L, Michaëlsson K, Larsson SC. Plasma proteome and incident myocardial infarction: sex-specific differences. Eur Heart J 2024; 45:4647-4657. [PMID: 39397782 PMCID: PMC11560279 DOI: 10.1093/eurheartj/ehae658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/12/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND AND AIMS Few population-based cohort studies, including both men and women, have explored circulating proteins associated with incident myocardial infarction (MI). This study investigated the relationships between circulating cardiometabolic-related proteins and MI risk using cohort-based and Mendelian randomization (MR) analyses and explored potential sex-specific differences. METHODS The discovery cohort included 11 751 Swedish adults (55-93 years). Data on 259 proteins assessed with Olink proximity extension assays, biochemical, and questionnaire-based information were used. Participants were followed up for incident MI and death over 8 years through linkage to Swedish registers. Replication analyses were conducted on the UK Biobank sample (n = 51 613). In MR analyses, index cis-genetic variants strongly related to the proteins were used as instrumental variables. Genetic association summary statistic data for MI were obtained from the CARDIoGRAMplusC4D consortium and FinnGen. RESULTS Forty-five proteins were associated with incident MI in discovery and replication samples following adjustment for potential confounders and multiple testing. In the secondary analysis, 13 of the protein associations were sex-specific, with most associations identified among women. In MR analysis, genetically predicted higher levels of renin, follistatin, and retinoic acid receptor responder protein 2 were linked to an increased risk of MI. Tissue factor pathway inhibitor, tumor necrosis factor receptors 1 and 2, placenta growth factor had an inverse association with MI. CONCLUSIONS This study identified both new and confirmed previously established associations between circulating proteins and incident MI and, for the first time, suggested sex-specific patterns in multiple protein-MI associations.
Collapse
Affiliation(s)
- Olga E Titova
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Dag Hammarskjölds väg 14 B, 75185, Uppsala, Sweden
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Liisa Byberg
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Dag Hammarskjölds väg 14 B, 75185, Uppsala, Sweden
| | - John A Baron
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Dag Hammarskjölds väg 14 B, 75185, Uppsala, Sweden
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lars Lind
- Unit of Cardiovascular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karl Michaëlsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Dag Hammarskjölds väg 14 B, 75185, Uppsala, Sweden
| | - Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Dag Hammarskjölds väg 14 B, 75185, Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
10
|
McHill AW, Melanson EL, Wright KP, Depner CM. Circadian misalignment disrupts biomarkers of cardiovascular disease risk and promotes a hypercoagulable state. Eur J Neurosci 2024; 60:5450-5466. [PMID: 39053917 DOI: 10.1111/ejn.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
The circadian system regulates 24-h time-of-day patterns of cardiovascular physiology, with circadian misalignment resulting in adverse cardiovascular risk. Although many proteins in the coagulation-fibrinolysis axis show 24-h time-of-day patterns, it is not understood if these temporal patterns are regulated by circadian or behavioral (e.g., sleep and food intake) cycles, or how circadian misalignment influences these patterns. Thus, we utilized a night shiftwork protocol to analyze circadian versus behavioral cycle regulation of 238 plasma proteins linked to cardiovascular physiology. Six healthy men aged 26.2 ± 5.6 years (mean ± SD) completed the protocol involving two baseline days with 8-h nighttime sleep opportunities (circadian alignment), a transition to shiftwork day, followed by 2 days of simulated night shiftwork with 8-h daytime sleep opportunities (circadian misalignment). Plasma was collected for proteomics every 4 h across 24 h during baseline and during daytime sleep and the second night shift. Cosinor analyses identified proteins with circadian or behavioral cycle-regulated 24-h time-of-day patterns. Five proteins were circadian regulated (plasminogen activator inhibitor-1, angiopoietin-2, insulin-like growth factor binding protein-4, follistatin-related protein-3, and endoplasmic reticulum resident protein-29). No cardiovascular-related proteins showed regulation by behavioral cycles. Within the coagulation pathway, circadian misalignment decreased tissue factor pathway inhibitor, increased tissue factor, and induced a 24-h time-of-day pattern in coagulation factor VII (all FDR < 0.10). Such changes in protein abundance are consistent with changes observed in hypercoagulable states. Our analyses identify circadian regulation of proteins involved in cardiovascular physiology and indicate that acute circadian misalignment could promote a hypercoagulable state, possibly contributing to elevated cardiovascular disease risk among shift workers.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward L Melanson
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth P Wright
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christopher M Depner
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Aizawa K, Hughes AD, Casanova F, Gooding KM, Gates PE, Mawson DM, Williams J, Goncalves I, Nilsson J, Khan F, Colhoun HM, Palombo C, Parker KH, Shore AC. Reservoir-excess pressure parameters are independently associated with NT-proBNP in older adults. ESC Heart Fail 2024; 11:3290-3298. [PMID: 38946623 PMCID: PMC11424359 DOI: 10.1002/ehf2.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
AIMS Parameters derived from reservoir-excess pressure analysis have been demonstrated to predict cardiovascular events. Thus, altered reservoir-excess pressure parameters could have a detrimental effect on highly-perfused organs like the heart. We aimed to cross-sectionally determine whether reservoir-excess pressure parameters were associated with N-terminal pro-brain-type natriuretic peptide (NT-proBNP) in older adults. METHODS We studied 868 older adults with diverse cardiovascular risk. Reservoir-excess pressure parameters were obtained through radial artery tonometry including reservoir pressure integral, peak reservoir pressure, excess pressure integral (INTXSP), systolic rate constant (SRC) and diastolic rate constant (DRC). Plasma levels of NT-proBNP, as a biomarker of cardiac overload, were analysed by the Proximity Extension Assay technology. RESULTS Multivariable linear regression analyses revealed that all reservoir-excess pressure parameters studied were associated with NT-proBNP after adjusting for age and sex. After further adjustments for conventional cardiovascular risk factors, INTXSP [β = 0.191 (95% confidence interval, CI: 0.099, 0.283), P < 0.001], SRC [β = -0.080 (95% CI: -0.141, -0.019), P = 0.010] and DRC [β = 0.138 (95% CI: 0.073, 0.202), P < 0.001] remained associated with NT-proBNP. Sensitivity analysis found that there were occasions where the association between SRC and NT-proBNP was attenuated, but both INTXSP and DRC remained consistently associated with NT-proBNP. CONCLUSIONS The observed associations between reservoir-excess pressure parameters and NT-proBNP suggest that altered reservoir-excess pressure parameters may reflect an increased load inflicted on the left ventricular cardiomyocytes and could have a potential to be utilized in the clinical setting for cardiovascular risk stratification.
Collapse
Affiliation(s)
- Kunihiko Aizawa
- Vascular Research Centre, NIHR Exeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
| | - Alun D. Hughes
- MRC unit for Lifelong Health and Ageing, Institute of Cardiovascular ScienceUniversity College LondonLondonUK
| | - Francesco Casanova
- Vascular Research Centre, NIHR Exeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
| | - Kim M. Gooding
- Vascular Research Centre, NIHR Exeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
| | - Phillip E. Gates
- Vascular Research Centre, NIHR Exeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
| | - David M. Mawson
- Vascular Research Centre, NIHR Exeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
| | - Jennifer Williams
- Vascular Research Centre, NIHR Exeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
| | - Isabel Goncalves
- Department of Clinical Sciences MalmöLund UniversityMalmöSweden
- Department of CardiologySkåne University HospitalMalmöSweden
| | - Jan Nilsson
- Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Faisel Khan
- Division of Systems MedicineUniversity of DundeeDundeeUK
| | - Helen M. Colhoun
- Centre for Genomic and Experimental MedicineUniversity of EdinburghEdinburghUK
| | - Carlo Palombo
- Department of Surgical, Medical, Molecular and Critical Area PathologyUniversity of PisaPisaItaly
| | - Kim H. Parker
- Department of BioengineeringImperial CollegeLondonUK
| | - Angela C. Shore
- Vascular Research Centre, NIHR Exeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
12
|
Han Y, Wang Y, Li S, Sato K, Yamagishi S. Exploration of the shared pathways and common biomarker in adamantinomatous craniopharyngioma and type 2 diabetes using integrated bioinformatics analysis. PLoS One 2024; 19:e0304404. [PMID: 38848397 PMCID: PMC11161051 DOI: 10.1371/journal.pone.0304404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Craniopharyngiomas are rare tumors of the central nervous system that typically present with symptoms such as headache and visual impairment, and those reflecting endocrine abnormalities, which seriously affect the quality of life of patients. Patients with craniopharyngiomas are at higher cardiometabolic risk, defined as conditions favoring the development of type 2 diabetes and cardiovascular disease. However, the underlying common pathogenic mechanisms of craniopharyngiomas and type 2 diabetes are not clear. Especially due to the difficulty of conducting in vitro or in vivo experiments on craniopharyngioma, we thought the common pathway analysis between craniopharyngioma and type 2 diabetes based on bioinformatics is a powerful and feasible method. In the present study, using public datasets (GSE94349, GSE68015, GSE38642 and GSE41762) obtained from the GEO database, the gene expression associated with adamantinomatous craniopharyngioma, a subtype of craniopharyngioma, and type 2 diabetes were analyzed using a bioinformatic approach. We found 11 hub genes using a protein-protein interaction network analysis. Of these, seven (DKK1, MMP12, KRT14, PLAU, WNT5B, IKBKB, and FGF19) were also identified by least absolute shrinkage and selection operator analysis. Finally, single-gene validation and receptor operating characteristic analysis revealed that four of these genes (MMP12, PLAU, KRT14, and DKK1) may be involved in the common pathogenetic mechanism of adamantinomatous craniopharyngioma and type 2 diabetes. In addition, we have characterized the differences in immune cell infiltration that characterize these two diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Yibo Han
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yong Wang
- Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuo Li
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
Di Gregoli K, Atkinson G, Williams H, George SJ, Johnson JL. Pharmacological Inhibition of MMP-12 Exerts Protective Effects on Angiotensin II-Induced Abdominal Aortic Aneurysms in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2024; 25:5809. [PMID: 38891996 PMCID: PMC11172660 DOI: 10.3390/ijms25115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Human abdominal aortic aneurysms (AAAs) are characterized by increased activity of matrix metalloproteinases (MMP), including MMP-12, alongside macrophage accumulation and elastin degradation, in conjunction with superimposed atherosclerosis. Previous genetic ablation studies have proposed contradictory roles for MMP-12 in AAA development. In this study, we aimed to elucidate if pharmacological inhibition of MMP-12 activity with a phosphinic peptide inhibitor protects from AAA formation and progression in angiotensin (Ang) II-infused Apoe-/- mice. Complimentary studies were conducted in a human ex vivo model of early aneurysm development. Administration of an MMP-12 inhibitor (RXP470.1) protected hypercholesterolemia Apoe-/- mice from Ang II-induced AAA formation and rupture-related death, associated with diminished medial thinning and elastin fragmentation alongside increased collagen deposition. Proteomic analyses confirmed a beneficial effect of MMP-12 inhibition on extracellular matrix remodeling proteins combined with inflammatory pathways. Furthermore, RXP470.1 treatment of mice with pre-existing AAAs exerted beneficial effects as observed through suppressed aortic dilation and rupture, medial thinning, and elastin destruction. Our findings indicate that pharmacological inhibition of MMP-12 activity retards AAA progression and improves survival in mice providing proof-of-concept evidence to motivate translational work for MMP-12 inhibitor therapy in humans.
Collapse
Affiliation(s)
| | | | | | | | - Jason L. Johnson
- Laboratory of Cardiovascular Pathology, Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (K.D.G.); (G.A.); (H.W.); (S.J.G.)
| |
Collapse
|
14
|
Ricci F, Larsson A, Ruge T, Galanti K, Hamrefors V, Sutton R, Olshansky B, Fedorowski A, Johansson M. Orthostatic hypotension is associated with higher levels of circulating endostatin. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae030. [PMID: 38708290 PMCID: PMC11068211 DOI: 10.1093/ehjopen/oeae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Aims The pathophysiology of orthostatic hypotension (OH), a common clinical condition, associated with adverse outcomes, is incompletely understood. We examined the relationship between OH and circulating endostatin, an endogenous angiogenesis inhibitor with antitumour effects proposed to be involved in blood pressure (BP) regulation. Methods and results We compared endostatin levels in 146 patients with OH and 150 controls. A commercial chemiluminescence sandwich immunoassay was used to measure circulating levels of endostatin. Linear and multivariate logistic regressions were conducted to test the association between endostatin and OH. Endostatin levels were significantly higher in OH patients (59 024 ± 2513 pg/mL) vs. controls (44 090 ± 1978pg/mL, P < 0.001). A positive linear correlation existed between endostatin and the magnitude of systolic BP decline upon standing (P < 0.001). Using multivariate analysis, endostatin was associated with OH (adjusted odds ratio per 10% increase of endostatin in the whole study population = 1.264, 95% confidence interval 1.141-1.402), regardless of age, sex, prevalent cancer, and cardiovascular disease, as well as traditional cardiovascular risk factors. Conclusion Circulating endostatin is elevated in patients with OH and may serve as a potential clinical marker of increased cardiovascular risk in patients with OH. Our findings call for external validation. Further research is warranted to clarify the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Department of Clinical Sciences, Lund University, Malmö, Sweden, Jan Waldenströms gata 35, 214 28 Malmö, Sweden
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G.d'Annunzio’ University of Chieti-Pescara, Chieti, Italy
- Heart Department, ‘SS Annunziata’ Polyclinic University Hospital, Chieti, Italy
| | - Anders Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Toralph Ruge
- Department of Clinical Sciences, Lund University, Malmö, Sweden, Jan Waldenströms gata 35, 214 28 Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Kristian Galanti
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G.d'Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | - Viktor Hamrefors
- Department of Clinical Sciences, Lund University, Malmö, Sweden, Jan Waldenströms gata 35, 214 28 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden, Jan Waldenströms gata 15, 214 28 Malmö, Sweden
| | - Richard Sutton
- Department of Cardiology, Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London, UK
| | - Brian Olshansky
- Division of Cardiology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, USA
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden, Jan Waldenströms gata 35, 214 28 Malmö, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Madeleine Johansson
- Department of Clinical Sciences, Lund University, Malmö, Sweden, Jan Waldenströms gata 35, 214 28 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden, Jan Waldenströms gata 15, 214 28 Malmö, Sweden
| |
Collapse
|
15
|
Chybowska AD, Gadd DA, Cheng Y, Bernabeu E, Campbell A, Walker RM, McIntosh AM, Wrobel N, Murphy L, Welsh P, Sattar N, Price JF, McCartney DL, Evans KL, Marioni RE. Epigenetic Contributions to Clinical Risk Prediction of Cardiovascular Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004265. [PMID: 38288591 PMCID: PMC10876178 DOI: 10.1161/circgen.123.004265] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/30/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is among the leading causes of death worldwide. The discovery of new omics biomarkers could help to improve risk stratification algorithms and expand our understanding of molecular pathways contributing to the disease. Here, ASSIGN-a cardiovascular risk prediction tool recommended for use in Scotland-was examined in tandem with epigenetic and proteomic features in risk prediction models in ≥12 657 participants from the Generation Scotland cohort. METHODS Previously generated DNA methylation-derived epigenetic scores (EpiScores) for 109 protein levels were considered, in addition to both measured levels and an EpiScore for cTnI (cardiac troponin I). The associations between individual protein EpiScores and the CVD risk were examined using Cox regression (ncases≥1274; ncontrols≥11 383) and visualized in a tailored R application. Splitting the cohort into independent training (n=6880) and test (n=3659) subsets, a composite CVD EpiScore was then developed. RESULTS Sixty-five protein EpiScores were associated with incident CVD independently of ASSIGN and the measured concentration of cTnI (P<0.05), over a follow-up of up to 16 years of electronic health record linkage. The most significant EpiScores were for proteins involved in metabolic, immune response, and tissue development/regeneration pathways. A composite CVD EpiScore (based on 45 protein EpiScores) was a significant predictor of CVD risk independent of ASSIGN and the concentration of cTnI (hazard ratio, 1.32; P=3.7×10-3; 0.3% increase in C-statistic). CONCLUSIONS EpiScores for circulating protein levels are associated with CVD risk independent of traditional risk factors and may increase our understanding of the etiology of the disease.
Collapse
Affiliation(s)
- Aleksandra D. Chybowska
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Danni A. Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Yipeng Cheng
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Rosie M. Walker
- School of Psychology, University of Exeter, United Kingdom (R.M.W.)
| | - Andrew M. McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital (A.M.M.), The University of Edinburgh, United Kingdom
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, Western General Hospital (N.W., L.M.), The University of Edinburgh, United Kingdom
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital (N.W., L.M.), The University of Edinburgh, United Kingdom
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (P.W., N.S.)
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (P.W., N.S.)
| | - Jackie F. Price
- Usher Institute, Old Medical School (J.F.P.), The University of Edinburgh, United Kingdom
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| |
Collapse
|
16
|
Genovese F, Gonçalves I, Holm Nielsen S, Karsdal MA, Edsfeldt A, Nilsson J, Shore AC, Natali A, Khan F, Shami A. Plasma levels of PRO-C3, a type III collagen synthesis marker, are associated with arterial stiffness and increased risk of cardiovascular death. Atherosclerosis 2024; 388:117420. [PMID: 38128431 DOI: 10.1016/j.atherosclerosis.2023.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND AIMS The N-terminal propeptide of type III collagen (PRO-C3) assay measures a pro-peptide released during type III collagen synthesis, an important feature of arterial stiffening and atherogenesis. There is a clinical need for improved non-invasive, cheap and easily accessible methods for evaluating individuals at risk of cardiovascular disease (CVD). In this study, we investigate the potential of using circulating levels of PRO-C3 to mark the degree of vascular stenosis and risk of cardiovascular events. METHODS Baseline plasma levels of PRO-C3 were measured by ELISA in subjects belonging to the SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) cohort (N = 1354). Associations between PRO-C3 levels with vascular characteristics, namely stiffness and stenosis, and risk of future cardiovascular events were explored. Subjects were followed up after a median of 35 months (interquartile range 34-36 months), with recorded outcomes cardiovascular death and all-cause mortality. RESULTS We found a correlation between PRO-C3 levels and pulse wave velocity (rho 0.13, p = 0.000009), a measurement of arterial stiffness. Higher PRO-C3 levels were also associated with elevated blood pressure (rho 0.07, p = 0.014), as well as risk of cardiovascular mortality over a three-year follow-up period (OR 1.56, confidence interval 1.008-2.43, p = 0.046). CONCLUSIONS Elevated circulating PRO-C3 levels are associated with arterial stiffness and future cardiovascular death, in the SUMMIT cohort, suggesting a potential value of PRO-C3 as a novel marker for declining vascular health.
Collapse
Affiliation(s)
| | - Isabel Gonçalves
- Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, 214 28, Malmö, Sweden; Dept. of Cardiology, Malmö, Skåne University Hospital, Lund University, Carl-Bertil Laurells Gata 9, 214 28, Malmö, Sweden
| | - Signe Holm Nielsen
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark; Biomedicine and Biotechnology, Technical University of Denmark, Søltofts Pl. 221, 2800, Kongens Lyngby, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Andreas Edsfeldt
- Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, 214 28, Malmö, Sweden; Dept. of Cardiology, Malmö, Skåne University Hospital, Lund University, Carl-Bertil Laurells Gata 9, 214 28, Malmö, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Klinikgatan 32, 221 84, Lund, Sweden
| | - Jan Nilsson
- Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, 214 28, Malmö, Sweden
| | - Angela C Shore
- Diabetes and Vascular Medicine, University of Exeter, Medical School, National Institute for Health Research Exeter Clinical Research Facility, Barrack Road, Exeter, EX2 5AX, UK
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 8, 56100, Pisa, Italy
| | - Faisel Khan
- Division of Systems Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Annelie Shami
- Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, 214 28, Malmö, Sweden.
| |
Collapse
|
17
|
Aizawa K, Gates PE, Mawson DM, Casanova F, Gooding KM, Hope SV, Goncalves I, Nilsson J, Khan F, Colhoun HM, Natali A, Palombo C, Shore AC. Type 2 diabetes exacerbates changes in blood pressure-independent arterial stiffness: cross-sectional and longitudinal evidence from the SUMMIT study. J Appl Physiol (1985) 2024; 136:13-22. [PMID: 37969084 PMCID: PMC11208039 DOI: 10.1152/japplphysiol.00283.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Greater central artery stiffness is observed in people with type 2 diabetes (T2DM). Elevated blood pressure (BP) and altered arterial wall structure/composition in T2DM are generally considered as main drivers for this alteration. However, because conventional arterial stiffness measures are BP-dependent and as such an influence of BP remains in a measure, it is unclear if greater central artery stiffness is a function of greater BP, or due to changes in the structure and composition of the arterial wall. We aimed to measure BP-independent arterial stiffness (β0) cross-sectionally and longitudinally in T2DM. We studied 753 adults with T2DM (DM+) and 436 adults without (DM-) at baseline (Phase 1), and 310 DM+ and 210 DM- adults at 3-yr follow-up (Phase 2). We measured carotid-femoral pulse wave velocity and used it to calculate β0. In Phase 1, β0 was significantly greater in DM+ than DM- after adjusting for age and sex [27.5 (26.6-28.3) vs. 23.6 (22.4-24.8) au, P < 0.001]. Partial correlation analyses after controlling for age and sex showed that β0 was significantly associated with hemoglobin A1c (r = 0.15 P < 0.001) and heart rate [(HR): r = 0.23 P < 0.001)] in DM+. In Phase 2, percentage-change in β0 was significantly greater in DM+ than DM- [19.5 (14.9-24.0) vs. 5.0 (-0.6 to 10.6) %, P < 0.001] after adjusting for age, sex, and baseline β0. β0 was greater in DM+ than DM- and increased much more in DM+ than in DM- over 3 yr. This suggests that T2DM exacerbates BP-independent arterial stiffness and may have a complemental utility to existing arterial stiffness indices.NEW & NOTEWORTHY We demonstrate in this study a greater BP-independent arterial stiffness β0 in people with type 2 diabetes (T2DM) compared to those without, and also a greater change in β0 over 3 yr in people with T2DM than those without. These findings suggest that the intrinsic properties of the arterial wall may change in a different and more detrimental way in people with T2DM and likely represents accumulation of cardiovascular risk.
Collapse
Affiliation(s)
- Kunihiko Aizawa
- Diabetes and Vascular Medicine Research Centre, NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Phillip E Gates
- Diabetes and Vascular Medicine Research Centre, NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - David M Mawson
- Diabetes and Vascular Medicine Research Centre, NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Francesco Casanova
- Diabetes and Vascular Medicine Research Centre, NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Kim M Gooding
- Diabetes and Vascular Medicine Research Centre, NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Suzy V Hope
- Diabetes and Vascular Medicine Research Centre, NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Faisel Khan
- Division of Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Helen M Colhoun
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Palombo
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Angela C Shore
- Diabetes and Vascular Medicine Research Centre, NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
18
|
Peabody JW, Paculdo D, de Belen E, Ganesan D, Cooney I, Trujillo N. Clinical utility of a novel test for assessing cardiovascular disease risk in type 2 diabetes: a randomized controlled trial. Diabetol Metab Syndr 2023; 15:155. [PMID: 37438853 DOI: 10.1186/s13098-023-01122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The risk for and treatment of cardiovascular disease (CVD) in type 2 diabetes (T2DM) is often incorrect and delayed. We wished to determine if a novel test improved physicians' ability to risk stratify, diagnose, and treat patients with T2DM. METHODS In a 2-phase randomized controlled trial comparing the clinical workup, diagnosis, and management of online, simulated patients with T2DM in a nationwide sample of cardiologists and primary care physicians, participants were randomly assigned to control or one of two intervention groups. Intervention participants had access to standard of care diagnostic tools plus a novel diagnostic CVD risk stratification test. RESULTS In control, there was no change in CV risk stratification of simulated patients between baseline and round 2 (37.1 to 38.3%, p = 0.778). Pre-post analysis showed significant improvements in risk stratification in both Intervention 1 (38.7 to 65.3%) and Intervention 2 (41.9 to 65.8%) (p < 0.01) compared to controls. Both intervention groups significantly increased prescribing SGLT2 inhibitors/GLP1 receptor agonists versus control, + 18.9% for Intervention 1 (p = 0.020) and 1 + 9.4% for Intervention 2 (p = 0.014). Non-pharmacologic treatment improved significantly compared to control (+ 30.0% in Intervention 1 (p < 0.001) and + 22.8% in Intervention 2 (p = 0.001). Finally, monitoring HgbA1C, blood pressure, and follow-up visit frequency improved by + 20.3% (p = 0.004) in Intervention 1 and + 29.8% (p < 0.001) in Intervention 2 compared with control. CONCLUSION Use of the novel test significantly improved CV risk stratification among T2DM patients. Statistically significant increases treatments were demonstrated, specifically SGLT2 inhibitors and GLP1 receptor antagonists and recommendations of evidence-based non-pharmacologic treatments. Trial registration ClinicalTrials.gov, NCT05237271.
Collapse
Affiliation(s)
- John W Peabody
- QURE Healthcare, 450 Pacific Ave., Suite 200, San Francisco, CA, 94133, USA.
- University of California, San Francisco, 550 16th Street, Third Floor, San Francisco, CA, USA.
- University of California, Los Angeles, 650 Charles E. Young Dr S, Los Angeles, CA, USA.
| | - David Paculdo
- QURE Healthcare, 450 Pacific Ave., Suite 200, San Francisco, CA, 94133, USA
| | - Enrico de Belen
- QURE Healthcare, 450 Pacific Ave., Suite 200, San Francisco, CA, 94133, USA
| | - Divya Ganesan
- QURE Healthcare, 450 Pacific Ave., Suite 200, San Francisco, CA, 94133, USA
| | - Isabella Cooney
- QURE Healthcare, 450 Pacific Ave., Suite 200, San Francisco, CA, 94133, USA
| | - Nelson Trujillo
- SomaLogic Operating Co., Inc., 2945 Wilderness Pl., Boulder, CO, USA
- Boulder Community Health, 4747 Arapahoe Ave., Boulder, CO, USA
| |
Collapse
|
19
|
Deo R, Dubin RF, Ren Y, Murthy AC, Wang J, Zheng H, Zheng Z, Feldman H, Shou H, Coresh J, Grams M, Surapaneni AL, Bhat Z, Cohen JB, Rahman M, He J, Saraf SL, Go AS, Kimmel PL, Vasan RS, Segal MR, Li H, Ganz P. Proteomic cardiovascular risk assessment in chronic kidney disease. Eur Heart J 2023; 44:2095-2110. [PMID: 37014015 PMCID: PMC10281556 DOI: 10.1093/eurheartj/ehad115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/21/2023] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
AIMS Chronic kidney disease (CKD) is widely prevalent and independently increases cardiovascular risk. Cardiovascular risk prediction tools derived in the general population perform poorly in CKD. Through large-scale proteomics discovery, this study aimed to create more accurate cardiovascular risk models. METHODS AND RESULTS Elastic net regression was used to derive a proteomic risk model for incident cardiovascular risk in 2182 participants from the Chronic Renal Insufficiency Cohort. The model was then validated in 485 participants from the Atherosclerosis Risk in Communities cohort. All participants had CKD and no history of cardiovascular disease at study baseline when ∼5000 proteins were measured. The proteomic risk model, which consisted of 32 proteins, was superior to both the 2013 ACC/AHA Pooled Cohort Equation and a modified Pooled Cohort Equation that included estimated glomerular filtrate rate. The Chronic Renal Insufficiency Cohort internal validation set demonstrated annualized receiver operating characteristic area under the curve values from 1 to 10 years ranging between 0.84 and 0.89 for the protein and 0.70 and 0.73 for the clinical models. Similar findings were observed in the Atherosclerosis Risk in Communities validation cohort. For nearly half of the individual proteins independently associated with cardiovascular risk, Mendelian randomization suggested a causal link to cardiovascular events or risk factors. Pathway analyses revealed enrichment of proteins involved in immunologic function, vascular and neuronal development, and hepatic fibrosis. CONCLUSION In two sizeable populations with CKD, a proteomic risk model for incident cardiovascular disease surpassed clinical risk models recommended in clinical practice, even after including estimated glomerular filtration rate. New biological insights may prioritize the development of therapeutic strategies for cardiovascular risk reduction in the CKD population.
Collapse
Affiliation(s)
- Rajat Deo
- Division of Cardiovascular Medicine, Electrophysiology Section, Perelman School of Medicine at the University of Pennsylvania, One Convention Avenue, Level 2 / City Side, Philadelphia, PA 19104, USA
| | - Ruth F Dubin
- Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yue Ren
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Ashwin C Murthy
- Division of Cardiovascular Medicine, Electrophysiology Section, Perelman School of Medicine at the University of Pennsylvania, One Convention Avenue, Level 2 / City Side, Philadelphia, PA 19104, USA
| | - Jianqiao Wang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Harold Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Josef Coresh
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University, 2024 E. Monument Street, Room 2-635, Suite 2-600, Baltimore, MD 21287, USA
| | - Morgan Grams
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University, 2024 E. Monument Street, Room 2-635, Suite 2-600, Baltimore, MD 21287, USA
| | - Aditya L Surapaneni
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Zeenat Bhat
- Division of Nephrology, University of Michigan, 5100 Brehm Tower, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Jordana B Cohen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, 831 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Mahboob Rahman
- Department of Medicine, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Wearn Bldg. 3 Floor. Rm 352, Cleveland, OH 44106, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, SL 18, New Orleans, LA 70112, USA
| | - Santosh L Saraf
- Division of Hematology and Oncology, University of Illinois at Chicago, 1740 West Taylor Street, Chicago, IL 60612, USA
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, USA
- Departments of Epidemiology, Biostatistics and Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Section of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Mark R Segal
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, 2nd Floor, Box #0560, San Francisco, CA 94143, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Peter Ganz
- Division of Cardiology, Zuckerberg San Francisco General Hospital and Department of Medicine, University of California, San Francisco, 1001 Potrero Avenue, 5G1, San Francisco, CA 94110, USA
| |
Collapse
|
20
|
Yuan S, Titova OE, Zhang K, Chen J, Li X, Klarin D, Åkesson A, Damrauer SM, VA Million Veteran Program, Larsson SC. Circulating proteins and peripheral artery disease risk: observational and Mendelian randomization analyses. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead056. [PMID: 37323297 PMCID: PMC10267302 DOI: 10.1093/ehjopen/oead056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Aims We conducted observational and Mendelian randomization (MR) analyses to explore the associations between blood proteins and risk of peripheral artery disease (PAD). Methods and results The observational cohort analyses included data on 257 proteins estimated in fasting blood samples from 12 136 Swedish adults aged 55-94 years who were followed up for incident PAD via the Swedish Patient Register. Mendelian randomization analyses were undertaken using cis-genetic variants strongly associated with the proteins as instrumental variables and genetic association summary statistic data for PAD from the FinnGen study (11 924 cases and 288 638 controls) and the Million Veteran Program (31 307 cases and 211 753 controls). The observational analysis, including 86 individuals diagnosed with incident PAD during a median follow-up of 6.6-year, identified 13 proteins [trefoil factor two, matrix metalloproteinase-12 (MMP-12), growth differentiation factor 15, V-set and immunoglobulin domain-containing protein two, N-terminal prohormone brain natriuretic peptide, renin, natriuretic peptides B, phosphoprotein associated with glycosphingolipid-enriched microdomains one, C-C motif chemokine 15, P-selectin, urokinase plasminogen activator surface receptor, angiopoietin-2, and C-type lectin domain family five member A] associated with the risk of PAD after multiple testing correction. Mendelian randomization analysis found associations of T-cell surface glycoprotein CD4, MMP-12, secretoglobin family 3A member 2, and ADM with PAD risk. The observational and MR associations for T-cell surface glycoprotein CD4 and MMP-12 were in opposite directions. Conclusion This study identified many circulating proteins in relation to the development of incident PAD. Future studies are needed to verify our findings and assess the predictive and therapeutic values of these proteins in PAD.
Collapse
Affiliation(s)
| | - Olga E Titova
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ke Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Derek Klarin
- VA Palo Alto Healthcare System, 4951 Arroyo Rd, Livermore, CA 94550, USA
- Department of Surgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 65 Solna, Stockholm, Sweden
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery & Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
21
|
Foster EG, Palermo NY, Liu Y, Edagwa B, Gendelman HE, Bade AN. Inhibition of matrix metalloproteinases by HIV-1 integrase strand transfer inhibitors. FRONTIERS IN TOXICOLOGY 2023; 5:1113032. [PMID: 36896351 PMCID: PMC9988942 DOI: 10.3389/ftox.2023.1113032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
More than fifteen million women with the human immunodeficiency virus type-1 (HIV-1) infection are of childbearing age world-wide. Due to improved and affordable access to antiretroviral therapy (ART), the number of in utero antiretroviral drug (ARV)-exposed children has exceeded a million and continues to grow. While most recommended ART taken during pregnancy suppresses mother to child viral transmission, the knowledge of drug safety linked to fetal neurodevelopment remains an area of active investigation. For example, few studies have suggested that ARV use can be associated with neural tube defects (NTDs) and most notably with the integrase strand transfer inhibitor (INSTI) dolutegravir (DTG). After risk benefit assessments, the World Health Organization (WHO) made recommendations for DTG usage as a first and second-line preferred treatment for infected populations including pregnant women and those of childbearing age. Nonetheless, long-term safety concerns remain for fetal health. This has led to a number of recent studies underscoring the need for biomarkers to elucidate potential mechanisms underlying long-term neurodevelopmental adverse events. With this goal in mind, we now report the inhibition of matrix metalloproteinases (MMPs) activities by INSTIs as an ARV class effect. Balanced MMPs activities play a crucial role in fetal neurodevelopment. Inhibition of MMPs activities by INSTIs during neurodevelopment could be a potential mechanism for adverse events. Thus, comprehensive molecular docking testing of the INSTIs, DTG, bictegravir (BIC), and cabotegravir (CAB), against twenty-three human MMPs showed broad-spectrum inhibition. With a metal chelating chemical property, each of the INSTI were shown to bind Zn++ at the MMP's catalytic domain leading to MMP inhibition but to variable binding energies. These results were validated in myeloid cell culture experiments demonstrating MMP-2 and 9 inhibitions by DTG, BIC and CAB and even at higher degree than doxycycline (DOX). Altogether, these data provide a potential mechanism for how INSTIs could affect fetal neurodevelopment.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nicholas Y. Palermo
- Computational Chemistry Core, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NeE, United States
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
22
|
Matrix Metalloproteinases in Cardioembolic Stroke: From Background to Complications. Int J Mol Sci 2023; 24:ijms24043628. [PMID: 36835040 PMCID: PMC9959608 DOI: 10.3390/ijms24043628] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases participating in physiological processes of the brain, maintaining the blood-brain barrier integrity and playing a critical role in cerebral ischemia. In the acute phase of stroke activity, the expression of MMPs increase and is associated with adverse effects, but in the post-stroke phase, MMPs contribute to the process of healing by remodeling tissue lesions. The imbalance between MMPs and their inhibitors results in excessive fibrosis associated with the enhanced risk of atrial fibrillation (AF), which is the main cause of cardioembolic strokes. MMPs activity disturbances were observed in the development of hypertension, diabetes, heart failure and vascular disease enclosed in CHA2DS2VASc score, the scale commonly used to evaluate the risk of thromboembolic complications risk in AF patients. MMPs involved in hemorrhagic complications of stroke and activated by reperfusion therapy may also worsen the stroke outcome. In the present review, we briefly summarize the role of MMPs in the ischemic stroke with particular consideration of the cardioembolic stroke and its complications. Moreover, we discuss the genetic background, regulation pathways, clinical risk factors and impact of MMPs on the clinical outcome.
Collapse
|
23
|
Exercise-induced responses in matrix metalloproteinases and osteopontin are not moderated by exercise format in males with overweight or obesity. Eur J Appl Physiol 2023; 123:1115-1124. [PMID: 36648516 PMCID: PMC10119240 DOI: 10.1007/s00421-023-05133-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Matrix metalloproteinase-2 (MMP-2) and -3 (MMP-3), and osteopontin (OPN) are associated with adipose-tissue expansion and development of metabolic disease. The purpose of the current study was to assess the circulating concentration of these markers, along with adiponectin and glucose concentrations, in response to acute exercise in individuals with overweight or obesity. METHODS Fourteen sedentary males with overweight or obesity (29.0 ± 3.1 kg/m2) completed two separate, 3-day trials in randomised and counterbalanced order. An oral glucose tolerance test (OGTT) was performed on each day of the trial. Day two of each trial consisted of a single 30 min workload-matched bout of either high-intensity interval exercise (HIIE; alternating 100% and 50% of peak pulmonary oxygen uptake, [Formula: see text]O2peak) or continuous moderate intensity (CME; 60% [Formula: see text]O2peak) cycling completed 1 h prior to the OGTT. Glucose and physical activity were continuously monitored, while MMP-2, MMP-3, OPN and adiponectin were measured pre-, 0 h post-, 1 h post- and 25 h post-exercise. RESULTS Exercise transiently increased MMP-3 and decreased OPN (both p < 0.01), but not MMP-2 or adiponectin. There were no differences in the response of inflammatory markers to the different exercise formats. Exercise increased mean daily glucose concentration and area under the glucose curve during the OGTT on Day 2 and Day 3 (main effect of time; p < 0.05). CONCLUSION Acute cycling exercise decreased OPN, which is consistent with longer term improvements in cardiometabolic health and increased MMP-3, which is consistent with its role in tissue remodelling. Interestingly, exercise performed prior to the morning OGTT augmented the glucose concentrations in males. TRIAL REGISTRATION ACTRN12613001086752.
Collapse
|
24
|
Banerjee S, Tiwari A, Kar A, Chanda J, Biswas S, Ulrich-Merzenich G, Mukherjee PK. Combining LC-MS/MS profiles with network pharmacology to predict molecular mechanisms of the hyperlipidemic activity of Lagenaria siceraria stand. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115633. [PMID: 36031104 DOI: 10.1016/j.jep.2022.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/24/2022] [Accepted: 08/06/2022] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lagenaria siceraria Stand. (Family: Cucurbitaceae), popularly known as bottle gourd, is traditionally used in Ayurvedic medicine as a food plant, especially in hypertension and obesity. AIM OF THE STUDY Investigations were undertaken to assign novel lead combinations from this common food plant to multi-molecular modes of actions in the complex disease networks of obesity and hypertension. LC-MS/MS based metabolite screening, in-vivo high fat diet induced hyperlipidemia animal study and network pharmacology explorations of the mechanism of action for lipid lowering effects including a neighbourhood community approach for molecular combinations were performed. MATERIAL AND METHODS Major chemical constituents of the fruits of LS (LSFE) were analysed by HPLC-DAD-MS/MS-QTOF. Wistar albino rats (n = 36), divided into 6 groups (n = 6) received either no treatment or a high-fat diet along with LSFE or Atorvastatin. Lipid profiles and biochemical parameters were evaluated. In silico cross-validated network analyses using different databases and Cytospace were applied. RESULTS Profiling of LSFE revealed 18 major constituents: phenolic acids like p-Coumaric acid and Ferulic acid, the monolignolconferyl alcohol, the flavonoid glycosides hesperidin and apigenin-7-glucoside. Hyperlipidemic animals treated with LSFE (200 mg/kg, 400 mg/kg, 600 mg/kg) showed a significant improvement of their lipid profiles after 30 days of treatment. Network pharmacology analyses for the major 18 compounds revealed enrichment of the insulin and the ErbB signalling pathway. Novel target node combinations (e.g. AKR1C1, AGXT) including their connection to different pathways were identified in silico. CONCLUSIONS The combined in vivo and bioinformatics analyses propose that lead compounds of LSFE act in combination on relevant targets of hyperlipidemia. Perturbations of the IRS→Akt→Foxo1 cascade are predicted which suggest further clinical investigation towards development of safe natural alternative to manage hyperlipidemia.
Collapse
Affiliation(s)
- Subhadip Banerjee
- School of Natural Product Studies, Dept. of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Amrendra Tiwari
- School of Natural Product Studies, Dept. of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal, 795001, India.
| | - Joydeb Chanda
- School of Natural Product Studies, Dept. of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sayan Biswas
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal, 795001, India.
| | - Gudrun Ulrich-Merzenich
- University Hospital Bonn (UKB), Medical Clinic III, AG Synergy Research and Experimental, Medicine, D 53127, Bonn, Germany.
| | - Pulok K Mukherjee
- School of Natural Product Studies, Dept. of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal, 795001, India.
| |
Collapse
|
25
|
Mieczkowski M, Mrozikiewicz-Rakowska B, Kowara M, Kleibert M, Czupryniak L. The Problem of Wound Healing in Diabetes—From Molecular Pathways to the Design of an Animal Model. Int J Mol Sci 2022; 23:ijms23147930. [PMID: 35887276 PMCID: PMC9319250 DOI: 10.3390/ijms23147930] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds are becoming an increasingly common clinical problem due to an aging population and an increased incidence of diabetes, atherosclerosis, and venous insufficiency, which are the conditions that impair and delay the healing process. Patients with diabetes constitute a group of subjects in whom the healing process is particularly prolonged regardless of its initial etiology. Circulatory dysfunction, both at the microvascular and macrovascular levels, is a leading factor in delaying or precluding wound healing in diabetes. The prolonged period of wound healing increases the risk of complications such as the development of infection, including sepsis and even amputation. Currently, many substances applied topically or systemically are supposed to accelerate the process of wound regeneration and finally wound closure. The role of clinical trials and preclinical studies, including research based on animal models, is to create safe medicinal products and ensure the fastest possible healing. To achieve this goal and minimize the wide-ranging burdens associated with conducting clinical trials, a correct animal model is needed to replicate the wound conditions in patients with diabetes as closely as possible. The aim of the paper is to summarize the most important molecular pathways which are impaired in the hyperglycemic state in the context of designing an animal model of diabetic chronic wounds. The authors focus on research optimization, including economic aspects and model reproducibility, as well as the ethical dimension of minimizing the suffering of research subjects according to the 3 Rs principle (Replacement, Reduction, Refinement).
Collapse
Affiliation(s)
- Mateusz Mieczkowski
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
- Correspondence:
| | - Michał Kowara
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Marcin Kleibert
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Leszek Czupryniak
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
| |
Collapse
|
26
|
Khan F, Gonçalves I, Shore AC, Natali A, Palombo C, Colhoun HM, Östling G, Casanova F, Kennbäck C, Aizawa K, Persson M, Gooding KM, Strain D, Looker H, Dove F, Belch J, Pinnola S, Venturi E, Kozakova M, Nilsson J. Plaque characteristics and biomarkers predicting regression and progression of carotid atherosclerosis. Cell Rep Med 2022; 3:100676. [PMID: 35858591 PMCID: PMC9381367 DOI: 10.1016/j.xcrm.2022.100676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/10/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The factors that influence the atherosclerotic disease process in high-risk individuals remain poorly understood. Here, we used a combination of vascular imaging, risk factor assessment, and biomarkers to identify factors associated with 3-year change in carotid disease severity in a cohort of high-risk subjects treated with preventive therapy (n = 865). The results show that changes in intima-media thickness (IMT) are most pronounced in the carotid bulb. Progression of bulb IMT demonstrates independent associations with baseline bulb IMT, the plaque gray scale median (GSM), and the plasma level of platelet-derived growth factor (PDGF) (standardized β-coefficients and 95% confidence interval [CI] −0.14 [−0.06 to −0.02] p = 0.001, 0.15 [0.02–0.07] p = 0.001, and 0.20 [0.03–0.07] p < 0.001, respectively). Plasma PDGF correlates with the plaque GSM (0.23 [0.15–0.29] p < 0.001). These observations provide insight into the atherosclerotic process in high-risk subjects by showing that progression primarily occurs in fibrotic plaques and is associated with increased levels of PDGF. High age, male gender, and smoking increases risk of carotid disease progression Plaques that progress are more echogenic, indicating an increased degree of fibrosis Progression is associated with high plasma levels of pro-fibrotic growth factors Regression is most common in large, less fibrotic plaques
Collapse
Affiliation(s)
- Faisel Khan
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Angela C Shore
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Palombo
- Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Gerd Östling
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Francesco Casanova
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - Cecilia Kennbäck
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Kunihiko Aizawa
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | | | - Kim M Gooding
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - David Strain
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - Helen Looker
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Fiona Dove
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Jill Belch
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Silvia Pinnola
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Venturi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| |
Collapse
|
27
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
28
|
Li Z, Gurung M, Rodrigues RR, Padiadpu J, Newman NK, Manes NP, Pederson JW, Greer RL, Vasquez-Perez S, You H, Hioki KA, Moulton Z, Fel A, De Nardo D, Dzutsev AK, Nita-Lazar A, Trinchieri G, Shulzhenko N, Morgun A. Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by Mmp12+ macrophages. J Exp Med 2022; 219:213260. [PMID: 35657352 PMCID: PMC9170383 DOI: 10.1084/jem.20220017] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023] Open
Abstract
Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3-dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.
Collapse
Affiliation(s)
- Zhipeng Li
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR,Shanghai Mengniu Biotechnology R&D Co., Ltd., Shanghai, China
| | - Manoj Gurung
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Richard R. Rodrigues
- College of Pharmacy, Oregon State University, Corvallis, OR,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Nathan P. Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jacob W. Pederson
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Renee L. Greer
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | | | - Hyekyoung You
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Kaito A. Hioki
- College of Pharmacy, Oregon State University, Corvallis, OR
| | - Zoe Moulton
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Anna Fel
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Dominic De Nardo
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,Giorgio Trinchieri:
| | - Natalia Shulzhenko
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR,Correspondence to Natalia Shulzhenko:
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR,Andrey Morgun:
| |
Collapse
|
29
|
Williams SA, Ostroff R, Hinterberg MA, Coresh J, Ballantyne CM, Matsushita K, Mueller CE, Walter J, Jonasson C, Holman RR, Shah SH, Sattar N, Taylor R, Lean ME, Kato S, Shimokawa H, Sakata Y, Nochioka K, Parikh CR, Coca SG, Omland T, Chadwick J, Astling D, Hagar Y, Kureshi N, Loupy K, Paterson C, Primus J, Simpson M, Trujillo NP, Ganz P. A proteomic surrogate for cardiovascular outcomes that is sensitive to multiple mechanisms of change in risk. Sci Transl Med 2022; 14:eabj9625. [PMID: 35385337 DOI: 10.1126/scitranslmed.abj9625] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A reliable, individualized, and dynamic surrogate of cardiovascular risk, synoptic for key biologic mechanisms, could shorten the path for drug development, enhance drug cost-effectiveness and improve patient outcomes. We used highly multiplexed proteomics to address these objectives, measuring about 5000 proteins in each of 32,130 archived plasma samples from 22,849 participants in nine clinical studies. We used machine learning to derive a 27-protein model predicting 4-year likelihood of myocardial infarction, stroke, heart failure, or death. The 27 proteins encompassed 10 biologic systems, and 12 were associated with relevant causal genetic traits. We independently validated results in 11,609 participants. Compared to a clinical model, the ratio of observed events in quintile 5 to quintile 1 was 6.7 for proteins versus 2.9 for the clinical model, AUCs (95% CI) were 0.73 (0.72 to 0.74) versus 0.64 (0.62 to 0.65), c-statistics were 0.71 (0.69 to 0.72) versus 0.62 (0.60 to 0.63), and the net reclassification index was +0.43. Adding the clinical model to the proteins only improved discrimination metrics by 0.01 to 0.02. Event rates in four predefined protein risk categories were 5.6, 11.2, 20.0, and 43.4% within 4 years; median time to event was 1.71 years. Protein predictions were directionally concordant with changed outcomes. Adverse risks were predicted for aging, approaching an event, anthracycline chemotherapy, diabetes, smoking, rheumatoid arthritis, cancer history, cardiovascular disease, high systolic blood pressure, and lipids. Reduced risks were predicted for weight loss and exenatide. The 27-protein model has potential as a "universal" surrogate end point for cardiovascular risk.
Collapse
Affiliation(s)
| | | | | | - Josef Coresh
- Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Christian E Mueller
- Cardiovascular Research Institute, University of Basel, Basel 4001, Switzerland
| | - Joan Walter
- Cardiovascular Research Institute, University of Basel, Basel 4001, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich 7491, Switzerland
| | - Christian Jonasson
- Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Svati H Shah
- Division of Cardiology, Duke Department of Medicine, and Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roy Taylor
- Newcastle Magnetic Resonance Centre, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
| | - Michael E Lean
- School of Medicine, Nursing and Dentistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Hiroaki Shimokawa
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan.,Graduate School, International University of Health and Welfare, Narita 286-8686, Japan
| | - Yasuhiko Sakata
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Kotaro Nochioka
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | | | - Steven G Coca
- Mt Sinai Clinical and Translational Science Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Torbjørn Omland
- Department of Cardiology, Akershus University Hospital and University of Oslo, Oslo 1478, Norway
| | | | | | | | | | | | | | | | | | | | - Peter Ganz
- Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
30
|
Chakravarty D, Ray AG, Chander V, Mabalirajan U, Mondal PC, Siddiqui KN, Sinha BP, Konar A, Bandyopadhyay A. Systemic deficiency of vitronectin is associated with aortic inflammation and plaque progression in ApoE-Knockout mice. FASEB Bioadv 2022; 4:121-137. [PMID: 35141476 PMCID: PMC8814562 DOI: 10.1096/fba.2021-00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
Optimal cell spreading and interplay of vascular smooth muscle cells (VSMC), inflammatory cells, and cell adhesion molecules (CAM) are critical for progressive atherosclerosis and cardiovascular complications. The role of vitronectin (VTN), a major cell attachment glycoprotein, in the pathogenesis of atherosclerosis remains elusive. In this study, we attempt to examine the pathological role of VTN in arterial plaque progression and inflammation. We found that, relative expression analysis of VTN from the liver of Apolipoprotein E (ApoE) Knockout mice revealed that atherosclerotic progression induced by feeding mice with high cholesterol diet (HCD) causes a significant downregulation of VTN mRNA as well as protein after 60 days. Promoter assay confirmed that cholesterol modulates the expression of VTN by influencing its promoter. Mimicking VTN reduction with siRNA in HCD fed ApoE Knockout mice, accelerated athero-inflammation with an increase in NF-kB, ICAM-1, and VCAM-1 at the site of the plaque along with upregulation of inflammatory proteins like MCP-1 and IL-1β in the plasma. Also, matrix metalloprotease (MMP)-9 and MMP-12 expression were increased and collagen content was decreased in the plaque, in VTN deficient condition. This might pose a challenge to plaque integrity. Human subjects with acute coronary syndrome or having risk factors of atherosclerosis have lower levels of VTN compared to healthy controls suggesting a clinical significance of plasma VTN in the pathophysiology of coronary artery disease. We establish that, VTN plays a pivotal role in cholesterol-driven atherosclerosis and aortic inflammation and might be a useful indicator for atherosclerotic plaque burden and stability.
Collapse
Affiliation(s)
- Devasmita Chakravarty
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Aleepta Guha Ray
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Vivek Chander
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Ulaganathan Mabalirajan
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | | | | | - Bishnu Prasad Sinha
- Department of Cancer Biology and Inflammatory DisorderCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Aditya Konar
- Department of Laboratory Animal FacilityCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Arun Bandyopadhyay
- Department of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Department of Cancer Biology and Inflammatory DisorderCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Department of Laboratory Animal FacilityCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| |
Collapse
|
31
|
Leonetti S, Tricò D, Nesti L, Baldi S, Kozakova M, Goncalves I, Nilsson J, Shore A, Khan F, Natali A. Soluble CD40 receptor is a biomarker of the burden of carotid artery atherosclerosis in subjects at high cardiovascular risk. Atherosclerosis 2022; 343:1-9. [DOI: 10.1016/j.atherosclerosis.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
32
|
Gopcevic KR, Gkaliagkousi E, Nemcsik J, Acet Ö, Bernal-Lopez MR, Bruno RM, Climie RE, Fountoulakis N, Fraenkel E, Lazaridis A, Navickas P, Rochfort KD, Šatrauskienė A, Zupkauskienė J, Terentes-Printzios D. Pathophysiology of Circulating Biomarkers and Relationship With Vascular Aging: A Review of the Literature From VascAgeNet Group on Circulating Biomarkers, European Cooperation in Science and Technology Action 18216. Front Physiol 2021; 12:789690. [PMID: 34970157 PMCID: PMC8712891 DOI: 10.3389/fphys.2021.789690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Impairment of the arteries is a product of sustained exposure to various deleterious factors and progresses with time; a phenomenon inherent to vascular aging. Oxidative stress, inflammation, the accumulation of harmful agents in high cardiovascular risk conditions, changes to the extracellular matrix, and/or alterations of the epigenetic modification of molecules, are all vital pathophysiological processes proven to contribute to vascular aging, and also lead to changes in levels of associated circulating molecules. Many of these molecules are consequently recognized as markers of vascular impairment and accelerated vascular aging in clinical and research settings, however, for these molecules to be classified as biomarkers of vascular aging, further criteria must be met. In this paper, we conducted a scoping literature review identifying thirty of the most important, and eight less important, biomarkers of vascular aging. Herein, we overview a selection of the most important molecules connected with the above-mentioned pathological conditions and study their usefulness as circulating biomarkers of vascular aging.
Collapse
Affiliation(s)
- Kristina R. Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, Belgrade, Serbia
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - János Nemcsik
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
- Health Service of ZUGLO, Department of Family Medicine, Budapest, Hungary
| | - Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey
| | - M. Rosa Bernal-Lopez
- Internal Medicine Department, Regional University Hospital of Malaga, Instituto de Investigacion Biomedica de Malaga, University of Malaga, CIBER Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Málaga, Spain
| | - Rosa M. Bruno
- Unversite de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
| | - Rachel E. Climie
- Unversite de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Sports Cardiology Lab, Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nikolaos Fountoulakis
- Faculty of Life Sciences and Medicine, King’s College London - Waterloo Campus, London, United Kingdom
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital and Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petras Navickas
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Cardiology and Angiology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Jūratė Zupkauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
33
|
Kourtidou C, Stangou M, Marinaki S, Tziomalos K. Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease. Int J Mol Sci 2021; 22:11196. [PMID: 34681856 PMCID: PMC8537513 DOI: 10.3390/ijms222011196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with diabetic kidney disease (DKD) are at very high risk for cardiovascular events. Only part of this increased risk can be attributed to the presence of diabetes mellitus (DM) and to other DM-related comorbidities, including hypertension and obesity. The identification of novel risk factors that underpin the association between DKD and cardiovascular disease (CVD) is essential for risk stratification, for individualization of treatment and for identification of novel treatment targets.In the present review, we summarize the current knowledge regarding the role of emerging cardiovascular risk markers in patients with DKD. Among these biomarkers, fibroblast growth factor-23 and copeptin were studied more extensively and consistently predicted cardiovascular events in this population. Therefore, it might be useful to incorporate them in risk stratification strategies in patients with DKD to identify those who would possibly benefit from more aggressive management of cardiovascular risk factors.
Collapse
Affiliation(s)
- Christodoula Kourtidou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Medical School, National and Kapodistrian University of Athens, Laiko Hospital, 11527 Athens, Greece;
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| |
Collapse
|
34
|
Du H, Yang L, Zhang X. Matrix Metalloproteinase-7 Aggravated the Oxidized Low Density Lipoprotein-Induced Damage of Human Vascular Endothelial Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction: Vascular endothelial injury could induce many cardiovascular diseases. Recently, some studies have indicated that matrix metalloproteinase-7 (MMP-7) was associated with the occurrence and development of cardiovascular diseases. However, whether higher levels of
MMP-7 were associated with the occurrence of the vascular endothelial injury is unclear. Material and methods: In this study, ox-LDL was used for the simulation of vascular endothelial injury in HUVECs. Next, we detected the expression of MMP-7 in these cells. After that, we established
the cell models with MMP-7 overexpression and knockdown, respectively. At last, the apoptosis and inflammation of HUVECs were detected with corresponding assays. Results: After the stimulation of ox-LDL, the expression of MMP-7 was enhanced compared to the control groups. After the
stimulation of ox-LDL and the overexpression of MMP-7, the apoptosis rates of HUVECs were enhanced, while MMP-7 knockdown led to the decreased apoptosis rates of these cells. Furthermore, after the stimulation of ox-LDL and overexpression of MMP-7, the expression of inflammatory factors (IL-6,
IL-1β and TNF-α) was promoted. Additionally, the expression of these proteins was repressed after knockdown of MMP-7. Conclusion: MMP-7 aggravated the ox-LDL-induced damage of HUVECs by promoting the apoptosis and inflammation of these cells.
Collapse
Affiliation(s)
- Haiyan Du
- Department of Clinical Laboratory, PKUCare Luzhong Hospital, Zibo, Shandong 255400, China
| | - Lili Yang
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Xiaoqian Zhang
- Department of Clinical Laboratory, PKUCare Luzhong Hospital, Zibo, Shandong 255400, China
| |
Collapse
|
35
|
Westerlund AM, Hawe JS, Heinig M, Schunkert H. Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence. Int J Mol Sci 2021; 22:10291. [PMID: 34638627 PMCID: PMC8508897 DOI: 10.3390/ijms221910291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD) annually take almost 18 million lives worldwide. Most lethal events occur months or years after the initial presentation. Indeed, many patients experience repeated complications or require multiple interventions (recurrent events). Apart from affecting the individual, this leads to high medical costs for society. Personalized treatment strategies aiming at prediction and prevention of recurrent events rely on early diagnosis and precise prognosis. Complementing the traditional environmental and clinical risk factors, multi-omics data provide a holistic view of the patient and disease progression, enabling studies to probe novel angles in risk stratification. Specifically, predictive molecular markers allow insights into regulatory networks, pathways, and mechanisms underlying disease. Moreover, artificial intelligence (AI) represents a powerful, yet adaptive, framework able to recognize complex patterns in large-scale clinical and molecular data with the potential to improve risk prediction. Here, we review the most recent advances in risk prediction of recurrent cardiovascular events, and discuss the value of molecular data and biomarkers for understanding patient risk in a systems biology context. Finally, we introduce explainable AI which may improve clinical decision systems by making predictions transparent to the medical practitioner.
Collapse
Affiliation(s)
- Annie M. Westerlund
- Department of Cardiology, Deutsches Herzzentrum München, Technical University Munich, Lazarettstrasse 36, 80636 Munich, Germany; (A.M.W.); (J.S.H.)
- Institute of Computational Biology, HelmholtzZentrum München, Ingolstädter Landstrasse 1, 85764 Munich, Germany
| | - Johann S. Hawe
- Department of Cardiology, Deutsches Herzzentrum München, Technical University Munich, Lazarettstrasse 36, 80636 Munich, Germany; (A.M.W.); (J.S.H.)
| | - Matthias Heinig
- Institute of Computational Biology, HelmholtzZentrum München, Ingolstädter Landstrasse 1, 85764 Munich, Germany
- Department of Informatics, Technical University Munich, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technical University Munich, Lazarettstrasse 36, 80636 Munich, Germany; (A.M.W.); (J.S.H.)
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Biedersteiner Strasse 29, 80802 Munich, Germany
| |
Collapse
|
36
|
Giglio RV, Stoian AP, Haluzik M, Pafili K, Patti AM, Rizvi AA, Ciaccio M, Papanas N, Rizzo M. Novel molecular markers of cardiovascular disease risk in type 2 diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166148. [PMID: 33892081 DOI: 10.1016/j.bbadis.2021.166148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Diabetes represents the leading risk factor for the development of cardiovascular disease (CVD). Chronic hyperglycemia and/or acute post-prandial changes in blood glucose determine an increase in reactive oxygen species (ROS), which play a fundamental role in endothelial dysfunction and in the nuclear transport of pro-atherogenic transcription factors that activate the "inflammasome". In addition, the glycemic alteration favors the formation and stabilization of atherosclerotic plaque through the mechanism of non-enzymatic glycation of different molecules, with the establishment of the so-called "advanced glycosylation end products" (AGE). Laboratory information provided by the level of biomarkers could make a quantitative and qualitative contribution to the clinical process of screening, prediction, prevention, diagnosis, prognosis and monitoring of cardiovascular (CV) risk linked to diabetes. This review describes the importance of specific biomarkers, with particular focus on novel ones, for stratifying and management of diabetes CV risk.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Anca Pantea Stoian
- Faculty of General Medicine, Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University, Bucharest, Romania
| | - Martin Haluzik
- Centre for Experimental Medicine and Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kalliopi Pafili
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Angelo Maria Patti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Ali Abbas Rizvi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA; Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine Columbia, South Carolina, USA
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine Columbia, South Carolina, USA
| |
Collapse
|
37
|
Association of Matrix Metalloproteinases with Coronary Artery Calcification in Patients with CHD. J Pers Med 2021; 11:jpm11060506. [PMID: 34205079 PMCID: PMC8228219 DOI: 10.3390/jpm11060506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 02/01/2023] Open
Abstract
This work is aimed at studying the relationship of matrix metalloproteinases with calcification of the coronary arteries. The study included 78 people with coronary heart disease (CHD) and 36 without CHD. Blood and samples of coronary arteries obtained as a result of endarterectomy were examined. Serum levels of metalloproteinases (MMP) MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13 were determined by multiplex analysis. In blood vessel samples, MMP-1, MMP-3, MMP-7, and MMP-9 were determined by enzyme immunoassay; MMP-9 expression was evaluated by immunohistochemistry. Patients with CHD had higher serum levels of MMP-1, MMP-7, and MMP-12. Blood levels of MMP-1 and MMP-3 were associated with calcium levels, MMP-9 with osteoprotegerin and osteonectin, MMP-7 and MMP-10 with osteoprotegerin, MMP-12 with osteocalcin, and MMP-13 with osteopontin. Calcified plaques had higher levels of MMP-1 and MMP-9 compared to plaques without calcification. The relative risk of coronary arteries calcification was associated with MMP-9, which is confirmed by the results of immunohistochemistry. The results obtained indicate the participation of some MMPs, and especially MMP-9, in the calcification processes. The study can serve as a basis for the further study of the possibility of using MMP-1, MMP-7 and MMP-12 as potential biomarkers of CHD.
Collapse
|
38
|
Stojanović SD, Fiedler J, Bauersachs J, Thum T, Sedding DG. Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. Eur Heart J 2021; 41:2983-2996. [PMID: 31898722 PMCID: PMC7453834 DOI: 10.1093/eurheartj/ehz919] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a hallmark and potent driver of pathological vascular remodelling in atherosclerosis. However, current anti-inflammatory therapeutic strategies have shown mixed results. As an alternative perspective on the conundrum of chronic inflammation emerging evidence points towards a small subset of senescent cells as a critical player and central node driving atherosclerosis. Senescent cells belonging to various cell types are a dominant and chronic source of a large array of pro-inflammatory cytokines and various additional plaque destabilizing factors, being involved with various aspects of atherosclerosis pathogenesis. Antagonizing these key agitators of local chronic inflammation and plaque instability may provide a causative and multi-purpose therapeutic strategy to treat atherosclerosis. Anti-senescence treatment options with translational potential are currently in development. However, several questions and challenges remain to be addressed before these novel treatment approaches may enter the clinical setting.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| |
Collapse
|
39
|
Lind L, Gigante B, Borné Y, Feldreich T, Leppert J, Hedberg P, Östgren CJ, Nyström FH, Sundström J, Ärnlöv J, Baldassarre D, Tremoli E, Veglia F, Hamsten A, O'Donnell CJ, Franceschini N, Orho-Melander M, Nilsson J, Melander O, Engström G, Mälarstig A. Plasma Protein Profile of Carotid Artery Atherosclerosis and Atherosclerotic Outcomes: Meta-Analyses and Mendelian Randomization Analyses. Arterioscler Thromb Vasc Biol 2021; 41:1777-1788. [PMID: 33657885 DOI: 10.1161/atvbaha.120.315597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden (L.L., J.S.)
| | - Bruna Gigante
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Sweden (B.G., A.H., A.M.)
| | - Yan Borné
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Tobias Feldreich
- School of Health and Social Sciences, Dalarna University, Falun, Sweden (T.F., J.A.)
| | - Jerzy Leppert
- Centre for Clinical Research, Uppsala University (J.L., P.H.), Västmanland County Hospital, Västerås, Sweden
| | - Pär Hedberg
- Centre for Clinical Research, Uppsala University (J.L., P.H.), Västmanland County Hospital, Västerås, Sweden.,Department of Clinical Physiology (P.H.), Västmanland County Hospital, Västerås, Sweden
| | - Carl Johan Östgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Sweden (C.J.O., F.H.N.).,Department of Medicine, Boston University, MA (C.J.O.)
| | - Fredrik H Nyström
- Department of Health, Medicine and Caring Sciences, Linköping University, Sweden (C.J.O., F.H.N.)
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Sweden (L.L., J.S.).,The George Institute for Global Health, University of New South Wales, Sydney, Australia (J.S.)
| | - Johan Ärnlöv
- School of Health and Social Sciences, Dalarna University, Falun, Sweden (T.F., J.A.)
| | - Damiano Baldassarre
- Damiano Baldassarre, Department of Medical Biotechnology and Translational Medicine, Università di Milano (D.B.).,Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., E.T., F.V.)
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., E.T., F.V.)
| | - Fabrizio Veglia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., E.T., F.V.)
| | - Anders Hamsten
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Sweden (B.G., A.H., A.M.)
| | - Christopher J O'Donnell
- Department of Health, Medicine and Caring Sciences, Linköping University, Sweden (C.J.O., F.H.N.).,Department of Medicine, Boston University, MA (C.J.O.)
| | - Nora Franceschini
- Department of Epidemiology, University of North Caroline, Capel Hill (N.F.)
| | - Marju Orho-Melander
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Anders Mälarstig
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Sweden (B.G., A.H., A.M.)
| |
Collapse
|
40
|
Marcos-Jubilar M, Orbe J, Roncal C, Machado FJD, Rodriguez JA, Fernández-Montero A, Colina I, Rodil R, Pastrana JC, Páramo JA. Association of SDF1 and MMP12 with Atherosclerosis and Inflammation: Clinical and Experimental Study. Life (Basel) 2021; 11:life11050414. [PMID: 34062730 PMCID: PMC8147178 DOI: 10.3390/life11050414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Atherosclerosis is the main etiology of cardiovascular diseases (CVD), associated to systemic inflammation. Matrix metalloproteinases (MMPs) are related to atherosclerosis progression through the SDF1/CXCR4 axis promoting macrophages recruitment within the vascular wall. The goal was to assess new circulatory inflammatory markers in relation to atherosclerosis. METHODS Measurement of SDF1, MMP12 and CRP in blood samples of 298 prospective patients with cardiovascular risk. To explore atherosclerosis progression, CXCR4/SDF1 axis and MMP12 expression were determined by RT-qPCR and by immunohistochemistry in the aorta of accelerated and delayed atherosclerosis mice models (Apoe-/- and Apoe-/-Mmp10-/-). RESULTS SDF1, MMP12 and CRP were elevated in patients with clinical atherosclerosis, but after controlling by confounding factors, only SDF1 and CRP remained increased. Having high levels of both biomarkers showed 2.8-fold increased risk of presenting clinical atherosclerosis (p = 0.022). Patients with elevated SDF1, MMP12 and CRP showed increased risk of death in follow-up (HR = 3.2, 95%CI: 1.5-7.0, p = 0.004). Gene and protein expression of CXCR4 and MMP12 were increased in aortas from Apoe-/- mice. CONCLUSIONS The combination of high circulating SDF1, MMP12 and CRP identified patients with particular inflammatory cardiovascular risk and increased mortality. SDF1/CXCR4 axis and MMP12 involvement in atherosclerosis development suggests that they could be possible atherosclerotic targets.
Collapse
Affiliation(s)
- María Marcos-Jubilar
- Haematology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (M.M.-J.); (J.A.P.)
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Florencio J. D. Machado
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
| | - José Antonio Rodriguez
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Inmaculada Colina
- Internal Medicine Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (I.C.); (J.C.P.)
| | - Raquel Rodil
- Internal Medicine Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Juan C. Pastrana
- Internal Medicine Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (I.C.); (J.C.P.)
| | - José A. Páramo
- Haematology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.M.-J.); (J.A.P.)
| |
Collapse
|
41
|
Monjezi MR, Fouladseresht H, Farjadian S, Gharesi-Fard B, Khosropanah S, Doroudchi M. T Cell Proliferative Responses and IgG Antibodies to β2GPI in Patients with Diabetes and Atherosclerosis. Endocr Metab Immune Disord Drug Targets 2021; 21:495-503. [PMID: 32368987 DOI: 10.2174/1871530320666200505115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes increases the risk of myocardial infarction (MI) by 2 to 3 folds. Tlymphocytes play a role in atherosclerosis, which is the main pathology behind MI. Cellular immune responses to beta-2 glycoprotein I (β2GPI) are shown in carotid atherosclerosis. OBJECTIVE To investigate the self-reactive, β2GPI-specific T-lymphocytes in patients with and without diabetes and atherosclerosis. METHODS Collectively, 164 subjects with and without diabetes that underwent coronary angiography were divided into four groups based on their diabetes status and coronary stenosis. Group I=Diabetic with ≥50% stenosis: A+D+ (n=66); Group II=Non-diabetic with ≥50% stenosis, A+D- (n=39); Group III=Diabetic with <50% stenosis: A-D+ (n=28); and Group IV=Non-diabetic with <50% stenosis: AD- (n=31). All groups were evaluated for anti-β2GPI IgG antibody by ELISA method. Then, PBMCs were isolated from 18 subjects and were stimulated with β2GPI-derived peptides to assess their proliferation in accordance with their HLA-DRB1 alleles. RESULTS Mean β2GPI IgG levels were higher in groups with ≥50% stenosis (A+) compared to those with <50% stenosis (A-), (P=0.02). The co-presence of diabetes in A+ individuals increased mean β2GPI-specific IgG. Auto-reactive β2GPI-specific T cells were detected in the repertoire of T-lymphocytes in all groups. β2GPI-peptides showed promiscuous restriction by various HLADRB1. CONCLUSION β2GPI is the target of cellular and humoral immune responses in patients with atherosclerosis. Since the T cell responses but not antibodies were detectable in A-D+ and A-D- groups, it is reasonable to assume that cellular responses preceded the humoral responses. Post-translation modifications of β2GPI under oxidative and glycemic stresses may have increased the IgG levels in patients with diabetes. Finally, identification of antigens that trigger immuno-pathogenesis in atherosclerosis and diabetes may help the development of immunomodulation methods to prevent or treat these debilitating diseases.
Collapse
Affiliation(s)
- Mohammad R Monjezi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Farjadian
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Gharesi-Fard
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Quan X, Liu H, Ye D, Ding X, Su X. Forsythoside A Alleviates High Glucose-Induced Oxidative Stress and Inflammation in Podocytes by Inactivating MAPK Signaling via MMP12 Inhibition. Diabetes Metab Syndr Obes 2021; 14:1885-1895. [PMID: 33953587 PMCID: PMC8089089 DOI: 10.2147/dmso.s305092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Podocyte injury serves an important role during the progression of diabetic nephropathy (DN). The aim of this study was to investigate the effects of forsythoside A (FA) on high glucose (HG)-induced podocyte injury and to identify the possible mechanisms. METHODS MPC-5 podocytes were cultured under HG conditions. After exposure to different doses of FA, cell viability and apoptosis were respectively evaluated with CCK-8 assay and flow cytometry. Then, the levels of oxidative stress-related markers and inflammatory factors were examined by corresponding kits. Western blot analysis was employed to detect the expression of Nox2, Nox4, COX-2, iNOS and matrix metalloproteinases 12 (MMP12). Subsequently, MMP12 was overexpressed to assess whether the effects of FA on HG-stimulated podocyte injury were mediated by MMP12 and MAPK signaling. RESULTS Results indicated that FA dose-dependently elevated cell viability, reduced cell apoptosis in HG-induced MPC-5 cells. Additionally, FA significantly inhibited oxidative stress, which could be certified by decreased content of malondialdehyde (MDA), enhanced activities of superoxide dismutase (SOD) and catalase (CAT), and downregulated expression of Nox2 and Nox4. Moreover, notably reduced levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were observed in FA-treated MPC-5 cells under HG conditions, accompanied by decreased COX-2 and iNOS expression. Remarkably, FA suppressed MMP12 expression in a dose-dependent manner, and the effects of FA on MPC-5 cells exposed to HG were partially counteracted by MMP12 overexpression. Mechanically, FA inactivated the expression of phospho-ERK (p-ERK), p-p38 and p-JNK, which was restored after MMP12 overexpression. CONCLUSION These findings demonstrate a protective mechanism of FA by inactivating MAPK signaling via MMP12 inhibition in HG-induced podocyte injury, providing a promising therapeutic candidate for the treatment of DN.
Collapse
Affiliation(s)
- Xiaohong Quan
- Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
- Correspondence: Xiaohong Quan Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, No. 1 Yingbin Road, Chifeng City, Inner Mongolia, 024000, People’s Republic of China Email
| | - Huihui Liu
- Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Dongmei Ye
- Core Facility Center for Functional Experiments, CUSBMS, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Xinling Ding
- Department of Human Anatomy, CUSBMS, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Xiulan Su
- Clinical Research Center for Medical Sciences, IMMU, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| |
Collapse
|
43
|
Nuamchit T, Siriwittayawan D, Thitiwuthikiat P. The Relationship Between Glycemic Control and Concomitant Hypertension on Arterial Stiffness in Type II Diabetes. Vasc Health Risk Manag 2020; 16:343-352. [PMID: 32943869 PMCID: PMC7459141 DOI: 10.2147/vhrm.s265157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose The impact of glycemic control on macrovascular complications and arterial stiffness in type II diabetes (T2D), as well as the extent of additive effect of hypertension, is unclear. The aims of this study were to investigate the impact of glycemic control on the cardio-ankle vascular index (CAVI), an indicator of arterial stiffness, and to determine the relative risk of concomitant diabetes and hypertension with arterial stiffness. Methods One hundred and nine participants were enrolled and classified as non-diabetes (n= 37) and diabetes (n=72); the diabetic group was further identified as controllable and uncontrollable T2D depending on their hemoglobin A1c (HbA1c) levels. Univariate and multiple regression analyses were used to assess the association between CAVI and glycemic control status and hypertension. Relative risk analysis for abnormal CAVI with exposure to diabetes and hypertension was investigated. Results In all participants, age, systolic blood pressure, body mass index, and fasting blood sugar were independent predictors of CAVI. In diabetic participants, glycemic control status or HbA1c levels did not significantly correlate with CAVI. Systolic blood pressure was an independent predictor for CAVI with β = 0.26. In addition, the coexistence of diabetes together with hypertension was significantly associated with a 2.4-fold increase in the risk of abnormal CAVI (95% CI, 1.410-4.184; p <0.001). Conclusion This study demonstrates that HbA1c as well as fasting blood sugar levels in diabetic participants do not correlate with arterial stiffness. Concomitant diabetes and hypertension significantly increase the risk of arterial stiffness.
Collapse
Affiliation(s)
- Teonchit Nuamchit
- Department of Cardiothoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Duangduan Siriwittayawan
- Department of Cardiothoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyanuch Thitiwuthikiat
- Department of Cardiothoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
44
|
Gudmundsdottir V, Zaghlool SB, Emilsson V, Aspelund T, Ilkov M, Gudmundsson EF, Jonsson SM, Zilhão NR, Lamb JR, Suhre K, Jennings LL, Gudnason V. Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes. Diabetes 2020; 69:1843-1853. [PMID: 32385057 PMCID: PMC7372075 DOI: 10.2337/db19-1070] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
The increasing prevalence of type 2 diabetes poses a major challenge to societies worldwide. Blood-based factors like serum proteins are in contact with every organ in the body to mediate global homeostasis and may thus directly regulate complex processes such as aging and the development of common chronic diseases. We applied a data-driven proteomics approach, measuring serum levels of 4,137 proteins in 5,438 elderly Icelanders, and identified 536 proteins associated with prevalent and/or incident type 2 diabetes. We validated a subset of the observed associations in an independent case-control study of type 2 diabetes. These protein associations provide novel biological insights into the molecular mechanisms that are dysregulated prior to and following the onset of type 2 diabetes and can be detected in serum. A bidirectional two-sample Mendelian randomization analysis indicated that serum changes of at least 23 proteins are downstream of the disease or its genetic liability, while 15 proteins were supported as having a causal role in type 2 diabetes.
Collapse
Affiliation(s)
- Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Holtasmari 1, Kopavogur, Iceland
| | - Shaza B Zaghlool
- Department of Biophysics and Physiology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, Kopavogur, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Thor Aspelund
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Holtasmari 1, Kopavogur, Iceland
| | - Marjan Ilkov
- Icelandic Heart Association, Holtasmari 1, Kopavogur, Iceland
| | | | | | - Nuno R Zilhão
- Icelandic Heart Association, Holtasmari 1, Kopavogur, Iceland
| | | | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | | | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Holtasmari 1, Kopavogur, Iceland
| |
Collapse
|
45
|
Gonçalves NP, Jager SE, Richner M, Murray SS, Mohseni S, Jensen TS, Vaegter CB. Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy. Glia 2020; 68:2725-2743. [PMID: 32658363 DOI: 10.1002/glia.23881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy has an incidence as high as 50% of diabetic patients and is characterized by damage to neurons, Schwann cells and blood vessels within the peripheral nervous system. The low-affinity neurotrophin receptor p75 (p75NTR ), particularly expressed by the Schwann cells in the peripheral nerve, has previously been reported to play a role in developmental myelination and cell survival/death. Increased levels of p75NTR , in the endoneurium and plasma from diabetic patients and rodent models of disease, have been observed, proposing that this receptor might be involved in the pathogenesis of diabetic neuropathy. Therefore, in this study, we addressed this hypothesis by utilizing a mouse model of selective nerve growth factor receptor (Ngfr) deletion in Schwann cells (SC-p75NTR -KO). Electron microscopy of sciatic nerves from mice with high fat diet induced obesity demonstrated how loss of Schwann cell-p75NTR aggravated axonal atrophy and loss of C-fibers. RNA sequencing disclosed several pre-clinical signaling alterations in the diabetic peripheral nerves, dependent on Schwann cell p75NTR signaling, specially related with lysosome, phagosome, and immune pathways. Morphological and biochemical analyses identified abundant lysosomes and autophagosomes in the C-fiber axoplasm of the diabetic SC-p75NTR -KO nerves, which together with increased Cathepsin B protein levels corroborates gene upregulation from the phagolysosomal pathways. Altogether, this study demonstrates that Schwann cell p75NTR deficiency amplifies diabetic neuropathy disease by triggering overactivation of immune-related pathways and increased lysosomal stress.
Collapse
Affiliation(s)
- Nádia P Gonçalves
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark
| | - Sara E Jager
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Mette Richner
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Simon S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simin Mohseni
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Troels S Jensen
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark.,Department of Neurology and Danish Pain Research Center, Aarhus University, Aarhus C, Denmark
| | - Christian B Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
46
|
Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci 2020; 21:ijms21113946. [PMID: 32486345 PMCID: PMC7313469 DOI: 10.3390/ijms21113946] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases responsible for tissue remodeling and degradation of extracellular matrix (ECM) proteins. MMPs may modulate various cellular and signaling pathways in atherosclerosis responsible for progression and rupture of atherosclerotic plaques. The effect of MMPs polymorphisms and the expression of MMPs in both the atherosclerotic plaque and plasma was shown. They are independent predictors of atherosclerotic plaque instability in stable coronary heart disease (CHD) patients. Increased levels of MMPs in patients with advanced cardiovascular disease (CAD) and acute coronary syndrome (ACS) was associated with future risk of cardiovascular events. These data confirm that MMPs may be biomarkers in plaque instability as they target in potential drug therapies for atherosclerosis. They provide important prognostic information, independent of traditional risk factors, and may turn out to be useful in improving risk stratification.
Collapse
|
47
|
Holm Nielsen S, Jonasson L, Kalogeropoulos K, Karsdal MA, Reese-Petersen AL, Auf dem Keller U, Genovese F, Nilsson J, Goncalves I. Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome. J Intern Med 2020; 287:493-513. [PMID: 32012358 DOI: 10.1111/joim.13034] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the most common cause of death in industrialized countries. One underlying cause is atherosclerosis, which is a systemic disease characterized by plaques of retained lipids, inflammatory cells, apoptotic cells, calcium and extracellular matrix (ECM) proteins in the arterial wall. The biologic composition of an atherosclerotic plaque determines whether the plaque is more or less vulnerable, that is prone to rupture or erosion. Here, the ECM and tissue repair play an important role in plaque stability, vulnerability and progression. This review will focus on ECM remodelling in atherosclerotic plaques, with focus on how ECM biomarkers might predict plaque vulnerability and outcome.
Collapse
Affiliation(s)
- S Holm Nielsen
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - L Jonasson
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - K Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M A Karsdal
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | | | - U Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - F Genovese
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - J Nilsson
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - I Goncalves
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
48
|
Laronha H, Caldeira J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020; 9:cells9051076. [PMID: 32357580 PMCID: PMC7290392 DOI: 10.3390/cells9051076] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is a macromolecules network, in which the most abundant molecule is collagen. This protein in triple helical conformation is highly resistant to proteinases degradation, the only enzymes capable of degrading the collagen are matrix metalloproteinases (MMPs). This resistance and maintenance of collagen, and consequently of ECM, is involved in several biological processes and it must be strictly regulated by endogenous inhibitors (TIMPs). The deregulation of MMPs activity leads to development of numerous diseases. This review shows MMPs complexity.
Collapse
Affiliation(s)
- Helena Laronha
- Centro de investigação interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829 Caparica, Portugal;
- UCIBIO and LAQV Requimte Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Caldeira
- Centro de investigação interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829 Caparica, Portugal;
- UCIBIO and LAQV Requimte Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +3519-1955-35-92
| |
Collapse
|
49
|
Lind L, Gigante B, Borne Y, Mälarstig A, Sundström J, Ärnlöv J, Ingelsson E, Baldassarre D, Tremoli E, Veglia F, Hamsten A, Orho-Melander M, Nilsson J, Melander O, Engström G. The plasma protein profile and cardiovascular risk differ between intima-media thickness of the common carotid artery and the bulb: A meta-analysis and a longitudinal evaluation. Atherosclerosis 2020; 295:25-30. [PMID: 31981948 DOI: 10.1016/j.atherosclerosis.2020.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Genetic loci associated with CHD show different relationships with intima-media thickness in the common carotid artery (IMT-CCA) and in the bulb (IMT-bulb). We evaluated if IMT-CCA and IMT-bulb differ also with respect to circulating protein profiles and risk of incident atherosclerotic disease. METHODS In three Swedish cohorts (MDC, IMPROVE, PIVUS, total n > 7000), IMT-CCA and IMT-bulb were assessed by ultrasound at baseline, and 86 cardiovascular-related proteins were analyzed. In the PIVUS study only, IMT-CCA and IMT-bulb were investigated in relation to incident atherosclerotic disease over 10 years of follow-up. RESULTS In a meta-analysis of the analysis performed separately in the cohorts, three proteins, matrix metalloproteinase-12 (MMP-12), hepatocyte growth factor (HGF) and N-terminal pro-B-type natriuretic peptide (NT-proBNP), were associated with IMT-CCA when adjusted for traditional cardiovascular risk factors. Five proteins were associated with IMT-bulb (MMP-12, growth/differentiation factor 15 (GDF-15), osteoprotegerin, growth hormone and renin). Following adjustment for cardiovascular risk factors, IMT-bulb was significantly more closely related to incident stroke or myocardial infarction (total number of cases, 111) than IMT-CCA in the PIVUS study (HR 1.51 for 1 SD, 95%CI 1.21-1.87, p < 0.001 vs HR 1.17, 95%CI 0.93-1.47, p = 0.16). MMP-12 levels were related to this combined end-point (HR 1.30, 95%CI 1.08-1.56, p = 0.0061). CONCLUSIONS Elevated levels of MMP-12 were associated with both IMT-CCA and IMT-bulb, but other proteins were significantly related to IMT in only one of these locations. The finding that IMT-bulb was more closely related to incident atherosclerotic disease than IMT-CCA emphasizes a difference between these measurements of IMT.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden.
| | - Bruna Gigante
- Bruna Gigante Unit of Cardiovascular Medicine, Dept of Medicine, Karolinska Institutet, Sweden
| | - Yan Borne
- Yan Borne Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Anders Mälarstig
- Bruna Gigante Unit of Cardiovascular Medicine, Dept of Medicine, Karolinska Institutet, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden; School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, Milan, Italy; Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| | | | | | - Anders Hamsten
- Bruna Gigante Unit of Cardiovascular Medicine, Dept of Medicine, Karolinska Institutet, Sweden
| | | | - Jan Nilsson
- Yan Borne Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Olle Melander
- Yan Borne Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Gunnar Engström
- Yan Borne Department of Clinical Sciences Malmö, Lund University, Sweden
| |
Collapse
|
50
|
Lunde NN, Gregersen I, Ueland T, Shetelig C, Holm S, Kong XY, Michelsen AE, Otterdal K, Yndestad A, Broch K, Gullestad L, Nyman TA, Bendz B, Eritsland J, Hoffmann P, Skagen K, Gonçalves I, Nilsson J, Grenegård M, Poreba M, Drag M, Seljeflot I, Sporsheim B, Espevik T, Skjelland M, Johansen HT, Solberg R, Aukrust P, Björkbacka H, Andersen GØ, Halvorsen B. Legumain is upregulated in acute cardiovascular events and associated with improved outcome - potentially related to anti-inflammatory effects on macrophages. Atherosclerosis 2019; 296:74-82. [PMID: 31870625 DOI: 10.1016/j.atherosclerosis.2019.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS We have previously found increased levels of the cysteine protease legumain in plasma and plaques from patients with carotid atherosclerosis. This study further investigated legumain during acute cardiovascular events. METHODS Circulating levels of legumain from patients and legumain released from platelets were assessed by enzyme-linked-immunosorbent assay. Quantitative PCR and immunoblotting were used to study expression, while localization was visualized by immunohistochemistry. RESULTS In the SUMMIT Malmö cohort (n = 339 with or without type 2 diabetes and/or cardiovascular disease [CVD], and 64 healthy controls), the levels of circulating legumain were associated with the presence of CVD in non-diabetics, with no relation to outcome. In symptomatic carotid plaques and in samples from both coronary and intracerebral thrombi obtained during acute cardiovascular events, legumain was co-localized with macrophages in the same regions as platelets. In vitro, legumain was shown to be present in and released from platelets upon activation. In addition, THP-1 macrophages exposed to releasate from activated platelets showed increased legumain expression. Interestingly, primary peripheral blood mononuclear cells stimulated with recombinant legumain promoted anti-inflammatory responses. Finally, in a STEMI population (POSTEMI; n = 272), patients had significantly higher circulating legumain before and immediately after percutaneous coronary intervention compared with healthy controls (n = 67), and high levels were associated with improved outcome. CONCLUSIONS Our data demonstrate for the first time that legumain is upregulated during acute cardiovascular events and is associated with improved outcome.
Collapse
Affiliation(s)
- Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Christian Shetelig
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Proteomics Core Facility, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Bjørn Bendz
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pavel Hoffmann
- Section of Interventional Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Karolina Skagen
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Isabel Gonçalves
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Sweden
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden
| | | | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mona Skjelland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Harald Thidemann Johansen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Harry Björkbacka
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden
| | - Geir Øystein Andersen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|