1
|
Polacheck WJ, Dixon JB, Aw WY. Understanding the Lymphatic System: Tissue-on-Chip Modeling. Annu Rev Biomed Eng 2025; 27:73-100. [PMID: 39841937 DOI: 10.1146/annurev-bioeng-110222-100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The lymphatic vasculature plays critical roles in maintaining fluid homeostasis, transporting lipid, and facilitating immune surveillance. A growing body of work has identified lymphatic dysfunction as contributing to the severity of myriad diseases and to systemic inflammation, as well as modulating drug responses. Here, we review efforts to reconstruct lymphatic vessels in vitro toward establishing humanized, functional models to advance understanding of lymphatic biology and pathophysiology. We first review lymphatic endothelial cell biology and the biophysical lymphatic microenvironment, with a focus on features that are unique to the lymphatics and that have been used as design parameters for lymphatic-on-chip devices. We then discuss the state of the art for recapitulating lymphatic function in vitro, and we acknowledge limitations and challenges to current approaches. Finally, we discuss opportunities and the need for further development of microphysiological lymphatic systems to bridge the gap in model systems between lymphatic cell culture and animal physiology.
Collapse
Affiliation(s)
- William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA;
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA;
| |
Collapse
|
2
|
Lei PJ, Ruscic KJ, Roh K, Rajotte JJ, O'Melia MJ, Bouta EM, Marquez M, Pereira ER, Kumar AS, Razavi MS, Zhou H, Menzel L, Huang L, Kumra H, Duquette M, Huang P, Baish JW, Munn LL, Kurpios NA, Ubellacker JM, Padera TP. Aging-induced changes in lymphatic muscle cell transcriptomes are associated with reduced pumping of peripheral collecting lymphatic vessels in mice. Dev Cell 2025; 60:1118-1133.e5. [PMID: 39731913 PMCID: PMC11981864 DOI: 10.1016/j.devcel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/23/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024]
Abstract
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of peripheral collecting lymphatic vessels from mice across the lifespan. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and identified a proinflammatory microenvironment that suppresses the contractile apparatus in LMCs from advanced-aged mice. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Katarina J Ruscic
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Johanna J Rajotte
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| | - Meghan J O'Melia
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Echoe M Bouta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marla Marquez
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad S Razavi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hengbo Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lutz Menzel
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Liqing Huang
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark Duquette
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James W Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, PA 17837, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Olayinka O, Ryu H, Wang X, Malik AB, Jung HM. Compensatory lymphangiogenesis is required for edema resolution in zebrafish. Sci Rep 2025; 15:8177. [PMID: 40065081 PMCID: PMC11893789 DOI: 10.1038/s41598-025-92970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Edema, characterized by the accumulation of interstitial fluid, poses significant challenges in various pathological conditions. Lymphangiogenesis is critical in edema clearance, and delayed or inadequate lymphatic responses significantly hinder healing processes. However, real-time observation of dynamic changes in lymphangiogenesis during tissue repair in animal models has been challenging, leaving the mechanisms behind compensatory lymphatic activation for edema clearance largely unexplored. To address this gap, we subjected zebrafish larvae to osmotic stress using hypertonic (375 mOsm/L) and isotonic (37.5 mOsm/L) solutions to induce osmotic imbalance and subsequent edema formation. Intravital imaging of vascular transgenic larvae revealed significant lymphatic vessel remodeling during tissue edema. The observed increase in lymphatic endothelial progenitor cells, alongside the sustained expansion and remodeling of primary lymphatics, indicates active lymphangiogenesis during the recovery phase. We developed a novel method employing translating ribosome affinity purification to analyze the translatome of lymphatic and venous endothelial cells in vivo, which uncovered the upregulation of key pro-lymphangiogenic genes, particularly vegfr2 and vegfr3, during tissue recovery. Inhibition of compensatory lymphangiogenesis impaired edema fluid clearance and tissue recovery. Our findings establish a new model for in vivo live imaging of compensatory lymphangiogenesis and provide a novel approach in investigating lymphatic activation during edema resolution.
Collapse
Affiliation(s)
- Olamide Olayinka
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hannah Ryu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hyun Min Jung
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Hossain L, Gomes KP, Safarpour S, Gibson SB. The microenvironment of secondary lymphedema. The key to finding effective treatments? Biochim Biophys Acta Mol Basis Dis 2025; 1871:167677. [PMID: 39828048 DOI: 10.1016/j.bbadis.2025.167677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Lymphedema is characterized by the swelling of extremities due to the accumulation of interstitial fluids. It is a painful and devastating disease that increases the risk of infections and destroys patients' quality of life. Secondary lymphedema is caused by damage to the lymphatic system due to infections, obesity, surgery, and cancer treatments. This damage fails to be repaired and leads to fluid accumulation, tissue remodeling, inflammation, and ultimately fibrosis. The lymphedema microenvironment is altered by stress, immune dysfunction, and changes in metabolism. Stress in the microenvironment includes increased hypoxia and oxidative stress but how this contributes to lymphedema progression is unclear. The immune system plays a critical role in lymphedema through T cell helper type 2 (Th2) immune responses and the infiltration of macrophages into lymphedematous tissue. The inflammatory cytokines released by immune cells lead to tissue remodeling and fibrosis. There are also changes in metabolism in the lymphedema microenvironment with altered lipid oxidation, ketone body oxidation, and glycolysis. How these changes affect lymphedema and treatment interventions has been the focus of clinical trials. Lymphedema is also associated with cancer and obesity through damage to the lymphatic system. This review will illustrate microenvironmental changes in lymphedema and how this relates to cancer and obesity. In addition, we will discuss new therapeutic strategies to treat lymphedema. Finally, we will address the prospects of lymphedema research in the context of the microenvironment.
Collapse
Affiliation(s)
- Lazina Hossain
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Karina P Gomes
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Samaneh Safarpour
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada
| | - Spencer B Gibson
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Cakir AB, Karadibak D, Gultekin SC, Acar S, Keskinoglu P. Measurement Properties and Determinants of the 6-Minute Walk Test in Patients with Lower Limb Lymphedema. Lymphat Res Biol 2025; 23:1-10. [PMID: 39699650 DOI: 10.1089/lrb.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Background: The aim of this study was to investigate the validity and reliability and identify determinants of the 6-minute walk test (6MWT) in patients with lower limb lymphedema (LLL). Methods and Results: The study included 28 patients with LLL and 28 healthy subjects. To investigate the convergent validity and determinants of the 6MWT, patients were assessed using the following measurements: circumference measurement for lymphedema severity, hand-held dynamometry for muscle strength, time up and go for functional mobility, five-time sit-to-stand test for functional lower extremity strength, Lower Extremity Functional Scale for lower extremity functionality, Lymphedema Life Impact Scale for quality of life, and International Physical Activity Questionnaire-Short Form for physical activity level. The test-retest reliability of the 6MWT was assessed using intraclass correlation coefficients (ICCs). 6MWT, a test-retest reliability analysis was carried out with 28 patients within 3-7 days. The receiver operating characteristic (ROC) curve was employed to determine the cut-off point of 6MWT. The test-retest reliability of 6MWT was detected as excellent (ICC [95%] 0.93 [0.87-0.97]). Significant correlations were found between the 6MWT health-related and disease-specific parameters, indicating sufficient convergent validity (r ≥ 0.3). The ROC curve indicated a cut-off point of 504 meters (area under the curve [AUC] 0.712 [95%CI: 0.575-0.849]). Multiple linear regression analysis demonstrated that lymphedema severity, hip abduction muscle strength, and lower limb functionality were the predictors of 6MWT. Conclusions: The 6MWT has been shown to be a reliable and valid tool for assessing the functional capacity of patients with LLL.
Collapse
Affiliation(s)
- Ahmet Burak Cakir
- Faculty of Physical Therapy and Rehabilitation, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Didem Karadibak
- Department of Cardiopulmonary Physiotherapy-Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Dokuz Eylul University, Izmir, Turkey
| | - Sukriye Cansu Gultekin
- Faculty of Physical Therapy and Rehabilitation, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Serap Acar
- Department of Cardiopulmonary Physiotherapy-Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Dokuz Eylul University, Izmir, Turkey
| | - Pembe Keskinoglu
- Department of Biostatistics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
6
|
Campbell AC, Kuonqui KG, Ashokan G, Rubin J, Shin J, Pollack BL, Roberts A, Sarker A, Park HJ, Kataru RP, Barrio AV, Mehrara BJ. Role of inducible nitric oxide (iNOS) and nitrosative stress in regulating sex differences in secondary lymphedema. Front Physiol 2024; 15:1510389. [PMID: 39691094 PMCID: PMC11649630 DOI: 10.3389/fphys.2024.1510389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Secondary lymphedema is a common complication following surgical treatment of solid tumors. Although more prevalent in women due to higher breast cancer rates, men also develop lymphedema, often with more severe manifestations. Despite these differences in clinical presentation, the cellular mechanisms underlying sex differences are poorly understood. Previous studies have shown that inducible nitric oxide synthase (iNOS) expression by inflammatory cells is an important regulator of lymphatic pumping and leakiness in lymphedema and that lymphatic endothelial cells are highly sensitive to nitrosative stress. Based on this rationale, we used a mouse tail model of lymphedema to study the role of nitric oxide in sex-related differences in disease severity. Consistent with clinical findings, we found that male mice have significantly worse tail edema and higher rates of tail necrosis compared with female mice following tail skin/lymphatic excision (p = 0.001). Our findings correlated with increased tissue infiltration of iNOS + inflammatory cells, increased iNOS protein expression, and increased nitrosative stress in male mouse lymphedematous skin tissues (p < 0.05). Importantly, transgenic male mice lacking the iNOS gene (iNOS-KO) displayed markedly reduced swelling, inflammation, and tissue necrosis rates, whereas no differences were observed between wild-type and iNOS-KO female mice. Overall, our results indicate that iNOS-mediated nitric oxide production contributes to sex-based differences in secondary lymphedema severity, emphasizing the need to consider sex as a biological variable in lymphedema research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Babak J. Mehrara
- Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
7
|
Kistner BM, Tian Y, Douglas ES, Caron KM. Cardiac lymphatics undergo distinct remodeling during hypertrophic and nonhypertrophic pregnancy. Am J Physiol Heart Circ Physiol 2024; 327:H1155-H1161. [PMID: 39269453 PMCID: PMC11560070 DOI: 10.1152/ajpheart.00459.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Lymphatic vessels of the heart undergo dynamic remodeling in response to physiological and pathological cardiovascular events such as development, adult cardiac maintenance, and injury repair. During pregnancy, the cardiovascular system undergoes physiological changes to meet the increased demand for blood supply to the fetus. These extensive physiological changes make pregnancy and delivery a high-risk period in a woman's life. However, whether and how cardiac lymphatics change during pregnancy is largely undefined. Therefore, we used whole mount immunofluorescent labeling and quantitative morphometric analysis to characterize the changes in cardiac lymphatic vasculature during pregnancy using two genetically distinct inbred mouse strains, C57BL/6J and BALB/cJ. When compared with age-matched, nonpregnant C57BL/6J control mice, the hearts of C57BL/6J dams in late pregnancy [gestation day 17.5 (G17.5)] undergo physiological hypertrophy. However, there were no significant changes in the cardiac lymphatic vasculature. In contrast, BALB/cJ mice do not exhibit pregnancy-induced cardiac hypertrophy at G17.5 compared with age-matched, nonpregnant mice. Yet interestingly, the cardiac lymphatic vasculature of pregnant BALB/cJ dams undergoes extensive morphological changes, including decreased lymphatic length, number of end points, and vessel branch-point junctions on the ventral side of the heart. These findings underscore the complexity of genetic and physiological factors that contribute to the heterotypic remodeling of cardiac lymphatics during late pregnancy.NEW & NOTEWORTHY Cardiac lymphatics remodel in response to physiological and pathological stresses. This study is the first to investigate cardiac lymphatic vessel changes during pregnancy. BALB/cJ mice, which do not undergo pregnancy-induced cardiac hypertrophy, show decreased lymphatic length, number of end points, and junctions on the ventral side during pregnancy. In contrast, C57BL/6J mice, which undergo pregnancy-induced cardiac hypertrophy, had no such changes. These findings underscore the complexity of genetic and physiological factors contributing to cardiac lymphatic remodeling.
Collapse
Affiliation(s)
- Bryan M Kistner
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Yanna Tian
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Elizabeth S Douglas
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
8
|
Jia M, Pan L, Yang H, Gao J, Guo F. Impact of neoadjuvant chemotherapy on breast cancer-related lymphedema after axillary lymph node dissection: a retrospective cohort study. Breast Cancer Res Treat 2024; 204:223-235. [PMID: 38097882 DOI: 10.1007/s10549-023-07183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/05/2023] [Indexed: 03/19/2024]
Abstract
PURPOSE We aimed to evaluate whether neoadjuvant chemotherapy (NAC) could be a risk factor for breast cancer-related lymphedema (BCRL) associated with axillary lymph node dissection (ALND). PATIENTS AND METHODS A total of 596 patients with cT0-4N0-3M0 breast cancer who underwent ALND and chemotherapy were retrospectively analyzed between March 2012 and March 2022. NAC was administered in 188 patients (31.5%), while up-front surgery in 408 (68.5%). Univariate and multivariable Cox regression analyses were performed to determine whether NAC was an independent risk factor for BCRL. With propensity score matching (PSM), the NAC group and up-front surgery group were matched 1:1 by age, body mass index (BMI), molecular subtypes, type of breast surgery, and the number of positive lymph nodes. Kaplan-Meier survival analyses were performed for BCRL between groups before and after PSM. Subgroup analyses were conducted to explore whether NAC differed for BCRL occurrence in people with different characteristics. RESULTS At a median follow-up of 36.3 months, 130 patients (21.8%) experienced BCRL [NAC, 50/188 (26.60%) vs. up-front surgery, 80/408 (19.61%); P = 0.030]. Multivariable analysis identified that NAC [hazard ratio, 1.503; 95% CI (1.03, 2.19); P = 0.033] was an independent risk factor for BCRL. In addition, the hormone receptor-negative/human epidermal growth factor receptor 2-negative (HR-/HER2-) subtype, breast-conserving surgery (BCS), and increased positive lymph nodes significantly increased BCRL risk. After PSM, NAC remained a risk factor for BCRL [hazard ratio, 1.896; 95% CI (1.18, 3.04); P = 0.007]. Subgroup analyses showed that NAC had a consistent BCRL risk in most clinical subgroups. CONCLUSION NAC receipt has a statistically significant increase in BCRL risk in patients with ALND. These patients should be closely monitored and may benefit from early BCRL intervention.
Collapse
Affiliation(s)
- Miaomiao Jia
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Lihui Pan
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Haibo Yang
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jinnan Gao
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Fan Guo
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| |
Collapse
|
9
|
Wollbrett C, Seitlinger J, Stasiak F, Piccoli J, Streit A, Siat J, Gauchotte G, Renaud S. Clinicopathological factors associated with sentinel lymph node detection in non-small-cell lung cancer. J Cardiothorac Surg 2024; 19:145. [PMID: 38504315 PMCID: PMC10949663 DOI: 10.1186/s13019-024-02632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Mapping of the pulmonary lymphatic system by near-infrared (NIR) fluorescence imaging might not always identify the first lymph node relay. The aim of this study was to determine the clinicopathologic factors allowing the identification of sentinel lymph nodes (SLNs) by NIR fluorescence imaging in thoracic surgery for non-small-cell lung cancer (NSCLC). METHODS We conducted a retrospective review of 92 patients treated for suspected or confirmed cN0 lung cancer with curative intent who underwent an intraoperative injection of indocyanine green (ICG) either by direct peritumoral injection or by endobronchial injection using electromagnetic navigational bronchoscopy (ENB). After exclusion of patients for technical failure, benign disease and metastasis, we analyzed the clinicopathologic findings of 65 patients treated for localized-stage NSCLC, comparing the group with identification of SLNs (SLN-positive group) with the group without identification of SLNs (SLN-negative group). RESULTS Forty-eight patients (73.8%) were SLN-positive. Patients with SLN positivity were more frequently female (50%) than the SLN-negative patients were (11.8%) (p = 0.006). The mean value of diffusing capacity for carbon monoxide (DLCO) was lower among the patients in the SLN-negative group (64.7% ± 16.7%) than the SLN-positive group (77.6% ± 17.2%, p < 0.01). The ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FCV) was higher in the SLN-positive group (69.0% vs. 60.8%, p = 0.02). Patients who were SLN-negative were characterized by a severe degree of emphysema (p = 0.003). There was no significant difference in pathologic characteristics. On univariate analyses, age, female sex, DLCO, FEV1/FVC, degree of emphysema, and tumor size were significantly associated with SLN detection. On multivariate analysis, DLCO > 75% (HR = 4.92, 95% CI: 1.27-24.7; p = 0.03) and female sex (HR = 5.55, 95% CI: 1.25-39.33; p = 0.04) were independently associated with SLN detection. CONCLUSIONS At a time of resurgence in the use of the sentinel lymph node mapping technique in the field of thoracic surgery, this study enabled us to identify, using multivariate analysis, two predictive factors for success: DLCO > 75% and female sex. Larger datasets are needed to confirm our results.
Collapse
Affiliation(s)
- Christophe Wollbrett
- Department of Thoracic Surgery, Nancy Regional University Hospital, Vandoeuvre-lès- Nancy, 54500, France
| | - Joseph Seitlinger
- Department of Thoracic Surgery, Nancy Regional University Hospital, Vandoeuvre-lès- Nancy, 54500, France
| | - Florent Stasiak
- Department of Thoracic Surgery, Nancy Regional University Hospital, Vandoeuvre-lès- Nancy, 54500, France
| | - Juliette Piccoli
- Department of Thoracic Surgery, Nancy Regional University Hospital, Vandoeuvre-lès- Nancy, 54500, France
| | - Arthur Streit
- Department of Thoracic Surgery, Nancy Regional University Hospital, Vandoeuvre-lès- Nancy, 54500, France
| | - Joelle Siat
- Department of Thoracic Surgery, Nancy Regional University Hospital, Vandoeuvre-lès- Nancy, 54500, France
| | - Guillaume Gauchotte
- Department of Pathology and Molecular Biology, Nancy Regional University Hospital, Vandoeuvre-lès-Nancy, 54500, France
- Research Unit INSERM U1256, NGERE Unit, Lorraine University, Vandoeuvre-lès-Nancy, 54500, France
| | - Stéphane Renaud
- Department of Thoracic Surgery, Nancy Regional University Hospital, Vandoeuvre-lès- Nancy, 54500, France.
- Research Unit INSERM U1256, NGERE Unit, Lorraine University, Vandoeuvre-lès-Nancy, 54500, France.
| |
Collapse
|
10
|
Creff J, Lamaa A, Benuzzi E, Balzan E, Pujol F, Draia-Nicolau T, Nougué M, Verdu L, Morfoisse F, Lacazette E, Valet P, Chaput B, Gross F, Gayon R, Bouillé P, Malloizel-Delaunay J, Bura-Rivière A, Prats AC, Garmy-Susini B. Apelin-VEGF-C mRNA delivery as therapeutic for the treatment of secondary lymphedema. EMBO Mol Med 2024; 16:386-415. [PMID: 38177539 PMCID: PMC10898257 DOI: 10.1038/s44321-023-00017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Secondary lymphedema (LD) corresponds to a severe lymphatic dysfunction leading to the accumulation of fluid and fibrotic adipose tissue in a limb. Here, we identified apelin (APLN) as a powerful molecule for regenerating lymphatic function in LD. We identified the loss of APLN expression in the lymphedematous arm compared to the normal arm in patients. The role of APLN in LD was confirmed in APLN knockout mice, in which LD is increased and associated with fibrosis and dermal backflow. This was reversed by intradermal injection of APLN-lentivectors. Mechanistically, APLN stimulates lymphatic endothelial cell gene expression and induces the binding of E2F8 transcription factor to the promoter of CCBE1 that controls VEGF-C processing. In addition, APLN induces Akt and eNOS pathways to stimulate lymphatic collector pumping. Our results show that APLN represents a novel partner for VEGF-C to restore lymphatic function in both initial and collecting vessels. As LD appears after cancer treatment, we validated the APLN-VEGF-C combination using a novel class of nonintegrative RNA delivery LentiFlash® vector that will be evaluated for phase I/IIa clinical trial.
Collapse
Affiliation(s)
- Justine Creff
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Asalaa Lamaa
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Emeline Benuzzi
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Elisa Balzan
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Francoise Pujol
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | | | - Manon Nougué
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Lena Verdu
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Florent Morfoisse
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Eric Lacazette
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Philippe Valet
- Institut RESTORE, UMR 1301-INSERM, 5070-CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Benoit Chaput
- Department of Plastic Surgery, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Fabian Gross
- Biotherapy Module of Clinical Investigation Center (CIC 1436), University Hospital of Toulouse, 31059, Toulouse, France
| | | | | | | | - Alessandra Bura-Rivière
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | | |
Collapse
|
11
|
Dahms P, Lyons TR. Toward Characterizing Lymphatic Vasculature in the Mammary Gland During Normal Development and Tumor-Associated Remodeling. J Mammary Gland Biol Neoplasia 2024; 29:1. [PMID: 38218743 PMCID: PMC10787674 DOI: 10.1007/s10911-023-09554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Lymphatic vasculature has been shown to promote metastatic spread of breast cancer. Lymphatic vasculature, which is made up of larger collecting vessels and smaller capillaries, has specialized cell junctions that facilitate cell intravasation. Normally, these junctions are designed to collect immune cells and other cellular components for immune surveillance by lymph nodes, but they are also utilized by cancer cells to facilitate metastasis. Although lymphatic development overall in the body has been well-characterized, there has been little focus on how the lymphatic network changes in the mammary gland during stages of remodeling such as pregnancy, lactation, and postpartum involution. In this review, we aim to define the currently known lymphangiogenic factors and lymphatic remodeling events during mammary gland morphogenesis. Furthermore, we juxtapose mammary gland pubertal development and postpartum involution to show similarities of pro-lymphangiogenic signaling as well as other molecular signals for epithelial cell survival that are critical in these morphogenic stages. The similar mechanisms include involvement of M2-polarized macrophages that contribute to matrix remodeling and vasculogenesis; signal transducer and activator of transcription (STAT) survival and proliferation signaling; and cyclooxygenase 2 (COX2)/Prostaglandin E2 (PGE2) signaling to promote ductal and lymphatic expansion. Investigation and characterization of lymphangiogenesis in the normal mammary gland can provide insight to targetable mechanisms for lymphangiogenesis and lymphatic spread of tumor cells in breast cancer.
Collapse
Affiliation(s)
- Petra Dahms
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA
| | - Traci R Lyons
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA.
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA.
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA.
| |
Collapse
|
12
|
Lei PJ, Ruscic KJ, Roh K, Rajotte JJ, O'Melia MJ, Bouta EM, Marquez M, Pereira ER, Kumar AS, Arroyo-Ataz G, Razavi MS, Zhou H, Menzel L, Kumra H, Duquette M, Huang P, Baish JW, Munn LL, Ubellacker JM, Jones D, Padera TP. Lymphatic muscle cells are unique cells that undergo aging induced changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567621. [PMID: 38014141 PMCID: PMC10680808 DOI: 10.1101/2023.11.18.567621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of collecting lymphatic vessels in mouse dermis at various ages. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and uncovered a pro-inflammatory microenvironment that suppresses the contractile apparatus in advanced-aged LMCs. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to preserve lymphatic vessel function as well as supporting studies to identify genetic causes of primary lymphedema currently with unknown molecular explanation.
Collapse
|
13
|
Jomard C, Gondin J. Influence of sexual dimorphism on satellite cell regulation and inflammatory response during skeletal muscle regeneration. Physiol Rep 2023; 11:e15798. [PMID: 37798097 PMCID: PMC10555529 DOI: 10.14814/phy2.15798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
After injury, skeletal muscle regenerates thanks to the key role of satellite cells (SC). The regeneration process is supported and coordinated by other cell types among which immune cells. Among the mechanisms involved in skeletal muscle regeneration, a sexual dimorphism, involving sex hormones and more particularly estrogens, has been suggested. However, the role of sexual dimorphism on skeletal muscle regeneration is not fully understood, likely to the use of various experimental settings in both animals and human. This review aims at addressing how sex and estrogens regulate both the SC and the inflammatory response during skeletal muscle regeneration by considering the different experimental designs used in both animal models (i.e., ovarian hormone deficiency, estrogen replacement or supplementation, treatments with estrogen receptors agonists/antagonists and models knockout for estrogen receptors) and human (hormone therapy replacement, pre vs. postmenopausal, menstrual cycle variation…).
Collapse
Affiliation(s)
- Charline Jomard
- Institut NeuroMyoGène (INMG), Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université Claude Bernard LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène (INMG), Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université Claude Bernard LyonLyonFrance
| |
Collapse
|
14
|
Sawane M, Gantumur E, Muramatsu F, Kidoya H, Takakura N, Kajiya K. Apelin provides an alternative function to estrogen in regulating lymphatic vascular integrity. J Dermatol Sci 2023; 111:124-127. [PMID: 37580204 DOI: 10.1016/j.jdermsci.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Mika Sawane
- Shiseido Global Innovation Center, Yokohama, Japan
| | | | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute of Microbial Diseases, Osaka University, Suita, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute of Microbial Diseases, Osaka University, Suita, Japan; Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute of Microbial Diseases, Osaka University, Suita, Japan
| | | |
Collapse
|
15
|
Pal S, Bhowmick S, Sharma A, Sierra-Fonseca JA, Mondal S, Afolabi F, Roy D. Lymphatic vasculature in ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188950. [PMID: 37419192 PMCID: PMC10754213 DOI: 10.1016/j.bbcan.2023.188950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Ovarian cancer (OVCA) is the second most common gynecological cancer and one of the leading causes of cancer related mortality among women. Recent studies suggest that among ovarian cancer patients at least 70% of the cases experience the involvement of lymph nodes and metastases through lymphatic vascular network. However, the impact of lymphatic system in the growth, spread and the evolution of ovarian cancer, its contribution towards the landscape of ovarian tissue resident immune cells and their metabolic responses is still a major knowledge gap. In this review first we present the epidemiological aspect of the OVCA, the lymphatic architecture of the ovary, we discuss the role of lymphatic circulation in regulation of ovarian tumor microenvironment, metabolic basis of the upregulation of lymphangiogenesis which is often observed during progression of ovarian metastasis and ascites development. Further we describe the implication of several mediators which influence both lymphatic vasculature as well as ovarian tumor microenvironment and conclude with several therapeutic strategies for targeting lymphatic vasculature in ovarian cancer progression in present day.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, United States
| | - Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Anurag Sharma
- Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Favour Afolabi
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, United States
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, United States.
| |
Collapse
|
16
|
Hara H, Mihara M. The relationship between the degree of subcutaneous fluid accumulation and the lymphatic diameter. J Plast Reconstr Aesthet Surg 2023; 82:163-169. [PMID: 37182247 DOI: 10.1016/j.bjps.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The relationship between the fluid accumulation in the subcutaneous tissue and the lymphatic degeneration in the lymphedematous limbs has not been elucidated, and we have evaluated it in the current study. METHODS Twenty-five patients (50 limbs) were included in this retrospective study. We performed lymphatic ultrasound by separating the limbs into four lymphosomes: the saphenous (medial) thigh, saphenous (medial) calf, lateral thigh, and lateral calf. In each lymphosome, the lymphatic diameter, the degree of lymphatic degeneration, and the fluid accumulation in the subcutaneous tissue were evaluated. The lymphatic vessels were detected based on the index of D-CUPS (Doppler, Crossing, Uncollapsibe, Parallel, and Superficial fascia). Lymphatic degeneration was diagnosed based on the NECST (Normal, Ectasis, Contraction, and Sclerosis Type) classification. RESULTS All patients were women with a mean age of 62.7 years. Lymphatic vessels were detected using lymphatic ultrasonography in 50 saphenous (medial) thigh lymphosomes, 43 saphenous (medial) calf lymphosomes, 34 lateral thigh lymphosomes, and 22 lateral calf lymphosomes. The fluid accumulation tended to be more acute in the more severe stages of lymphedema. As for the NECST classification, the normal type was observed only in the areas without fluid accumulation. Among the other areas, the percentage of contraction type was the largest in the area with slight edema and decreased in the areas with severe edema. CONCLUSION The lymphatic vessels were dilated to a greater extent in legs with more severe fluid accumulation. Therefore, there is no hesitation needed to perform lymphaticovenous anastomosis because of severe lymphedema.
Collapse
Affiliation(s)
- Hisako Hara
- Department of Lymphatic and Reconstructive Surgery, JR Tokyo General Hospital, Tokyo, Japan
| | - Makoto Mihara
- Department of Lymphatic and Reconstructive Surgery, JR Tokyo General Hospital, Tokyo, Japan.
| |
Collapse
|
17
|
Shimizu Y, Che Y, Murohara T. Therapeutic Lymphangiogenesis Is a Promising Strategy for Secondary Lymphedema. Int J Mol Sci 2023; 24:7774. [PMID: 37175479 PMCID: PMC10178056 DOI: 10.3390/ijms24097774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Secondary lymphedema is caused by lymphatic insufficiency (lymphatic drainage failure) following lymph node dissection during the surgical treatment or radiation therapy of breast or pelvic cancer. The clinical problems associated with lymphedema are reduced quality of life in terms of appearance and function, as well as the development of skin ulcers, recurrent pain, and infection. Currently, countermeasures against lymphedema are mainly physical therapy such as lymphatic massage, elastic stockings, and skin care, and there is no effective and fundamental treatment with a highly recommended grade. Therefore, there is a need for the development of a fundamental novel treatment for intractable lymphedema. Therapeutic lymphangiogenesis, which has been attracting attention in recent years, is a treatment concept that reconstructs the fragmented lymphatic network to recover lymphatic vessel function and is revolutionary to be a fundamental cure. This review focuses on the translational research of therapeutic lymphangiogenesis for lymphedema and outlines the current status and prospects in the development of therapeutic applications.
Collapse
Affiliation(s)
- Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
18
|
Nascimben M, Lippi L, de Sire A, Invernizzi M, Rimondini L. Algorithm-Based Risk Identification in Patients with Breast Cancer-Related Lymphedema: A Cross-Sectional Study. Cancers (Basel) 2023; 15:cancers15020336. [PMID: 36672283 PMCID: PMC9856619 DOI: 10.3390/cancers15020336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Breast cancer-related lymphedema (BCRL) could be one consequence of breast cancer (BC). Although several risk factors have been identified, a predictive algorithm still needs to be made available to determine the patient's risk from an ensemble of clinical variables. Therefore, this study aimed to characterize the risk of BCRL by investigating the characteristics of autogenerated clusters of patients. Methods: The dataset under analysis was a multi-centric data collection of twenty-three clinical features from patients undergoing axillary dissection for BC and presenting BCRL or not. The patients' variables were initially analyzed separately in two low-dimensional embeddings. Afterward, the two models were merged in a bi-dimensional prognostic map, with patients categorized into three clusters using a Gaussian mixture model. Results: The prognostic map represented the medical records of 294 women (mean age: 59.823±12.879 years) grouped into three clusters with a different proportion of subjects affected by BCRL (probability that a patient with BCRL belonged to Cluster A: 5.71%; Cluster B: 71.42%; Cluster C: 22.86%). The investigation evaluated intra- and inter-cluster factors and identified a subset of clinical variables meaningful in determining cluster membership and significantly associated with BCRL biological hazard. Conclusions: The results of this study provide potential insight for precise risk assessment of patients affected by BCRL, with implications in prevention strategies, for instance, focusing the resources on identifying patients at higher risk.
Collapse
Affiliation(s)
- Mauro Nascimben
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
- Enginsoft SpA, 35129 Padua, Italy
- Correspondence:
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| |
Collapse
|
19
|
Liu X, Cui K, Wu H, Li KS, Peng Q, Wang D, Cowan DB, Dixon JB, Sathish Srinivasan R, Bielenberg DR, Chen K, Wang DZ, Chen Y, Chen H. Promoting Lymphangiogenesis and Lymphatic Growth and Remodeling to Treat Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol 2023; 43:e1-e10. [PMID: 36453280 PMCID: PMC9780193 DOI: 10.1161/atvbaha.122.318406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (X.L.)
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | | | - Kathryn S Li
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - Donghai Wang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - Douglas B Cowan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta (J.B.D.)
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (R.S.S.)
| | - Diane R Bielenberg
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, MA (K.C.)
| | - Da-Zhi Wang
- USF Heart Institute, Center for Regenerative Medicine, College of Medicine Internal Medicine, University of South Florida, Tampa (D.Z.W.)
| | - Yabing Chen
- Department of Pathology, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham (Y.C.)
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA (K.C., K.S.L., Q.P., D.W., D.B.C., D.R.B., H.C.)
| |
Collapse
|
20
|
Brunner G, Roux MS, Falk T, Bresch M, Böhm V, Blödorn-Schlicht N, Meiners T. The Peripheral Lymphatic System Is Impaired by the Loss of Neuronal Control Associated with Chronic Spinal Cord Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1448-1457. [PMID: 35843264 DOI: 10.1016/j.ajpath.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Spinal cord injury (SCI) is associated with venous vascular dysfunction below the level of injury, resulting in dysregulation of tissue fluid homeostasis in afflicted skin. The purpose of this study was to determine whether loss of neuronal control in chronic SCI also affects the skin lymphatic system. Morphology of lymphatics was characterized by immunohistochemistry and lymphatic gene expression profiles determined by DNA microarray analysis. In SCI, skin lymphatic function appeared to be impaired, because the ratio of functionally dilated versus collapsed lymphatic vessels was decreased 10-fold compared with control. Consequently, the average lumen area of lymphatic vessels was almost halved, possibly due to the known impaired connective tissue integrity of SCI skin. In fact, collagenases were found to be overexpressed in SCI skin, and dermal collagen structure was impaired. Molecular profiling also suggested an SCI-specific phenotype of increased connective tissue turnover and decreased lymphatic contractility. The total number of lymphatic vessels in SCI skin, however, was doubled, pointing to enhanced lymphangiogenesis. In conclusion, these data show, for the first time, that lymphatic function and development in human skin are under neuronal control. Because peripheral venous and lymphatic vascular defects are associated with disturbed fluid homeostasis, inappropriate wound healing reactions, and impaired skin immunity, they might contribute to the predisposition of afflicted individuals to pressure ulcer formation and wound healing disorders.
Collapse
Affiliation(s)
- Georg Brunner
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany; Department of Cancer Research, Fachklinik Hornheide, Münster, Germany.
| | - Meike S Roux
- Department of Cancer Research, Fachklinik Hornheide, Münster, Germany
| | - Thomas Falk
- Department of Dermatohistopathology, Dermatologikum Hamburg, Hamburg, Germany
| | - Martina Bresch
- Department of Dermatohistopathology, Dermatologikum Hamburg, Hamburg, Germany
| | - Volker Böhm
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany
| | | | - Thomas Meiners
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany
| |
Collapse
|
21
|
Vach M, Wagenpfeil J, Henkel A, Strieth S, Luetkens JA, Ko Y, Schild HH, Attenberger UI, Pieper CC. MR-lymphangiography identifies lymphatic pathologies in patients with idiopathic recurrent cervical swelling. Laryngoscope Investig Otolaryngol 2022; 7:1456-1464. [PMID: 36258852 PMCID: PMC9575114 DOI: 10.1002/lio2.919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Idiopathic recurrent cervical swelling may be caused by lymphatic abnormalities. Methods Ten patients (9 females, mean age 51.2 ± 7) with idiopathic recurrent cervical swelling underwent MR-lymphangiography (MRL). MR-lymphangiograms were evaluated regarding lymphatic anatomy and flow. Individualized treatment was recommended according to MRL-findings. Results 8/10 patients presented with left-sided, 2/10 with right-sided swelling. Pathological lymph-flow was identified in all cases: thoracic duct dilatation in patients with left-sided and right lymphatic duct dilatation in right-sided swelling, accessory thoracic lymphatics in 7/10 and reflux in 8/10 cases. In two cases, a lymphatic thrombus was identified.After treatment, symptoms resolved completely in 6/10 cases and partially in 1/10 cases. The remaining three patients have intermittent swellings but have no treatment wish. Conclusion Idiopathic recurrent cervical swelling can be caused by lymphatic anomalies. MRL displays impaired lymphatic drainage, lymphatic vessel dilatation, and chylolymphatic reflux as hallmarks of this condition and may aid in targeted treatment planning.
Collapse
Affiliation(s)
- Marius Vach
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Julia Wagenpfeil
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Andreas Henkel
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Sebastian Strieth
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Department of OtorhinolaryngologyUniversity Medical Center Bonn (UKB)BonnGermany
| | - Julian Alexander Luetkens
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Yon‐Dschun Ko
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Department of OncologyJohanniter Hospital BonnBonnGermany
| | - Hans Heinz Schild
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Ulrike Irmgard Attenberger
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Claus Christian Pieper
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| |
Collapse
|
22
|
Hsu JF, Yu RP, Stanton EW, Wang J, Wong AK. Current Advancements in Animal Models of Postsurgical Lymphedema: A Systematic Review. Adv Wound Care (New Rochelle) 2022; 11:399-418. [PMID: 34128396 PMCID: PMC9142133 DOI: 10.1089/wound.2021.0033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Secondary lymphedema is a debilitating disease caused by lymphatic dysfunction characterized by chronic swelling, dysregulated inflammation, disfigurement, and compromised wound healing. Since there is no effective cure, animal model systems that support basic science research into the mechanisms of secondary lymphedema are critical to advancing the field. Recent Advances: Over the last decade, lymphatic research has led to the improvement of existing animal lymphedema models and the establishment of new models. Although an ideal model does not exist, it is important to consider the strengths and limitations of currently available options. In a systematic review adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we present recent developments in the field of animal lymphedema models and provide a concise comparison of ease, cost, reliability, and clinical translatability. Critical Issues: The incidence of secondary lymphedema is increasing, and there is no gold standard of treatment or cure for secondary lymphedema. Future Directions: As we iterate and create animal models that more closely characterize human lymphedema, we can achieve a deeper understanding of the pathophysiology and potentially develop effective therapeutics for patients.
Collapse
Affiliation(s)
- Jerry F. Hsu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy P. Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Eloise W. Stanton
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jin Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Alex K. Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 E. Duarte Road, Pavillion 2216, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Duhon BH, Phan TT, Taylor SL, Crescenzi RL, Rutkowski JM. Current Mechanistic Understandings of Lymphedema and Lipedema: Tales of Fluid, Fat, and Fibrosis. Int J Mol Sci 2022; 23:6621. [PMID: 35743063 PMCID: PMC9223758 DOI: 10.3390/ijms23126621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphedema and lipedema are complex diseases. While the external presentation of swollen legs in lower-extremity lymphedema and lipedema appear similar, current mechanistic understandings of these diseases indicate unique aspects of their underlying pathophysiology. They share certain clinical features, such as fluid (edema), fat (adipose expansion), and fibrosis (extracellular matrix remodeling). Yet, these diverge on their time course and known molecular regulators of pathophysiology and genetics. This divergence likely indicates a unique route leading to interstitial fluid accumulation and subsequent inflammation in lymphedema versus lipedema. Identifying disease mechanisms that are causal and which are merely indicative of the condition is far more explored in lymphedema than in lipedema. In primary lymphedema, discoveries of genetic mutations link molecular markers to mechanisms of lymphatic disease. Much work remains in this area towards better risk assessment of secondary lymphedema and the hopeful discovery of validated genetic diagnostics for lipedema. The purpose of this review is to expose the distinct and shared (i) clinical criteria and symptomatology, (ii) molecular regulators and pathophysiology, and (iii) genetic markers of lymphedema and lipedema to help inform future research in this field.
Collapse
Affiliation(s)
- Bailey H. Duhon
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| | - Thien T. Phan
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| | - Shannon L. Taylor
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA;
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle L. Crescenzi
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA;
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| |
Collapse
|
24
|
Dong D, Wang H, Chen L, Wang W, Liu T. Hormone Therapy: A Potential Risk Factor Affecting Survival and Functional Restoration of Transplanted Lymph Nodes. Front Pharmacol 2022; 13:853859. [PMID: 35431925 PMCID: PMC9008310 DOI: 10.3389/fphar.2022.853859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Transplantation of lymph nodes (LNs) is an increasingly popular option for treating lymphedema. Increasing evidence indicates an intrinsic correlation between estrogen signaling and the lymphatic system. We explored the effects of 17β estradiol and antiestrogen treatment (tamoxifen) on the survival and functional restoration of transplanted popliteal lymph nodes (PLNs). Methods: A total of forty-eight ovariectomized mice were divided into three groups of 16: OVX + E2 (treated with 17β-estradiol), OVX + TMX (treated with tamoxifen), and OVX (control; treated with olive oil as a solvent). After 2 weeks, PLNs were transplanted. Then, reconnections of lymphatic vessels were observed, and the morphology and survival of transplanted PLNs were evaluated 4 weeks after transplantation. T cells, B cells, lymphatic vessels, and high endothelial venules (HEVs) were subjected to immunofluorescence staining or immunohistochemical staining and quantified. Results: The percentage of lymphatic reconnections was 93.75% in the OVX + E2 group, 68.75% in the OVX + TMX group, and 75% in the OVX group. Surviving PLNs were observed in 16 of 16 in the OVX + E2 group, seven of 16 in the OVX + TMX group, and 13 of 16 in the OVX group. The mean size of PLNs in the largest cross section of the OVX + TMX group was significantly lower than that in the other groups. The distributions of B cells and T cells in surviving PLNs were similar to those in normal LNs. The ratio of dilated HEVs/total HEVs and density of lymphatic vessels in the OVX + E2 group were the highest among the three groups, whereas the lowest ratio and density were observed in the OVX + TMX group. Conclusion: Tamoxifen treatment might lead to cellular loss of transplanted LNs and interfere with the structural reconstruction and functional restoration, thereby inhibiting the survival of transplanted PLNs. Estrogen treatment facilitated the maintenance and regeneration of functional HEVs as well as lymphangiogenesis.
Collapse
Affiliation(s)
- Dong Dong
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Heng Wang
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Liang Chen
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Wang
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Tianyi Liu
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Tianyi Liu,
| |
Collapse
|
25
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
26
|
Koistinen H, Künnapuu J, Jeltsch M. KLK3 in the Regulation of Angiogenesis-Tumorigenic or Not? Int J Mol Sci 2021; 22:ijms222413545. [PMID: 34948344 PMCID: PMC8704207 DOI: 10.3390/ijms222413545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
In this focused review, we address the role of the kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen (PSA), in the regulation of angiogenesis. Early studies suggest that KLK3 is able to inhibit angiogenic processes, which is most likely dependent on its proteolytic activity. However, more recent evidence suggests that KLK3 may also have an opposite role, mediated by the ability of KLK3 to activate the (lymph)angiogenic vascular endothelial growth factors VEGF-C and VEGF-D, further discussed in the review.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
- Correspondence: (H.K.); (M.J.)
| | - Jaana Künnapuu
- Drug Research Program, University of Helsinki, 00014 Helsinki, Finland;
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, 00014 Helsinki, Finland;
- Individualized Drug Therapy Research Program, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
- Correspondence: (H.K.); (M.J.)
| |
Collapse
|
27
|
Sex-Based Differences in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:499-533. [PMID: 34664253 DOI: 10.1007/978-3-030-73119-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Cancers are heterogeneous multifactorial diseases consisting of a major public health issue worldwide. Sex disparities are evidenced in cancer incidence, mortality, expression of prognosis factor, response to treatment, and survival. For both sexes, an interplay of intrinsic and environmental factors influences cancer cells and tumor microenvironment (TME) components. The TME cumulates both supportive and communicative functions, contributing to cancer development, progression, and metastasis dissemination. The frontline topics of this chapter are focused on the contribution of sex, via steroid hormones, such as estrogens and androgens, on the following components of the TME: cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), blood and lymphatic endothelial cells, and immunity/inflammatory system.
Collapse
|
28
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
29
|
Stritt S, Koltowska K, Mäkinen T. Homeostatic maintenance of the lymphatic vasculature. Trends Mol Med 2021; 27:955-970. [PMID: 34332911 DOI: 10.1016/j.molmed.2021.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
The lymphatic vasculature is emerging as a multifaceted regulator of tissue homeostasis and regeneration. Lymphatic vessels drain fluid, macromolecules, and immune cells from peripheral tissues to lymph nodes (LNs) and the systemic circulation. Their recently uncovered functions extend beyond drainage and include direct modulation of adaptive immunity and paracrine regulation of organ growth. The developmental mechanisms controlling lymphatic vessel growth have been described with increasing precision. It is less clear how the essential functional features of lymphatic vessels are established and maintained. We discuss the mechanisms that maintain lymphatic vessel integrity in adult tissues and control vessel repair and regeneration. This knowledge is crucial for understanding the pathological vessel changes that contribute to disease, and provides an opportunity for therapy development.
Collapse
Affiliation(s)
- Simon Stritt
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden
| | - Katarzyna Koltowska
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden.
| |
Collapse
|
30
|
Largeau B, Cracowski JL, Lengellé C, Sautenet B, Jonville-Béra AP. Drug-induced peripheral oedema: An aetiology-based review. Br J Clin Pharmacol 2021; 87:3043-3055. [PMID: 33506982 DOI: 10.1111/bcp.14752] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Many drugs are responsible, through different mechanisms, for peripheral oedema. Severity is highly variable, ranging from slight oedema of the lower limbs to anasarca pictures as in the capillary leak syndrome. Although most often noninflammatory and bilateral, some drugs are associated with peripheral oedema that is readily erythematous (eg, pemetrexed) or unilateral (eg, sirolimus). Thus, drug-induced peripheral oedema is underrecognized and misdiagnosed, frequently leading to a prescribing cascade. Four main mechanisms are involved, namely precapillary arteriolar vasodilation (vasodilatory oedema), sodium/water retention (renal oedema), lymphatic insufficiency (lymphedema) and increased capillary permeability (permeability oedema). The underlying mechanism has significant impact on treatment efficacy. The purpose of this review is to provide a comprehensive analysis of the main causative drugs by illustrating each pathophysiological mechanism and their management through an example of a drug.
Collapse
Affiliation(s)
- Bérenger Largeau
- CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, 37044, France
| | | | - Céline Lengellé
- CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, 37044, France
| | - Bénédicte Sautenet
- CHRU de Tours, Service de Néphrologie-Hypertension Artérielle, Dialyses et Transplantation Rénale, Tours, 37044, France.,Université de Tours, Université de Nantes, INSERM, methodS in Patients-centered outcomes and HEalth ResEarch (SPHERE) - UMR 1246, Tours, 37044, France
| | - Annie-Pierre Jonville-Béra
- CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, 37044, France.,Université de Tours, Université de Nantes, INSERM, methodS in Patients-centered outcomes and HEalth ResEarch (SPHERE) - UMR 1246, Tours, 37044, France
| |
Collapse
|
31
|
Sex Hormones in Lymphedema. Cancers (Basel) 2021; 13:cancers13030530. [PMID: 33573286 PMCID: PMC7866787 DOI: 10.3390/cancers13030530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Lymphedema is a life-long disease that affects a large number of patients treated for breast-, gynecological-, and urologic cancers in Western countries. Given that hormone levels are strongly modified in these conditions, and that patients widely undergo through hormone therapy, it is tempting to speculate that hormones might be key regulators in the maintenance of lymphedema. Despite an obvious prevalence for women, the role of sex hormones and gender has been poorly investigated in this pathology. This review aims to decipher how sex hormones interact with lymphatic vessels and whether hormone therapy could participate in lymphedema development. Abstract Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return resulting in swelling of the extremities and accumulation of undrained interstitial fluid/lymph that results in fibrosis and adipose tissue deposition in the limb. Whereas it is clearly established that primary lymphedema is sex-linked with an average ratio of one male for three females, the role of female hormones, in particular estrogens, has been poorly explored. In addition, secondary lymphedema in Western countries affects mainly women who developed the pathology after breast cancer and undergo through hormone therapy up to five years after cancer surgery. Although lymphadenectomy is identified as a trigger factor, the effect of co-morbidities associated to lymphedema remains elusive, in particular, estrogen receptor antagonists or aromatase inhibitors. In addition, the role of sex hormones and gender has been poorly investigated in the etiology of the pathology. Therefore, this review aims to recapitulate the effect of sex hormones on the physiology of the lymphatic system and to investigate whetherhormone therapy could promote a lymphatic dysfunction leading to lymphedema.
Collapse
|
32
|
Passos LSA, Nunes MCP, Aikawa E. Rheumatic Heart Valve Disease Pathophysiology and Underlying Mechanisms. Front Cardiovasc Med 2021; 7:612716. [PMID: 33537348 PMCID: PMC7848031 DOI: 10.3389/fcvm.2020.612716] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Rheumatic heart valve disease (RHVD) is a post-infectious sequel of acute rheumatic fever resulting from an abnormal immune response to a streptococcal pharyngitis that triggers valvular damage. RHVD is the leading cause of cardiovascular death in children and young adults, mainly in women from low and middle-income countries. It is known that long-term inflammation and high degree of fibrosis leads to valve dysfunction due to anatomic disruption of the valve apparatus. However, since public and private investments in RHVD studies are practically inexistent the number of publications is scarce. This disease shows different natural history and clinical presentations as compared to other degenerative heart valve diseases. Although more than five decades passed after the pioneering studies on the pathogenesis of RHVD, it is still unclear how self-tolerance mechanisms fail in this disease, and how humoral and cellular inflammatory responses are interconnected. Despite that pathological mechanisms have been already proposed for RHVD, none of them are able to explain the preferential involvement of the mitral valve. This review focuses on pathophysiology and underlying mechanisms of RHVD.
Collapse
Affiliation(s)
- Livia S A Passos
- The Center for Excellence in Vascular Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Maria Carmo P Nunes
- Hospital das Clínicas e Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elena Aikawa
- The Center for Excellence in Vascular Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
33
|
Huber R, Semmler G, Mayr A, Offner F, Datz C. Primary intestinal lymphangiectasia in an adult patient: A case report and review of literature. World J Gastroenterol 2020; 26:7707-7718. [PMID: 33505146 PMCID: PMC7789053 DOI: 10.3748/wjg.v26.i48.7707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary intestinal lymphangiectasia (PIL), first described in 1961, is a rare disorder of unknown etiology resulting in protein-losing enteropathy. The disease is characterized by dilatation and leakage of intestinal lymph vessels leading to hypoalbuminemia, hypogammaglobulinemia, and lymphopenia. Since the severity and location of lymph vessels being affected can vary considerably, the range of associated symptoms is wide from mild lower-limb edema to generalized edema, abdominal and/or pleural effusion, and recurrent diarrhea, among others. Although usually developing in early childhood, we present the case of a 34-year-old woman with PIL. Moreover, we performed a literature review systematically assessing clinical presentation, and provide a practical approach to facilitate diagnosis and therapy of PIL in adults.
CASE SUMMARY Our patient presented with unspecific symptoms of abdominal discomfort, fatigue, nausea, and recurrent edema of the lower limbs. Interestingly, a striking collinearity of clinical symptoms with female hormone status was evident. Additionally, polyglobulia, hypoalbuminemia, hypogammaglobulinemia, and transient lymphocytopenia were evident. Due to suspicion of a bone marrow disease, an extensive diagnostic investigation was carried out excluding secondary causes of polyglobulinemia and hypoalbuminemia. The diagnosis of primary intestinal lymphangiectasia was established after 22 wk by histological analysis of biopsy samples obtained via enteroscopy. Consecutively, the patient was put on a high-protein and low-fat diet with medium-chain triglycerides supplementation leading to significant improvement of clinical symptoms until 2 years of follow-up.
CONCLUSION PIL can be the reason for cryptogenic hypoalbuminemia, hypogammaglobulinemia, and lymphopenia in adulthood. Due to difficulty in correct diagnosis, treatment initiation is often delayed despite being effective and well-tolerated. This leads to a significant disease burden in affected patients. PIL is increasingly been recognized in adults since the majority of case reports were published within the last 10 years, pointing towards an underestimation of the true prevalence. The association with female hormone status warrants further investigation.
Collapse
Affiliation(s)
- Rudolf Huber
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf 5110, Austria
| | - Georg Semmler
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf 5110, Austria
| | - Alexander Mayr
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf 5110, Austria
| | - Felix Offner
- Department of Pathology, General Hospital Feldkirch, Feldkirch 6800, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf 5110, Austria
| |
Collapse
|
34
|
Leray H, Malloizel-Delaunay J, Lusque A, Chantalat E, Bouglon L, Chollet C, Chaput B, Garmy-Susini B, Yannoutsos A, Vaysse C. Body Mass Index as a Major Risk Factor for Severe Breast Cancer-Related Lymphedema. Lymphat Res Biol 2020; 18:510-516. [DOI: 10.1089/lrb.2019.0009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hélène Leray
- Service de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire de Toulouse-Oncopole, Toulouse, France
| | | | - Amélie Lusque
- Service de Biostatistique, Institut Claudius Regaud, Institut Universitaire de Toulouse-Oncopole, Toulouse, France
| | - Elodie Chantalat
- Service de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire de Toulouse-Oncopole, Toulouse, France
| | - Léonard Bouglon
- Service de Médecine Vasculaire, CHU-Toulouse, Toulouse, France
| | - Charlotte Chollet
- Service de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire de Toulouse-Oncopole, Toulouse, France
| | - Benoit Chaput
- Service de Chirurgie Plastique et des Brûlés, CHU-Toulouse, Toulouse, France
| | | | - Alexandra Yannoutsos
- Service de Médecine Vasculaire, CHU-Toulouse, Toulouse, France
- Service de Médecine Vasculaire, Hôpital Paris Saint-Joseph, Paris, France
| | - Charlotte Vaysse
- Service de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire de Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
35
|
Zhou Y, Huang C, Hu Y, Xu Q, Hu X. Lymphatics in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 40:e275-e283. [PMID: 33085520 DOI: 10.1161/atvbaha.120.314735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yijiang Zhou
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Chengchen Huang
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yanhua Hu
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qingbo Xu
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaosheng Hu
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Nishimiya K, Matsumoto Y, Shimokawa H. Recent Advances in Vascular Imaging. Arterioscler Thromb Vasc Biol 2020; 40:e313-e321. [PMID: 33054393 DOI: 10.1161/atvbaha.120.313609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent advances in vascular imaging have enabled us to uncover the underlying mechanisms of vascular diseases both ex vivo and in vivo. In the past decade, efforts have been made to establish various methodologies for evaluation of atherosclerotic plaque progression and vascular inflammatory changes in addition to biomarkers and clinical manifestations. Several recent publications in Arteriosclerosis, Thrombosis, and Vascular Biology highlighted the essential roles of in vivo and ex vivo vascular imaging, including magnetic resonance image, computed tomography, positron emission tomography/scintigraphy, ultrasonography, intravascular ultrasound, and most recently, optical coherence tomography, all of which can be used in bench and clinical studies at relative ease. With new methods proposed in several landmark studies, these clinically available imaging modalities will be used in the near future. Moreover, future development of intravascular imaging modalities, such as optical coherence tomography-intravascular ultrasound, optical coherence tomography-near-infrared autofluorescence, polarized-sensitive optical coherence tomography, and micro-optical coherence tomography, are anticipated for better management of patients with cardiovascular disease. In this review article, we will overview recent advances in vascular imaging and ongoing works for future developments.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuharu Matsumoto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
37
|
Aldrich MB, Rasmussen JC, Fife CE, Shaitelman SF, Sevick-Muraca EM. The Development and Treatment of Lymphatic Dysfunction in Cancer Patients and Survivors. Cancers (Basel) 2020; 12:E2280. [PMID: 32823928 PMCID: PMC7466081 DOI: 10.3390/cancers12082280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
Breast-cancer-acquired lymphedema is routinely diagnosed from the appearance of irreversible swelling that occurs as a result of lymphatic dysfunction. Yet in head and neck cancer survivors, lymphatic dysfunction may not always result in clinically overt swelling, but instead contribute to debilitating functional outcomes. In this review, we describe how cancer metastasis, lymph node dissection, and radiation therapy alter lymphatic function, as visualized by near-infrared fluorescence lymphatic imaging. Using custom gallium arsenide (GaAs)-intensified systems capable of detecting trace amounts of indocyanine green administered repeatedly as lymphatic contrast for longitudinal clinical imaging, we show that lymphatic dysfunction occurs with cancer progression and treatment and is an early, sub-clinical indicator of cancer-acquired lymphedema. We show that early treatment of lymphedema can restore lymphatic function in breast cancer and head and neck cancer patients and survivors. The compilation of these studies provides insights to the critical role that the lymphatics and the immune system play in the etiology of lymphedema and associated co-morbidities.
Collapse
Affiliation(s)
- Melissa B. Aldrich
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (M.B.A.); (J.C.R.)
| | - John C. Rasmussen
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (M.B.A.); (J.C.R.)
| | - Caroline E. Fife
- Department of Geriatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- The Wound Care Clinic, CHI St. Luke’s Health, The Woodlands Hospital, The Woodlands, TX 77381, USA
| | - Simona F. Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Eva M. Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (M.B.A.); (J.C.R.)
| |
Collapse
|
38
|
Webb C, Partain N, Koduru P, Hwang H, Sarode VR. Secondary Angiosarcoma With C-MYC Amplification Following Prophylactic Bilateral Mastectomy and Autologous Breast Reconstruction: Report of a Case and Review of the Literature. Int J Surg Pathol 2020; 29:205-210. [PMID: 32552130 DOI: 10.1177/1066896920930100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this article, we report a very rare case of secondary angiosarcoma in a young woman with no prior history of breast cancer who had bilateral prophylactic mastectomies with autologous reconstruction due to a strong family history of breast cancer and BRCA1 gene variant of uncertain significance. The surgery was complicated by recurrent fat necrosis requiring several excisions and additional reconstruction followed by the development of localized lymphedema and subsequent angiosarcoma in the reconstructed breast 10 years later. The angiosarcoma was high grade with prominent epithelioid features associated with abundant tumor-infiltrating lymphocytes. Amplification of C-MYC locus 8q21.24 was demonstrated by fluorescence in situ hybridization study. We postulate that chronic trauma from several surgeries including tissue hypoxia and impaired lymphatic drainage may have provided a milieu for angiogenesis and mutagenic transformation. Amplification of C-MYC locus 8q21.24 was most likely a strong oncogenic driver of angiosarcoma. To the best of our knowledge, this is the first report of its kind in the literature.
Collapse
|
39
|
The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int J Mol Sci 2020; 21:ijms21093244. [PMID: 32375307 PMCID: PMC7247322 DOI: 10.3390/ijms21093244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and β, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.
Collapse
|
40
|
Chakraborty A, Scogin CK, Rizwan K, Morley TS, Rutkowski JM. Characterizing Lymphangiogenesis and Concurrent Inflammation in Adipose Tissue in Response to VEGF-D. Front Physiol 2020; 11:363. [PMID: 32390866 PMCID: PMC7188984 DOI: 10.3389/fphys.2020.00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolic consequences of obesity arise from local inflammation within expanding adipose tissue. In pre-clinical studies targeting various inflammatory factors, systemic metabolism can be improved through reduced adipose inflammation. Lymphatic vessels are a critical regulator of inflammation through roles in fluid and macromolecule transport and immune cell trafficking and immunomodulation. Lymphangiogenesis, the expansion of the lymphatic network, is often a necessary step in restoring tissue homeostasis. Using Adipo-VD mice, a model of adipocyte-specific, inducible overexpression of the potent lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D), we previously identified that dense de novo adipose lymphatics reduced immune accumulation and improved glucose homeostasis in obesity. On chow diet, however, Adipo-VD mice demonstrated increased adipose tissue immune cells, fibrosis, and inflammation. Here, we characterize the time course of resident macrophage accumulation and lymphangiogenesis in male and female Adipo-VD mice fed chow and high fat diets, examining multiple adipose depots over 4 months. We find that macrophage infiltration occurs early, but resolves with concurrent lymphatic expansion that begins robustly after 1 month of VEGF-D overexpression in white adipose tissue. In obesity, female Adipo-VD mice exhibit reduced lymphangiogenesis and maintain a more glycolytic metabolism compared to Adipo-VD males and their littermates. Adipose lymphatic structures appear to expand by a lymphvasculogenic mechanism involving lymphatic endothelial cell proliferation and organization with a cell source we that failed to identify; hematopoietic cells afford minimal structural contribution. While a net positive effect occurs in Adipo-VD mice, adipose tissue lymphangiogenesis demonstrates a dichotomous, and time-dependent, inflammatory tissue remodeling response.
Collapse
Affiliation(s)
- Adri Chakraborty
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Caroline K Scogin
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Kinza Rizwan
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Thomas S Morley
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| |
Collapse
|
41
|
Balasubbramanian D, Gelston CAL, Lopez AH, Iskander G, Tate W, Holderness H, Rutkowski JM, Mitchell BM. Augmenting Renal Lymphatic Density Prevents Angiotensin II-Induced Hypertension in Male and Female Mice. Am J Hypertens 2020; 33:61-69. [PMID: 31429865 DOI: 10.1093/ajh/hpz139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal inflammation and immune cell infiltration are characteristic of several forms of hypertension. Our laboratory has previously demonstrated that renal-inflammation-associated lymphangiogenesis occurs in salt-sensitive and nitric-oxide-inhibition-induced hypertension. Moreover, enhancing renal lymphatic density prevented the development of these two forms of hypertension. Here, we investigated the effects of angiotensin II-induced hypertension on renal lymphatic vessel density in male and female mice. METHODS Wild-type and genetically engineered male and female mice were infused with angiotensin II for 2 or 3 weeks. Isolated splenocytes and peritoneal macrophages from mice, and commercially available mouse lymphatic endothelial cells were used for in vitro studies. RESULTS Compared to vehicle controls, angiotensin II-infused male and female mice had significantly increased renal lymphatic vessel density in association with pro-inflammatory immune cells in the kidneys of these mice. Direct treatment of lymphatic endothelial cells with angiotensin II had no effect as they lack angiotensin II receptors; however, angiotensin II treatment of splenocytes and peritoneal macrophages induced secretion of the lymphangiogenic growth factor VEGF-C in vitro. Utilizing our genetic mouse model of inducible renal lymphangiogenesis, we demonstrated that greatly augmenting renal lymphatic density prior to angiotensin II infusion prevented the development of hypertension in male and female mice and this was associated with a reduction in renal CD11c+F4/80- monocytes. CONCLUSION Renal lymphatics play a significant role in renal immune cell trafficking and blood pressure regulation, and represent a novel avenue of therapy for hypertension.
Collapse
Affiliation(s)
| | | | - Alexandra H Lopez
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Geina Iskander
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Winter Tate
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Haley Holderness
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
42
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
43
|
|
44
|
Trincot C, Caron KM. Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacol Transl Sci 2019; 2:311-324. [PMID: 32259065 PMCID: PMC7089000 DOI: 10.1021/acsptsci.9b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology. We first focus on elucidating innate and fundamental differences between the sexes in lymphatic function and development. Next, we delve into lymphatic disease and explore the potential underpinnings toward bias prevalence in the female population. Lastly, we incorporate more broadly the role of the lymphatic system in sex-biased diseases such as cancer, cardiovascular disease, reproductive disorders, and autoimmune diseases to explore whether and how sex differences may influence lymphatic function in the context of these pathologies.
Collapse
Affiliation(s)
- Claire
E. Trincot
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| | - Kathleen M. Caron
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| |
Collapse
|
45
|
Lin AE, Prakash SK, Andersen NH, Viuff MH, Levitsky LL, Rivera-Davila M, Crenshaw ML, Hansen L, Colvin MK, Hayes FJ, Lilly E, Snyder EA, Nader-Eftekhari S, Aldrich MB, Bhatt AB, Prager LM, Arenivas A, Skakkebaek A, Steeves MA, Kreher JB, Gravholt CH. Recognition and management of adults with Turner syndrome: From the transition of adolescence through the senior years. Am J Med Genet A 2019; 179:1987-2033. [PMID: 31418527 DOI: 10.1002/ajmg.a.61310] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Turner syndrome is recognized now as a syndrome familiar not only to pediatricians and pediatric specialists, medical geneticists, adult endocrinologists, and cardiologists, but also increasingly to primary care providers, internal medicine specialists, obstetricians, and reproductive medicine specialists. In addition, the care of women with Turner syndrome may involve social services, and various educational and neuropsychologic therapies. This article focuses on the recognition and management of Turner syndrome from adolescents in transition, through adulthood, and into another transition as older women. It can be viewed as an interpretation of recent international guidelines, complementary to those recommendations, and in some instances, an update. An attempt was made to provide an international perspective. Finally, the women and families who live with Turner syndrome and who inspired several sections, are themselves part of the broad readership that may benefit from this review.
Collapse
Affiliation(s)
- Angela E Lin
- Medical Genetics Unit, Mass General Hospital for Children, Boston, Massachusetts
| | - Siddharth K Prakash
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette H Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lynne L Levitsky
- Division of Pediatric Endocrinology, Department of Pediatrics, Mass General Hospital for Children, Boston, Massachusetts
| | - Michelle Rivera-Davila
- Division of Pediatric Endocrinology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Melissa L Crenshaw
- Medical Genetics Services, Division of Genetics, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Lars Hansen
- Department of Otorhinolaryngology, Aarhus University Hospital, Aarhus, Denmark
| | - Mary K Colvin
- Psychology Assessment Center, Massachusetts General Hospital, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Frances J Hayes
- Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Evelyn Lilly
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Emma A Snyder
- Medical Genetics Unit, Mass General Hospital for Children, Boston, Massachusetts
| | - Shahla Nader-Eftekhari
- Division of Endocrinology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Melissa B Aldrich
- Center for Molecular Imaging, The Brown Institute for Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ami B Bhatt
- Corrigan Minehan Heart Center, Adult Congenital Heart Disease Program, Massachusetts General Hospital, Boston, Massachusetts.,Yawkey Center for Outpatient Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Laura M Prager
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Ana Arenivas
- Department of Rehabilitation Psychology/Neuropsychology, TIRR Memorial Hermann Rehabilitation Network, Houston, Texas.,Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Anne Skakkebaek
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Marcie A Steeves
- Medical Genetics Unit, Mass General Hospital for Children, Boston, Massachusetts
| | - Jeffrey B Kreher
- Department of Pediatrics and Orthopaedics, Massachusetts General Hospital, Boston, Massachusetts
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
46
|
Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 2019; 116:10031-10038. [PMID: 31036637 DOI: 10.1073/pnas.1901659116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) results from amyloid-β deposition in the cerebrovasculature. It is frequently accompanied by Alzheimer's disease and causes dementia. We recently demonstrated that in a mouse model of CAA, taxifolin improved cerebral blood flow, promoted amyloid-β removal from the brain, and prevented cognitive dysfunction when administered orally. Here we showed that taxifolin inhibited the intracerebral production of amyloid-β through suppressing the ApoE-ERK1/2-amyloid-β precursor protein axis, despite the low permeability of the blood-brain barrier to taxifolin. Higher expression levels of triggering receptor expressed on myeloid cell 2 (TREM2) were associated with the exacerbation of inflammation in the brain. Taxifolin suppressed inflammation, alleviating the accumulation of TREM2-expressing cells in the brain. It also mitigated glutamate levels and oxidative tissue damage and reduced brain levels of active caspases, indicative of apoptotic cell death. Thus, the oral administration of taxifolin had intracerebral pleiotropic neuroprotective effects on CAA through suppressing amyloid-β production and beneficially modulating proinflammatory microglial phenotypes.
Collapse
|
47
|
Dubois C, Rocks N, Blacher S, Primac I, Gallez A, García-Caballero M, Gérard C, Brouchet L, Noël A, Lenfant F, Cataldo D, Pequeux C. Lymph/angiogenesis contributes to sex differences in lung cancer through oestrogen receptor alpha signalling. Endocr Relat Cancer 2019; 26:201-216. [PMID: 30444717 DOI: 10.1530/erc-18-0328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022]
Abstract
Oestrogen signalling pathways are emerging targets for lung cancer therapy. Unravelling the contribution of oestrogens in lung cancer development is a pre-requisite to support the development of sex-based treatments and identify patients who could potentially benefit from anti-oestrogen treatments. In this study, we highlight the contribution of lymphatic and blood endothelia in the sex-dependent modulation of lung cancer. The orthotopic graft of syngeneic lung cancer cells into immunocompetent mice showed that lung tumours grow faster in female mice than in males. Moreover, oestradiol (E2) promoted tumour development, increased lymph/angiogenesis and VEGFA and bFGF levels in lung tumours of females through an oestrogen receptor (ER) alpha-dependent pathway. Furthermore, while treatment with ERb antagonist was inefficient, ERa antagonist (MPP) and tamoxifen decreased lung tumour volumes, altered blood and lymphatic vasculature and reduced VEGFA and bFGF levels in females, but not in males. Finally, the quantification of lymphatic and blood vasculature of lung adenocarcinoma biopsies from patients aged between 35 and 55 years revealed more extensive lymphangiogenesis and angiogenesis in tumour samples issued from women than from men. In conclusion, our findings highlight an E2/ERa-dependent modulation of lymphatic and blood vascular components of lung tumour microenvironment. Our study has potential clinical implication in a personalised medicine perspective by pointing to the importance of oestrogen status or supplementation on lung cancer development that should be considered to adapt therapeutic strategies.
Collapse
Affiliation(s)
- Charline Dubois
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Natacha Rocks
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Irina Primac
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Anne Gallez
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Melissa García-Caballero
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Céline Gérard
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Laurent Brouchet
- Thoracic Surgery Department, University Hospital CHU Toulouse, Toulouse, France
| | - Agnès Noël
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Françoise Lenfant
- INSERM UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, University of Toulouse III Paul Sabatier, UPS, Toulouse, France
| | - Didier Cataldo
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| | - Christel Pequeux
- Laboratory of Tumour and Development Biology, GIGA-Cancer, University of Liège, CHU-B23, Liège, Belgium
| |
Collapse
|