1
|
Shen SR, Huang ZQ, Yang YD, Han JB, Fang ZM, Guan Y, Xu JC, Min JL, Wang Y, Wu GJ, Xiao ZX, Luo W, Huang ZQ, Liang G. JOSD2 inhibits angiotensin II-induced vascular remodeling by deubiquitinating and stabilizing SMAD7. Acta Pharmacol Sin 2025; 46:1275-1288. [PMID: 39833306 PMCID: PMC12032042 DOI: 10.1038/s41401-024-01437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/17/2024] [Indexed: 01/22/2025]
Abstract
Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues. Whole-body knockout of JOSD2 significantly deteriorated Ang II-induced vascular remodeling in mice. Conversely, Ang II-induced vascular remodeling was reversed by vascular smooth muscle cell (VSMC)-specific JOSD2 overexpression. In vitro, JOSD2 deficiency aggravated Ang II-induced fibrosis, proliferation, and migration VSMCs, while these changes were reversed by JOSD2 overexpression. RNA-seq analysis showed that the protective effects of JOSD2 in VSMCs were related to the TGFβ-SMAD pathway. Furthermore, the LC-MS/MS analysis identified SMAD7, a negative regulator in the TGFβ-SMAD pathway, as the substrate of JOSD2. JOSD2 specifically bound to the MH1 domain of SMAD7 to remove the K48-linked ubiquitin chains from SMAD7 at lysine 220 to sustain SMAD7 stability. Taken together, our finding reveals that the JOSD2-SMAD7 axis is critical for relieving Ang II-induced vascular remodeling and JOSD2 may be a novel and potential therapeutic target for hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Si-Rui Shen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhu-Qi Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Die Yang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ji-Bo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zi-Min Fang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Guan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Chen Xu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ju-Lian Min
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhong-Xiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China
| | - Wu Luo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Zhou-Qing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
2
|
Niu K, Zhang C, Liu C, Wu W, Yan Y, Zheng A, Liu S, Shi Z, Yang M, Wang W, Xiao Q. An unexpected role of IL10 in mesoderm induction and differentiation from pluripotent stem cells: Implications in zebrafish angiogenic sprouting, vascular organoid development, and therapeutic angiogenesis. Eur J Cell Biol 2024; 103:151465. [PMID: 39471724 DOI: 10.1016/j.ejcb.2024.151465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
Mesoderm induction is a crucial step for vascular cell specification, vascular development and vasculogenesis. However, the cellular and molecular mechanisms underlying mesoderm induction remain elusive. In the present study, a chemically-defined differentiation protocol was used to induce mesoderm formation and generate functional vascular cells including smooth muscle cells (SMCs) and endothelial cells (ECs) from human induced pluripotent stem cells (hiPSCs). Zebrafish larvae were used to detect an in vivo function of interleukin 10 (IL10) in mesoderm formation and vascular development. A three dimensional approach was used to create hiPSC-derived blood vessel organoid (BVO) and explore a potential impact of IL10 on BVO formation. A murine model hind limb ischemia was applied to investigate a therapeutic potential of hiPSC-derived cells treated with or without IL10 during differentiation. We found that IL10 was significantly and specifically up-regulated during mesoderm stage of vascular differentiation. IL10 addition in mesoderm induction media dramatically increased mesoderm induction and vascular cell generation from hiPSCs, whereas an opposite effect was observed with IL10 inhibition. Mechanistic studies revealed that IL10 promotes mesoderm formation and vascular cell differentiation by activating signal transducer and activator of transcription 3 signal pathway. Functional studies with an in vivo model system confirmed that knockdown of IL10 using morpholino antisense oligonucleotides in zebrafish larvae caused defective mesoderm formation, angiogenic sprouting and vascular development. Additionally, our data also show IL10 promotes blood vessel organoid development and enhances vasculogenesis and angiogenesis. Importantly, we demonstrate that IL10 treatment during mesoderm induction stage enhances blood flow perfusion recovery and increases vasculogenesis and therapeutic angiogenesis after hind limb ischemia. Our data, therefore, demonstrate a regulatory role for IL10 in mesoderm formation from hiPSCs and during zebrafish vascular development, providing novel insights into mesoderm induction and vascular cell specifications.
Collapse
Affiliation(s)
- Kaiyuan Niu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London EC1M 6BQ, UK; Department of Otolaryngology, Head & Neck Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, PR China
| | - Chengxin Zhang
- Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, PR China
| | - Chenxin Liu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wei Wu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, PR China
| | - Ancheng Zheng
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Silin Liu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Zhenning Shi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mei Yang
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wen Wang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
3
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of Human iPSC-derived Vascular Smooth Muscle Cells and Cell-autonomous Consequences of Cantú Syndrome Mutations. FUNCTION 2024; 5:zqae027. [PMID: 38984978 PMCID: PMC11388097 DOI: 10.1093/function/zqae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .
Collapse
Affiliation(s)
- Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Sarah Colijn
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber N Stratman
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Biswas PK, Park J. Applications, challenges, and prospects of induced pluripotent stem cells for vascular disease. Mol Cells 2024; 47:100077. [PMID: 38825189 PMCID: PMC11260847 DOI: 10.1016/j.mocell.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024] Open
Abstract
Vascular disease, including heart disease, stroke, and peripheral arterial disease, is one of the leading causes of death and disability and represents a significant global health issue. Since the development of human induced pluripotent stem cells (hiPSCs) in 2007, hiPSCs have provided unique and tremendous opportunities for studying human pathophysiology, disease modeling, and drug discovery in the field of regenerative medicine. In this review, we discuss vascular physiology and related diseases, the current methods for generating vascular cells (eg, endothelial cells, smooth muscle cells, and pericytes) from hiPSCs, and describe the opportunities and challenges to the clinical applications of vascular organoids, tissue-engineered blood vessels, and vessels-on-a-chip. We then explore how hiPSCs can be used to study and treat inherited vascular diseases and discuss the current challenges and future prospects. In the future, it will be essential to develop vascularized organoids or tissues that can simultaneously undergo shear stress and cyclic stretching. This development will not only increase their maturity and function but also enable effective and innovative disease modeling and drug discovery.
Collapse
Affiliation(s)
- Polash Kumar Biswas
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-do 24252, South Korea
| | - Jinkyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-do 24252, South Korea; Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
5
|
Hausman-Kedem M, Krishnan P, Dlamini N. Cerebral arteriopathies of childhood and stroke - A focus on systemic arteriopathies and pediatric fibromuscular dysplasia (FMD). Vasc Med 2024; 29:328-341. [PMID: 38898630 PMCID: PMC11188572 DOI: 10.1177/1358863x241254796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Systemic vascular involvement in children with cerebral arteriopathies is increasingly recognized and often highly morbid. Fibromuscular dysplasia (FMD) represents a cerebral arteriopathy with systemic involvement, commonly affecting the renal and carotid arteries. In adults, FMD diagnosis and classification typically relies on angiographic features, like the 'string-of-beads' appearance, following exclusion of other diseases. Pediatric FMD (pFMD) is considered equivalent to adult FMD although robust evidence for similarities is lacking. We conducted a comprehensive literature review on pFMD and revealed inherent differences between pediatric and adult-onset FMD across various domains including epidemiology, natural history, histopathophysiology, clinical, and radiological features. Although focal arterial lesions are often described in children with FMD, the radiological appearance of 'string-of-beads' is highly nonspecific in children. Furthermore, children predominantly exhibit intimal-type fibroplasia, common in other childhood monogenic arteriopathies. Our findings lend support to the notion that pFMD broadly reflects an undefined heterogenous group of monogenic systemic medium-or-large vessel steno-occlusive arteriopathies rather than a single entity. Recognizing the challenges in categorizing complex morphologies of cerebral arteriopathy using current classifications, we propose a novel term for describing children with cerebral and systemic vascular involvement: 'cerebral and systemic arteriopathy of childhood' (CSA-c). This term aims to streamline patient categorization and, when coupled with advanced vascular imaging and high-throughput genomics, will enhance our comprehension of etiology, and accelerate mechanism-targeted therapeutic developments. Lastly, in light of the high morbidity in children with cerebral and systemic arteriopathies, we suggest that investigating for systemic vascular involvement is important in children with cerebral arteriopathies.
Collapse
Affiliation(s)
- Moran Hausman-Kedem
- Pediatric Neurology Institute, Tel Aviv Medical Center, Tel Aviv, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pradeep Krishnan
- Department of Pediatric Neuroradiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nomazulu Dlamini
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
6
|
Klak M, Rachalewski M, Filip A, Dobrzański T, Berman A, Wszoła M. Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells. Bioengineering (Basel) 2024; 11:439. [PMID: 38790306 PMCID: PMC11117567 DOI: 10.3390/bioengineering11050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched-the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| | - Michał Rachalewski
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | - Anna Filip
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | | | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| |
Collapse
|
7
|
Mozneb M, Jenkins A, Sances S, Pohlman S, Workman MJ, West D, Ondatje B, El-Ghazawi K, Woodbury A, Garcia VJ, Patel S, Arzt M, Dezem F, Laperle AH, Moser VA, Ho R, Yucer N, Plummer J, Barrett RJ, Svendsen CN, Sharma A. Multi-lineage heart-chip models drug cardiotoxicity and enhances maturation of human stem cell-derived cardiovascular cells. LAB ON A CHIP 2024; 24:869-881. [PMID: 38252454 PMCID: PMC12015978 DOI: 10.1039/d3lc00745f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cardiovascular toxicity causes adverse drug reactions and may lead to drug removal from the pharmaceutical market. Cancer therapies can induce life-threatening cardiovascular side effects such as arrhythmias, muscle cell death, or vascular dysfunction. New technologies have enabled cardiotoxic compounds to be identified earlier in drug development. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and vascular endothelial cells (ECs) can screen for drug-induced alterations in cardiovascular cell function and survival. However, most existing hiPSC models for cardiovascular drug toxicity utilize two-dimensional, immature cells grown in static culture. Improved in vitro models to mechanistically interrogate cardiotoxicity would utilize more adult-like, mature hiPSC-derived cells in an integrated system whereby toxic drugs and protective agents can flow between hiPSC-ECs that represent systemic vasculature and hiPSC-CMs that represent heart muscle (myocardium). Such models would be useful for testing the multi-lineage cardiotoxicities of chemotherapeutic drugs such as VEGFR2/PDGFR-inhibiting tyrosine kinase inhibitors (VPTKIs). Here, we develop a multi-lineage, fully-integrated, cardiovascular organ-chip that can enhance hiPSC-EC and hiPSC-CM functional and genetic maturity, model endothelial barrier permeability, and demonstrate long-term functional stability. This microfluidic organ-chip harbors hiPSC-CMs and hiPSC-ECs on separate channels that can be subjected to active fluid flow and rhythmic biomechanical stretch. We demonstrate the utility of this cardiovascular organ-chip as a predictive platform for evaluating multi-lineage VPTKI toxicity. This study may lead to the development of new modalities for the evaluation and prevention of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amelia Jenkins
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Stephany Pohlman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Dylan West
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Briana Ondatje
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Kareem El-Ghazawi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Amanda Woodbury
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Veronica J Garcia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Shachi Patel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe Dezem
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alex H Laperle
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - V Alexandra Moser
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Nur Yucer
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Jasmine Plummer
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
Ganizada BH, Reesink KD, Parikh S, Ramaekers MJFG, Akbulut AC, Saraber PJMH, Debeij GP, Jaminon AM, Natour E, Lorusso R, Wildberger JE, Mees B, Schurink GW, Jacobs MJ, Cleutjens J, Krapels I, Gombert A, Maessen JG, Accord R, Delhaas T, Schalla S, Schurgers LJ, Bidar E. The Maastricht Acquisition Platform for Studying Mechanisms of Cell-Matrix Crosstalk (MAPEX): An Interdisciplinary and Systems Approach towards Understanding Thoracic Aortic Disease. Biomedicines 2023; 11:2095. [PMID: 37626592 PMCID: PMC10452257 DOI: 10.3390/biomedicines11082095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Current management guidelines for ascending thoracic aortic aneurysms (aTAA) recommend intervention once ascending or sinus diameter reaches 5-5.5 cm or shows a growth rate of >0.5 cm/year estimated from echo/CT/MRI. However, many aTAA dissections (aTAAD) occur in vessels with diameters below the surgical intervention threshold of <55 mm. Moreover, during aTAA repair surgeons observe and experience considerable variations in tissue strength, thickness, and stiffness that appear not fully explained by patient risk factors. To improve the understanding of aTAA pathophysiology, we established a multi-disciplinary research infrastructure: The Maastricht acquisition platform for studying mechanisms of tissue-cell crosstalk (MAPEX). The explicit scientific focus of the platform is on the dynamic interactions between vascular smooth muscle cells and extracellular matrix (i.e., cell-matrix crosstalk), which play an essential role in aortic wall mechanical homeostasis. Accordingly, we consider pathophysiological influences of wall shear stress, wall stress, and smooth muscle cell phenotypic diversity and modulation. Co-registrations of hemodynamics and deep phenotyping at the histological and cell biology level are key innovations of our platform and are critical for understanding aneurysm formation and dissection at a fundamental level. The MAPEX platform enables the interpretation of the data in a well-defined clinical context and therefore has real potential for narrowing existing knowledge gaps. A better understanding of aortic mechanical homeostasis and its derangement may ultimately improve diagnostic and prognostic possibilities to identify and treat symptomatic and asymptomatic patients with existing and developing aneurysms.
Collapse
Affiliation(s)
- Berta H. Ganizada
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Koen D. Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Mitch J. F. G. Ramaekers
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Asim C. Akbulut
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Stem Cell Research University Maastricht Facility, 6229 ER Maastricht, The Netherlands
| | - Pepijn J. M. H. Saraber
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Gijs P. Debeij
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - MUMC-TAA Student Team
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Armand M. Jaminon
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Ehsan Natour
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Roberto Lorusso
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Barend Mees
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Geert Willem Schurink
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Michael J. Jacobs
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Jack Cleutjens
- Department of Pathology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Ingrid Krapels
- Department of Clinical Genetics, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Alexander Gombert
- Department of Vascular Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Jos G. Maessen
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Diseases, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Simon Schalla
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Leon J. Schurgers
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Stem Cell Research University Maastricht Facility, 6229 ER Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Elham Bidar
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| |
Collapse
|
9
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of human iPSC-derived vascular smooth muscle cells and cell autonomous consequences of Cantu Syndrome mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547088. [PMID: 37425756 PMCID: PMC10327170 DOI: 10.1101/2023.06.29.547088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Objective Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with distinct hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Approach and Results Whole-cell voltage-clamp of isolated aortic and mesenteric VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no difference in voltage-gated K + (K v ) or Ca 2+ currents. K v and Ca 2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. Pinacidil-sensitive K ATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, and were considerably larger in CS hiPSC-VSMCs. Consistent with lack of any compensatory modulation of other currents, this resulted in membrane hyperpolarization, explaining the hypomyotonic basis of CS vasculopathy. Increased compliance and dilation in isolated CS mouse aortae, was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular K ATP GoF. Conclusions The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. The results further indicate that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by K ATP overactivity within VSMCs.
Collapse
|
10
|
Liu L, Jouve C, Henry J, Berrandou TE, Hulot JS, Georges A, Bouatia-Naji N. Genomic, Transcriptomic, and Proteomic Depiction of Induced Pluripotent Stem Cells-Derived Smooth Muscle Cells As Emerging Cellular Models for Arterial Diseases. Hypertension 2023; 80:740-753. [PMID: 36655574 DOI: 10.1161/hypertensionaha.122.19733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Vascular smooth muscle cells (SMCs) plasticity is a central mechanism in cardiovascular health and disease. We aimed at providing cellular phenotyping, epigenomic and proteomic depiction of SMCs derived from induced pluripotent stem cells and evaluating their potential as cellular models in the context of complex diseases. METHODS Human induced pluripotent stem cell lines were differentiated using RepSox (R-SMCs) or PDGF-BB (platelet-derived growth factor-BB) and TGF-β (transforming growth factor beta; TP-SMCs), during a 24-day long protocol. RNA-Seq and assay for transposase accessible chromatin-Seq were performed at 6 time points of differentiation, and mass spectrometry was used to quantify proteins. RESULTS Both induced pluripotent stem cell differentiation protocols generated SMCs with positive expression of SMC markers. TP-SMCs exhibited greater proliferation capacity, migration and lower calcium release in response to contractile stimuli, compared with R-SMCs. Genes involved in the contractile function of arteries were highly expressed in R-SMCs compared with TP-SMCs or primary SMCs. R-SMCs and coronary artery transcriptomic profiles were highly similar, characterized by high expression of genes involved in blood pressure regulation and coronary artery disease. We identified FOXF1 and HAND1 as key drivers of RepSox specific program. Extracellular matrix content contained more proteins involved in wound repair in TP-SMCs and higher secretion of basal membrane constituents in R-SMCs. Open chromatin regions of R-SMCs and TP-SMCs were significantly enriched for variants associated with blood pressure and coronary artery disease. CONCLUSIONS Both induced pluripotent stem cell-derived SMCs models present complementary cellular phenotypes of high relevance to SMC plasticity. These cellular models present high potential to study functional regulation at genetic risk loci of main arterial diseases.
Collapse
Affiliation(s)
- Lu Liu
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Charlène Jouve
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Joséphine Henry
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Takiy-Eddine Berrandou
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Jean-Sébastien Hulot
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Adrien Georges
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Nabila Bouatia-Naji
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| |
Collapse
|
11
|
Jafarkhani S, Khakbiz M, Amoabediny G, Mohammadi J, Tahmasebipour M, Rabbani H, Salimi A, Lee KB. A novel co-culture assay to evaluate the effects of sympathetic innervation on vascular smooth muscle differentiation. Bioorg Chem 2023; 133:106233. [PMID: 36731293 DOI: 10.1016/j.bioorg.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022]
Abstract
Dedifferentiation of vascular smooth muscle cells (VSMCs) from a functional phenotype to an inverse synthetic phenotype is a symptom of cardiovascular disorders, such as atherosclerosis and hypertension. The sympathetic nervous system (SNS) is an essential regulator of the differentiation of vascular smooth muscle cells (VSMCs). In addition, numerous studies suggest that SNS also stimulates VSMCs to retain their contractile phenotype. However, the molecular mechanisms for this stimulation have not been thoroughly studied. In this study, we used a novel in vitro co-culture method to evaluate the effective cellular interactions and stimulatory effects of sympathetic neurons on the differentiation of VSMCs. We co-cultured rat neural-like pheochromocytoma cells (PC12) and rat aortic VSMCs with this method. Expression of VSMCs contractile genes, including smooth muscle actin (acta2), myosin heavy chain (myh11), elastin (eln), and smoothelin (smtn), were determined by quantitative real-time-PCR analysis as an indicator of VSMCs differentiation. Fold changes for specific contractile genes in VSMCs grown in vitro for seven days in the presence (innervated) and absence (non-innervated) of sympathetic neurons were 3.5 for acta2, 6.5 for myh11, 4.19 for eln, and 4 for smtn (normalized to Tata Binding Protein (TBP)). As a result, these data suggest that sympathetic innervation promotes VSMCs' contractile gene expression and also maintains VSMCs' functional phenotype.
Collapse
Affiliation(s)
- Saeed Jafarkhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Ghasem Amoabediny
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran; Faculty of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Mohammad Tahmasebipour
- Department of Interdisciplinary Technology, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Salimi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Wang Z, Quan Y, Hu M, Xu Y, Chen Y, Jin P, Ma J, Chen X, Fan J, Fan X, Gong Y, Li M, Wang Y. VGLL4-TEAD1 promotes vascular smooth muscle cell differentiation from human pluripotent stem cells via TET2. J Mol Cell Cardiol 2023; 176:21-32. [PMID: 36657637 DOI: 10.1016/j.yjmcc.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The Hippo signaling pathway plays a critical role in cardiovascular development and stem cell differentiation. Using microarray profiling, we found that the Hippo pathway components vestigial-like family member 4 (VGLL4) and TEA domain transcription factor 1 (TEAD1) were upregulated during vascular smooth muscle cell (VSMC) differentiation from H1 ESCs (H1 embryonic stem cells). To further explore the role and molecular mechanisms of VGLL4 in regulating VSMC differentiation, we generated a VGLL4-knockdown H1 ESC line (heterozygous knockout) using the CRISPR/Cas9 system and found that VGLL4 knockdown inhibited VSMC specification. In contrast, overexpression of VGLL4 using the PiggyBac transposon system facilitated VSMC differentiation. We confirmed that this effect was mediated via TEAD1 and VGLL4 interaction. In addition, bioinformatics analysis revealed that Ten-eleven-translocation 2 (TET2), a DNA dioxygenase, is a target of TEAD1, and a luciferase assay further verified that TET2 is the target of the VGLL4-TEAD1 complex. Indeed, TET2 overexpression promoted VSMC marker gene expression and countered the VGLL4 knockdown-mediated inhibitory effects on VSMC differentiation. In summary, we revealed a novel role of VGLL4 in promoting VSMC differentiation from hESCs and identified TET2 as a new target of the VGLL4-TEAD1 complex, which may demethylate VSMC marker genes and facilitate VSMC differentiation. This study provides new insights into the VGLL4-TEAD1-TET2 axis in VSMC differentiation and vascular development.
Collapse
Affiliation(s)
- Zuxuan Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yingyi Quan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Minjie Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yubin Xu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yuhao Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Peifeng Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiufang Chen
- Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China; Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| |
Collapse
|
13
|
Morris GE, Denniff MJ, Karamanavi E, Andrews SA, Kostogrys RB, Bountziouka V, Ghaderi‐Najafabadi M, Shamkhi N, McConnell G, Kaiser MA, Carleton L, Schofield C, Kessler T, Rainbow RD, Samani NJ, Webb TR. The integrin ligand SVEP1 regulates GPCR-mediated vasoconstriction via integrins α9β1 and α4β1. Br J Pharmacol 2022; 179:4958-4973. [PMID: 35802072 PMCID: PMC9805129 DOI: 10.1111/bph.15921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L-type voltage-gated Ca2+ channels (VGCCs). Genetic variants in ITGA9, which encodes the α9 subunit of integrin α9β1, and SVEP1, a ligand for integrin α9β1, associate with elevated blood pressure; however, neither SVEP1 nor integrin α9β1 has reported roles in vasoregulation. We determined whether SVEP1 and integrin α9β1 can regulate VSMC contraction. EXPERIMENTAL APPROACH SVEP1 and integrin binding were confirmed by immunoprecipitation and cell binding assays. Human induced pluripotent stem cell-derived VSMCs were used in in vitro [Ca2+ ]i studies, and aortas from a Svep1+/- knockout mouse model were used in wire myography to measure vessel contraction. KEY RESULTS We confirmed the ligation of SVEP1 to integrin α9β1 and additionally found SVEP1 to directly bind to integrin α4β1. Inhibition of SVEP1, integrin α4β1 or α9β1 significantly enhanced [Ca2+ ]i levels in isolated VSMCs to Gαq/11 -vasoconstrictors. This response was confirmed in whole vessels where a greater contraction to U46619 was seen in vessels from Svep1+/- mice compared to littermate controls or when integrin α4β1 or α9β1 was inhibited. Inhibition studies suggested that this effect was mediated via VGCCs, PKC and Rho A/Rho kinase dependent mechanisms. CONCLUSIONS AND IMPLICATIONS Our studies reveal a novel role for SVEP1 and the integrins α4β1 and α9β1 in reducing VSMC contractility. This could provide an explanation for the genetic associations with blood pressure risk at the SVEP1 and ITGA9 loci.
Collapse
Affiliation(s)
- Gavin E. Morris
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Matthew J. Denniff
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Elisavet Karamanavi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Sarah A. Andrews
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Renata B. Kostogrys
- Department of Human Nutrition, Faculty of Food TechnologyUniversity of Agriculture in KrakowKrakowPoland
| | - Vasiliki Bountziouka
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Maryam Ghaderi‐Najafabadi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Noor Shamkhi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - George McConnell
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Michael A. Kaiser
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | | | | | - Thorsten Kessler
- Department of Cardiology, German Heart Centre MunichTechnical University of MunichMunichGermany,German Centre of Cardiovascular Research (DZHK e. V.), Partner Site Munich Heart AllianceMunichGermany
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular ScienceUniversity of LiverpoolLiverpoolUK
| | - Nilesh J. Samani
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Thomas R. Webb
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| |
Collapse
|
14
|
Wang M, Lin S, Mequanint K. Electrospun Biodegradable α-Amino Acid-Substituted Poly(organophosphazene) Fiber Mats for Stem Cell Differentiation towards Vascular Smooth Muscle Cells. Polymers (Basel) 2022; 14:polym14081555. [PMID: 35458303 PMCID: PMC9025042 DOI: 10.3390/polym14081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells, derived from human-induced pluripotent stem cells (iPSC), are valuable for generating smooth muscle cells (SMCs) for vascular tissue engineering applications. In this study, we synthesized biodegradable α-amino acid-substituted poly(organophosphazene) polymers and electrospun nano-fibrous scaffolds (~200 nm diameter) to evaluate their suitability as a matrix for differentiation of iPSC-derived mesenchymal stem cells (iMSC) into mature contractile SMCs. Both the polymer synthesis approach and the electrospinning parameters were optimized. Three types of cells, namely iMSC, bone marrow derived mesenchymal stem cells (BM-MSC), and primary human coronary artery SMC, attached and spread on the materials. Although L-ascorbic acid (AA) and transforming growth factor-beta 1 (TGF-β1) were able to differentiate iMSC along the smooth muscle lineage, we showed that the electrospun fibrous mats provided material cues for the enhanced differentiation of iMSCs. Differentiation of iMSC to SMC was characterized by increased transcriptional levels of early to late-stage smooth muscle marker proteins on electrospun fibrous mats. Our findings provide a feasible strategy for engineering functional vascular tissues.
Collapse
|
15
|
Dunham CS, Mackenzie ME, Nakano H, Kim AR, Juda MB, Nakano A, Stieg AZ, Gimzewski JK. Pacemaker translocations and power laws in 2D stem cell-derived cardiomyocyte cultures. PLoS One 2022; 17:e0263976. [PMID: 35286321 PMCID: PMC8920264 DOI: 10.1371/journal.pone.0263976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Power laws are of interest to several scientific disciplines because they can provide important information about the underlying dynamics (e.g. scale invariance and self-similarity) of a given system. Because power laws are of increasing interest to the cardiac sciences as potential indicators of cardiac dysfunction, it is essential that rigorous, standardized analytical methods are employed in the evaluation of power laws. This study compares the methods currently used in the fields of condensed matter physics, geoscience, neuroscience, and cardiology in order to provide a robust analytical framework for evaluating power laws in stem cell-derived cardiomyocyte cultures. One potential power law-obeying phenomenon observed in these cultures is pacemaker translocations, or the spatial and temporal instability of the pacemaker region, in a 2D cell culture. Power law analysis of translocation data was performed using increasingly rigorous methods in order to illustrate how differences in analytical robustness can result in misleading power law interpretations. Non-robust methods concluded that pacemaker translocations adhere to a power law while robust methods convincingly demonstrated that they obey a doubly truncated power law. The results of this study highlight the importance of employing comprehensive methods during power law analysis of cardiomyocyte cultures.
Collapse
Affiliation(s)
- Christopher S. Dunham
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Madelynn E. Mackenzie
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Haruko Nakano
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
| | - Alexis R. Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Michal B. Juda
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Atsushi Nakano
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, United States of America
- Department of Cell Physiology, The Jikei University, Tokyo, Japan
| | - Adam Z. Stieg
- California NanoSystems Institute, University of California, Los Angeles, California, United States of America
- International Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science, Tsukuba, Japan
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California, Los Angeles, California, United States of America
- International Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science, Tsukuba, Japan
| |
Collapse
|
16
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
17
|
Mulorz J, Shayan M, Hu C, Alcazar C, Chan AHP, Briggs M, Wen Y, Walvekar AP, Ramasubramanian AK, Spin JM, Chen B, Tsao PS, Huang NF. peri-Adventitial delivery of smooth muscle cells in porous collagen scaffolds for treatment of experimental abdominal aortic aneurysm. Biomater Sci 2021; 9:6903-6914. [PMID: 34522940 PMCID: PMC8511090 DOI: 10.1039/d1bm00685a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abdominal aortic aneurysm (AAA) is associated with the loss of vascular smooth muscle cells (SMCs) within the vessel wall. Direct delivery of therapeutic cells is challenging due to impaired mechanical integrity of the vessel wall. We hypothesized that porous collagen scaffolds can be an effective vehicle for the delivery of human-derived SMCs to the site of AAA. The purpose was to evaluate if the delivery of cell-seeded scaffolds can abrogate progressive expansion in a mouse model of AAA. Collagen scaffolds seeded with either primary human aortic SMCs or induced pluripotent stem cell derived-smooth muscle progenitor cells (iPSC-SMPs) had >80% in vitro cell viability and >75% cell penetrance through the scaffold's depth, while preserving smooth muscle phenotype. The cell-seeded scaffolds were successfully transplanted onto the murine aneurysm peri-adventitia on day 7 following AAA induction using pancreatic porcine elastase infusion. Ultrasound imaging revealed that SMC-seeded scaffolds significantly reduced the aortic diameter by 28 days, compared to scaffolds seeded with iPSC-SMPs or without cells (acellular scaffold), respectively. Bioluminescence imaging demonstrated that both cell-seeded scaffold groups had cellular localization to the aneurysm but a decline in survival with time. Histological analysis revealed that both cell-seeded scaffold groups had more SMC retention and less macrophage invasion into the medial layer of AAA lesions, when compared to the acellular scaffold treatment group. Our data suggest that scaffold-based SMC delivery is feasible and may constitute a platform for cell-based AAA therapy.
Collapse
Affiliation(s)
- Joscha Mulorz
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Mahdis Shayan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Cynthia Alcazar
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Alex H P Chan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mason Briggs
- Stanford University School of Medicine, Department of Obstetrics and Gynecology, Stanford, CA, USA
| | - Yan Wen
- Stanford University School of Medicine, Department of Obstetrics and Gynecology, Stanford, CA, USA
| | - Ankita P Walvekar
- Department of Chemical and Materials Engineering, San Jose State University, San Jose, CA, USA
| | - Anand K Ramasubramanian
- Department of Chemical and Materials Engineering, San Jose State University, San Jose, CA, USA
| | - Joshua M Spin
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Bertha Chen
- Stanford University School of Medicine, Department of Obstetrics and Gynecology, Stanford, CA, USA
| | - Philip S Tsao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Ngan F Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Guan Y, Yang B, Xu W, Li D, Wang S, Ren Z, Zhang J, Zhang T, Liu XZ, Li J, Li C, Meng F, Han F, Wu T, Wang Y, Peng J. Cell-derived extracellular matrix materials for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1007-1021. [PMID: 34641714 DOI: 10.1089/ten.teb.2021.0147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development.
Collapse
Affiliation(s)
- Yanjun Guan
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Boyao Yang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Wenjing Xu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Dongdong Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Sidong Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Zhiqi Ren
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Jian Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tieyuan Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Xiu-Zhi Liu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Junyang Li
- Nankai University School of Medicine, 481107, Tianjin, Tianjin, China.,Chinese PLA General Hospital, 104607, Beijing, Beijing, China;
| | - Chaochao Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Fanqi Meng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Peking University People's Hospital, 71185, Department of spine surgery, Beijing, China;
| | - Feng Han
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tong Wu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Yu Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| | - Jiang Peng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| |
Collapse
|
19
|
Arce C, Rodríguez-Rovira I, De Rycke K, Durán K, Campuzano V, Fabregat I, Jiménez-Altayó F, Berraondo P, Egea G. Anti-TGFβ (Transforming Growth Factor β) Therapy With Betaglycan-Derived P144 Peptide Gene Delivery Prevents the Formation of Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2021; 41:e440-e452. [PMID: 34162229 DOI: 10.1161/atvbaha.121.316496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective We investigated the effect of a potent TGFβ (transforming growth factor β) inhibitor peptide (P144) from the betaglycan/TGFβ receptor III on aortic aneurysm development in a Marfan syndrome mouse model. Approach and Results We used a chimeric gene encoding the P144 peptide linked to apolipoprotein A-I via a flexible linker expressed by a hepatotropic adeno-associated vector. Two experimental approaches were performed: (1) a preventive treatment where the vector was injected before the onset of the aortic aneurysm (aged 4 weeks) and followed-up for 4 and 20 weeks and (2) a palliative treatment where the vector was injected once the aneurysm was formed (8 weeks old) and followed-up for 16 weeks. We evaluated the aortic root diameter by echocardiography, the aortic wall architecture and TGFβ signaling downstream effector expression of pSMAD2 and pERK1/2 by immunohistomorphometry, and Tgfβ1 and Tgfβ2 mRNA expression levels by real-time polymerase chain reaction. Marfan syndrome mice subjected to the preventive approach showed no aortic dilation in contrast to untreated Marfan syndrome mice, which at the same end point age already presented the aneurysm. In contrast, the palliative treatment with P144 did not halt aneurysm progression. In all cases, P144 improved elastic fiber morphology and normalized pERK1/2-mediated TGFβ signaling. Unlike the palliative treatment, the preventive treatment reduced Tgfβ1 and Tgfβ2 mRNA levels. Conclusions P144 prevents the onset of aortic aneurysm but not its progression. Results indicate the importance of reducing the excess of active TGFβ signaling during the early stages of aortic disease progression.
Collapse
Affiliation(s)
- Cristina Arce
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Karo De Rycke
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Karina Durán
- Department of Cardiology, Hospital Clínic y Provincial de Barcelona, Spain (K.D.)
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain (V.C.)
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and Centro de Investigación Biomédica en Red de Enfermedades Hepático-Digestivas (CIBEREHD), ISCIII, Spain (I.F.)
| | - Francesc Jiménez-Altayó
- Department of Therapeutic Pharmacology and Toxicology, School of Medicine, Neuroscience Institute, Autonomous University of Barcelona, Bellaterra, Spain (F.J.-A.)
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, CIMA University of Navarra, Pamplona, Spain (P.B.)
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain (P.B.)
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (G.E.)
| |
Collapse
|
20
|
Gao L, Wang L, Wei Y, Krishnamurthy P, Walcott GP, Menasché P, Zhang J. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Sci Transl Med 2021; 12:12/561/eaay1318. [PMID: 32938792 DOI: 10.1126/scitranslmed.aay1318] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 04/13/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Cell therapy treatment of myocardial infarction (MI) is mediated, in part, by exosomes secreted from transplanted cells. Thus, we compared the efficacy of treatment with a mixture of cardiomyocytes (CMs; 10 million), endothelial cells (ECs; 5 million), and smooth muscle cells (SMCs; 5 million) derived from human induced pluripotent stem cells (hiPSCs), or with exosomes extracted from the three cell types, in pigs after MI. Female pigs received sham surgery; infarction without treatment (MI group); or infarction and treatment with hiPSC-CMs, hiPSC-ECs, and hiPSC-SMCs (MI + Cell group); with homogenized fragments from the same dose of cells administered to the MI + Cell group (MI + Fra group); or with exosomes (7.5 mg) extracted from a 2:1:1 mixture of hiPSC-CMs:hiPSC-ECs:hiPSC-SMCs (MI + Exo group). Cells and exosomes were injected into the injured myocardium. In vitro, exosomes promoted EC tube formation and microvessel sprouting from mouse aortic rings and protected hiPSC-CMs by reducing apoptosis, maintaining intracellular calcium homeostasis, and increasing adenosine 5'-triphosphate. In vivo, measurements of left ventricular ejection fraction, wall stress, myocardial bioenergetics, cardiac hypertrophy, scar size, cell apoptosis, and angiogenesis in the infarcted region were better in the MI + Cell, MI + Fra, and MI + Exo groups than in the MI group 4 weeks after infarction. The frequencies of arrhythmic events in animals from the MI, MI + Cell, and MI + Exo groups were similar. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.
Collapse
Affiliation(s)
- Ling Gao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, P.R. China
| | - Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Philippe Menasché
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.,Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, F-75015 Paris, France
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
21
|
Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021; 128:670-686. [PMID: 33818124 PMCID: PMC10817206 DOI: 10.1161/circresaha.120.318049] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | - Thomas Quertermous
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
22
|
Zhu K, Ma W, Li J, Zhang YS, Zhang W, Lai H, Wang C. Modeling aortic diseases using induced pluripotent stem cells. Stem Cells Transl Med 2020; 10:190-197. [PMID: 33179450 PMCID: PMC7848399 DOI: 10.1002/sctm.20-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer an effective platform for studies of human physiology and have revealed new possibilities for disease modeling at the cellular level. These cells also have the potential to be leveraged in the practice of precision medicine, including personalized drug testing. Aortic diseases result in significant morbidity and mortality and pose a global burden to healthcare. Their pathogenesis is mostly associated with functional alterations of vascular components, such as endothelial cells and vascular smooth muscle cells. Drugs that have been proven to be effective in animal models often fail to protect patients from adverse aortic events in clinical studies, provoking researchers to develop reliable in vitro models using human cells. In this review, we summarize the patient iPSC-derived aortic cells that have been utilized to model aortic diseases in vitro. In advanced models, hemodynamic factors, such as blood flow-induced shear stress and cyclic strain, have been added to the systems to replicate cellular microenvironments in the aortic wall. Examples of the utility of such factors in modeling various aortopathies, such as Marfan syndrome, Loeys-Dietz syndrome, and bicuspid aortic valve-related aortopathy, are also described. Overall, the iPSC-based in vitro cell models have shown the potential to promote the development and practice of precision medicine in the treatment of aortic diseases.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Wenrui Ma
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Weijia Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences and Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, People's Republic of China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Hu A, Shuai Z, Liu J, Huang B, Luo Y, Deng J, Liu J, Yu L, Li L, Xu S. Ginsenoside Rg1 prevents vascular intimal hyperplasia involved by SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes in a rat balloon injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113046. [PMID: 32504784 DOI: 10.1016/j.jep.2020.113046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Mey. is a traditional tonic that has been used for thousands of years, and has positive effects on vascular diseases. Ginsenoside Rg1 (GS-Rg1) is one of the active ingredients of Panax ginseng C. A. Mey. and has been shown to have beneficial effects against ischemia/reperfusion injury. Our previously study has found that GS-Rg1 can mobilize bone marrow stem cells and inhibit vascular smooth muscle proliferation and phenotype transformation. However, pharmacological effects and mechanism of GS-Rg1 in inhibiting intimal hyperplasia is still unknown. AIM OF THE STUDY This study was aimed to investigate whether GS-Rg1 prevented vascular intimal hyperplasia, and the involvement of stromal cell-derived factor-1α (SDF-1α)/CXCR4, stem cell factor (SCF)/c-kit and fractalkine (FKN)/CX3CR1 axes. MATERIALS AND METHODS Rats were operated with carotid artery balloon injury. The treatment groups were injected with 4, 8 and 16 mg/kg of GS-Rg1 for 14 days. The degree of intimal hyperplasia was evaluated by histopathological examination. The expression of α-SMA (α-smooth muscle actin) and CD133 were detected by double-label immunofluorescence. Serum levels of SDF-1α, SCF and soluble FKN (sFKN) were detected by enzyme linked immunosorbent assay (ELISA). The protein expressions of SCF, SDF-1α and FKN, as well as the receptors c-kit, CXC chemokine receptor type 4 (CXCR4) and CX3C chemokine receptor type 1 (CX3CR1) were detected by immunochemistry. RESULTS GS-Rg1 reduced intimal hyperplasia by evidence of the values of NIA, the ratio of NIA/MA, and the ratio of NIA/IELA and the ratio of NIA/LA, especially in 16 mg/kg group. Furthermore, GS-Rg1 8 mg/kg group and 16 mg/kg group decreased the protein expressions of the SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes in neointima, meanwhile GS-Rg1 8 mg/kg group and 16 mg/kg group also attenuated the expressions of SDF-1α, SCF and sFKN in serum. In addition, the expression of α-SMA and CD133 marked smooth muscle progenitor cells (SMPCs) was decreased after GS-Rg1 treatment. CONCLUSIONS GS-Rg1 has a positive effect on inhibiting vascular intimal hyperplasia, and the underlying mechanism is related to inhibitory expression of SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes.
Collapse
MESH Headings
- Angioplasty, Balloon
- Animals
- CX3C Chemokine Receptor 1/metabolism
- Carotid Artery Injuries/etiology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/prevention & control
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Chemokine CX3CL1/metabolism
- Chemokine CXCL12/metabolism
- Disease Models, Animal
- Ginsenosides/pharmacology
- Hyperplasia
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neointima
- Proto-Oncogene Proteins c-kit/metabolism
- Rats, Sprague-Dawley
- Receptors, CXCR4/metabolism
- Signal Transduction
- Stem Cell Factor/metabolism
Collapse
Affiliation(s)
- Anling Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550025, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China.
| | - Zhiqin Shuai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Jiajia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Limei Yu
- State Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 563003, China.
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, China; State Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 563003, China.
| |
Collapse
|
24
|
Pitrez PR, Estronca L, Monteiro LM, Colell G, Vazão H, Santinha D, Harhouri K, Thornton D, Navarro C, Egesipe AL, Carvalho T, Dos Santos RL, Lévy N, Smith JC, de Magalhães JP, Ori A, Bernardo A, De Sandre-Giovannoli A, Nissan X, Rosell A, Ferreira L. Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nat Commun 2020; 11:4110. [PMID: 32807790 PMCID: PMC7431909 DOI: 10.1038/s41467-020-17901-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disease in children that leads to early death. Smooth muscle cells (SMCs) are the most affected cells in HGPS individuals, although the reason for such vulnerability remains poorly understood. In this work, we develop a microfluidic chip formed by HGPS-SMCs generated from induced pluripotent stem cells (iPSCs), to study their vulnerability to flow shear stress. HGPS-iPSC SMCs cultured under arterial flow conditions detach from the chip after a few days of culture; this process is mediated by the upregulation of metalloprotease 13 (MMP13). Importantly, double-mutant LmnaG609G/G609GMmp13-/- mice or LmnaG609G/G609GMmp13+/+ mice treated with a MMP inhibitor show lower SMC loss in the aortic arch than controls. MMP13 upregulation appears to be mediated, at least in part, by the upregulation of glycocalyx. Our HGPS-SMCs chip represents a platform for developing treatments for HGPS individuals that may complement previous pre-clinical and clinical treatments.
Collapse
Affiliation(s)
- Patricia R Pitrez
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Estronca
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Miguel Monteiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Guillem Colell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Helena Vazão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Deolinda Santinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Daniel Thornton
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Claire Navarro
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Progelife, Marseille, France
| | - Anne-Laure Egesipe
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry Cedex, France
| | - Tânia Carvalho
- IMM, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | | | - Nicolas Lévy
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Molecular Genetics Laboratory, Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
| | - James C Smith
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - João Pedro de Magalhães
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, 07745, Jena, Germany
| | - Andreia Bernardo
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Molecular Genetics Laboratory, Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
- CRB Assistance Publique des Hôpitaux de Marseille (CRB AP-HM, TAC), Marseille, France
| | - Xavier Nissan
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry Cedex, France
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
25
|
Dash BC, Duan K, Xing H, Kyriakides TR, Hsia HC. An in situ collagen-HA hydrogel system promotes survival and preserves the proangiogenic secretion of hiPSC-derived vascular smooth muscle cells. Biotechnol Bioeng 2020; 117:3912-3923. [PMID: 32770746 DOI: 10.1002/bit.27530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Human-induced pluripotent stem cell-derived vascular smooth muscle cells (hiPSC-VSMCs) with proangiogenic properties have huge therapeutic potential. While hiPSC-VSMCs have already been utilized for wound healing using a biomimetic collagen scaffold, an in situ forming hydrogel mimicking the native environment of skin offers the promise of hiPSC-VSMC mediated repair and regeneration. Herein, the impact of a collagen type-I-hyaluronic acid (HA) in situ hydrogel cross-linked using a polyethylene glycol-based cross-linker on hiPSC-VSMCs viability and proangiogenic paracrine secretion was investigated. Our study demonstrated increases in cell viability, maintenance of phenotype and proangiogenic growth factor secretion, and proangiogenic activity in response to the conditioned medium. The optimally cross-linked and functionalized collagen type-I/HA hydrogel system developed in this study shows promise as an in situ hiPSC-VSMC carrier system for wound regeneration.
Collapse
Affiliation(s)
- Biraja C Dash
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Kaiti Duan
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Pathology, Yale University, New Haven, Connecticut.,Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Henry C Hsia
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|
26
|
Dash BC, Setia O, Gorecka J, Peyvandi H, Duan K, Lopes L, Nie J, Berthiaume F, Dardik A, Hsia HC. A Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing. Cells 2020; 9:E966. [PMID: 32295218 PMCID: PMC7226960 DOI: 10.3390/cells9040966] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
The application of human-induced pluripotent stem cells (hiPSCs) to generate vascular smooth muscle cells (hiPSC-VSMCs) in abundance is a promising strategy for vascular regeneration. While hiPSC-VSMCs have already been utilized for tissue-engineered vascular grafts and disease modeling, there is a lack of investigations exploring their therapeutic secretory factors. The objective of this manuscript was to understand how the biophysical property of a collagen-based scaffold dictates changes in the secretory function of hiPSC-VSMCs while developing hiPSC-VSMC-based therapy for durable regenerative wound healing. We investigated the effect of collagen fibrillar density (CFD) on hiPSC-VSMC's paracrine secretion and cytokines via the construction of varying density of collagen scaffolds. Our study demonstrated that CFD is a key scaffold property that modulates the secretory function of hiPSC-VSMCs. This study lays the foundation for developing collagen-based scaffold materials for the delivery of hiPSC-VSMCs to promote regenerative healing through guiding paracrine signaling pathways.
Collapse
Affiliation(s)
- Biraja C. Dash
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Ocean Setia
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Jolanta Gorecka
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Hassan Peyvandi
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Kaiti Duan
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Lara Lopes
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - James Nie
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, The State University New Jersey, Piscataway, NJ 08854, USA;
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Henry C. Hsia
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| |
Collapse
|
27
|
Liu F, Shan S, Li H, Li Z. Treatment of Peroxidase Derived from Foxtail Millet Bran Attenuates Atherosclerosis by Inhibition of CD36 and STAT3 in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1276-1285. [PMID: 31965794 DOI: 10.1021/acs.jafc.9b06963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is one of the main causes of cardiovascular diseases. Our previous study indicated that a type of peroxidase derived from foxtail millet bran (FMBP) had prominent antitumor activities. In the present study, we found that FMBP had potential antiatherosclerosis effects. The results showed that FMBP treatment strongly suppressed lipid phagocytosis in both HASMCs and THP-1 cells by 52% and 49%, respectively. Further, FMBP significantly inhibited HASMCs migration by promoting transformation of HASMCs from synthetic to contractile, leading to the decrease of lipid phagocytosis. Simultaneously, FMBP repressed lipid uptake by reducing the expression of CD36 in THP-1 cells. In addition, FMBP reduced the secretion of inflammatory factor IL-1β by inhibiting the expression of STAT3 in THP-1 cells. Interestingly, FMBP also had the same effects in models of atherosclerosis constructed with ApoE-/- mice, including decreased aortic lesion area, repressed aortic sinus CD36 and STAT3 expression, and elevated serum HDL-C concentration. Collectively, these results indicate that FMBP has great potential in preventing the development of atherosclerosis.
Collapse
|
28
|
Wong D, Turner AW, Miller CL. Genetic Insights Into Smooth Muscle Cell Contributions to Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2020; 39:1006-1017. [PMID: 31043074 DOI: 10.1161/atvbaha.119.312141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease is a complex cardiovascular disease involving an interplay of genetic and environmental influences over a lifetime. Although considerable progress has been made in understanding lifestyle risk factors, genetic factors identified from genome-wide association studies may capture additional hidden risk undetected by traditional clinical tests. These genetic discoveries have highlighted many candidate genes and pathways dysregulated in the vessel wall, including those involving smooth muscle cell phenotypic modulation and injury responses. Here, we summarize experimental evidence for a few genome-wide significant loci supporting their roles in smooth muscle cell biology and disease. We also discuss molecular quantitative trait locus mapping as a powerful discovery and fine-mapping approach applied to smooth muscle cell and coronary artery disease-relevant tissues. We emphasize the critical need for alternative genetic strategies, including cis/trans-regulatory network analysis, genome editing, and perturbations, as well as single-cell sequencing in smooth muscle cell tissues and model organisms, under both normal and disease states. By integrating multiple experimental and analytical modalities, these multidimensional datasets should improve the interpretation of coronary artery disease genome-wide association studies and molecular quantitative trait locus signals and inform candidate targets for therapeutic intervention or risk prediction.
Collapse
Affiliation(s)
- Doris Wong
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville.,Department of Biochemistry and Molecular Genetics (D.W., C.L.M.), University of Virginia, Charlottesville
| | - Adam W Turner
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville
| | - Clint L Miller
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville.,Department of Biochemistry and Molecular Genetics (D.W., C.L.M.), University of Virginia, Charlottesville.,Department of Biomedical Engineering (C.L.M.), University of Virginia, Charlottesville.,Department of Public Health Sciences (C.L.M.), University of Virginia, Charlottesville
| |
Collapse
|
29
|
Paik DT, Chandy M, Wu JC. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev 2020; 72:320-342. [PMID: 31871214 PMCID: PMC6934989 DOI: 10.1124/pr.116.013003] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for regenerative therapy, disease modeling, and drug discovery. iPSCs allow for the production of limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. Despite significant advances, drug therapy and discovery for cardiovascular disease have lagged behind other fields such as oncology. We speculate that this paucity of drug discovery is due to a previous lack of efficient, reproducible, and translational model systems. Notably, existing drug discovery and testing platforms rely on animal studies and clinical trials, but investigations in animal models have inherent limitations due to interspecies differences. Moreover, clinical trials are inherently flawed by assuming that all individuals with a disease will respond identically to a therapy, ignoring the genetic and epigenomic variations that define our individuality. With ever-improving differentiation and phenotyping methods, patient-specific iPSC-derived cardiovascular cells allow unprecedented opportunities to discover new drug targets and screen compounds for cardiovascular disease. Imbued with the genetic information of an individual, iPSCs will vastly improve our ability to test drugs efficiently, as well as tailor and titrate drug therapy for each patient.
Collapse
Affiliation(s)
- David T Paik
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| |
Collapse
|
30
|
Kwong G, Marquez HA, Yang C, Wong JY, Kotton DN. Generation of a Purified iPSC-Derived Smooth Muscle-like Population for Cell Sheet Engineering. Stem Cell Reports 2019; 13:499-514. [PMID: 31422908 PMCID: PMC6739689 DOI: 10.1016/j.stemcr.2019.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 10/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) provide a potential source for the derivation of smooth muscle cells (SMCs); however, current approaches are limited by the production of heterogeneous cell types and a paucity of tools or markers for tracking and purifying candidate SMCs. Here, we develop murine and human iPSC lines carrying fluorochrome reporters (Acta2hrGFP and ACTA2eGFP, respectively) that identify Acta2+/ACTA2+ cells as they emerge in vitro in real time during iPSC-directed differentiation. We find that Acta2hrGFP+ and ACTA2eGFP+ cells can be sorted to purity and are enriched in markers characteristic of an immature or synthetic SMC. We characterize the resulting GFP+ populations through global transcriptomic profiling and functional studies, including the capacity to form engineered cell sheets. We conclude that these reporter lines allow for generation of sortable, live iPSC-derived Acta2+/ACTA2+ cells highly enriched in smooth muscle lineages for basic developmental studies, tissue engineering, or future clinical regenerative applications.
Collapse
Affiliation(s)
- George Kwong
- Center for Regenerative Medicine, Boston University and Boston Medical Center, 670 Albany Street, 2(nd) Floor, Boston, MA 02118, USA; Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Hector A Marquez
- Center for Regenerative Medicine, Boston University and Boston Medical Center, 670 Albany Street, 2(nd) Floor, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Chian Yang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, 670 Albany Street, 2(nd) Floor, Boston, MA 02118, USA; Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, 670 Albany Street, 2(nd) Floor, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
31
|
Tomasina C, Bodet T, Mota C, Moroni L, Camarero-Espinosa S. Bioprinting Vasculature: Materials, Cells and Emergent Techniques. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2701. [PMID: 31450791 PMCID: PMC6747573 DOI: 10.3390/ma12172701] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Despite the great advances that the tissue engineering field has experienced over the last two decades, the amount of in vitro engineered tissues that have reached a stage of clinical trial is limited. While many challenges are still to be overcome, the lack of vascularization represents a major milestone if tissues bigger than approximately 200 µm are to be transplanted. Cell survival and homeostasis is to a large extent conditioned by the oxygen and nutrient transport (as well as waste removal) by blood vessels on their proximity and spontaneous vascularization in vivo is a relatively slow process, leading all together to necrosis of implanted tissues. Thus, in vitro vascularization appears to be a requirement for the advancement of the field. One of the main approaches to this end is the formation of vascular templates that will develop in vitro together with the targeted engineered tissue. Bioprinting, a fast and reliable method for the deposition of cells and materials on a precise manner, appears as an excellent fabrication technique. In this review, we provide a comprehensive background to the fields of vascularization and bioprinting, providing details on the current strategies, cell sources, materials and outcomes of these studies.
Collapse
Affiliation(s)
- Clarissa Tomasina
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Tristan Bodet
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Carlos Mota
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | - Sandra Camarero-Espinosa
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| |
Collapse
|
32
|
Li F, Shi J, Lu HS, Zhang H. Functional Genomics and CRISPR Applied to Cardiovascular Research and Medicine. Arterioscler Thromb Vasc Biol 2019; 39:e188-e194. [PMID: 31433696 DOI: 10.1161/atvbaha.119.312579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fang Li
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| | - Jianting Shi
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L.)
| | - Hanrui Zhang
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| |
Collapse
|
33
|
Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 38:e159-e170. [PMID: 30354259 DOI: 10.1161/atvbaha.118.310227] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yao Lu
- From the Center of Clinical Pharmacology (Y.L.)
| | - Tanuja Thavarajah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| | - Jingjing Cai
- Department of Cardiology (J.C., Q.X.), Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingbo Xu
- Department of Cardiology (J.C., Q.X.), Third Xiangya Hospital, Central South University, Changsha, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| |
Collapse
|
34
|
The Application of Induced Pluripotent Stem Cells in Pathogenesis Study and Gene Therapy for Vascular Disorders: Current Progress and Future Challenges. Stem Cells Int 2019; 2019:9613258. [PMID: 31281393 PMCID: PMC6594248 DOI: 10.1155/2019/9613258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022] Open
Abstract
Vascular disorders are complex diseases with high morbidity and mortality. Among them, the dilated macrovascular diseases (MVD), such as aortic aneurysm and aortic dissection, have presented a huge threat to human health. The pathogenesis of vascular diseases is mostly associated with property alteration of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). Studies have confirmed that induced pluripotent stem cells (iPSCs) can be proliferated and differentiated into other somatic cells, such as VECs and VSMCs. And patient-specific cells could provide detailed human-associated information in regard to pathogenesis or drug responses. In addition, differentiated ECs from iPSC have been widely used in disease modeling as a cell therapy. In this review, we mainly discussed the application of hiPSCs in investigating the pathological mechanism of different inherited vascular diseases and provide a comprehensive understanding of hiPSCs in the field of clinical diagnosis and gene therapy.
Collapse
|
35
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
36
|
Slukvin II, Kumar A. The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cell Mol Life Sci 2018; 75:3507-3520. [PMID: 29992471 PMCID: PMC6328351 DOI: 10.1007/s00018-018-2871-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Mesenchymoangioblast (MB) is the earliest precursor for endothelial and mesenchymal cells originating from APLNR+PDGFRα+KDR+ mesoderm in human pluripotent stem cell cultures. MBs are identified based on their capacity to form FGF2-dependent compact spheroid colonies in a serum-free semisolid medium. MBs colonies are composed of PDGFRβ+CD271+EMCN+DLK1+CD73- primitive mesenchymal cells which are generated through endothelial/angioblastic intermediates (cores) formed during first 3-4 days of clonogenic cultures. MB-derived primitive mesenchymal cells have potential to differentiate into mesenchymal stromal/stem cells (MSCs), pericytes, and smooth muscle cells. In this review, we summarize the specification and developmental potential of MBs, emphasize features that distinguish MBs from other mesenchymal progenitors described in the literature and discuss the value of these findings for identifying molecular pathways leading to MSC and vasculogenic cell specification, and developing cellular therapies using MB-derived progeny.
Collapse
Affiliation(s)
- Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Ct., Madison, WI, 53715, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53707, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1685 Highland Ave, Madison, WI, 53705, USA.
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Ct., Madison, WI, 53715, USA
| |
Collapse
|
37
|
Zhou Y, Kang G, Wen Y, Briggs M, Sebastiano V, Pederson R, Chen B. Do Induced Pluripotent Stem Cell Characteristics Correlate with Efficient In Vitro Smooth Muscle Cell Differentiation? A Comparison of Three Patient-Derived Induced Pluripotent Stem Cell Lines. Stem Cells Dev 2018; 27:1438-1448. [PMID: 30153084 DOI: 10.1089/scd.2018.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have the potential to repair/regenerate smooth muscle cells (SMCs) in different organs. However, there are many challenges in their translation to clinical therapies. In this study, we describe our observations of in vitro SMC differentiation in three iPSC lines derived from human fibroblasts using retroviral, episomal, and mRNA/miRNA reprogramming methods. We sought to elucidate correlations between differentiation characteristics and efficiencies that can facilitate large-scale production of differentiated cells for clinical applications, and to report differences in pluripotency marker expression in differentiated cells from different iPSC lines. A standardized SMC differentiation protocol was used to induce the CD31+/CD34+ vascular progenitor cell phenotype. These were sorted by magnetic-activated (MACS) and fluorescence-activated cell sorting (FACS), and then treated with PDGF-BB and smooth muscle growth medium for further differentiation into smooth muscle progenitor cells (pSMCs). The expression of SMC and pluripotency markers in early- and late-passage (P1 and P4) pSMCs was analyzed. A total of 36 differentiation runs was performed on the three patient iPSC lines. All pSMC populations expressed SMC markers and Ki67 consistent with the progenitor phenotype. Initial iPSC density correlated positively with the sorted cell FACS efficiency, and this correlation could be fit to a quadratic equation. We also observed that a specific "honeycomb" pattern of the starting cultured iPSCs cultured correlated with higher efficiency in all three iPSC lines. Pluripotency marker expression decreased significantly to nearly undetectable levels in all three lines. There was no significant change in SMC and pluripotent marker expression between passage 1 and 4. In summary, our observations suggest that the method of iPSC reprogramming does not affect iPSC differentiation into pSMCs. Protocol efficiency can be modeled mathematically and coupled with the initial "honeycomb" cell pattern to optimize production of large cell numbers for clinical therapies.
Collapse
Affiliation(s)
- Yingying Zhou
- 1 Department of Obstetrics/Gynecology, Stanford University School of Medicine , Stanford, California.,2 Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University , Shenyang, People's Republic of China
| | - Gugene Kang
- 3 Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Yan Wen
- 1 Department of Obstetrics/Gynecology, Stanford University School of Medicine , Stanford, California
| | - Mason Briggs
- 1 Department of Obstetrics/Gynecology, Stanford University School of Medicine , Stanford, California
| | - Vittorio Sebastiano
- 3 Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Roger Pederson
- 1 Department of Obstetrics/Gynecology, Stanford University School of Medicine , Stanford, California
| | - Bertha Chen
- 1 Department of Obstetrics/Gynecology, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
38
|
Cartilage oligomeric matrix protein is a novel notch ligand driving embryonic stem cell differentiation towards the smooth muscle lineage. J Mol Cell Cardiol 2018; 121:69-80. [PMID: 29981303 DOI: 10.1016/j.yjmcc.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Cartilage oligomeric matrix protein (COMP), a protective component of vascular extracellular matrix (ECM), maintains the homeostasis of mature vascular smooth muscle cells (VSMCs). However, whether COMP modulates the differentiation of stem cells towards the smooth muscle lineage is still elusive. Firstly, purified mouse COMP directly induced mouse embryonic stem cell (ESC) differentiation into VSMCs both in vitro and in vivo, while the silencing of endogenous COMP markedly inhibited ESC-VSMC differentiation. RNA-Sequencing revealed that Notch signaling was significantly activated by COMP during ESC-VSMC differentiation, whereas the inhibition of Notch signaling attenuated COMP-directed ESC-VSMC differentiation. Furthermore, COMP deficiency inhibited Notch activation and VSMC differentiation in mice. Through silencing distinct Notch receptors, we identified that Notch1 mainly mediated COMP-initiated ESC-VSMC differentiation. Mechanistically, COMP N-terminus directly interacted with the EGF11-12 domain of Notch1 and activated Notch1 signaling, as evidenced by co-immunoprecipitation and mammalian two-hybrid assay. In conclusion, COMP served as a potential ligand of Notch1, thereby driving ESC-VSMC differentiation.
Collapse
|
39
|
Gu W, Hong X, Le Bras A, Nowak WN, Issa Bhaloo S, Deng J, Xie Y, Hu Y, Ruan XZ, Xu Q. Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. J Biol Chem 2018; 293:8089-8102. [PMID: 29643181 PMCID: PMC5971462 DOI: 10.1074/jbc.ra118.001739] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/05/2018] [Indexed: 12/24/2022] Open
Abstract
Tissue-engineered vascular grafts with long-term patency are greatly needed in the clinical settings, and smooth muscle cells (SMCs) are a critical graft component. Human mesenchymal stem cells (MSCs) are used for generating SMCs, and understanding the underlying regulatory mechanisms of the MSC-to-SMC differentiation process could improve SMC generation in the clinic. Here, we found that in response to stimulation of transforming growth factor-β1 (TGFβ1), human umbilical cord-derived MSCs abundantly express the SMC markers α-smooth muscle actin (αSMA), smooth muscle protein 22 (SM22), calponin, and smooth muscle myosin heavy chain (SMMHC) at both gene and protein levels. Functionally, MSC-derived SMCs displayed contracting capacity in vitro and supported vascular structure formation in the Matrigel plug assay in vivo More importantly, SMCs differentiated from human MSCs could migrate into decellularized mouse aorta and give rise to the smooth muscle layer of vascular grafts, indicating the potential of utilizing human MSC-derived SMCs to generate vascular grafts. Of note, microRNA (miR) array analysis and TaqMan microRNA assays identified miR-503 and miR-222-5p as potential regulators of MSC differentiation into SMCs at early time points. Mechanistically, miR-503 promoted SMC differentiation by directly targeting SMAD7, a suppressor of SMAD-related, TGFβ1-mediated signaling pathways. Moreover, miR-503 expression was SMAD4-dependent. SMAD4 was enriched at the miR-503 promoter. Furthermore, miR-222-5p inhibited SMC differentiation by targeting and down-regulating ROCK2 and αSMA. In conclusion, MSC differentiation into SMCs is regulated by miR-503 and miR-222-5p and yields functional SMCs for use in vascular grafts.
Collapse
Affiliation(s)
- Wenduo Gu
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Xuechong Hong
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Alexandra Le Bras
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Witold N Nowak
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Jiacheng Deng
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Yao Xie
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Yanhua Hu
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, United Kingdom.
| | - Qingbo Xu
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom.
| |
Collapse
|